
Three-dimensional reconstruction and
measurements of zebrafish larvae from
high-throughput axial-view in vivo imaging

YUANHAO GUO,1 WOUTER J. VENEMAN,2 HERMAN P. SPAINK,2 AND
FONS J. VERBEEK1,*

1Imaging & BioInformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University,
2333CA, Leiden, The Netherlands
2Department of Animal Sciences and Health, Institute of Biology (IBL), Leiden University, 2333BE, Leiden,
The Netherlands
*f.j.verbeek@liacs.leidenuniv.nl

Abstract: High-throughput imaging is applied to provide observations for accurate statements
on phenomena in biology and this has been successfully applied in the domain of cells, i.e.
cytomics. In the domain of whole organisms, we need to take the hurdles to ensure that the
imaging can be accomplished with a sufficient throughput and reproducibility. For vertebrate
biology, zebrafish is a popular model system for high-throughput applications. The development
of the Vertebrate Automated Screening Technology (VAST BioImager), a microscope mounted
system, enables the application of zebrafish high-throughput screening. The VAST BioImager
contains a capillary that holds a zebrafish for imaging. Through the rotation of the capillary,
multiple axial-views of a specimen can be acquired. For the VAST BioImager, fluorescence
and/or confocal microscopes are used. Quantitation of a specific signal as derived from a label
in one fluorescent channel requires insight in the zebrafish volume to be able to normalize
quantitation to volume units. However, from the setup of the VAST BioImager, a specimen
volume cannot be straightforwardly derived. We present a high-throughput axial-view imaging
architecture based on the VAST BioImager. We propose profile-based 3D reconstruction to
produce 3D volumetric representations for zebrafish larvae using the axial-views. Volume and
surface area can then be derived from the 3D reconstruction to obtain the shape characteristics
in high-throughput measurements. In addition, we develop a calibration and a validation of our
methodology. From our measurements we show that with a limited amount of views, accurate
measurements of volume and surface area for zebrafish larvae can be obtained. We have applied
the proposed method on a range of developmental stages in zebrafish and produced metrical
references for the volume and surface area for each stage.
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1. Introduction

The application of high-throughput imaging is wide-spread in modern molecular genetics based
biology. Imaging takes an important position in a variety of high-throughput applications and
the image based applications are found on the cellular, tissue-culture and organismal level.
High-throughput is a demanding process and as throughput is required, the optics setup needs to
cover for sufficient image quality in further processing of the samples.

Zebrafish is a popular model system to study a broad range of biological phenomena. A lot
of these phenomena are rooted in molecular genetics, i.e. developmental biology, toxicology,
cancer, infectious diseases and drug targeting. In an experimental setting zebrafish are easy
to breed and per crossing about 200 eggs can be obtained. The early embryonic stages are
easily studied through microscopy as well as easy to manipulate. In the past decade, through
genetic engineering, a large amount of transgenic zebrafish lines incorporating Green Fluorescent
Protein (GFP, and the like) as a reporter gene have become available. These lines, and the
genes they represent, support the research in that the gene-expression from the transgenic line
helps indicating specific events in space and time. The GFP-like reporter genes are studied
through fluorescent and confocal microscopy and the fluorescence facilitates measurability of
the expression so that a numerical representation of experiments can be obtained.

Zebrafish, augmented with the large amount of reporter lines, are very suitable for high-
throughput experiments given the number of embryos that can be obtained for experimentation.
Furthermore, the genomics of zebrafish is close to human. Therefore, zebrafish are now massively
used as a model in disease studies which are often performed in a high-throughput setting.
Initially, these experiments were designed such that the read-out was realized using 2D images
and subsequent processing of these images. In this manner a kind of mid-throughput could be
accomplished. The space and time features of these images could, de facto, be used efficiently. In
order to scale experiments to true high-throughput, other solutions need be probed [1]. Moreover,
spatial acuity is required to enable the 3D image analysis. Apparently, confocal laser scanning
microscopy (CLSM) seems the best option. So, in addition to the microscope and automated
acquisition protocols, devices are required to make it possible to do accurate and fast imaging,
both 2D and 3D, on life specimens and, if possible, in a time-lapse fashion. A solution has been
presented through the adaptation of screening hardware from the invertebrate field and making it
suitable for the vertebrate field, more specifically for zebrafish; i.e. the Vertebrate Automated
Screening Technology (VAST BioImager) [2] (http://www.unionbio.com/vast/). The
VAST BioImager extends a microscope, equipped with (epi-)fluorescence and/or confocal
imaging options. Through a capillary system, zebrafish embryos/larvae are delivered, transported
and kept in a fixed position for imaging. The capillary is mounted such that it can rotate while the
specimen is kept in its fixed position. In this manner, images from different angles, i.e. axial-view
images, can be acquired and analysed.

