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ABSTRACT
Supermassive black holes are a key ingredient of galaxy evolution. However, their origin is still
highly debated. In one of the leading formation scenarios, a black hole of ∼100 M� results
from the collapse of the inner core of a supermassive star (�104–5 M�), created by the rapid
accumulation (�0.1 M� yr−1) of pristine gas at the centre of newly formed galaxies at z ∼ 15.
The subsequent evolution is still speculative: the remaining gas in the supermassive star can
either directly plunge into the nascent black hole or part of it can form a central accretion disc,
whose luminosity sustains a surrounding, massive, and nearly hydrostatic envelope (a system
called a ‘quasi-star’). To address this point, we consider the effect of rotation on a quasi-star, as
angular momentum is inevitably transported towards the galactic nucleus by the accumulating
gas. Using a model for the internal redistribution of angular momentum that qualitatively
matches results from simulations of rotating convective stellar envelopes, we show that quasi-
stars with an envelope mass greater than a few 105 M� × (black hole mass/100 M�)0.82

have highly sub-Keplerian gas motion in their core, preventing gas circularization outside the
black hole’s horizon. Less massive quasi-stars could form but last for only �104 yr before the
accretion luminosity unbinds the envelope, suppressing the black hole growth. We speculate
that this might eventually lead to a dual black hole seed population: (i) massive (>104 M�)
seeds formed in the most massive (>108 M�) and rare haloes; (ii) lighter (∼102 M�) seeds
to be found in less massive and therefore more common haloes.

Key words: accretion, accretion discs – black hole physics – methods: analytical – galaxies:
nuclei – early Universe.

1 IN T RO D U C T I O N

During the last 10 yr or so, observations have unambiguously proved
the existence of supermassive black holes accreting at the centre of
bright quasars at redshifts z �6 with masses in excess of 109 M�
(Fan et al. 2006; Willott et al. 2010; Mortlock et al. 2011; Wu et al.
2015). Despite that those objects are not perhaps representative of
the entire population of supermassive black holes at z �6 (e.g.
Treister et al. 2013; Weigel et al. 2015), they represent a challenge
for many theoretical models that attempt to describe the formation of
the first black hole seeds. Indeed, black hole seeds originating both
as the leftovers of the first population (PopIII) stars (with masses
�100 M�; Madau & Rees 2001; Tanaka & Haiman 2009) and as the
products of dynamical processes at the centre of primordial nuclear
star cluster (with masses �1000 M�; Quinlan & Shapiro 1990;
Devecchi & Volonteri 2009; Devecchi et al. 2012) are not expected
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to grow fast enough to reach ∼109 M� by z ∼ 6 (e.g. Johnson &
Bromm 2007; Pelupessy, Di Matteo & Ciardi 2007; Milosavljević
et al. 2009), unless they experience prolonged periods of super-
Eddington accretion (e.g. Madau, Haardt & Dotti 2014; Volonteri,
Silk & Dubus 2015).

A possible way out is to allow for the existence of massive black
hole seeds (∼104−105 M�) that can grow sub-Eddington and still
match the masses of the quasars at z ∼ 6. This is achieved by the so-
called ‘direct collapse’ scenario, according to which massive clouds
(∼106−107 M�) of pristine gas can collapse almost isothermally
at the centre of protogalactic, H I-cooling haloes (i.e. with virial
temperature Tvir �104 K; e.g. Bromm & Loeb 2003; Begelman,
Volonteri & Rees 2006; Lodato & Natarajan 2006; Choi, Shlosman
& Begelman 2013, 2015; Latif et al. 2013a). During the collapse,
fragmentation can be avoided by dissociating H2 (the main coolant
in the absence of metals) through the irradiation of Lyman–Werner
photons coming from nearby, star-forming galaxies (e.g. Dijkstra,
Ferrara & Mesinger 2014; Regan, Johansson & Wise 2014; Agarwal
et al. 2016), while supersonic turbulence and non-axisymmetric
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perturbations can remove angular momentum from the collapsing
gas and suppress fragmentation further (Begelman & Shlosman
2009; Choi et al. 2013, 2015; Mayer et al. 2015).

However, even if the concurrency of all the processes above can
be attained and it leads to the onset of the gravitational collapse,
it is still unclear how the black hole seed would actually form.
The expectation is that the collapse proceeds almost isothermally
at ∼8000 K (as set by H I-line cooling) until a supermassive
protostar forms at the fragmentation scale ∼105−106 M�, quickly
accreting at ∼0.1−1 M� yr−1 (Hosokawa, Omukai & Yorke 2012;
Hosokawa et al. 2013). After exhausting nuclear reactions, the cen-
tral core of a supermassive star �104–5 M� is expected to collapse
in an ∼100 M� embryo black hole (Begelman 2010; Hosokawa
et al. 2013) because of general relativistic radial instability
(Baumgarte & Shapiro 1999; Shibata & Shapiro 2002). The black
hole is surrounded by most of the mass of the original envelope,
which is still contracting on a longer dynamical time-scale. It
is unclear what happens next. Possibly, the infalling gas retains
enough angular momentum to build some kind of an accretion disc
around the black hole at the centre of the envelope. This structure
can reach the equilibrium where the accretion luminosity is used
to sustain the massive envelope against its own self-gravity, i.e. a
quasi-star (Begelman, Rossi & Armitage 2008; Ball et al. 2011;
Dotan, Rossi & Shaviv 2011; Fiacconi & Rossi 2016, hereafter
Paper I). Therefore, a necessary ingredient for a quasi-star is the
presence of a central accretion disc. It forms within the sphere of
influence of the black hole (much less than the quasi-star radius)
and it is able to convectively transport outward into the hydrostatic
envelope the potential energy liberated through accretion.

In this way, quasi-stars can quickly grow their central black holes
to ∼104 M� at (or above) the Eddington rate for the whole en-
velope, although strong outflows can limit the black hole growth
(Dotan et al. 2011; Paper I). At the same time, the envelope keeps
accreting mass from the environment. Whether such accretion pro-
ceeds directly through filaments or from a protogalactic disc, the
gas likely transports some amount of angular momentum that is
transferred to the quasi-star and redistributed within it. Quasi-stars
are then expected to rotate, possibly faster on the equatorial plane
than on the poles if they are embedded in a disc.

Rotation may have a few effects on the evolution of quasi-stars.
In analogy with normal stars, it could modify the internal struc-
ture of the quasi-star (e.g. Palacios et al. 2006; Eggenberger et al.
2010; Brott et al. 2011; Ekström et al. 2012), or it can stabilize the
object against general relativistic instabilities, unless too massive
(�108 M�; Fowler 1966). Finally, a crucial feature that depends
on the internal redistribution of angular momentum is the ability
of the gas to circularize and to form an accretion disc. Here, we
explore whether the conditions for a disc to form are typically met
in steady-rotating quasi-stars and we find that in most of the pa-
rameter space the answer is negative. Although this result might
be sensitive to environmental conditions as well as to details of
the convective structures, it opens, in principle, the possibility of
directly forming massive seeds, without the intermediate stage of a
quasi-star.

