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1. Introduction

Bayesian networks (BNs) have become one of the most popular probabilistic
models for representing joint probability distributions of a set of random vari-
ables [7, 28, 33]. Learning BNs from data is normally split into two different,
although related steps: (1) learning the structure of the network and (2) learning
the parameters [8, 18]. Sometimes the network structure is designed using ex-
pert knowledge. Once the structure of a network is obtained, parameter learning
becomes possible.

Several methods are available to learn the structure of a BN (see [6, 10, 17, 44]
among others), and there are many good software implementations of many of
these [e.g. 30].

The focus of this paper is on the task of parameter learning only in BNs whose
nodes represent discrete random variables. However, later in our final remarks,
we refer to three common approaches of extending such BNs to BNs whose
nodes are continuous random variables. Parameter learning has been studied
also widely, giving rise to many different approaches. Most of the studies are
based on the maximum likelihood (ML), the maximum a posteriori (MAP), or
the posterior mean (PM) criterion. The ML estimation is a classical technique
providing a parameter estimator by maximizing the joint probability density
functions (pdfs), while the MAP and PM estimates, as Bayesian solutions, com-
bine the information derived from the data with a priori knowledge concerning
the parameter, see [4, 8, 9, 25, 35] among others.

Parameters of a BN possess an inherent symmetry as the sum of the parame-
ters of a specific node is always equal to one, and thus, we expect their estimates
satisfy this condition as well. Our main focus is to estimate parameters of a BN
using Bayesian methods but it is very well-known that Bayes estimates highly
depend on hyperparameters of a chosen prior and this may affect the corre-
sponding results. Such a dependence in a learning procedure has been reported
to be a serious problem [1, 42]. We adjust the task of Bayesian parameter learn-
ing using the idea of constrained Bayesian (CB) estimation of [29]. Further, we
introduce and motivate the use of the simultaneous robust Bayes concept. The
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notion of robustness used in this paper is different from the one explored by [34]
in their description of the robust Bayes estimator, where they deal with missing
data by means of probability intervals.

This paper is organized as follows: In Section 2, we introduce some prelimi-
naries. Section 3 is devoted to simultaneous Bayes and the idea of CB learning.
In addition, explicit forms for parameter estimates are derived. In Section 4, we
introduce the idea of simultaneous posterior regret gamma minimax (SPRGM)
learning in the presence of prior uncertainty and derive the corresponding es-
timates. In Section 5, we carry out an experimental study and compare per-
formance of the proposed estimators using synthetic data from a well-known
example network. Further, we study the impact of the proposed methods using
real clinical data and a real-world BN. Finally, we conclude with some final re-
marks and a discussion. To keep readers in track, all the proofs along with some
supplementary materials are provided in the Appendix.

2. Preliminaries

In this section we summarize the required basic material needed later. For more
information see [8, 18, 24, 25, 31, 40].

2.1. Basic notions

A BN consists of a set of variables (or nodes) V = {X1, . . . , Xd} and a subset of
directed links E (also sometimes called edges or arcs) contained in the Cartesian
product V × V . We say the structure of a BN is known if the variables in the
set V are connected to each other according to the links in E. Mathematically,
the structure is called a directed graph. The directed graph is called acyclic, if
it does not contain any directed cycle. We refer to such a directed acyclic graph
(DAG) by G = (V,E). In the BNs context, a node is instantiated when its value
is known through observing what it represents. We say we have a complete
instantiation if all the nodes of a BN are simultaneously observed.

Suppose that for each j = 1, . . . , d, the variable Xj takes values in the set

Xj = {x(1)
j , . . . , x

(kj)
j }. The set of all possible outcomes for the experiment

may be denoted by X = X1 × · · · × Xd. Hence, a sample of cases is given

by x = (x′
(1), . . . ,x

′
(n)), where x(i) = (x

(j1)
i,1 , . . . , x

(jd)
i,d ) denotes the i-th complete

instantiation and x′
(i) stands for the transpose of x(i). For each variable Xj , de-

note all possible instantiations of the parent set Λj by the set {λ(1)
j , . . . , λ

(qj)
j }.

Thus, λ
(l)
j implies that the parent configuration of variable Xj is in state λ

(l)
j

and there are qj possible configurations of Λj .

For a given graph structure G = (V,E), let

njilk =

{
1, if (x

(i)
j , λ

(l)
j ) is found in x(k)

0, otherwise,
(2.1)
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Fig 1. A 5-node DAG.

where (x
(i)
j , λ

(l)
j ) is a configuration of the family (Xj ,Λj). Let θ ∈ Θ denote the

set of parameters defined by

θjil = P
(
Xj = x

(i)
j |Λj = λ

(l)
j

)
, (2.2)

for l = 1, . . . , qj , i = 1, . . . , kj , j = 1, . . . , d, with
∑kj

i=1 θjil = 1.
Using the decomposition of the probability distribution defined by the BN,

the joint probability of a case x(k) may be written as

pX(k)|Θ(x(k)|θ, E) ∝
d∏

j=1

qj∏
l=1

kj∏
i=1

θ
njilk

jil .

For independent observations (x(1), . . . ,x(n)), the joint probability of the cases
is

pX|Θ(x|θ,G) ∝
n∏

k=1

d∏
j=1

qj∏
l=1

kj∏
i=1

θ
njilk

jil =

d∏
j=1

qj∏
l=1

kj∏
i=1

θ
njil.

jil ,

where njil. =
∑n

k=1 njilk, which is the likelihood function. One can observe that
the ML estimate of θjil in Eq. (2.2) is given by

δML
jil =

njil.

nj.l.
, (2.3)

where nj.l. =
∑kj

i=1 njil..
Observe that all parameters (θj1l, . . . , θjkj l) of a specific node Xj preserve

the inherent symmetry of
∑kj

i=1 θjil = 1. We expect the corresponding estimates

(δj1l, . . . , δjkj l) preserve this symmetry and satisfy the constraint
∑kj

i=1 δjil = 1.
This constraint is automatically achieved by the ML estimates in Eq. (2.3) and∑kj

i=1 δ
ML
jil = 1.

Example 2.1. Consider the DAG depicted in Fig. 1 with five nodes X1, . . . , X5.
Suppose that all the nodes except X3 are binary variables and X3 takes values 0,
1 and 2 with the same probability. Hence, d = 5, ki = 2 for i = 1, 2, 4, 5, k3 = 3,
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and the parent set of X5 has three possible instantiations λ
(1)
5 = 0, λ

(2)
5 = 1 and

λ
(3)
5 = 2. Suppose complete instantiations of 10 cases are available as below

x =

⎛
⎜⎝

x(1)

...
x(10)

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0, 0, 1, 0, 1)
(0, 1, 0, 1, 1)
(1, 1, 1, 0, 1)
(0, 0, 0, 0, 0)
(1, 0, 2, 0, 1)
(0, 1, 1, 1, 0)
(0, 1, 2, 1, 1)
(1, 0, 0, 0, 1)
(0, 0, 0, 0, 0)
(1, 1, 2, 0, 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and we are interested in learning the parameters θ5l = (θ51l, θ52l), l = 1, 2, 3.
The ML estimate of θ5l is given by δML

5l = (δML
51l , δ

ML
52l ), where δML

5il = n5il.

n5.l.
,

n5.l. =
∑2

i=1 n5il., i = 1, 2, l = 1, 2, 3. So, the ML estimate of θ52 is given by
δML
52 = ( 13 ,

2
3 ).

2.2. Bayesian learning methods

In Example 2.1, one might believe that the sequence (0, 0, 1, 1, 1) occurs in 80
percent of cases. If so, we could take a priori knowledge into account, assuming
that some prior knowledge in forms of a prior distribution is available.

To derive the Bayes estimate of θjil in Eq. (2.2), consider the conjugate
Dirichlet prior distribution Dir(αj1l, . . . , αjkj l), with pdf

π(θj1l, . . . , θjkj l) ∝
kj∏
i=1

θ
αjil−1
jil , (2.4)

where 0 < θjil < 1,
∑kj

i=1 θjil = 1 and αjil > 0. Given the data x = (x(1),
. . . ,x(n)), it can be verified that (θj1l, . . . , θjkj l)|x ∼ Dir(nj1l.+αj1l, . . . , njkj l.+
αjkj l). Obviously the marginal posteriors have Beta distributions, i.e., θjil|x ∼
Beta(njil. + αjil, nj.l. + αj.l − njil. − αjil), where αj.l =

∑kj

i=1 αjil.
It is easy to observe that the MAP and PM estimates of θjil are

δMAP
jil = argmax

θjil
π(θjil|X = x) =

njil. + αjil − 1

nj.l. + αj.l − 2
, (2.5)

δPM
jil = E[θjil|X = x] =

njil. + αjil

nj.l. + αj.l
. (2.6)

Example 2.2. (Example 2.1, cont.) To derive the MAP and PM estimates of
θ5i2 = (θ512, θ522), consider the conjugate Dir(α512, α522)-prior with α512 = 1
and α522 = 2. Then from (2.5) and (2.6), δMAP

52 = (n512.+α512−1
n5.2.+α5.2−2 ,

n522.+α522−1
n5.2.+α5.2−2 ) =

( 14 ,
3
4 ) and δPM

52 = (n512.+α512

n5.2.+α5.2
, n522.+α522

n5.2.+α5.2
) = ( 13 ,

2
3 ).
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3. Constrained Bayesian learning

In the preceding section, assuming the squared error loss (SEL) function, we
observed that if the only objective is simultaneous estimation of the BN param-
eters θjl = (θj1l, . . . , θjkj l) with θjil defined in Eq. (2.2), the Bayes estimate is a
vector of posterior means, i.e., δPM

jl = (δPM
j1l , . . . , δPM

jkj l
) with δPM

jil given by Eq.