The VAST BioImager can operate with bright-field, fluorescence and confocal microscopy; a
schematic of the setup is shown in Fig. 1. A system of stepper-motors is used to fix and rotate the
capillary; the positioning of the specimen in the field of view of the microscope is accomplished
with an extra camera which is part of the VAST BioImager system. We refer to this camera
as the VAST-camera which has a mounted lens that observes the capillary via a prism. In a
synchronized acquisition protocol, images from different views, e.g lateral, dorsal and ventral,
are acquired with the microscope mounted camera or photomultiplier (in case of CLSM) in a
full revolution of the capillary. In addition, the VAST-camera can also acquire images of the
specimen, at a lower resolution, but always with a full view of the specimen. In comparison,
the microscope view renders more detail, due to the characteristics of its lenses, but does not
necessarily produce a complete view of the specimen. Some typical examples of the axial views
obtained by the VAST-camera are depicted in Fig. 2(A).

In order to obtain successful image analysis of zebrafish, accurate and precise shape measure-
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Fig. 1. A schematic illustration of the axial-view imaging system based on the VAST
BioImager. Zebrafish larvae are loaded from a reservoir. The VAST system detects the
position and direction of the object in the capillary. The stepper motors manipulate the
position and view of the specimen. Images of a corresponding axial-view can be acquired by
the associated VAST-camera #1. The VAST-camera is, in particular, suitable for obtaining
overview images of the specimen. Originally, this camera is concerned with the control of
the system but, by us, it is adapted for axial image acquisition. In addition, the whole system
is mounted on a microscope equipped with high resolution camera #2. The microscope
camera enables both of the organ- and cellular- level imaging. The blue dashed curves
represent the communication between the imaging components and the control platform.

ments are important, especially for providing a reference of the overall size and shape. In
fluorescence, only the specific shape characteristics from specific labels can be analysed. Bright-
field images, on the other hand, will give all information on shape and size if they present an
overview of the specimen. Therefore, we investigate how the axial-view images can be employed
to obtain precise and accurate measurements on size and shape [3]. We will use the VAST-system
to produce a full revolution of the specimen and acquire, with the VAST-camera, a set of axial-
view images. Subsequently, we will investigate how these images can be used to reconstruct
a volume and obtain the size and shape measurements. These measurements then serve as a
reference of size and shape of more specific features. A general overview of the proposed method
is shown in Fig. 2. Given the microscope setup with the VAST BioImager, axial-view profiles of
the zebrafish as shown in Fig. 2(B) are extracted from the original images as shown in Fig.2(A)
and, henceforth, a 3D volume can be produced through combination of the profile images. The
underlying idea of the 3D reconstruction from axial-views is similar to the problem of multi-view
based 3D vision. To that end, a camera calibration model needs to be developed as framed
in Fig. 2(D). The 3D reconstruction can be accomplished once the segmentation and camera
calibration are in place. An example of the 3D reconstructed zebrafish model is depicted in
Fig. 2(E). We need, however, to make sure that the result is a good representation of the shape;
i.e. the measurements that we derive from the model can be considered correct. So, validation
experiments and evaluation of the methodology on zebrafish larvae will be performed.