This paper is organized as follows. In Section 2, we present our
analytical model to describe the differential rotation within quasi-
stars and we calculate the angular velocity profiles, finding that
the angular momentum at the boundary of the accretion region
is typically much less than a per cent of the Keplerian angular
momentum at the same location. Before concluding, we discuss in
Section 3 the speculative implications of our work, cautioning at
the same time about the limitations of our approach.

2 T H E M O D E L O F ROTAT I N G QUA S I - S TA R S

2.1 Quasi-stars as loaded polytropes

The hydrostatic structure of a quasi-star is constituted by a radiation-
dominated, convective envelope, surrounded by a thin, radiative
layer (Begelman et al. 2008; Ball et al. 2011; Dotan et al. 2011;
Paper I). Since the envelope represents the majority of the mass
and volume of a quasi-star, and convective regions can be described
accurately by an adiabatic temperature gradient, a quasi-star can be
modelled as a polytropic gas with index n = 3. A polytropic gas is
characterized by a barotropic equation of state P(ρ) = Pc(ρ/ρc)γ ,
where Pc and ρc are the central pressure and central density, re-
spectively, and the adiabatic index γ = 1 + 1/n = 4/3 for a
radiation-dominated gas. Polytropes are regular solutions of the
Lane–Emden equations with inner boundary conditions in the stan-
dard dimensionless density and mass variables �c = �(0) = 1 and
φc = φ(0) = 0. When n < 5, they extend up to the dimensionless
radius ξ� = r�/α, where �� = �(ξ�) = 0 and α is the standard radial
normalization, and they enclose a total, finite mass M� = 4πρcα

3φ�

(e.g. Ball, Tout & Żytkow 2012).
Additionally, quasi-stars are characterized by the presence of

a central black hole of mass M•. We can model this feature by
changing the inner boundary conditions: we assume that within the
radius r0, the enclosed mass is M(r0) = M• and that the density
and the pressure are normalized to the values ρ0 and P0 at r0,
respectively. The radius r0 is the size of the gravitational sphere of
influence of the black hole and is typically of the order of its Bondi
radius rB:

r0 = brB = b
GM•
2c2

s,0

, (1)

where c2
s,0 = γP0/ρ0 and b is a numerical constant of the order

of a few. In terms of dimensionless quantities, the new boundary
conditions at ξ 0 = r0/α are �(ξ 0) = �0 = 1 and φ0 = φ(r0) =
M•/(4πρ0α

3). A polytropic solution with non-zero central mass
(i.e. with the latter boundary conditions) is called loaded polytrope
(Huntley & Saslaw 1975). Throughout the rest of the paper, we use
loaded polytropes to model the internal, hydrostatic structure of a
quasi-stars assuming n = 3.

We note that ξ 0 and φ0 are not independent, but they are related
by

ξ0 = 3b

2
φ0. (2)

Therefore, the boundary conditions can be fully determined by
choosing a value for φ0. In turn, this is related through the Lane–
Emden equation to the total mass of the envelope φ�. This relation
is shown in Fig. 1 in terms of the mass ratio q ≡ M•/M� = φ0/φ�

as a function of φ0 for different values of b. The mass ratio q has
always a maximum at φ0 = φ̃0. This occurrence has been described
in details by Ball et al. (2012) as a generalization of a Schönberg–
Chandrasekhar-like limit for polytropic envelopes surrounding a
central core (Schönberg & Chandrasekhar 1942). Quasi-stars have
typically q < 10−2 (Paper I). Solutions on the φ0 > φ̃0 branch
are unphysical because they reach zero mass before zero radius.
Acceptable solutions lie on the φ0 < φ̃0 branch, where the depen-
dence on b becomes very weak. On this branch, we find empirically
φ0 ≈ 2q, as shown in Fig. 1. From this relation, we can build any
solution as follows. First, we choose a value of q, typically between
∼10−4 and ∼10−2. This maps to the value of φ0 necessary to set
the boundary conditions and specify φ�. We can then rescale the
dimensionless solution with a specified q to any solution in physical
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Figure 1. Relation between the mass ratio q = M•/M� = φ0/φ� and the
dimensionless black hole mass φ0. Continuous, dashed, and dotted lines
show cases b = 1, b = 3, and b = 5, respectively. The black dots show the
position of the limiting mass ratio q. The lower branch (φ0 < 0.1) is the
only one that gives physical solutions (see the text) and it almost does not
depend on b. The dash–dotted line shows the relation φ0 = 2q.

units by specifying the central black hole mass M• and the pressure
P0. The density ρ0 can then be obtained as

ρ0 =
[

(n + 1)3

4πG3

]1/4
φ

1/2
0 P

3/4
0

M
1/2•

≈ 1.2 × 10−5 q1/2 p
3/4
0,8 m−1/2

• g cm−3, (3)

where we use n = 3, M• = m• M�, and φ0 ≈ 2q. We discuss the
limitations of this simplified treatment of the interior of quasi-stars
in Section 3.2.

2.2 Differential rotation inside quasi-stars

In a recent series of papers, Balbus and collaborators have devel-
oped a theory to describe the convective zone in the Sun (Balbus
et al. 2009; Balbus & Latter 2010; Balbus & Weiss 2010; Balbus &
Schaan 2012; Balbus, Latter & Weiss 2012). Their model success-
fully reproduces the isorotation contours within the solar convec-
tive zone and the tachocline from the helioseismology data of the
Global Oscillation Network Group. Here, we review the main fea-
tures of the model and then apply it to quasi-stars, mostly following
Balbus et al. (2009) and Balbus & Weiss (2010). We also verify in
Section 3.2 the applicability of this model to the quasi-star case.