(2.6). In this section, following the idea of CB estimation of [29], we provide an
adjusted version of δPM

jil .
To avoid any unambiguity, we define the following key terms. Let δjl =

(δj1l, . . . , δjkj l) be a vector of arbitrary estimates of elements of θjl =
(θj1l, . . . , θjkj l) with θjil defined in Eq. (2.2). Define the sample mean and the

sample variance of ensemble of the estimates δjil by δ̄j.l = 1
kj

∑kj

i=1 δjil and

1
kj

∑kj

i=1

(
δjil − δ̄j.l

)2
, respectively. Also, define the posterior expected sample

mean (PESM) and the posterior expected sample variance (PESV) of ensemble

of the parameters θjil by
1
kj
E
[∑kj

i=1 θjil|X = x
]
and 1

kj
E
[∑kj

i=1

(
θjil − θ̄j.l

)2 |
X = x

]
with θ̄j.l =

1
kj

∑kj

i=1 θjil, respectively.

[29] suggested that problems with using posterior means as Bayes estimates
might be dealt with by constructing a vector of CB estimators for which the
sample mean and the sample variance of an ensemble of them are equal to the
PESM and the PESV of an ensemble of parameters, respectively. Particularly, he
proved that under normal likelihood with normal prior, the sampling variability
of a collection of Bayes estimates is smaller than the posterior expectation of the
corresponding population variability, see [16]. This property holds true in BNs,
as provided in the following lemma. See the Appendix for a detailed verification
of this inequality.

Lemma 3.1. Let δPM
jl = (δPM

j1l , . . . , δPM
jkj l

) be a vector of PM’s of θjl = (θj1l, . . . ,

θjkj l) with θjil defined in Eq. (2.2), w.r.t. some prior π. Then, for a fixed j and
l, the sample variance of ensemble of the Bayes estimates in δPM

jl is smaller
than the PESV of ensemble of parameters in θjl, i.e.,

1

kj

kj∑
i=1

(
δPM
jil − δ̄PM

j.l

)2
<

1

kj
E
[ kj∑

i=1

(
θjil − θ̄j.l

)2 |X = x
]
. (3.1)

where δ̄PM
j.l = 1

kj

∑kj

i=1 δ
PM
jil and θ̄j.l =

1
kj

∑kj

i=1 θjil.

By the CB approach of [29], the empirical distribution function of CB esti-
mates becomes close to the empirical distribution function of the corresponding
unknown parameters. This way, the sampling variability of a collection of esti-
mates is a better estimate of the underlying variability among the population
parameters. For more details, see [11, 13, 14, 15].

The idea of matching the first two moments from posterior distribution of
parameters with the corresponding moments from distribution of estimates has
been followed in a wide range of problems, mostly to derive adjusted empirical
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Bayes estimators in problems such as disease mapping or environmental risk as-
sessment. For example, in disease mapping it is supposed that there are k regions
labeled with the indices 1, 2, . . . , k. By this setting, [11] follows a hierarchical
model for disease counts and estimate the true disease rates θi, i = 1, 2, . . . , k.
For more information, see [11, 16] and papers cited therein.

Now, consider the problem of estimating θjil defined in (2.2) under the SEL
function for a fixed j and l. If interest lies in both simultaneous estimation and
closeness between the distribution of estimates and the posterior distribution of
the parameters, the idea of deriving CB estimation might be helpful. To make a
motivation, it is of interest to compare our estimation problem with the disease
mapping problem considered in [11]. In the latter problem, some levels were
considered for the parameter of interest (the true disease rates θi, i = 1, 2, . . . , k)
and in our estimation problem, in a specific node and for a specific parent, the
parameter of interest, i.e., θjil, has different levels when changing i in the set
{1, 2, . . . , kj}. Thus, CB estimation can be considered in order to meet the twin
objective of simultaneous estimation and closeness between the distribution of
the estimates and the posterior distribution of the parameters.

Here, we consider the problem of obtaining CB estimates of θjil, subject to
the constraints considered by [29], and an additional constraint which is imposed
due to the nature of parameter learning in BNs, i.e.,

(i)
∑kj

i=1 δjil =
∑kj

i=1 E[θjil|X = x],

(ii) 1
kj

∑kj

i=1(δjil − δ̄j.l)
2 = 1

kj
E
[∑kj

i=1(θjil − θ̄j.l)
2|X = x

]
,

(iii)
∑kj

i=1 δjil = 1,

where δ̄j.l =
1
kj

∑kj

i=1 δjil and θ̄j.l =
1
kj

∑kj

i=1 θjil.

It is interesting to note that since
∑kj

i=1 θjil =
∑kj

i=1 δ
PM
jil = 1, the constraint

(i) results in (iii). However, each one of the constraints (i) and (iii) plays its
separate role and hence, we simultaneously consider both of these constraints
for later use. The following theorem provides CB estimates of parameters in
BNs. The main idea of this theorem comes from a proof that appeared in [29].
See the Appendix for a version of the proof compatible with the constraints
considered in this paper.

Theorem 3.1. Let δPM
jl = (δPM

j1l , . . . , δPM
jkj l

) be a vector of PM’s of θjl w.r.t.

some prior π. Then under the constraints (i)-(iii), the CB estimate of θjl is
given by δCB

jl = (δCB
j1l , . . . , δ

CB
jkj l

), where δCB
jil = ajlδ

PM
jil + (1− ajl)

1
kj

and

ajl =

{
Sjl(x)− 1

kj

Tjl(x)− 1
kj

} 1
2

,

with Sjl(x) = E[
∑kj

i=1 θ
2
jil|X = x] and Tjl(x) =

∑kj

i=1(δ
PM
jil )2.

Example 3.1. (Example 2.1, cont.) To derive the CB estimate of θ52, w.r.t.
the Dir(1, 2)-prior note that θ512|x ∼ Beta(2, 4) and θ522|x ∼ Beta(4, 2). Verify
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that S52(x) =
26
42 , Tjl(x) =

5
9 and a52 =

√
15
7 . Hence, δCB

52 = (δCB
512 , δ

CB
512 ) with

δCB
512 =

√
15
7 δPM

512 + (1−
√

15
7 ) 12 = 0.2560 and δCB

522 = 0.7440 is the CB estimate

of θ52.

Bayes estimates generally depend on hyperparameters of a chosen prior and
this can affect the relevant results. The following example clarifies this point.

Example 3.2. (Example 2.2, cont.) In Examples 2.2 and 3.1, the PM and
CB estimates of θ5i2 = (θ512, θ522) with the hyperparameter choices α512 = 1
and α522 = 2 reported as δPM

52 = (0.3333, 0.6667) and δCB
52 = (0.2560, 0.7440),

respectively. Now, if one considers the hyperparameters as α512 = 1 and α522 =
4, it is easy to verify that the PM and CB estimates become δPM

52 = (0.25, 0.75)
and δCB

52 = (0.2113, 0.7887).

That the hyperparameters affect learning BN structures has been reported
as a serious problem [41, 45]. In the next section, we consider this issue and
explore robust Bayesian methods to overcome this problem.

4. Posterior regret Gamma minimax learning

When available, a particular prior distribution is usually somewhat arbitrary
and there are good reasons to question the reliability of such a distribution.
Usually, there is no way for a user to say that a particular prior is better than
another one. Thus, in practice, prior knowledge is often vague. Alternatively, the
expert may be unable to specify the prior completely. This situation may also
occur when two or more experts do agree on the choice of a prior distribution
arising in a decision making problem but differ in opinion w.r.t. the choice of the
hyperparameters. A common solution to handle prior uncertainty in Bayesian
statistical inference is to choose a class Γ of prior distributions and compute
some quantity, such as the posterior risk, the Bayes risk or the posterior expected
value, as the prior ranges over Γ. This is known as robust Bayesian analysis. This
methodology is connected with studying the effect of changing a prior within
a class Γ over some quantity, see [1, 2, 3]. In this section, we use the idea of
SPRGM estimation in the parameter learning procedure. Readers may refer to
the treatise by [19] for a detailed discussion of literature on various robust Bayes
analysis problems. The book contains chapters on robust Bayes rules including
many references dealing with various standard classes of priors (e.g., Chapters
8 and 13) as well as some applications provided in Chapters 17-21.

It is worth stressing that, in addition to the debate on being robust Bayesian,
there are other strong arguments in the literature about incorporating prior
knowledge into the task of data analysis of which [12] and [37] are excellent
references. The relevant approach, known as hierarchical Bayes approach, ro-
bustifies the conjugate distribution, assuming a fully Bayesian model. The idea
is that one may have structural and subjective prior information at the same
time and would like to model this in stages. The attention is often on two stage
priors and is used when the first stage of prior elicitation leads to a class Γ of
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priors and then the statistician in the second stage, puts a prior on Γ. Thus, if
Γ = {π1 is of a given functional form and λ ∈ Λ}, then the second stage would
consist of putting a prior, π2(λ), on the hyperparameter λ. While specification
of the hyperparameter is usually done based on subjective beliefs assuming that
it reflects the best guess of statistician, it is difficult. The difficulty level of the
hyperparameter specification is more tangible as number of hyparameters in-
creases. BNs are a prime example of such a complicated specification and thus
in this paper, we only emphasize on the robust Bayes approach. The difficulty
of specifying the hyperprior has made common the use of noninformative priors
at the second stage [e.g. 1, 37] but the noninformative priors might lead to in-
appropriate choices of priors. In contrast, not only the robust Bayes approach
we consider in this paper obviates the complicatedness of prior elicitation, it
leads to a global prevention against inappropriate choices of priors or their hy-
perparameters [22, 23]. See [12, 37] for more information on robust Bayes and
hierarchical Bayes approaches, and [21, 22] for applications of these approaches
as well as a quick list of some of their advantages and disadvantages.