In order to clarify our method, the following issues are addressed in the next sections of this
paper. In section 2, a number of 3D reconstruction methods are reviewed and the proposed
method is motivated by the 3D reconstruction based on profiles, i.e. the binary masks obtained
from segmentation of the object. In order to apply the method, an accurate estimation of the
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Fig. 2. Flowchart of the 3D reconstruction and measurements of zebrafish larvae for the
high-throughput axial-view imaging system. (A) Axial-view images of zebrafish as acquired
from the VAST-camera. (B) Profiles are obtained from the segmentation of axial views. (C)
Initialization of camera configurations estimated from the VAST BioImager. (D) Visual-
ization of parameterization and calibration of the axial-view camera system. The orange
dots represent center of the camera lens; the blue lines represent the principal axis of the
camera. (E) Reconstructed 3D zebrafish models with a volumetric representation shown on
the left and a texture-mapping model on the right. The �+ symbol indicates the integration of
different computational modules. For further details see section 3.

camera configuration is required. Therefore, we elaborate this for microscope optics and include
some necessary optimization steps for efficient computation in section 3. In section 4, we continue
with a validation of the proposed method by introducing calibration beads that are used in an
initial experiment testing if our setup can produce accurate reconstructions. In addition, we test if
our measurement algorithms are sound. Subsequently, we have performed experiments on a large
set of zebrafish larvae and shown successful application of the proposed method for zebrafish
larvae. The experiment deals with a range of developmental stages in zebrafish and the outcome
of the measurements is interpreted. One of the results is a graph of the distribution for volume
and surface area of the zebrafish larvae. We explain how this distribution is derived from the
experimental results. We present the major conclusions from this research and extrapolate to
future work in section 5.

2. Background and method motivation

In multi-view 3D reconstruction methods, two major categories can be discerned. One category
is based on epipolar geometry and aims estimating the depth information by matching the
corresponding points from correlated images of one identical scene using geometrical clues [4,5].
These methods use texture mapping to define point similarity or disparity, but require pixel-wise
correspondence. The other category concerns the multi-view 3D reconstruction by producing
a volumetric representation of the object from a series of binary masks of the shape, which
sometimes is referred as the silhouette-based 3D reconstruction.

For the 3D measurements that we wish to extract from the zebrafish, the 3D shape plays an
important role. Our method should, therefore, have an innate shape preserving ability. Due to
the partial transparency of the zebrafish embryos, it is difficult to determine point correspon-
dences from the object surface within the multi-view images. Therefore, the silhouette-based
3D reconstruction method is more suitable for this type of data. In this work, a binary mask
is derived from an axial-view image which is preferably defined as a profile. As of now, we
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therefore use, in the remainder of this paper, the term profile-based 3D reconstruction to indicate
our reconstruction method.

In the silhouette-based method, the initial idea takes into account the parallel projections
derived from each individual profile [6] to generate a 3D intersection. Various 3D volumetric
representations are then proposed. Hierarchical resolution voxels are used for an efficient con-
struction of the 3D object [7]. The voxels that are populating the object surface are represented
with a high resolution grid, while the voxels inside the object are represented by much coarser
grid. Such data structure is commonly referred as an Octree. Due to the characteristics of camera
imaging system, cone-shaped projections have been derived from the camera configurations [8,9].
The silhouette-based 3D reconstruction methods have become more feasible through the in-
troduction of the concept of the visual hull [10–12]. The space carving algorithm [13, 14], as
conceptualized in the space-carving theory, is an important implementation of this concept. In
this method, based on the pinhole camera projection model, all the silhouettes are back-projected
to the 3D space represented as a voxel-space. According to space carving theory [14], only the
voxels visible to each of the silhouettes are preserved and used to reconstruct the final 3D model.

Other methods are based on combining the information from texture mappings of the original
images; one of which includes the surface reflectance to generate more natural 3D scene [15]. In
recent approaches [16–19], the 3D reconstruction is accomplished by searching for an optimal
surface. The 3D surface is embedded in a higher dimensional space. Each voxel candidate
included or excluded by the enclosed surface is assigned with a probability which indicates the
possibility of the voxel candidate belonging to the object or the background. The probability
is modelled by a multi-variate Gaussian kernel which is applied on the texture mappings inter-
actively indicated by users. An energy function is subsequently defined by incorporating the
total probability and the total surface area. Finally, the variational framework is taken to solve
the optimization problem. Recently, innovations [30, 31] were reported, which are carefully
formulated to preserve and refine the details across the projective rays on the object surface by
introducing various constraints, and achieve elaborate results on public dataset.