We consider an azimuthally rotating, convective gas flow (gener-
ically a star) in spherical coordinates (r, θ , φ), where r is the radial
distance from the centre, θ is the colatitude angle, and φ is the
azimuthal angle. The flow is symmetric with respect to the rotation
axis, i.e. the thermodynamic variables characterizing it, such as the
density ρ, the pressure P, and the specific entropy s, do not depend
on φ, but they generally depend on r and θ . The only velocity com-
ponent is the azimuthal velocity vφ = r sin θ 
(r, θ ), where 
(r, θ )
is the angular velocity. We neglect any departure from sphericity,
implicitly assuming slow rotation. Such a flow in steady state is

described by the following Euler equations (r- and θ -components,
respectively, while the azimuthal component is 0 = 0):⎧⎪⎪⎨
⎪⎪⎩

− 1

ρ

∂P

∂r
− ∂�

∂r
= 0,

v2
φ cot θ

r
− 1

ρ

∂P

∂θ
− 1

r

∂�

∂θ
= 0,

(4)

where � is the gravitational potential. Note that in the radial di-
rection we neglect the (weak) centrifugal force.1 By calculating the
φ-component of the curl of the Euler equations [equation (4)], and
dropping terms proportional to ∂P/∂θ � ∂P/∂r , we obtain the
thermal wind equation (Kitchatinov & Ruediger 1995; Thompson
et al. 2003; Balbus et al. 2009; Balbus & Weiss 2010; Balbus et al.
2012):

∂
2

∂r
− tan θ

r

∂
2

∂θ
= 1

γ r2 sin θ cos θ

d�

dr

∂σ

∂θ
, (5)

where we have introduced the dimensionless entropy function:

σ = log

[
P

P0

(
ρ

ρ0

)−γ
]

, (6)

which is proportional to (or monotonically dependent on) s. Equa-
tion (5) neglects the contribution from convective turbulence to the
velocity field (it is in fact a time-averaged description of the flow)
and it is not valid for highly magnetized stars, but a weak magnetic
field can be accommodated (Balbus 2009).

Let us now introduce the residual entropy: the azimuthally av-
eraged entropy profile left after the radial profile σ r has been sub-
tracted off:

σ ′(r, θ ) = σ − σr(r). (7)

Since equation (5) depends on σ exclusively through its θ derivative,
the differential profile 
(r, θ ) could be determined after knowing
σ ′, regardless of σ r. Convection in a non-rotating star establishes a
stable entropy radial profile σ r, as a result of an equilibrium reached
between central stellar heating and heat transport. Convective cells
move on average along the radial direction. If now a small amount
of rotation is added, the convective cells will tend, on average, to
drift towards surfaces of constant angular rotation. This is because
differential rotation tends to confine the flow in a sheet of constant

. This assumes, of course, that the rotational surfaces can effec-
tively interact with the convective cells during their lifetime, which
is reasonable if they are long-lasting structures. In the presence of
a relative small degree of rotation, we can therefore argue that σ r

is similar to that established in a non-rotating star, while σ ′(r, θ )
is a small departure from σ r, closely connected to the differential
rotational profile within the star. Following Balbus et al. (2009), we
assume, σ ′ = f(
2) which implies that surfaces of constant residual
entropy coincide with surfaces of constant angular velocity. Though
still not unambiguously demonstrated, this conjecture provides re-
markable results when used to describe the solar convective zone
(Balbus & Latter 2010; Balbus & Schaan 2012; Balbus et al. 2012).
In addition, it is also supported, at least qualitatively, by the results
of hydrodynamical simulations showing similarity between con-
stant 
 and σ ′ contours (Miesch, Brun & Toomre 2006; see also
fig. 2 from Balbus et al. 2009).

1 In fact, this approximation is only necessary to derive equation (5) after
the φ-component of the curl of those Euler equations has been taken. For
clarity, however, we already drop the centrifugal force at this early step.
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With this relation, σ ′ = f(
2), equation (5) can be rewritten as

∂
2

∂r
−

(
tan θ

r
+ f ′

γ r2 sin θ cos θ

d�

dr

)
∂
2

∂θ
= 0, (8)

where f′ = dσ ′/d
2. The above equation has the form u · ∇
2 = 0,
where u is the vector tangential to the surfaces of constant 
 (i.e. it is
their ‘velocity’ vector). Such surfaces ζ=(r, θ (r)) can be obtained
by integrating the ordinary differential equation ζ̇ = u (where ˙
indicates the derivative with respect to any dummy parameter).
More practically, one divides the polar and radial components of
that vectorial equation and obtains the following single equation:

dθ (r)

dr
= − tan θ

r
− f ′

γ r2 sin θ cos θ

d�(r)

dr
. (9)

If we recall that f′ depends only on 
2 and that equation (9) describes
surfaces of constant 
2, we can finally integrate the above equation
considering f′ as constant:

r2 sin2 θ = A − 2f ′

γ
�(r), (10)

where A is an integration constant. These iso-
2 surfaces are the
characteristics of equation (8). Note that on each surface, f′ can
assume a different constant value.

We can determine the constant A by specifying a starting position
for each characteristic. We take the position (R�, θ�) at the surface
of a spherical star with radius R� and we obtain

r2 sin2 θ = R2
� sin2 θ� − 2f ′

γ
(�(r) − �(R�)), (11)

where now f′ = f′(
(R�, θ�)) has to be specified and the internal
structure of the star influences the result through �. The curves
described by equation (11) are constant 
 contours; therefore, they
can be used to reconstruct the 2D 
(r, θ ) by assigning a value
of 
 at a given radius. Specifically, we will supply 
�(θ�) at
R�. We can then isolate θ�(r, θ ) from equation (11) and obtain

(r, θ ) = 
�(θ�(r, θ )).

We can now use this method to explicitly calculate the internal
differential rotation of quasi-stars, once we specify their internal
structure. Since we describe quasi-stars as loaded polytropes (see
Section 2.1), we can integrate the equation of hydrostatic equilib-
rium between r and R� for a polytropic equation of state and obtain

�(r) − �(R�) = − c2
s

γ − 1
= −3 c2

s,0 �3(r; q), (12)

where c2
s,0 = γP0/ρ0 is the sound speed at r0, �3(r; q) is the loaded

polytrope solution for n = 3 and a given q, and γ = 4/3. Substituting
equation (12) into equation (11), we finally get

sin2 θ� =
(

r

R�

)2

sin2 θ − β �3(r; q), (13)

where we define

β = 9c2
s,0f

′

2R2
�

. (14)

There is still a quantity that has remained general in our treat-
ment, namely f′(
2). Unfortunately, we do not know a priori its
functional form, and only hydrodynamical simulations of global 3D
convection could clarify this point. However, to avoid unnecessary
mathematical complication at this stage, we assume the simplest
functional form, i.e. a global constant for f′. This simple choice is
also motivated by the lack of any observational constraint; yet, such
a choice is quite effective for the case of the Sun (Balbus & Latter

2010; Balbus et al. 2012). However, we need to use additional rea-
sonable arguments to constrain in our case the constant parameter
β that directly depends on f′ through equation (14).

First, we expect β < 0 (i.e. f′ < 0, like in the convective envelope
of the Sun), since this implies slower rotating poles with respect to
the equatorial regions. This configuration may naturally come about
when quasi-stars are fed by protogalactic discs near the equator, i.e.
angular momentum is injected by the infalling material near the
equator and has to be redistributed from there to the poles. Finally,
we can also estimate the value of |β| by recalling that σ ′ is a small
perturbation on the otherwise spherically symmetric entropy profile
σ r that arises when the star rotates:

σ ′ ∼ Trot

U
∼ R2

�

2

c2
s,0

, (15)

where Trot ∼ M�R
2
�


2 and U ∼ M�c
2
s,0 are the rotational kinetic

energy and the gaseous internal energy of the star, respectively.
Therefore, f ′ ∼ σ ′/
2 ∼ R2

�/c
2
s,0 implies that |β| ∼ 9/2 ∼ a few.