Now, let ρ(π, δjil) be posterior risk of the estimate δjil of θjil in Eq. (2.2)
under the SEL function, i.e., ρ(π, δjil) = E[(θjil − δjil)

2|X = x]. For a learning
procedure of the parameters θjl in a DAG under the SEL function and given
a class of priors Γ, the posterior regret of choosing δjil instead of the Bayes

estimate δPM
jil is rp(δjil, δ

PM
jil ) = ρ(π, δjil) − ρ(π, δPM

jil ) =
(
δjil − δPM

jil

)2
. With

respect to simultaneous estimation, we define the posterior regret of choosing
δjl instead of δPM

jl to be

rp(δjl, δ
PM
jl ) =

kj∑
i=1

sup
πi∈Γ

rp(δjil, δ
PM
jil ) =

kj∑
i=1

sup
πi∈Γ

(
δjil − δPM

jil

)2
,

with the constraint
∑kj

i=1 δjil = 1. Then we define δSPR
jl = (δSPR

j1l , . . . , δSPR
jkj l

) to
be the SPRGM value over the class Γ of priors if

rp(δ
SPR
jl,Γ , δPM

jl ) = inf
δjl∈D

kj∑
i=1

sup
π∈Γ

rp(δjil, δ
PM
jil ) = inf

δjl∈D

kj∑
i=1

sup
π∈Γ

(
δjil − δPM

jil

)2
,(4.1)

where D is the class of all possible estimates of θjl.
As it is obvious from Eq. (4.1), deriving SPRGM would be possible by deter-

mining the supremum of rp(δjil, δ
PM
jil ), where the prior varies over all priors in

the class Γ. As δjil does not depend on prior information, one way to obtain in-
sight into the supremum of rp(δjil, δ

PM
jil ) is to look at the behavior of the Bayes

estimate δPM
jil in Eq. (2.6). For fixed data and fixed j and l, variation of the

hyperparameters αj1l, αj2l, . . . , αjkj l in some given intervals determines the be-
havior of the PM estimate δPM

jil and thus, the supremum of rp(δjil, δ
PM
jil ) can be

analyzed. To make it clear, we recall Example 2.2 where δPM
512 = n512.+α512.

n5.2.+α512+α522
.

Obviously, δPM
512 is increasing in α512 and decreasing in α522. Now, if the hy-

perparameters α512 and α522 (which in fact reflect prior beliefs) vary over some
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intervals, δPM
512 can take some minimum and maximum values and thus, the

supremum of rp(δjil, δ
PM
jil ) can be analyzed in order to determine the SPRGM

estimate.

To derive SPRGM estimates of θjil, i = 1, . . . , kj , once again, consider the
conjugate Dir(αj1l, . . . , αjkj l) prior and let Kj =

{
αj1l, . . . , αjkj l

}
. Also, to

adopt prior information in the robust learning methodology, our prior knowledge
about the Dirichlet hyperparameters may cluster them at three disjoint sets,
i.e., the prior information may indicate that it would be better to consider some
elements of Kj , say αjul, are fixed known constants and some other elements,
say αjvl, are varied over some fixed known intervals. We refer to these cases
as Uj and Vj , respectively. Thus, αjul is a fixed hyperparamer if u ∈ Uj and
similarly, αjvl is a varying hyperparameter if v ∈ Vj . To cover all the possible
cases of hyperparameter variations, let Wj = Kj−Uj−Vj consist of all the other
cases. The set Wj is not necessarily empty, since prior knowledge may suggest
letting the sum of all the hyperparameters vary in a fixed known interval. This
clustering leads to different classes of priors. The following are examples of such
classes of Dirichlet priors Πj = Dir(αj1l, . . . , αjkj l)

Γ† =
{
Πj : αjul = α∗

jul, αjvl ≤ αjvl ≤ αjvl, u ∈ Uj , v ∈ Kj − Uj , Vj = ∅
}
, (4.2)

Γ‡ =
{
Πj : αjvl ≤ αjvl ≤ αjvl, αw ≤

∑
w∈Kj−Vj

αjwl ≤ αw, v ∈ Vj , w ∈ Kj − Vj , Uj = ∅
}
, (4.3)

where α∗
jul, αjvl, αjvl, αw and αw are known constants. The classes in (4.2)

and (4.3) are very general. A special case occurs when either Uj = ∅ in Γ† or
Vj = Kj in Γ‡. The resulting class of priors is

Γ†‡ =
{
Πj : αjvl ≤ αjvl ≤ αjvl, v ∈ Kj

}
, (4.4)

where αjvl and αjvl are fixed known constants. As seen above, there can be a
wide variety of classes of Dirichlet priors for a specific problem. We emphasize
that each of the possible classes of priors reflect the prior knowledge behind the
choice of such a class of prior and this does not mean at all that a chosen class is
superior to many alternatives. In fact, when choosing a class of priors, we only
decide based on our experience.

Although SPRGM estimates of θjl = (θj1l, . . . , θjkj l) can be derived for dif-
ferent values of kj , we provide two most promising cases with kj = 2 and kj = 3.
The following theorem provides one SPRGM estimator of θjl under the sum of
SEL function when kj = 2. For the proof, see the Appendix.

Theorem 4.1. Let Γ be a class of priors and suppose that, for i = 1, 2,
δjil(X) ≡ δjil = infπ∈Γ δ

PM
jil and δjil(X) ≡ δjil = supπ∈Γ δ

PM
jil are finite. Then,

the SPRGM estimate of (θj1l, θj2l) over the class Γ subject to the constraint
δj1l + δj2l = 1, is given by δSPR

jl,Γ = (δSPR
j1l,Γ , δ

SPR
j2l,Γ) with
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δSPR
j1l,Γ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

(
1 + δj1l − δj2l

)
, if δj1l + δj2l ≥ 1 & δj1l + δj2l ≥ 1

1
2

(
1 + δj1l − δj2l

)
, if δj1l + δj2l ≤ 1 & δj1l + δj2l ≤ 1

does not exist, Otherwise,

and δSPR
j2l,Γ = 1− δSPR

j1l,Γ.

The following example illustrates how to derive SPRGM estimates in practice.

Example 4.1. (Example 3.1, cont.) To derive the SPRGM estimates of θ52,
consider the following classes of priors

Γ† =
{
Dir(α512, α522) : 0.5 ≤ α512 ≤ 1.5, α522 = 2

}
,

Γ‡ =
{
Dir(α512, α522) : 2 ≤ α522 ≤ 3, α512 = 1

}
,

Γ†‡ =
{
Dir(α512, α522) : 0.5 ≤ α512 ≤ 1.5, 2 ≤ α522 ≤ 3

}
.

Notice that δPM
5i2 = n5i2.+α5i2

n5.2.+α5.2
, for a fixed i, is increasing in α5i2 and decreas-

ing in αjml, m 
= i. Thus over Γ†, δ512 = 3
11 , δ512 = 5

13 , δ522 = 8
13 and

δ522 = 8
11 . Obviously, δ512 + δ522 ≤ 1, δ512 + δ522 ≤ 1 and hence, δSPR

512,Γ† =
1
2 (1 + δ512 − δ522) =

47
143 and δSPR

522,Γ† = 1−δPR
512,Γ† = 96

143 . Also over Γ‡, δ512 = 2
7 ,

δ512 = 1
3 , δ522 = 2

3 and δ522 = 5
7 , and since δ512 + δ522 ≤ 1 and δ512 + δ522 ≤ 1,

thus δSPR
512,Γ‡ = 1

2 (1 + δ512 − δ522) =
13
42 and δSPR

522,Γ‡ = 1−δSPR
522,Γ‡ = 29

42 . Similarly,

δSPR
512,Γ†‡ = 1

2 (1 + δ512 − δ522) =
4
13 and δSPR

522,Γ†‡ = 1− δSPR
522,Γ‡ = 9

13 .

In the next theorem, we provide one SPRGM estimator of θjl under the sum
of SEL function when kj = 3. For the proof, see the Appendix.

Theorem 4.2. Let Γ be a class of priors and suppose that, for i = 1, 2, 3,
δjil(X) ≡ δjil = infπ∈Γ δ

PM
jil and δjil(X) ≡ δjil = supπ∈Γ δ

PM
jil are finite.