Our aim in this research is to accomplish 3D measurements from our high-throughput imaging
system. From the related work, we have taken inspiration to further develop the multi-view based
3D reconstruction and introduce new ideas for the calibration of the optical setup in microscopy.
Our point of departure is an existing opto-electronic configuration for high-throughput imaging
to accomplish a reconstruction of zebrafish larvae. As a consequence, in order to be able to
produce reconstructions from multi-view imaging, a calibration of the microscope imaging
system needs be performed. To that end, a solution for the calibration problem is proposed
using a revisited objective function in the optimization. This function is defined as the voxel
residual volume (VRV) maximization problem, which is a simplified formulation of the area
coherence [20]. In terms of implementation, VRV is more efficient compared to the silhouette
coherence [21]. In order to validate the proposed method, a large dataset of zebrafish larvae of
different developmental stages is produced. For each of the instances in this dataset, a multi-view
image set is acquired. From our method, 3D reconstructions are produced including the generation
of dense surface points and triangulated meshes [24]. From the volumetric reconstructions and
the meshes, volume and surface area can be computed. In addition, the method is applied to
calibrated spheres in order to obtain metrical references. With a statistical analysis of the dataset,
we have obtained a metrical reference for the most frequently used developmental stages of
zebrafish in high-throughput imaging. This analysis will provide a baseline evaluation for future
research in high-throughput imaging of zebrafish as well as a baseline for volume and surface
estimations in zebrafish development providing reference values for a range of other features.
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3. Materials and methods

In this section, we elaborate on the imaging system, the profile-based 3D reconstruction and
parameterizations that are required to realize the proposed method. Our starting point is images
that are acquired with the VAST BioImager. From these images, the profiles (silhouettes) need
be extracted. For the reconstruction, we need a sound camera model. In this section we will
introduce and optimize this camera model.

3.1. Imaging method

We first describe the imaging system and procedures. Fig. 1 shows the imaging architecture
based on the VAST BioImager as designed for zebrafish high-throughput imaging. One at a time,
the specimen is loaded into a dedicated capillary which is held by a pair of stepper motors. The
motors will control the capillary motion in full revolution so that any axial-view of the specimen
can be acquired by the VAST-camera; a standard color CCD camera (Allied Vision Systems,
Pro Silica GE 1050). Originally, the VAST-camera is used for visual detection of the location
and orientation of the specimen in the capillary so that the system will be able to manipulate the
position and perspective of the specimen and initialize the imaging. Due to the characteristics of
VAST BioImager, the imaging can produce the an overview image of the specimen; in fact, it can
do so very efficiently for a large amount of specimen. This is very suitable for our application of
3D reconstruction and measurements of the specimen. Therefore, we adopted the system to be
the basis of our 3D reconstructions. It should be noted that the VAST BioImager is mounted on a
microscope, of which the high resolution camera will be able to produce more detailed images
of the specimen. In combination with the VAST-camera, the further analysis of cellular-, organ-
and overview-level of the specimen will become possible.

3.2. Preprocessing and segmentation of the images

(B)(A) (C)

Fig. 3. Results of various segmentation methods for zebrafish in VAST. The blue bounding
box indicates an accurate part of the segmentation; red bounding box indicates an inaccurate
part of the segmentation. (A) The segmentation obtained by the mean shift algorithm. This
method produces a whole shape representation of the zebrafish but fails in sensitivity to the
edges. (B) The segmentation obtained by the improved level set method. This method fails
to detect the transparent regions as found in zebrafish tail area. (C) An accurate segmentation
is obtained from a hybrid approach including the previous two methods with additional
refinements.