Although this simple line of reasoning does not prove that f′ should
be constant, it provides a gross estimate of the value of |β| if f′ is
assumed to be constant. However, we show in Section 2.3 that the
exact value of |β| has a weak impact on our final conclusions and
we discuss the limitations of our approach in Section 3.2.

2.3 Angular velocity structure of quasi-stars

To explicitly calculate the differential rotation within a quasi-star,
we need to specify the boundary conditions of the problem, i.e.
the differential rotation at the surface 
�(θ�). We use a simple
parametrization of the form


�(θ�) = ω�(1 + δω sin2 θ�), (16)

where ω� is the polar rotation, limited by the Keplerian velocity
of the star 
K, �, and δω is the relative, fractional excess of ro-
tation at the equator, with the limit 0 < δω < ε−1 − 1, where
ε = ω�/
K, � < 1. This parametrization of the differential rotation
has been used to describe the Sun as well as other stars, with typical
values δω ∼ 0.1 (e.g. Balbus et al. 2009; Reinhold, Reiners & Basri
2013).

Fig. 2 shows the angular velocity profiles and maps for a ref-
erence quasi-star with q = 10−3 (e.g. a massive quasi-star with
M• = 103 M� and M� = 106 M�), ε = 0.3, and δω = 0.2 (i.e.
rotating at 0.36 
K, � at the equator, with a differential velocity of
20 per cent between the equator and the poles), and we vary the
value of |β| between 1 and 16. The top-left panel [sub-panel (a)]
shows the radial profile of the θ -averaged angular velocity 〈
〉
(normalized by 
K, �), highlighting its behaviour at small radii. Ini-
tially, 〈
〉 grows from the surface of the star inward for most of
the stellar volume till ∼0.1R�. This growth is accentuated for larger
values of |β|. Within 0.1R�, 〈
〉 remains almost constant, assuming
a solid-body-like rotation law and following the central density of
the gas that also starts to flatten in a central core. However, the angu-
lar velocity deviates from the constant within 0.005 R� (or ∼20 r0)
because of the presence of the central black hole, steepening at
smaller radii. The typical trend is ∝ r−ζ , with ζ ∼ 0.2–0.6, increas-
ing with |β|. We compare 〈
〉 with the Keplerian angular velocity

K(r) =

√
GM(r)/r3 associated with the same mass distribution.

Outside ∼0.2 R�, 
K grows inward as r−3/2 (since most of the mass
of the envelope is contained in the central core), faster than 〈
〉.
Then, it slightly flattens, but it suddenly starts to grow again as
r−3/2 due to the presence of the central black hole that dominates
the enclosed mass φ out to ∼0.02R�, resulting in 
K 
 〈
〉 at r0.
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Figure 2. Angular velocity for a quasi-star model characterized by q = 10−3, ε = 0.3, and δω = 0.2. Top-left panel: radial profile of the θ -averaged angular
velocity [sub-panel (a)], normalized to the Keplerian angular velocity 
�, and of the ratio �/�K of the θ -averaged specific angular momentum over the Keplerian
one for the same mass distribution [sub-panel (b)]. Solid, dashed, dotted, and dash-dotted lines correspond to |β| = 1, 4, 8, 16, respectively. The solid thin line
in sub-panel (a) shows the Keplerian angular velocity. Bottom-left panel: percentage excess of rotation relative to the polar angular velocity as a function of
radius at constant latitude θ lat. Solid, dashed, and dotted lines correspond to θ lat = 0◦ (equator), 30◦, and 60◦, respectively, while thin and thick lines refer to
|β| = 1 and |β| = 16. Right-hand panel: 2D maps of the internal relative excess of angular velocity relative to the polar rotation for |β| = 1 and |β| = 16. Note
that the surface rotation of both maps is the same.

Although convection can induce solid body rotation, this is not
achieved in the entire envelope, but only in the central part. This is
shown in the bottom-left panel of Fig. 2, where we plot the radial
profiles of 
 (shown as the percentage excess of rotation compared
to the surface angular velocity at the poles ω�) at different latitudes
θ lat (θ lat = 0◦ means the equator). Most of the stellar volume is
differentially rotating at different latitudes, as shown by the two
extreme examples |β| = 1 and |β| = 16. These are representative of
the two limiting cases: when |β| → 0, the angular velocity becomes
constant on cylinders. This can be seen in the region close to the
surface around the equator of the map corresponding to |β| = 1. At
constant latitude, 
 decreases as r goes from the surface to ∼0.3–
0.4R�, when it starts to mildly grow inward and it becomes nearly
constant within ∼0.1R�; then, it steepens again close to the central
black hole. On the other hand, when |β| 
 1, the angular velocity
tends to be ‘shellular’, i.e. it mostly follows the isobars and 
 varies
with r only. That can be seen in the example map for |β| = 16 within
∼0.5R�, while in the outermost parts of the star the angular velocity
maintains a net θ -dependence and it quickly grows as r decreases.

The ratio �/�K between the specific angular momentum � and
the Keplerian angular momentum for the same mass distribution

closely relates to 〈
〉 and 
K, as shown in the top-left panel [sub-
panel (b)]. Outside ∼0.2R�, �/�K first decreases inward, then flattens
till ∼0.02R�, to decrease again roughly as ∝ r3/2. Finally, within
0.005R�, the ratio decreases inward more slowly, as a consequence
of the steepening of 〈
〉 close to the central black hole (Fig. 2). Close
to r0, �/�K typically assumes values ∼10−4, with mild variations
within a factor �2 when |β| is changed between 1 and 16, suggesting
that the exact value of |β| has a minor impact on the ratio �/�K at
about r0.

The small �/�K value at r0 is a direct consequence of the quasi-
star structure and, in particular, of the presence of the central black
hole. This can be better understood by comparing a quasi-star with
a similar system, namely a standard γ = 4/3 polytrope with the
same envelope mass, but without the central black hole. The pure
polytropic structure is more compact and has a solid body rotation
all the way to the centre, with a lower and nearly constant Keplerian
velocity due to the absence of the black hole. This case leads to a
typical ratio �/�K ∼ 0.1–0.01 larger than in the equivalent quasi-star.