Then, the SPRGM estimate of (θj1l, θj2l, θj2l) over the class Γ subject to the
constraint δj1l + δj2l + δj3l = 1, is given by δSPR

jl,Γ = (δSPR
j1l,Γ , δ

SPR
j2l,Γ, δ

SPR
j3l,Γ) in

which δSPR
j3l,Γ = 1 − δSPR

j1l,Γ − δSPR
j2l,Γ and δSPR

jil,Γ , i = 1, 2, are determined by one of
the following conditions:

(i) δSPR
j1l,Γ = 1

3 (1 + 2δj1l − δj2l − δj3l) and δSPR
j2l,Γ = 1

3 (1 + 2δj2l − δj1l − δj3l)

provided that δSPR
j1l,Γ ≤ 1

2 (δjil + δjil), i = 1, 2, 3,

(ii) δSPR
j1l,Γ = 1

3 (1 + 2δj1l − δj2l − δj3l) and δSPR
j2l,Γ = 1

3 (1 + 2δj2l − δj1l − δj3l),

provided that δSPR
jil,Γ ≤ 1

2 (δjil + δjil), i = 1, 2 and δSPR
j3l,Γ > 1

2 (δj3l + δj3l),

(iii) δSPR
j1l,Γ = 1

3 (1 + 2δj1l − δj2l − δj3l) and δSPR
j2l,Γ = 1

3 (1 + 2δj2l − δj1l − δj3l),

provided that δSPR
jil,Γ ≤ 1

2 (δjil + δjil), i = 1, 3 and δPM
j2l > 1

2 (δj2l + δj2l),

(iv) δSPR
j1l,Γ = 1

3 (1 + 2δj1l − δj2l − δj3l) and δSPR
j2l,Γ = 1

3 (1 + 2δj2l − δj1l − δj3l),

provided that δSPR
jil,Γ ≤ 1

2 (δjil + δjil), i = 2, 3 and δPM
j1l > 1

2 (δj1l + δj1l),

(v) δSPR
j1l,Γ = 1

3 (1 + 2δj1l − δj2l − δj3l) and δSPR
j2l,Γ = 1

3 (1 + 2δj2l − δj1l − δj3l),

provided that δSPR
j1l,Γ ≤ 1

2 (δj1l + δjil) and δSPR
jil,Γ > 1

2 (δjil + δjil) , i = 2, 3,
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Fig 2. A BN for the lung cancer problem.

(vi) δSPR
j1l,Γ = 1

3 (1 + 2δj1l − δj2l − δj3l) and δSPR
j2l,Γ = 1

3 (1 + 2δj2l − δj1l − δj3l),

provided that δSPR
j2l,Γ ≤ 1

2 (δj2l + δj2l) and δSPR
jil,Γ > 1

2 (δjil + δjil) , i = 1, 3,

(vii) δSPR
j1l,Γ = 1

3 (1+ 2δj1l − δj2l − δj3l) and δSPR
j2l,Γ = 1

3 (1+ 2δj2l − δj1l − δj3l), If

δSPR
j3l,Γ ≤ 1

2 (δj3l + δj3l) and δSPR
jil,Γ > 1

2 (δjil + δjil) , i = 1, 2,

(viii) δSPR
j1l,Γ = 1

3 (1 + 2δj1l − δj2l − δj3l) and δSPR
j2l,Γ = 1

3 (1 + 2δj2l − δj1l − δj3l),

provided that δSPR
jil,Γ > 1

2 (δjil + δjil) , i = 1, 2, 3.

5. Experiments

5.1. Synthetic data

In this section, we provide a simulation study to compare performance of the
ML, MAP, PM, CB and SPRGM estimates. For this purpose, we use the well-
known metastatic lung cancer BN shown in Fig. 2. This network appeared in
the early literature on BNs, see [24, 43] among others.

For our simulation study, let X1 be distributed according to B(1, 0.2), where
B(1, p) stands for a Bernoulli distribution with success probability p. To generate

values for the variablesX2 andX3, note that their possible parent sets are λ
(1)
j =

0 and λ
(2)
j = 1, j = 2, 3. Now, suppose θ211 = 0.8, θ212 = 0.2, θ311 = 0.95, θ312 =

0.80, and generate the variables Xj |λ(l)
j ∼ B(1, θjil) for the specified indices. To

generate values for X4, the possible parent sets are λ
(1)
4 = (0, 0), λ

(2)
4 = (0, 1),

λ
(3)
4 = (1, 0) and λ

(4)
4 = (1, 1), we generate the variables X4|λ(l)

4 ∼ B(1, θ4il)
for the specified indices with θ411 = 0.95, θ412 = θ413 = θ414 = 0.2. Finally, we
define the variable X5 to be zero with probability θ511 = 0.4 if the output of X3

is zero. Otherwise, X5 takes one with probability θ522 = 0.8, indicating that a
patient who has Brain tumour will suffer from severe headaches.

To draw conclusions about performance of the different estimates provided
earlier, we consider estimates of the conditional probabilities θ5l = (θ51l, θ52l),
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l = 1, 2. To obtain the MAP, PM and CB estimates of θ52l, l = 1, 2, we use the
conjugate Dir(α52l, α51l)-prior distribution. Notice that in Bayes estimation of
θ51l, the conjugate prior is Dir(α51l, α52l). To make a choice in estimating θ522
w.r.t. the hyperparameters, suppose that three experts have provided informa-
tion about having a brain tumour and subsequently estimated chance of being
affected by severe headaches. Assume that one of the experts based on some
prior knowledge assumes the conjugate Dir(α522, α512)-prior with α512 = 5 and
α522 = 35, implying that the mean chance is about 0.875. Suppose that this ex-
pert opinion does not attract consensus of opinion from the two other experts.
Rather, they believe in different hyperparameters. They attribute Dir(40, 10)
and Dir(45, 15)-priors, respectively, reflecting that they believe that the prior
mean is about 0.80 and 0.75. We shall refer to these three chosen priors by π1,
π2 and π3, respectively. Clearly, the three experts attributed priors with means
around the real parameter 0.8, but the resulting Bayes estimates can still be
quite different. To deal with this issue, we consider the following class of priors
incorporating the three experts’ beliefs:

Γ =
{
Dir(α522, α512) : 5 ≤ α512 ≤ 15, 35 ≤ α522 ≤ 45

}
. (5.1)

We rely on this class to derive the SPRGM estimate of θ52 = (θ512, θ522).

Now, to estimate θ521, the probability that a patient has severe headaches in
the absence of a Brain tumor, suppose similar to the above situation, that three
experts have provided estimates of this conditional probability. The opinion of
the three experts is expressed by the Dir(α521, α511)-prior with (α521, α511) =
(40, 25), (45, 25), (35, 30), implying that the mean chance is around 0.60. We
shall refer to these priors by π∗

1 , π
∗
2 and π∗

3 , respectively. To obtain the SPRGM
estimate of θ51 = (θ511, θ521), we consider the following class of priors incorpo-
rating the three experts’ beliefs:

Γ∗ =
{
Dir(α521, α511) : 25 ≤ α511 ≤ 30, 35 ≤ α521 ≤ 45

}
(5.2)

Consider the three priors πj , π
∗
j , j = 1, 2, 3, and the classes of priors Γ and

Γ∗, as defined above. The following steps in the simulation study are taken:

Step 1. Complete instantiations (x1, . . . , x5) of n cases with n = 25, 50, 100,
200 are generated.

Step 2. For each i = 1, 2, taking each of the priors πj , j = 1, 2, 3, and the class

Γ into account, the estimates δML
5i2 , δ

MAP,πj

5i2 , δ
PM,πj

5i2 , δ
CB,πj

5i2 and δSPR
5i2,Γ of

θ5i2 are computed. For each fixed i = 1, 2, these computations result in 11
estimates of θ5i2 denoted by d[k, i], k = 1, . . . , 11, and i = 1, 2. Similarly,
taking each of the priors π∗

j , j = 1, 2, 3, and the class Γ∗ into account,

the estimates δML
5i1 , δ

MAP,π∗
j

5i1 , δ
PM,π∗

j

5i1 , δ
CB,π∗

j

5i1 and δSPR
5i1,Γ∗ of θ5i1 are com-

puted. Again, these computations result in 11 estimates of θ5i1 denoted
by d∗[k, i], k = 1, . . . , 11, and i = 1, 2.
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Step 3. Steps 1 and 2 are run N = 10, 000 times. Based on the generated
data, mean, average of Kullback-Leibler divergence (AKLD) and average
of sample variance (ASV) of ensemble of the estimates (d[k, 1], d[k, 2]) of
(θ512, θ522), k = 1, . . . , 11, are computed as follows:

Mean (d[k, i]) =
1

N

N∑
m=1

dm[k, i],

AKLD(d[k, 1], d[k, 2]) =
1

N

N∑
m=1

(
θ512 log2

( θ512
dm[k, 1]

)
+ θ522 log2

( θ522
dm[k, 2]

))
,

ASV (d[k, 1], d[k, 2]) =
1

N

N∑
m=1

1

2

((
dm[k, 1]− 1

2

)2

+
(
dm[k, 2]− 1

2

)2
)
, (5.3)

where dm[k, i] stands for the estimate d[k, i] in the m-th repetition. The
mean, AKLD and ASV of ensemble of the estimates (d∗[k, 1], d∗[k, 2]) of
(θ511, θ521), k = 1, . . . , 11, are similarly computed.