In our method, we require the binary representations of the object segmented from the color
images acquired from the VAST BioImager. In order to obtain a good and solid reconstruction,
these binary representations should reflect the whole subject; in the case of transparent zebrafish,
we have to ensure that the translucent parts are also included in the shape representation.
We concluded that standard segmentation methods are not sufficient and therefore we have
implemented a hybrid method that incorporates the mean shift algorithm (MS) [23] and an
improved level-set method (ILS) [32]. From Fig. 3, one can observe that the the MS preserves
a whole shape representation for the object but fails in edge sensitivity for the original clear
boundaries. The ILS can obtain a more compact 2D shape but is hampered by the problem of
edge leakage. So, we combine the two segmentation methods followed by a refinement to obtain

                                                                           Vol. 8, No. 5 | 1 May 2017 | BIOMEDICAL OPTICS EXPRESS 2617 



Object center

Image center

∠𝜑

∠𝛼

∠𝛾

Y

X

Camera center

Focal length

Fig. 4. A visualization of the parameterization of 3D transformation from camera center to
object center. We assume that the object is positioned in the focal plane and a good quality
image is acquired, so the projection line from camera center to the object center is defined as
the focal length. The ∠α and ∠γ represent the 3D rotation angles of camera center around Y
and Z axis. The ∠ϕ is defined as the “translation" angle from the object center to the image
center. It models the 3D translations of camera center over Y and Z axis.

accurate segmentations of the object, i.e. the zebrafish. For the rest of the paper, the results from
this segmentation method will be the basis for the 3D reconstructions. The segmentation of a set
of axial views will be referred to as the profiles. At http://bio-imaging.liacs.nl/
galleries/VAST-3Dimg/ a link is provided with a further elaboration on this segmentation
method.

3.3. Camera model parameterization

Key to the profile-based 3D reconstruction is a feasible and sufficiently accurate parameterization
of the camera imaging system. For our particular application, the camera position is static
while the object rotates through the revolution of the capillary that holds the object, over a
given profile axis. In order to make parameter parameterization and visualization feasible, the
camera is represented as a range of fixed cameras around the object in a circular path as shown
in Fig. 2(D). Now, for each of these cameras, the pinhole imaging principle can be used to
interpret the imaging procedure. We start from a straightforward case of the camera model in
which case the camera center is defined as the world origin. Let X = (X,Y, Z, 1)T be a point
in 3D space and x = (x , y, 1)T be the corresponding point in a 2D image plane, represented in
homogeneous coordinates. Then, the mapping between the point and the corresponding image
can be geometrically represented as a proportional projection of x = ( f X )/Z and y = ( f Y )/Z ,
where f denotes the focal length of the camera lens. The scaling factors kx and ky , image center
(ux , uy )T and the skew factor s are, de facto, the intrinsic properties of the camera. Taking these
intrinsic properties into consideration, the matrix representation of the projection can then be
formulated as:

x̃ =

 f kx s ux

0 f ky uy

0 0 1


 1 0 0 0

0 1 0 0
0 0 1 0

 X, (1)

where x̃ = xZ . To simplify the formulation, an implicit transform of Eq. 1 is denoted as x̃ = PX,
where P = K (I | 0), and P is defined as the camera projection matrix and K is defined as the
intrinsic camera matrix. In practice, the more generic case for the camera model is to define the
object center as the world origin, which is more convenient for computation and parameterization.
The decomposed parameterization for the camera model allows convenient incorporation of the
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extrinsic camera parameters which are the 3D transformation of the camera center with respect
to the world center.

Suppose that for one object we have N views, the intrinsic camera matrix K is shared by all
the cameras, however, a corresponding 3D transformation for each individual view should be
formulated. This is illustrated in Fig. 2(C) and Fig. 4. For the ith camera, the 3D translation of
the camera center from the object center is parametrized as Ci = [0, f cos(ϕi ), f sin(ϕi )]T

following a general definition [21]. Now, let Ri = Ri ,XRi ,YRi ,Z be the total 3D rotation, the
revised formulation of the camera projection matrix is then represented by Pi = K Ri (I | Ci ).

The "translation" angle of ϕ and the rotation angle of γ around Z axis are specified by each of
the cameras. In this manner we intend solving the problem that the rotation axis is not exactly
parallel to the object center. In practice, with the VAST BioImager one can accurately align the
object, so these two angles can be shared by all N cameras. Finally, a camera parameter vector is
generated through the concatenation of all parameters.