We have tested the sensitivity of �/�K around r0 on the structural
parameters of the star: q, ε, δω, and b. Fig. 3 shows that quasi-stars
with proportionally larger black holes at the centre (i.e. with larger
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Figure 3. Ratio �/�K of the specific angular momentum over the Keplerian
one at r0 as a function of q for different parameters. From top to bottom: the
effect of changing β, ε, δω, and b. The lower panel also shows two example
curves (red continuous lines) for ηcrit [see equation (19)], calculated from
the models of Paper I for M• = 102 and 104 M�.

q) tend to have larger �/�K close to r0, though this ratio remains con-
fined within ∼10−2 for q ≤ 10−2 for all the parameter combinations
that we expect to bracket consistent quasi-star solutions. The ratio
�/�K departs more from ∝ r3/2 for larger q, becoming shallower
close to r0. When the quasi-star rotates proportionally faster at the
equator than at the pole (i.e. when ε decreases and δω increases),
the spread between the rotation laws with different |β| increases,
but this does not change their shape and the typical �/�K close to r0.
We note that the value of �/�K at r0 is mostly sensitive to b [i.e. the
size of the accretion region around the black hole, see equation (1)].
The ratio �/�K at r0 grows with b as r0 proportionally increases.
None the less, �/�K always remains well below 1, reaching up to
∼10−2 for b = 5 for quasi-stars with large mass ratios q �10−2.

We therefore conclude that, regardless of the strict values of the
parameters assumed, the typical specific angular momentum where
the gravity of the black hole starts to dominate (i.e. around r0)
is much lower than the local Keplerian angular momentum. We
discuss the implications (as well as the limitations) of this result for
quasi-stars in Section 3.

Figure 4. M•–M� plane for quasi-stars, divided into three regions: the
growth region (white), the evaporation strip (light grey), and the no-
hydrostatic solution region (dark grey). Blue, red, green, and magenta con-
tinuous lines show the upper limits on M� as a function of M• for different
choices of parameters, namely (|β|, ε, δω) = (4.5, 0.5, 0.2), (12, 0.5, 0.2),
(4.5, 0.1, 7), and (4.5, 0.1, 0.2), respectively. Above these limits, which are
computed from the models of Paper I, the condition η > ηcrit is not satisfied.
For reference, the black dashed line corresponds to q = 10−3.

3 D I S C U S S I O N A N D C O N C L U S I O N S

3.1 Possible implications

In this paper, we investigate the role of rotation within quasi-stars.
Although a fully self-consistent description of the rotating envelope
is beyond the purposes of this paper, our treatment of rotation can
be used to assess the coupling between the inner accretion region
and the massive envelope. Before discussing the implications of our
findings for black holes forming inside rotating quasi-stars, we re-
call their fate, when rotation is not included. This is summarized in
Fig. 4, adapted from Paper I, to which we refer the reader for more
details. Combinations of (M•, M�) that lie in the region marked as
‘no-hydrostatic solutions’ cannot form a stable envelope surround-
ing the black hole and therefore the latter cannot go through a phase
of super-Eddington growth inside a quasi-star. For this to happen,
the envelope needs to be at least a few hundred times more mas-
sive than its black hole (the parameter space marked as ‘growth
region’). Therefore, black holes with an initial mass of ∼100 M�
can reach in just �104 yr more than 104 M�, depending on the
initial envelope mass. This is because the black hole accretes at or
beyond the Eddington rate for the envelope mass. Moreover, in these
massive envelopes the loss of mass via winds induced by the super-
Eddington luminosities proceeds at a lower rate than the black hole
growth. The opposite is true for lower envelope masses at the same
black hole masses within the ‘evaporation strip’, where outflows
remove matter from the envelope faster than black hole accretion,
and the latter is then suppressed. Here a quasi-star can form, but it
can just last for <104 yr, with little impact on the embedded black
hole. We can now turn our attention to a discussion on how our
results might affect this picture.

In our calculations, we neglect any general relativistic effect. It
is then worth comparing the Schwarzschild radius rs of the central
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black hole, which sets the size of the black hole horizon, with the
envelope’s inner radius r0, where our calculation stops:

rs

r0
= 4c2

s,0

bc2
= 8

(
πG3

)1/4

3 c2

M1/2
• P

1/4
0

b φ
1/2
0

≈ 5.2 × 10−8 b−1 q−1/2 m1/2
• p

1/4
0,8 , (17)

where we used φ0 ≈ 2q. Inserting consistent mass–pressure values
from the models shown in Fig. 4, we typically find that r0 is between
a few to several thousand Schwarzschild radii of the black hole.
For example, when we consider the growth region and take (i) a
relatively small quasi-star (M• = 100 M�, M� = 2 × 105 M�, and
P0 = 6.3 × 1010 erg cm−3); and (ii) a massive quasi-star with a
relatively more massive black hole (M• = 104 M�, M� = 107 M�,
and P0 = 3.4 × 1010 erg cm−3), we find rs/r0 ≈ 1.2 × 10−4 and
rs/r0 ≈ 7.1 × 10−4, respectively. These estimates support our choice
of neglecting any general relativistic effect and we can therefore
safely use our results at r0 to put boundary conditions to the central
accretion flow.

Although a detailed modelling of the central accretion flow is
beyond the purpose of this work, we can still gain insight into its
formation and some possible features from simple inferences from
our results. The results of Section 2.3 suggest that the specific an-
gular momentum at r0 is �0 = η �K(r0), where η is ∼10−3–10−4. By
assuming the conservation of angular momentum, we can calculate
the circularization radius rcirc around the central black hole, i.e. the
radius at which �0 corresponds to a circular orbit:
rcirc

r0
= η2, (18)

where we assume that 
 � 
K below r0, as the black hole’s gravity
dominates. This radius tells us the scale below which some sort of
accretion disc may eventually form. That requires rcirc > risco ≈ rs,
where risco is the radius of the innermost stable circular orbit, which
is a few times rs, depending on the black hole spin. We can combine
equations (17) and (18) to determine a condition on η:

η > ηcrit =
[

8
(
πG3

)1/4

3 c2

]1/2
M1/4

• P
1/8
0

b1/2φ
1/4
0

≈ 1.3 × 10−2 b−1/2 q
−1/4
−4 m

1/4
•,100 p

1/8
0,10, (19)

where q = q−4 × 10−4, M• = m•, 100 × 100 M�, and
P0 = p0, 10 × 1010 erg s−1. When η > ηcrit, the gas circulariza-
tion is such that rcirc > risco and an accretion disc can form at the
centre of a quasi-star. As an example, we calculate ηcrit for the same
quasi-star models used above, and find that ηcrit ≈ 1.1 × 10−2 and
ηcrit ≈ 2.7 × 10−2, respectively. These numbers are also represen-
tative of the whole growth region, as they weakly depend on q, M•,
and P0 [see equation (19)]. Interestingly, ηcrit �10−2 is comfortably
larger than the indicative upper limit on η ∼ afew × 10−3 that we
estimate in Section 2.3, leading to the conclusion that typical quasi-
stars in the growth region might not be able to develop an accretion
disc at their centre.