The quantitative results for different values of n are summarized in Table 1
and Table A.1 of the Appendix. Before drawing any conclusion, we would like
to restate that the true value of the parameters θ511, θ521, θ512 and θ522 are
0.4, 0.6, 0.2 and 0.8 respectively. Thus, based on the mean criterion in Step
3, any of the proposed estimates which has a mean close to the corresponding
true value would be preferred to the alternatives. By the AKLD criterion, any
estimate with lowest AKLD value would be preferred to the other alternatives.
We introduced the ASV criterion based on the condition (ii) in Theorem 3.1. By
this criterion, sample variance of ensemble of the corresponding CB estimates
(d[k, 1], d[k, 2]) of θ52 = (θ512, θ522) is equal to the PESV of ensemble of the
parameters in θ52.

From Table 1, we observe that the simulation process failed to compute the
ML estimate for n = 25, 50, 100. However, for n = 200 in Table 1 and all
sample sizes in Table A.1 of the Appendix, the ML estimates perform quite
well, although one should notice that in practice, we use them when there is no
source of prior knowledge.

The three different priors in Table 1 have led to the different prior-based esti-
mates MAP, PM and CB estimates. When considering π2, i.e., Dir(α522, α512)-
prior with α512 = 10 and α522 = 40 (in this case the prior mean is equal to
the true parameter 0.8), the corresponding MAP, PM and CB estimates, i.e.,

δMAP,π2

5i2 , δPM,π2

5i2 , δCB,π2

5i2 , perform better than the other Bayes and CB estimates.
Similarly, in Table A.1 of Appendix the MAP, PM and CB estimates w.r.t. the
prior π∗

1 (which has a mean closer than the mean of other priors to the true pa-
rameter 0.6), outperform the other Bayes and CB estimates. As noted earlier, it
is not possible to decide only relying on one source of prior information. Rather
one should respect the knowledge of all the experts. Thinking in this way, we
observe that the SPRGM estimates computed over Γ and Γ∗ perform better
than the other prior-based estimates. In other words, the SPRGM estimates are
better in most cases because the case with correct prior actually yields equally
good estimates, although correct prior knowledge may be rare.
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Table 1. Quantitative statistics for different values of n.

n i δML
5i2 δMAP,π1

5i2 δMAP,π2
5i2 δMAP,π3

5i2 δPM,π1
5i2 δPM,π2

5i2 δPM,π3
5i2 δCB,π1

5i2 δCB,π2
5i2 δCB,π3

5i2 δSPR
5i2,Γ

Mean 25 1 †na 0.1099 0.1880 0.2400 0.1285 0.2000 0.2484 0.1250 0.1950 0.2426 0.2000
2 na 0.8901 0.8120 0.7600 0.8715 0.8000 0.7516 0.8750 0.8050 0.7574 0.8000

AKLD na 0.0519 0.0013 0.0069 0.0304 0.0005 0.0098 0.0337 0.0006 0.0077 0.0005
ASV na 0.1523 0.0975 0.0677 0.1382 0.0901 0.0634 0.1408 0.0931 0.0663 0.0901

Mean 50 1 na 0.1143 0.1886 0.2389 0.1318 0.2001 0.2470 0.1284 0.1953 0.2414 0.2001
2 na 0.8857 0.8114 0.7611 0.8682 0.7999 0.7530 0.8716 0.8047 0.7586 0.7999

AKLD na 0.0482 0.0018 0.0068 0.0288 0.0010 0.0095 0.0318 0.0010 0.0076 0.0010
ASV na 0.1492 0.0972 0.0684 0.1359 0.0901 0.0642 0.1384 0.0931 0.0670 0.0901

Mean 100 1 na 0.1216 0.1894 0.2366 0.1375 0.2002 0.2443 0.1341 0.1956 0.2391 0.2002
2 na 0.8784 0.8106 0.7634 0.8625 0.7998 0.7557 0.8659 0.8044 0.7609 0.7998

AKLD na 0.0416 0.0024 0.0065 0.0257 0.0016 0.0089 0.0283 0.0016 0.0072 0.0016
ASV na 0.1437 0.0968 0.0697 0.1320 0.0903 0.0656 0.1344 0.0930 0.0683 0.0903

Mean 200 1 0.1994 0.1328 0.1905 0.2324 0.1460 0.1999 0.2395 0.1429 0.1959 0.2349 0.1999
2 0.8006 0.8672 0.8095 0.7676 0.8540 0.8001 0.7605 0.8571 0.8041 0.7651 0.8001

AKLD 0.0454 0.0330 0.0034 0.0061 0.0216 0.0026 0.0080 0.0235 0.0026 0.0066 0.0026
ASV 0.1011 0.1357 0.0964 0.0720 0.1261 0.0906 0.0683 0.1283 0.0930 0.0707 0.0906

†The simulation process failed to compute the ML estimates. The three priors π1, π2 and π3 stand for Dir(35, 5), Dir(40, 10) and
Dir(45, 15)-priors, respectively. Γ stands for the class of conjugate Dirichlet priors in (5.1).
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Conducting a more precise investigation, Fig. 3 provides side-by-side his-
tograms of sample variance of ensemble of the estimates in δ52 = (δ512, δ522)
of the parameters θ52 = (θ512, θ522) with δ5i2 replaced by one of the estimates

δ
MAP,πj

5i2 , δ
PM,πj

5i2 , δ
CB,πj

5i2 and δSPR
5i2,Γ, i = 1, 2, j = 1, 2, 3 (the simulation process

failed to compute the ML estimates). For these simulations we took n = 50 but
our investigation led to similar results for other values of n. Associated with
each of the priors πj , j = 1, 2, 3, in each row of Fig. 3, we provide histograms
of PESV of ensemble of the parameters in θ52 to show how similarly they be-
have, compared to the sample variance of ensemble of the estimates in δ52. We
observe that the histograms of PESV and the sample variance of ensemble of
the CB estimates w.r.t. all the priors πj , j = 1, 2, 3 coincide. This is in fact
an illustration of Theorem 3.1. It is also of interest to note that as we observe
from Fig. 3, the CB estimator is the only estimator with the same distribution
of the posterior distribution of the parameters (the corresponding histogram
and histogram of PESV fall on each other). Further, Fig. 4 provides averages of
PESV (APESV) of ensemble of the parameters in θ52 and ASV of ensemble of
the different estimates w.r.t. all the priors πj , j = 1, 2, 3 given by Eq. (5.3). This
figure also confirms that PESV associated with each of the priors πj , j = 1, 2, 3,
is always greater than sample variance of the corresponding PM estimates (as
provided by Lemma 3.1), and the CB estimator is the only estimator of which
the corresponding sample variance is equal to the PESV of ensemble of the
parameters in θ52 (as an illustration of Theorem 3.1).

On the other hand, if δ5l estimates θ5l very well, the corresponding ASV is
expected to be close to 1

2

(
(θ51l − 1

2 )
2 + (θ52l − 1

2 )
2
)
, which is equal to 0.01 for

l = 1 and 0.09 for l = 2. From Fig. 4 we observe that the ASV of the SPRGM
estimates of θ52 is not close to the APESV but its ASV is very close to 0.09.
Also, this is clearly observed from Fig. 3 in which the histogram of SPRGM
estimates is centred about 0.09. Comparing the PM and the CB estimates, we
observe that ASV of the CB estimates w.r.t. the prior π3 is closer to 0.09 than
the corresponding PM estimates and thus, their performance is better than the
PM estimates w.r.t. the priors π3. This also can be confirmed from Table 1.
Thus, in some situations, the CB estimates act better than the PM ones.

The same conclusions are deduced when estimating the parameters θ5i1, i =
1, 2, w.r.t the priors π∗

j , j = 1, 2, 3, and the class of priors Γ∗, see Table A.1,
Fig. A.1 and Fig. A.2 of the Appendix.

5.2. Real clinical data

In this section, we analyze a clinical dataset using an associated, expert-designed
BN and compare performance of ML, MAP, PM, CB and SPRGM estimates.
For this purpose, we consider the Hepar BN model [32], which is a causal BN
concerning a subset of the domain of hepatology: 11 liver diseases (described by
9 disorder nodes), 18 risk factors, and 44 symptoms and laboratory tests results.
Fig. 5 shows a simplified fragment of the Hepar BN model.
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Fig 3. Histograms of ASV of ensemble of the MAP, PM, CB estimates w.r.t. the priors πj ,
j = 1, 2, 3, and SPRGM estimates w.r.t. the class of priors Γ along with histograms of the
PESV of ensemble of the parameters in θ52. Each row is associated with one of the priors
πj , as indicated on the y-axis of the first histograms.
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Fig 4. Plots of ASV of the MAP, PM, CB estimates w.r.t. the priors πj , j = 1, 2, 3, and
SPRGM estimates w.r.t. the class of priors Γ along with the APESV of ensemble of the
parameters in θ52. In the figure, × represents PSEV. Also, green triangle corresponds to ASV
of the MAP estimates, red dot refers to ASV of the PM estimates, purple square represents
ASV of the CB estimates, and black plus sign corresponds to ASV of the SPRGM estimates.

Fig 5. The structure of the Hepar BN.

The network models 18 variables related to diagnosis of a small set of hepatic
disorders: three risk factors, 12 symptoms and test results, and three disorder
nodes. To give the reader an idea of the number of numerical parameters needed
to quantify a BN, let us assume for simplicity that each variable in the model
in Fig. 5 is Binary.

We are interested in computing the probability P (PBC | Evidence), where
‘PBC’ stands for primary biliary cirrhosis, one of the possible liver diseases
modelled in the network, and ‘Evidence’ would be a set of variables with their
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Fig 6. Simplified Hepar BN model.

values that pertain to PBC in some way. We will use this as an example to
examine the effects of different parameter estimation methods. For example,
LE cells = 0 and Antimytochondrial AB = 1, Gender = female will already
give a high probability if the Age is above 40 and these are indeed part of the
characteristics of the disease according to the clinical literature.