ψ = ( f , kx , ky , ux , uy , s︸                 ︷︷                 ︸
intrinsic

, α, γ, ϕ, ω1:N−1︸             ︷︷             ︸
extrinsic

)T. (2)

Given a specific camera parameter vector ψ, a series of correlated camera configurations can
be generated, so that the multi-view 3D projections P can be modelled.

3.4. Profile-based zebrafish 3D reconstruction

We aim to recover the volumetric representation of the object from a range of 2D axial-view
images. The profile-based 3D reconstruction method shows to be suitable for shape preservation
in this application. Given a series of (object) profiles extracted from the axial-view images,
combined with the corresponding camera projection matrices, the 3D representation can be
generated by back-projecting the profiles to the 3D world frame so as to obtain the intersections.

Let the 3D point X j ∈ X ( j ∈ [1, M]) be the index of the j th voxel candidate center included
by a collection of voxels, where M is the total number of the voxels; if the collection of voxels is
spatially constrained, then M will determine the 3D volumetric resolution. The larger the M is,
the higher the resolution will be. Next, one can find the corresponding pixel of the j th voxel in
the ith image plane by x j

i
= PiX j . According to the space-carving theorem, if the voxel X j is

visible to the view of ith camera, its corresponding image should be covered by the ith profile Si .
In mathematical terms this can be formulated as:

Xi = {X | Si (x
j

i
) , 0, x j

i
= PiX j ,X j ∈ X}, (3)

where Xi denotes the volumetric representation for the object generated from the ith camera.
When involving all the views, we can locate the pixel location in each image plane for each voxel.
In general, only the voxels which are visible to all of the N profiles are preserved. Thus,

X∗ = ∩
i=1, ... ,N

Xi (4)

where X∗ denotes the optimal 3D volumetric representation of the object. Eq. 4 can be efficiently
implemented by iteratively discarding the invisible voxels from the original voxel collection.
However, taking the eventual imperfection in the profiles segmentation into consideration, some
voxels which should be included in the 3D object are excluded during this space carving operation.
Instead, we assign a score to each of the voxels indicating its visibility. This score is formalized
as

V j =

N∑
i=1

1
[
Si (x

j

i
) , 0

]
(5)
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(B)

(A)

Fig. 5. Illustration of the importance of camera system calibration. 3D reconstructions of one
zebrafish, without (A) and with (B) camera calibration, are depicted. In the first row of (A)
and (B) from three different viewpoints are shown. The overlap between the projected image
from the 3D models and the original image are shown in red in the second row of (A) and
(B). (A) Using an uncalibrated camera configurations results in poor 3D reconstruction and
thus a relatively small overlap. (B) Using a calibrated camera system generates an accurate
and natural 3D shape. It can be appreciated that projecting the 3D shape to the original axial
view results in an almost perfect overlap with respect to the original object.

where 1[·] denotes an indicator function which takes the value of 1 if the image of the j th voxel
lies in the ith profile and 0 otherwise. The score function assigns a value between 0 and N for
each individual voxel. If, in addition, a constrained error tolerance rate ε is defined, the problem
of imperfection in the profile segmentation can be more or less solved by thresholding the mem-
bership function of a voxel. The 3D reconstruction model of Eq. 4 is, therefore, reparameterized
accordingly as:

X∗ = {X | V j > (1 − ε )N,X j ∈ X}, ε ∈ [0, 1). (6)

For our particular application in zebrafish imaging, we have empirically established that the
parameter ε takes the value of 0.05, meaning the voxels visible to 95% of the profiles will
contribute to the 3D reconstruction. With the reconstructed 3D volumetric representation, an
initial 3D surface model can be obtained by the marching cubes algorithm; this surface model is
represented as dense surface points and triangulated meshes, which can be further optimized [24].