To better assess this point, we exploit the models used to construct
Fig. 4 to thoroughly explore the parameter space. Specifically, we
take the values of M•, M� (hence q), and P0 (calculated at r0 = 5rB),
and we use them to calculate η and ηcrit across the M•–M� plane. As
discussed in Section 2.3, the value of η depends on some parameters,
namely (|β|, ε, δω). We tested several configurations: (i) a ‘fiducial’
model with (4.5, 0.5, 0.2), (ii) a model with a higher value for |β|,
(12, 0.5, 0.2), (iii) a rapidly and differentially rotating quasi-star
with (4.5, 0.1, 7.0), and (iv) a slowly rotating quasi-star with (4.5,

0.1, 0.2). In all cases, we find that for each M• there is an upper
limit on the mass of the envelope above which the condition η > ηcrit

is not satisfied, i.e. a rotationally supported accretion flow cannot
form. These limits are shown as thick solid lines with downward
pointing arrows in Fig. 4. We note that the higher limits correspond
to faster surface rotation and larger values of |β|. Fitting the upper
limit lines, we obtain that a disc cannot form for

M� � 0.9−1.3 × 105 M�
(

M•
100 M�

)0.82

, (20)

where the ≈0.7 uncertainty factor accounts for differences due to
the parameters described above. It is very interesting to note that
most of the allowed region coincides with the evaporation strip
(where the black hole has no time to grow), while the growth region
(where the central black hole could quickly grow to large masses)
is almost entirely excluded. The sub-linear scaling in equation (20),
close to the lines of constant q, is the result of the dependence2 of
η on q, combined with the milder dependence of ηcrit on q and on
the properties of the quasi-star.

The models of Fig. 4 have been calculated using b = 5
(see Paper I). As we show in the lowest panel of Fig. 3, this rep-
resents the most favourable case for the formation of a central
accretion disc. For b = 2 or 3, the value of η crosses ηcrit only for
central black holes with mass �104 M�, while for r0 = rB this
does not happen for any mass ratio. Therefore, in this last case,
quasi-stars might not even form in the evaporation strip.

Our conclusions might affect the evolution of quasi-stars. An
accretion disc is required as it provides an efficient source of lu-
minosity to sustain the envelope through transport of angular mo-
mentum and the extraction of gravitational potential energy (e.g.
via magneto-rotational instability; Balbus & Hawley 1991). If a ro-
tationally supported disc cannot form, we would be in the presence
of an optically thick, quasi-radial flow, which would nearly fol-
low a Bondi-like accretion flow, if well within the trapping radius
(Begelman 1978, 1979). In this case, within the Bondi radius, the
gas becomes supersonic and almost free-falling, converting most
of the gravitational potential energy into kinetic energy and little
into internal energy that could be eventually radiated or convec-
tively transported outward. Since the black hole has no surface, this
kinetic energy cannot be dissipated and is advected into the black
hole. Even assuming a dissipation mechanism within the flow, most
of the radiation produced would be dragged inward and swallowed
by the black hole (Begelman 1979; Alexander & Natarajan 2014).
Therefore, a consistent model for a quasi-star seems not to exist in
the growth region of the parameter space of Fig. 4.

Stepping on to more speculative grounds, we may foresee a pos-
sible fate for supermassive black holes that might form in such
conditions. According to recent numerical and analytical calcula-
tions, when a very massive star (�105 M�) forms as consequence
of a high accretion rate of gas (�1 M� yr−1), its inner core even-
tually collapses, presumably into a small (∼100 M�) black hole
(Begelman 2010; Hosokawa et al. 2013). At this point, however,
our results suggest that the surrounding mass might start to be radi-
ally accreted, unimpeded by the black hole energy feedback. Since
there is no maximum limit for the accretion rate on to a black
hole (there is only a limit in luminosity), this may lead to a phase
of superexponential accretion (Alexander & Natarajan 2014). The

2 As it can be noticed from equation (13), the shape of the 
 contours
depends mostly on q for different quasi-stars, β being constant as physically
estimated in Section 2.2; see also Fig. 3.
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process will stop when/if the angular momentum in the accretion
flow increases outward so that the circularization radius increases
faster than the black hole’s risco. The outcome clearly depends on the
exact hydrodynamics of the flow, but direct formation of massive
seeds �105 M� might be, in principle, possible. In this scenario,
limiting factors for the black hole seed mass would be linked to the
galaxy ability to funnel and accumulate pristine gas in its centre: low
cosmological gaseous inflow rate, non-efficient angular momentum
redistribution, and copious star formation (Choi et al. 2013, 2015;
Latif et al. 2013a).

Small black holes born in the evaporation strip might face a
different fate. There, an accretion disc can still form, but the avail-
able angular momentum is usually low, such that dissipation should
occur very close to the black hole. One may therefore speculate
that a quasi-spherical, geometrically thick, radiation-dominated ac-
cretion disc, such as a ‘ZEBRA’ (ZEro-BeRnoulli Accretion flow;
Coughlin & Begelman 2014), can form. Therefore, we have tried to
smoothly join the ZEBRA with the envelopes of the models from
Paper I at the inner radius r0. First, we note that η2 = �2

0/�
2
K(r0) cor-

responds to the normalization of the specific angular momentum of
the gas ‘a’ (see equation 10 in Coughlin & Begelman 2014). Given
γ = 4/3, this only depends on the radial slope n of the mass flow
within the ZEBRA (i.e. Ṁ ∝ rn), which is the main structural pa-
rameter of the model. Since the ZEBRA should form in the central
region of the envelope within r0, we assume that its external radius
R = r0. Finally, we normalize the density by requiring that the lu-
minosity transported by convection outward through the ZEBRA
envelope, i.e. Ladv ≈ 4πR2P (R)cs(R) = 4πR2P0cs,0, is equal to
the central luminosity L• required to self-consistently sustain the
envelope. Unfortunately, we find no consistent solutions where the
accretion disc is less massive than the black hole, as it is envisaged
in the original model. We would therefore need an extension of this
model to self-gravitating disc, to assess its viability in our case.
Another possibility is to relax the requirement that Ladv = L• and
speculate instead that L• is provided by partially tapping the energy
funnelled into a powerful jet, whose presence is foreseen in the ZE-
BRA model. However, the jet is likely going to pierce the envelope,
behaving as an outlet of energy, and therefore how enough energy
could be transferred in a gentle, uniform way to the envelope is
unclear, though possible in principle.

None the less, even if it would be possible to inject within the
quasi-star the required luminosity at/above the Eddington limit for
the whole mass, the evaporation of the envelope would anyway
prevent substantial accretion to occur. Therefore, there might be two
populations of supermassive black hole seeds from direct collapse
via supermassive stars: one extremely massive, say >104–5 M� in
massive haloes �108–9 M�, and one extremely light ∼100 M�
in more common haloes at the epoch of formation (z ∼ 15). This
possibility represents also a ‘smooth’ transition between scenarios
of light-seed formation based on PopIII stars and massive-seed
formation based on direct collapse.