For simplicity, we refer to PBC, LE cells, Antimytochondrial AB, Gender and
Age by B, L, A, G and E, respectively. The variables A, G and L are assumed to
be binary. For the variable Age, we consider that E takes value 0 if the patient’s
age is under 40 and takes value 1, otherwise. Also, in our clinical data, B takes
either the value zero (disease is absent) or one (disease is present). Thus, our
goal is to compute

P (B = 1 | G = 0, E = 1, L = 0, A = 1). (5.4)

Fig. 6 shows a simplified Hepar BN network with only these variables in-
cluded. The following lemma restates the probability in (5.4) in terms of θjil
defined in Eq. (2.2).

Lemma 5.1. If we replace G,E,B,L,A by the variables X1, . . . , X5 and their
associated probabilistic parameters, the desired probability in (5.4) can be ex-
pressed as follows

P (B = 1 | G = 0, E = 1, L = 0, A = 1) =
θ412θ522θ322

θ411θ521θ312 + θ412θ522θ322
= θD.(5.5)

Suppose we know that the probability θ312 = P (B = 1|E > 40, A = 0) has a
high value (from our prior experience), but we are unable to determine its exact
value reliably based on the data available. From the data we first determine
point estimates for the parameters in Eq. (5.5), i.e., we can at least propose a
prior distribution by looking at possible estimates of θ312, e.g. its ML estimate,
which is 0.883. Based on this value, one may consider using the Dir(α312, α322)-
prior with α312 = 50 and α322 = 5, which gives a prior mean of 50/55=0.9091.
However, this specific estimate might not be the same if we change the sample
while it is obvious that a change in the available sample data would make a
change in the point estimates. To make sure that the proposed prior is rich
enough to include some other possible cases, one may consider the class Γ1
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below, which reflects the possibility of getting some estimates in the interval
(40/48, 60/62).

By expressing the uncertainty of the parameters in terms of some classes
of conjugate distributions as listed below, we make sure that a wider range of
probabilities is covered.

Γ1 =
{
Dir(α312, α322) : 40 ≤ α312 ≤ 60, 2 ≤ α322 ≤ 8

}
,

Γ2 =
{
Dir(α411, α421) : 5 ≤ α411 ≤ 25, 90 ≤ α421 ≤ 110

}
,

Γ3 =
{
Dir(α412, α422) : 2 ≤ α412 ≤ 8, 5 ≤ α422 ≤ 15

}
,

Γ4 =
{
Dir(α511, α521) : 90 ≤ α511 ≤ 110, 2 ≤ α522 ≤ 4

}
,

Γ5 =
{
Dir(α512, α522) : 3 ≤ α512 ≤ 8, 3 ≤ α522 ≤ 8

}
.

One way to derive the SPRGM estimate of θD, is to compute SPRGM esti-
mate for each of θjil as appeared in Eq. (5.5). The relevant computed estimates
are shown in Table 2. It can be observed that the SPRGM estimate of the de-
sired parameter θD is high enough, as somehow expected. For comparison, we
also report on the corresponding ML estimates in Table 2. It should be empha-
sized that since ML estimates do not depend on the prior knowledge, comparing
ML estimates and Bayesian estimates is not fair and we should rely on the ML
estimates only in situations in which we do not have access to any source of
prior information.

Table 2

Computed SPRGM estimates of the parameters appeared in the Eq. (5.5).

Estimates θ312 θ322 θ411 θ412 θ521 θ522 θD

ML 0.8830 0.1170 0.1316 0.3071 0.0120 0.5679 0.9362
SPRGM 0.8889 0.1111 0.1317 0.3086 0.0200 0.0246 0.9150

6. Final remarks

In this paper we focused on discrete random variables. We would like to stress
that this is common in BNs. For example, the well-known bnlearn software
[39] is based on discrete random variables. One main reason is the fact that
many BN learning algorithms are unable to treat efficiently continuous variables.
However, as [5] reports, there are three common approaches of extending BNs
to continuous variables introduced in the literature: one approach, introduced
by [47], is to model the conditional pdf of each continuous random variable
based on certain family of distribution first, and redesign the corresponding BN
inference based on the parameterizations, next. Another approach is to use non-
parametric distributions such as Gaussian processes [20], and the third approach
would be to discretize the continuous variables based on some criteria such as
the minimum description length. The third approach has been extensively used



4020 A. Karimnezhad et al.

in the literature and new developments have been introduced, see for example
[17] among many others. Thus assuming the random variables are discrete is
not a restrictive assumption.

We also highlight that in our developments we assumed a BN with a complete
instantiation is available, meaning that no missing values are present. But we
would like to emphasize that in the presence of incomplete/missing data it can
be handled with one of the available methods in the literature. [8] provided
a theoretical approach to handle the problem of learning with missing data.
They show that one can solve this problem by taking a sum of the conditional
probabilities over all posible values for each missing data point. [27] studied
the parameter learning task in presence of some missing data based on the
Expectation-Maximization (EM) technique. [36] applied the important sampling
technique into solving such a problem.

Among the existing methods, we suggest using the EM algorithm due to its
advantage of being easy to implement and having the property of converging
relatively quickly [38].

Now, to apply the EM algorithm, suppose that in the kth sample, k =
1, 2, . . . , n, of the variables in the set x(k), Xm is the variable whose value is
missing. The EM algorithm starts with an initial estimation θ0 and at each it-
eration t, the data set is completed based on θt and then the parameters are
re-estimated using the completed data set, obtaining θt+1. The E-step finds the
conditional expectation of the complete data log-likelihood, given the observed
component of the data and the current values of the parameters. In fact, the
E-step computes the current expected log-likelihood of θ given the data x, as
denoted by Q(θ|θt) for simplicity below

Q(θ|θt) =
∑
k

∑
xm

P (Xm = xm|X(k) = x(k), θt) logP (X(k) = x(k), Xm = i|θ)

=
∑
k

∑
xm

∑
i

∑
j

∑
l

P (Xm = xm|X(k) = x(k), θt)njilk log θjil

=
∑
i

∑
j

∑
l

mt
jil log θjil,

where mt
jil =

∑
k

∑
xm

P (Xm = xm|X(k) = x(k), θt)njilk in which njilk is given
by the Eq. (2.1).
The M-step then computes the next estimate θt by maximizing the current
expected log-likelihood of the data, i.e., θt+1 = argmaxθ Q(θ|θt). After some
algebraic manipulations, for all i, j and k, we will get

θt+1
jil =

mt
jil∑

i m
t
jil

.

Here mt
jil is interpreted as the number of cases where Xj = i when its parent

configuration is in the state λl in the completed data set. Thus, θt+1
jil is inter-

preted as the expected proportion of cases where Xj = i among all possibilities
when its parent configuration is in the state λl.
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Since the EM algorithm converges [26, 38], this iterative approach leads to a
replacement of θjil by θsjil, where s is the time thereafter θtjil is constant. Once

this replacement is done, δML
jil in Eq. (2.3) is derived. Since nj.l. will be known, we

get njil. = δML
jil nj.l.. Now, replacing the new value for njil. in Eq. (2.5) and Eq.

(2.6), as well as Theorems 3.1, 4.1 and 4.2 leads to MAP, PM, CB, and SPRGM
estimates of parameters associated with the variable whose value is missing.

7. Conclusions and discussion

In this paper we considered the task of parameter learning in BNs. Improvements
of Bayesian methods were provided, leading to the extension and application of
the simultaneous estimation and robust Bayesian methodology to the context
of parameter learning in BNs.

Assuming accessibility of some prior knowledge, we dealt with different ap-
proaches to incorporate prior knowledge and derived explicit forms of Bayes
(MAP and PM), adjusted Bayes (CB) and robust Bayes (SPRGM) estimates.
From the Bayesian estimation literature it is understood that, in presence of
crisp prior knowledge, one can reach a reliable Bayes estimate for the desired
parameter. Prior knowledge can be specified by determining hyperparameters
of the underlying prior distribution, but in many situations there may be a lack
of consensus among experts or decision-makers concerning these hyperparame-
ters. In such situations, one sensible approach, as adopted in this paper, would
be to define a class of priors to ensure that the existing knowledge fall within
the proposed class. The corresponding rule, which we referred to as the ‘robust
Bayes rule’, can be used in the hope of arriving at a rule consistent with the
real world.

Our simulation study emphasizes that if the crisp prior is present, Bayes and
CB rules are reliable methods. This was obvious from the choice Dir(40, 10) and
Dir(35, 10)-priors and the corresponding Bayes and CB estimates in Table A.1
of the Appendix, as the true parameter was 0.2 and 0.4, respectively. But it is
seen that for the other specified priors, the resulting Bayes and CB estimates
are quite far from the true parameters and thus, these selected priors are bad
choices. However, as noted earlier in the simulation study, in practice, the avail-
ability of exact prior knowledge in terms of specific prior hyperparameters is
rare. The overall class (5.1) was rich enough to ensure that it includes all the
prior information attributed by the three experts. In addition to prevention of
selecting bad choices of priors, quantitative statistics show that the SPRGM
estimates perform quite well.

We emphasize that when the values of hyperparameters are not justifiably
chosen, or when the exact prior knowledge is not available, SPRGM estimates
outperform Bayes rules, as we should expect due to the fact that robust rules
are aimed at global prevention of bad choices in a single prior. Obviously, for
a justified choice of a single prior the results may reverse in the sense that for
such a prior, the Bayes estimate outperforms robust Bayes rules. When specific
hyperparameters of a prior are available, we encourage the use of MAP and
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PM estimates. We encourage using the CB estimates only if the interest lies in
both simultaneous estimation and closeness between distribution of estimates
and posterior distribution of the parameters. When there is a lack of consensus
of opinion about the prior hyperparameters, we encourage using the SPRGM
estimate(s), with the hope of reaching an optimal estimate.

We would like to wrap up this work by addressing the main interest of
Bayesian analysis considered in this paper. Although different prior-based point
estimates of the desired parameters have been provided in this paper, the points
estimates have been driven by recovering the posterior distribution. The MAP
and PM rules are the points that minimize the posterior function which is infor-
mally averages of losses of choosing an estimator of the desired parameter w.r.t.
the posterior distribution, the CB estimates adjust the PM estimates according
to the additional constraints (i)-(iii) of Section 3 and the SPRGM estimates
minimize the difference between posterior risk of any arbitrary estimator and
the posterior risk of the Bayes estimator.

Appendix

Proof of Lemma 3.1.

E
[ kj∑

i=1

(
θjil − θ̄j.l

)2 |X = x
]

=

kj∑
i=1

E[θ2jil|X = x]− kjE[θ̄2j.l|X = x]

=

kj∑
i=1

E[θ2jil|X = x]− kjV ar[θ̄j.l|X = x]− kjE
2[θ̄j.l|X = x]

=

kj∑
i=1

E[θ2jil|X = x]− 1

kj
(since θ̄j.l =

1

kj
)

>

kj∑
i=1

E2[θjil|X = x]− 1

kj
(by Jensen inequality)

=

kj∑
i=1

E2[θjil|X = x]− kj δ̄
PM2

jl (since δ̄PM
jl =

1

kj

kj∑
i=1

δPM
jil =

1

kj
)

=

kj∑
i=1

δPM2

jil − kj δ̄
PM2

j.l

=

kj∑
i=1

(
δPM
jil − δ̄PM

j.l

)2
.

Hence,
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E
[ kj∑

i=1

(
θjil − θ̄j.l

)2 |X = x
]
>

kj∑
i=1

(
δPM
jil − δ̄PM

jl

)2
.

Proof of Theorem 3.1. To derive CB estimates of the elements of θjl, we
minimize

E
[ kj∑

i=1

(θjil − δjil)
2 |X = x

]
,

w.r.t. δjil subject to (i)-(iii). First note that

E
[ kj∑

i=1

(θjil − δjil)
2 |X = x

]
= E

[ kj∑
i=1

(
θjil + δPM

jil − δPM
jil − δjil

)2 |X = x
]

= E
[ kj∑

i=1

(
θjil − δPM

jil

)2 |X = x
]
+

kj∑
i=1

(
δjil − δPM

jil

)2
. (A.1)

The first term in the RHS of (A.1) does not depend on the estimates δjil. Hence,

minimizing E[
∑kj

i=1 (θjil − δjil)
2 |X = x] subject to the constraints (i)-(iii) is

equivalent to minimizing
∑kj

i=1

(
δjil − δPM

jil

)2
subject to the conditions (i)-(iii).

From the constraint (i),
∑kj

i=1 δjil =
∑kj

i=1 δ
PM
jil , we observe that

kj∑
i=1

(
δjil − δPM

jil

)2
=

kj∑
i=1

(
δjil − δ̄j.l + δ̄PM

j.l − δPM
jil

)2

=

kj∑
i=1

(
δjil − δ̄j.l

)2
+

kj∑
i=1

(
δPM
jil − δ̄PM

j.l

)2

−2

kj∑
i=1

(
δPM
jil − δ̄PM

j.l

) (
δjil − δ̄j.l

)
= kj (V ar(Zjl) + V ar(Wjl)− 2Cov(Zjl,Wjl)) ,(A.2)

where for a fixed j = 1, . . . , d and l = 1, . . . , qj ,

P (Zjl = δjil,Wjl = δPM
jil ) =

1

kj
, i = 1, . . . , kj .

Due to the constraint (ii), for a fixed j = 1, . . . , d and l = 1, . . . , qj , V ar(Zjl) is
constant. It is obvious that V ar(Wjl) does not depend on δjil values. Thus, the

right side of (A.2) is minimized when Cov(Zjl,Wjl) =
√

V ar(Zjl)
√

V ar(Wjl) or
equivalently the corresponding correlation is equal to one, i.e., ρ(Zjl,Wjl) = 1.
This implies that Wjl = ajlZjl + bjl with probability 1 for some ajl > 0 and
bjl ∈ �. Thus,

δjil = ajlδ
PM
jil + bjl. (A.3)

Hence by taking sum over i from both sides we have



4024 A. Karimnezhad et al.

kj∑
i=1

δjil = ajl

kj∑
i=1

δPM
jil + bjlkj

which using the constraints (i) and (iii) leads to

bjl = (1− ajl)
1

kj
. (A.4)

Substituting (A.4) in (A.3) and the fact that
∑kj

i=1 δjil =
∑kj

i=1 δ
PM
jil , leads to

δjil = ajlδ
PM
jil + (1− ajl)

1

kj
. (A.5)

or

kj∑
i=1

(δjil − δ̄j.l)
2 = a2jl

kj∑
i=1

(δPM
jil − δ̄PM

j.l )2. (A.6)

Now, combining (A.6) and the constraint (ii), we set

ajl =

{
Gjl(x)

Hjl(x)

} 1
2

, (A.7)

where Gjl(x) = E[
∑kj

i=1(θjil− θ̄j.l)
2|X = x] and Hjl(x) =

∑kj

i=1(δ
PM
jil − δ̄PM

j.l )2.

Notice that due to inherent symmetry in BNs, i.e., the fact
∑kj

i=1 θjil = 1 or
equivalently θ̄j.l =

1
kj
, Gjl(x) can be simplified as follows

Gjl(x) = E
[ kj∑

i=1

(θjil −
1

kj
)2|X = x

]

=

kj∑
i=1

E[θ2jil|X = x] +
1

kj
− 2

kj

kj∑
i=1

θjil

= Sjl(x)−
1

kj
, (A.8)

where Sjl(x) =
∑kj

i=1 E[θ2jil|X = x].

To simplify Hjl(x), note that due to the constraint (iii), we have δ̄PM
jil =

1
kj

∑kj

i=1 δ
PM
jil = 1

kj
. Thus,

Hjl(x) = E
[ kj∑

i=1

(δPM
jil − 1

kj
)2|X = x

]

=

kj∑
i=1

E[(δPM
jil )2|X = x] +

1

kj
− 2

kj

kj∑
i=1

δPM
jil

= Tjl(x)−
1

kj
. (A.9)
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where Tjl(x) =
∑kj

i=1 E[θ2jil|X = x]. Substituting (A.8) and (A.9) in (A.7) and
combining (A.7) and (A.5) the proof is complete.

Proof of Theorem 4.1. For each i = 1, 2, rp(δjil, δ
PM
jil ) is a convex function of

δPM
jil and attains its maximum at either δPM

jil = δjil or δ
PM
jil = δjil. Following the

four possible cases, we obtain the SPRGM estimates subject to the constraint
δj1l + δj2l = 1.
i) rp(δj1l, δj1l) ≥ rp(δj1l, δj1l) and rp(δj2l, δj2l) ≥ rp(δj2l, δj2l). Then, (δj1l, δj2l)
belongs to the following class of estimates

D1 =

{
(δj1l, δj2l) : δj1l ≤

δj1l + δj1l

2
, δj2l ≤

δj2l + δj2l

2

}
.

Using the constraint δj1l + δj2l = 1, we observe that rp(δjl, δ
PM
jl ) = (δj1l −

δj1l)
2 + (δj1l + δj2l − 1)2, which obviously is convex in δj1l and has a unique

minimum at δj1l =
1
2

(
1 + δj1l − δj2l

)
. It is easy to observe that this solution

satisfies the conditions in D1 if δj1l + δj2l ≥ 1 and δj1l + δj2l ≥ 1. So, δSPR
j1l,Γ =

1
2

(
1 + δj1l − δj2l

)
and δSPR

j2l,Γ = 1−δSPR
j1l,Γ, provided δj1l+δj2l ≥ 1 and δj1l+δj2l ≥

1.

ii) rp(δj1l, δj1l) ≥ rp(δj1l, δj1l) and rp(δj2l, δj2l) ≥ rp(δj2l, δj2l). Then, (δj1l, δj2l)
belongs to the following class of estimates

D2 =

{
(δj1l, δj2l) : δj1l ≤

δj1l + δj1l

2
, δj2l ≥

δj2l + δj2l

2

}
.

Use the constraint δj1l + δj2l = 1, rp(δjl, δ
PM
jl ) = (δj1l − δj1l)

2 + (δj1l +

δj2l − 1)2. rp(δjl, δ
PM
jl ) is convex in δj1l and has a unique minimum at δj1l =

1
2

(
1 + δj1l − δj2l

)
. This solution would be SPRGM estimate of θj1l if it belongs

to D2. It is easy to verify that this is not possible and hence, this case does not
lead to any SPRGM estimate.

iii) rp(δj1l, δj1l) ≥ rp(δj1l, δj1l) and rp(δj2l, δj2l) ≥ rp(δj2l, δj2l). Then, (δj1l, δj2l)
belong to the following class of estimates

D3 =

{
(δj1l, δj2l) : δj1l ≥

δj1l + δj1l

2
, δj2l ≤

δj2l + δj2l

2

}
.