3.2 Limitations of our treatment

Though intriguing and possible in principle, the speculations dis-
cussed in Section 3.1 relay on results strongly dependent on the
assumed model for the quasi-star hydrostatic structure and rotation.
We therefore comment on the limitations of this model.

The simplified description of the quasi-star internal structure as
a loaded polytrope (which is unrelated to rotation) requires three
parameters to be specified, namely the central pressure P0, the black
hole mass M•, and the mass of the envelope M� through the ratio

q. However, this neglects the energy production mechanism at the
centre, which would introduce an additional relation between, e.g.
P0 and M�, leaving only two parameters to describe the model with
simple scalings (e.g. equations 8–10 from Dotan et al. 2011). None
the less, this treatment provides the correct estimates as long as, for
each M•–q pair, P0 is chosen consistently with detailed equilibrium
models3 (e.g. Paper I).

We model the rotation inside the convective envelope of a quasi-
star using the model proposed by Balbus et al. (2009) and Balbus &
Weiss (2010). Despite the remarkable agreement with the available
data of the internal rotation in the solar convective zone and the phys-
ical argumentations supporting its reliability, there are no a priori
reasons why this model should apply within a quasi-star nor it should
produce a sensible description of its rotation, specially at its centre.
However, we can test the fundamental assumption behind it, namely
that convective cells are long-lived compared to the rotation period
trot ∼ 2π(ε
K,�)−1. Since convection produces sub-sonic motions
without net mass redistribution, a rough lower limit for the lifetime
of a convective element could be tconv ∼ R�/cs, 0. However, we can
obtain a better estimate by applying the mixing-length theory (e.g.
Böhm-Vitense 1958), which leads to tconv ∼ √

α hP /(gδ), where
α ∼ 1–2 is the mixing-length parameter4 (Asida 2000; Girardi et al.
2000; Palmieri et al. 2002; Ferraro et al. 2006), hP is the pressure
scaleheight, g ∼ GM�/R

2
� is the gravitational field, and δ = �T/T

is the relative (positive) deviation of the temperature gradient from
the adiabatic one in convective regions. The latter is usually tiny,
ranging from ∼10−5 to ∼10−8 in deep convective zones (e.g. Böhm-
Vitense 1992; Chabrier, Gallardo & Baraffe 2007; Prialnik 2009),
and in fact it justifies the description of convective regions through
adiabatic relations. Comparing convection and rotation time-scales,
we obtain

tconv

trot
∼ ε

√
α

2π

(
hP

R�δ

)1/2

∼ 3.6 ε0.5 δ
−1/2
−5 (hP /R�)1/2

−2 , (21)

where ε = 0.5ε0.5, α = 2, δ = 10−5δ−5, and hP/R� = 10−2(hP/R�)−2,
as we typically find hP/R� �0.01 in the convective envelope of the
models of Paper I. This order of magnitude calculation suggests
that our model should be reasonably applicable to quasi-stars
since the convection time-scale is at least comparable or even longer
than the rotation period, making convective features long-lived
enough to couple with and lie along constant 
 contours.

The derivation of equation (5) formally requires the assumption
that rotation is weak, i.e. that departures from sphericity in the hy-
drostatic equilibrium equation are negligible. In fact, this assump-
tion enters only in the final substitution (1/ρ)∂P/∂r → −d�/dr ,
but it would generally hold in the central regions we are interested
in. Indeed, simple calculations show that the ratio between the cen-
trifugal and the gravitational forces becomes smaller towards radii
r � R� for any reasonable density profile and angular velocity with
a radial scaling shallower than the Keplerian one (see also, e.g.
Chandrasekhar 1933; Monaghan & Roxburgh 1965). Therefore, we

3 Since the self-consistent models solve for the energy transport, choosing
a consistent value of P0 given M� and M• is then implicitly equivalent
to consider the energy transport within the star. Moreover, the convective
envelope of equilibrium models is formally obtained by solving the equations
of a loaded polytrope, and since it dominates the mass and volume of the
stars, it provides alone a remarkable description of the entire hydrostatic
structure.
4 Mixing-length theory assumes that convective cells live and mix over a
mean free path l = αhP, where α is a free parameter (Böhm-Vitense 1958).
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conclude that the assumption of weak rotation is not crucial for our
findings.

Our model describes a steady-state configuration (thought to be
an average in time), whose velocity field is dominated by the az-
imuthal component, i.e. rotation itself. However, convective regions
in differentially rotating zones might lead to features that this ap-
proach cannot capture, such as meridional circulation and convec-
tive turbulence (e.g. Browning, Brun & Toomre 2004; Ballot, Brun
& Turck-Chièze 2007; Browning 2008; Featherstone & Miesch
2015). These processes are thought to be relevant, especially when
coupled with magnetic fields, to understand the long-term main-
tenance and the mutual powering of the differential rotation and
the magnetic dynamo within the Sun. In our case, they might be
relevant in the redistribution of angular momentum within the con-
vective envelope, possibly having an effect on the rotation of the
central region.

Finally, we recall that quasi-stars are thought to be accreting at
high rates (�1 M� yr−1) from the local environment. That means
that quasi-stars may not be steady rotating objects, as assumed by
our model. Moreover, accretion from outside may proceed either
from a surrounding disc, especially when small-scale turbulence is
accounted for (Latif et al. 2013a), or in a more disordered fashion
from filamentary structures carrying angular momentum with var-
ious orientations and amplitudes (Choi et al. 2015). In both cases,
gravitational torques from non-axisymmetric features might play a
relevant role in influencing the redistribution of angular momentum
within the quasi-star envelope, though we cannot explicitly account
for that in the present work by assuming a steady-state, temporarily
averaged rotation.

3.3 Direct collapse haloes

We now attempt to identify the haloes that could host a supermassive
star M� �105 M�. First, we require that Ṁ � 0.1 M� yr−1, as
needed to assemble M� within ∼1–2 Myr, i.e. the lifetime of a
supermassive star (Begelman 2010; Hosokawa et al. 2013). The
supermassive star may accrete either gas transported through the
protogalactic disc or from cosmological inflows on to the halo,
proceeding all the way down to the centre as cold flows (e.g. Di
Matteo et al. 2012). The latter case can be translated in a lower
limit on the redshift z at which a halo Mh can accrete at Ṁ > 0.1
M� yr−1 through the following relation5 (Dekel, Sari & Ceverino
2009):

Ṁ ≈ 75

(
fb

0.16

) (
1 + z

3

)2.25 (
Mh

1012 M�

)1.15

M� yr−1, (22)

where fb is the cosmic baryon fraction. We follow Schneider (2015)
to calculate the collapse redshift of the halo, i.e. the redshift zcol at
which a fraction F of the mass Mh at redshift z̃ is assembled, by
solving the following equation for zcol:

1

D(zcol)
= 1

D(z̃)
+

√
π

2

√
σ 2(FMh) − σ 2(Mh)

δc,0
, (23)

5 The usage of equation (22) assumes that the gas accretion rate on to the halo
is comparable to that on to the forming supermassive star. However, different
assumptions for Ṁ(z, Mh) (e.g. Jeans mass collapse over the dynamical time
Ṁ = c3

s /G at the virial temperature Tvir) do not significantly change the
result. Yet, we caution that this approach, in order to keep the calculations
simple, neglects the possibility that the supermassive star is at the centre of
a protogalaxy.