Using the constraint δj1l+δj2l = 1, rp(δjl, δ
PM
jl ) = (δj1l−δj1l)

2+(δj1l+δj2l−1)2,

which is convex in δj1l and has a unique minimum at δj1l =
1
2

(
1 + δj1l − δj2l

)
.

Similar to the case (ii), it is easy to verify that this case does not lead to any
SPRGM solution.

iv) rp(δj1l, δj1l) ≥ rp(δj1l, δj1l) and rp(δj2l, δj2l) ≥ rp(δj2l, δj2l). Then, (δj1l, δj2l)
belongs to the following class of estimates

D4 =

{
(δj1l, δj2l) : δj1l ≥

δj1l + δj1l

2
, δj2l ≥

δj2l + δj2l

2

}
.
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Using the constraint δj1l + δj2l = 1, we observe that rp(δjl, δ
PM
jl ) = (δj1l −

δj1l)
2 + (δj1l + δj2l − 1)2, which is convex in δj1l and has a unique minimum at

δj1l =
1
2

(
1 + δj1l − δj2l

)
. It is easy to observe that this solution satisfies the con-

ditions in D4 if δj1l+δj2l ≤ 1 and δj1l+δj2l ≤ 1. So, δSPR
j1l,Γ = 1

2

(
1 + δj1l − δj2l

)
and δSPR

j2l,Γ = 1− δSPR
j1l,Γ, provided that δj1l + δj2l ≤ 1 and δj1l + δj2l ≤ 1.

Proof of Theorem 4.2. For each i = 1, 2, 3, rp(δjil, δ
PM
jil ) is a convex function

of δPM
jil and attains its maximum at either δPM

jil = δjil or δ
PM
jil = δjil. Following

the eight possible cases, we obtain the SPRGM estimates subject to the con-
straint δj1l + δj2l + δj3l = 1. We only prove (i), the proof of (ii)-(viii) is similar
to (i).
Suppose rp(δjil, δj1l) ≥ rp(δjil, δj1l), i = 1, 2, 3, Then, (δj1l, δj2l, δj3l) belongs to
the following class of estimates

D∗
1 =

{
(δj1l, δj2l, δj3l) : δj1l ≤

δj1l + δj1l

2
, δj2l ≤

δj2l + δj2l

2
, δj3l ≤

δj3l + δj3l

2

}
.

Using the constraint δj1l + δj2l + δj3l = 1, we observe that rp(δjl, δ
PM
jl ) =

(δj1l − δj1l)
2 + (δj2l − δj2l)

2 + (1 − δj1l − δj2l − δj3l)
2. Based on the second

partials test [46], one can verify that infimum of rp(δjl, δ
PM
jl ) is achieved at

δj1l = 1
3 (1 + 2δj1l − δj2l − δj3l) and δj2l = 1

3 (1 + 2δj2l − δj1l − δj3l). These
solutions are the SPRGM estimates if they belong to D∗

1 . Thus, δ
SPR
j1l,Γ = 1

3 (1 +

2δj1l−δj2l−δj3l),δ
SPR
j2l,Γ = 1

3 (1+2δj2l−δj1l−δj3l) and δSPR
j3l,Γ = 1−δSPR

j1l,Γ−δSPR
j2l,Γ

provided that δSPR
j1l,Γ ≤ 1

2 (δjil + δjil), i = 1, 2, 3.

Proof of Lemma 5.1. First notice that using the Bayes’ rule we have

P (B=1 |G=0, E=1, L=0, A=1)=
P (B=1, G=0, E=1, L=0, A=1)

P (G=0, E=1, L=0, A=1)
. (A.10)

The numerator of (A.10) can be written as

P (B = 1, G = 0, E = 1, L = 0, A = 1)

= P (L = 0, A = 1 | B = 1, G = 0, E = 1)P (B = 1 | G = 0, E = 1)P (G = 0, E = 1)

= P (L = 0 | B = 1)P (A = 1 | B = 1)P (B = 1 | G = 0, E = 1)P (G = 0, E = 1).

(A.11)

Similar to the derivation of the numerator, one can easily derive that

P (G = 0, E = 1, L = 0, A = 1)

=
∑

b∈{0,1}

P (L = 0 | B = b)P (A = 1 | B = b)P (B = b | G = 0, E = 1)P (G = 0, E = 1)

(A.12)

Hence, substituting (A.11) and (A.12) in (A.10), we obtain that

P (B = 1 | G = 0, E = 1, L = 0, A = 1)
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=
P (L = 0 | B = 1)P (A = 1 | B = 1)P (B = 1 | G = 0, E = 1)P (G = 0, E = 1)∑

b∈{0,1} P (L = 0 | B = b)P (A = 1 | B = b)P (B = b | G = 0, E = 1)P (G = 0, E = 1)

=
P (L = 0 | B = 1)P (A = 1 | B = 1)P (B = 1 | G = 0, E = 1)∑

b∈{0,1} P (L = 0 | B = b)P (A = 1 | B = b)P (B = b | G = 0, E = 1)
.

Now, if we replace G,E,B,L,A by the variables X1, . . . , X5 and their associated
probabilistic parameters, the proof is complete.

Fig A.1. Histograms of ASV of ensemble of the MAP, PM, CB estimates w.r.t. the priors
π∗
j , j = 1, 2, 3, and SPRGM estimates w.r.t. the class of priors Γ∗ along with histograms of

the PESV of ensemble of the parameters in θ51. Each row is associated with one of the priors
π∗
j , as indicated on the y-axis of the first histograms.
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Table A.1. Quantitative statistics for different values of n.

n i δML
5i1 δ

MAP,π∗
1

5i1 δ
MAP,π∗

2
5i1 δ

MAP,π∗
3

5i1 δ
PM,π∗

1
5i1 δ

PM,π∗
2

5i1 δ
PM,π∗

3
5i1 δ

CB,π∗
1

5i1 δ
CB,π∗

2
5i1 δ

CB,π∗
3

5i1 δSPRGM
5i1,Γ∗

Mean 25 1 0.4008 0.3862 0.3650 0.4443 0.3888 0.3679 0.4456 0.3768 0.3585 0.4291 0.4067
2 0.5992 0.6138 0.6350 0.5557 0.6f112 0.6321 0.5544 0.6232 0.6415 0.5709 0.5933

AKLD 0.0340 0.0029 0.0059 0.0079 0.0026 0.0052 0.0082 0.0032 0.0071 0.0034 0.0022
ASV 0.0203 0.0137 0.0189 0.0038 0.0131 0.0181 0.0037 0.0157 0.0206 0.0064 0.0094

Mean 50 1 0.3993 0.3887 0.3716 0.4346 0.3907 0.3739 0.4358 0.3806 0.3657 0.4192 0.4048
2 0.6007 0.6113 0.6284 0.5654 0.6093 0.6261 0.5642 0.6194 0.6343 0.5808 0.5952

AKLD 0.0163 0.0032 0.0052 0.0062 0.0030 0.0047 0.0064 0.0034 0.0059 0.0032 0.0026
ASV 0.0154 0.0133 0.0173 0.0052 0.0128 0.0167 0.0050 0.0150 0.0187 0.0072 0.0099

Mean 100 1 0.4002 0.3924 0.3801 0.4247 0.3938 0.3816 0.4256 0.3863 0.3752 0.4146 0.4036
2 0.5998 0.6076 0.6199 0.5753 0.6062 0.6184 0.5744 0.6137 0.6248 0.5854 0.5964

AKLD 0.0081 0.0030 0.0039 0.0045 0.0029 0.0037 0.0046 0.0029 0.0042 0.0027 0.0027
ASV 0.0126 0.0125 0.0152 0.0066 0.0122 0.0149 0.0064 0.0137 0.0163 0.0080 0.0102

Mean 200 1 0.4006 0.3956 0.3877 0.4158 0.3964 0.3886 0.4165 0.3916 0.3843 0.4102 0.4026
2 0.5994 0.6044 0.6123 0.5842 0.6036 0.6114 0.5835 0.6084 0.6157 0.5898 0.5974

AKLD 0.0040 0.0023 0.0026 0.0029 0.0022 0.0025 0.0029 0.0022 0.0027 0.0021 0.0021
ASV 0.0112 0.0116 0.0133 0.0078 0.0114 0.0131 0.0077 0.0124 0.0140 0.0087 0.0102

The priors π∗
1 , π

∗
2 and π∗

3 stand for Dir(40, 25), Dir(45, 25) and Dir(35, 30)-priors and Γ∗ stands for the class of
priors in (5.2).
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Fig A.2. Plots of ASV of the MAP, PM, CB estimates w.r.t. the priors π∗
j , j = 1, 2, 3,

and SPRGM estimates w.r.t. the class of priors Γ∗ along with the APESV of ensemble of the
parameters in θ51. In the figure, × represents PSEV. Also, green triangle corresponds to ASV
of the MAP estimates, red dot refers to ASV of the PM estimates, purple square represents
ASV of the CB estimates, and black plus sign corresponds to ASV of the SPRGM estimates.
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