Figure 5. Redshift of collapse zcol (defined by F = 0.05) as a function of
the halo mass Mh. The continuous and dashed lines refer to Ṁ = 0.1 and
1 M� yr−1, respectively. The dark and light grey regions mark where the
halo virial temperature Tvir < 104 K and Tvir < 3 × 104 K, respectively.
The hatched region marks the halo masses for which a supermassive star
M� = 105 M� represents more than 1 per cent of the baryonic mass fbMh.
The red dashed line marks the redshift threshold above which a halo Mh has
Z < Zcr after collapsing. The red shaded region shows where supermassive
stars >M� could form in the Mh–zcol plane, and the thin red lines denotes
when haloes represent 5, 10, and 20σ overdensity fluctuations.

where D(z) is the linear growth factor [D(0) = 1], δc, 0 = 1.686, and
σ 2(M) is the present-day variance of the matter density field (i.e. the
integral of the linear matter power spectrum over the wavenumber
k) at mass scale M (for additional details, see Schneider 2015).
Assuming F = 0.05, Fig. 5 shows zcol as a function of Mh for
two values of Ṁ . We adopt the cosmological parameters from the
latest Planck results (Planck Collaboration XIII 2016) and we find
differences within a factor 2 when we vary F from 0.05 to 0.5.

As a second constraint, we require a metallicity below
log (Zcr/Z�) = −3.8, where Z� is the solar metallicity and the
critical value roughly corresponds to the transition from PopIII to
second population stars (Valiante et al. 2016). We impose this con-
dition by using the stellar mass–metallicity relation as a function
of time determined by Savaglio et al. (2005), and then connecting
the stellar mass to Mh through the halo mass–stellar mass relation
from Moster, Naab & White (2013). After computing the redshift
of collapse, we obtain a lower limit zcol(Mh) for haloes Mh that have
Z < Zcr by the end of the collapse. Finally, the supermassive star
cannot be larger than a fraction f of the baryonic mass of the halo,
namely Mh > M�/(fbf), where f ∼ 0.01. The value of f is chosen in
fair agreement with the results of cosmological simulations of the
collapse of massive clouds at the centre of dark matter haloes with
virial temperature Tvir �104 K (e.g. Regan & Haehnelt 2009; Latif
et al. 2013b; Choi et al. 2015).

The red-shaded region in Fig. 5 shows where all these conditions
are satisfied in the Mh–zcol plane. We also compare this region with
those occupied by haloes with virial temperature Tvir < 104 K and
Tvir < 3 × 104 K. The virial temperature is calculated as Tvir ≈
(GMhH

√
�/54)2/3μmp/kB, where kB is the Boltzmann constant,
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mp is the proton mass, μ ≈ 0.59 is the mean molecular weight for
ionized hydrogen, H(z) is the Hubble parameter, and �(z) is the
z-dependent virial overdensity (Bryan & Norman 1998).

The latest haloes that might be able to host a supermassive star
M� > 105 M� collapse at zcol ∼ 6.5 and have masses Mh ∼ 2–
3 × 109 M�. These objects represent ∼2σ peaks in the matter
density distribution and have typical comoving number densities
∼0.6–0.9 cMpc−3 dex−1. Supermassive stars can also form within
both heavier and lighter haloes virtually at any redshift zcol > 10,
when they are able to sustain the inflow and the gas is still pristine
enough. However, beyond zcol ∼ 20, the candidate hosts of super-
massive stars more massive than 105 M� become extremely rare,
representing more than 5σ overdensity fluctuations of the matter
density field. Therefore, we can grossly identify the hosts of su-
permassive stars possibly leading to the formation of ∼104–5 M�
back hole seeds as dark mater haloes with masses about ∼109 M�,
collapsing between z ∼ 20 and z ∼ 10, in agreement with pre-
vious results (e.g. Begelman et al. 2006; Volonteri & Begelman
2010; Valiante et al. 2016). However, we note that our approach (i)
requires to extrapolate the used relations to relatively high z, and
(ii) it does not account for environmental effects (e.g. the proximity
of a massive halo producing H2-dissociating Lyman–Werner pho-
tons); therefore, the limits above should be taken as approximated.

3.4 Summary and conclusions

In this paper, we make a first attempt to discuss possible effects
that rotation may have on the structure and evolution of quasi-stars.
Specifically, we have addressed the issue of whether the redistri-
bution of angular momentum inside the convective envelope of a
quasi-star in steady rotation may favour the formation of a central
accretion disc. We adopt a model, developed initially by Balbus
et al. (2009) and then improved in a sequence of more recent pa-
pers by the same authors, to describe the distribution of angular
momentum within the convective zone of the Sun and we apply it
to quasi-stars.

Within the limitations of this approach (discussed in Section 3.2),
we find that, at given M•, most of the massive quasi-stars might not
be able to form a central, rotationally supported accretion region,
while the contrary is true for lower mass quasi-stars, typically living
within the evaporation strip. This bimodal behaviour could lead to
different fates, depending on the mass of the original supermassive
star at the collapse of the central core that leads to the forma-
tion of the central embryo black hole. At high masses, the black
hole might swallow most of the mass that is still infalling from
larger radii without providing enough feedback either to stabilize
the structure or to halt the collapse. The central black hole would
then accrete a large fraction of the envelope mass, possibly reaching
M• ∼ 104–5 M�. On the other hand, less massive envelopes might
be able to form a central accretion disc and to reach an equilibrium
configuration, i.e. a quasi-star. However, outflows then suppress the
growth of the central black hole, leading to M• ∼ 102–3 M�.

Our results are therefore intriguing, implying possible alternative
outcomes for the formation of supermassive black hole seeds by
direct collapse. However, this potential needs to be further scru-
tinized with detailed numerical simulations, as the limitations of
our analytical treatment suggest caution. None the less, our first
exploration still recommends that further work should be devoted
during the future to the topic of rotation within supermassive and
quasi-stars, since it might be instrumental to better understand cru-
cial details of the formation process of massive black hole seeds via
direct collapse.
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