3.5. Camera system optimization

From the previous sections it becomes clear that the camera projection matrix, i.e. the camera
configuration, plays an important role in the profile-based 3D reconstruction. A good estimation
of the camera configuration will ensure accuracy in the 3D projective geometry. If a set of
specific camera parameters as denoted in Eq. 2 are given, the camera projection matrix P can
be correspondingly computed. The camera parameters, more specifically, the extrinsic camera
properties, are usually unknown or not sufficiently accurate; e.g. through a drift of the image
center from the object center. Therefore, an automated camera configuration estimation, i.e. a
camera calibration, should be performed. The importance of a camera calibration is demonstrated
in Fig. 5 by the results of applying the method to 3D reconstruction of zebrafish shapes. Standard
camera calibration methods [28, 29] for our imaging environment are not available for the small
scales of microscope imaging, i.e. the VAST-camera. Therefore we have proposed [3] a method
similar to ideas on texture registration and stitching [20]. We define the area coherence as the area
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of overlap between the image projected from the 3D reconstructed model and the groundtruth
profile. Accordingly, we can define an energy function as:

f (ψ) =
1
N

N∑
i=1

C(Si , Pi (ψ)X), (7)

where the camera matrix is reparameterized as Pi (ψ) meaning that P is a function of ψ. By
evaluating the camera configuration space, the optimal suggestion of ψ can be obtained by
maximizing Eq. 7

ψ∗ = arg
ψ∈¯

max f (ψ). (8)

Visualizations corresponding with this approach are depicted in the lower rows of Fig. 5(A)
and (B). We argue, however, that the expression of Eq. 7 is equivalent to the, so called, voxel
residual volume (VRV) which is defined as

f (ψ) = |X∗ (ψ) |. (9)

Equation 9 denotes the total number of the voxel candidates of the 3D volumetric representa-
tion. Similarly, the reparameterization of X∗ (ψ) indicates the functional relation between X∗ and
ψ. In principle, keeping the maximal total area of overlap between the projected images and the
groundtruth profiles is actually equivalent with keeping the maximal VRV of the reconstructed
object. The VRV is, however, computationally less complex while the same performance can be
obtained. This is because the computation of the area coherence are unnecessary. For such an
unconstrained optimization problem, multiple optimizers are available, for example, the Nelder-
Mead simplex [25] and the Evolution Strategy [26,27]. One should be aware that, although small,
there always exists the risk of a local minimum of the optimizers which may lead to an inaccurate
camera configuration estimation. However, feasible initializations are possible so as to provide
accelerations and improvements to the optimization. The intrinsic camera parameters including
the focal length and the scaling factors are provided by the camera and lens specifications.
The extrinsic parameters including the 3D rotations and translations can be assigned through
reasonable estimations; e.g. the parameter of ωi is initialized as ωi = (i − 1) ∗ 2π/N . With these
sensible initializations, more efficient and accurate camera configurations become possible.

4. Experimental results

In this section we explore the method through validation experiments. These experiments are
performed on calibration particles as well as on zebrafish larvae. This will result in numerical
and statistical validity of the method so that it can be successfully applied in further research.

4.1. Sampling of axial-views and volume for the experiments

With respect to the sampling, the physical limitations imposed by the hardware and the imaging
scale are confined. There are two sampling modes that co-operate in the reconstruction process.
The production of axial-view images is depending on the properties of the hardware, which is
referred to as the Axial-view Sampling Density (ASD) and determined by the step size of the
stepper motors that operate the capillary. For the experiments we will use a range of steps in
order to find a good operational ASD from sparse to dense. For the physical reconstruction, a
volumetric representation is required. From the hardware and the spatial constraints of specimens,
a confined volume of 5000 × 1000 × 1000 µm3 (width × height × depth) is determined. The
sampling involves the variation of the size of the isotropic elements (voxels) in this volume,
which can be inferred as the total number of the elements. The smallest sampling size will
be equal to the sampling elements on the CCD sensor in which case the number of sampling
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(A) (B) (C)

Particle #1

Particle #2

Particle #3

Fig. 6. Illustration of example images of 3 calibration particles and their 3D reconstruction.
Each row indicates one calibration particle example. (A) Original RGB images. (B) Extracted
profiles. (C) Reconstructed 3D models by an ASD=7 (left column) and an ASD=21 (right
column). Although the ASD=7 already produces acceptable 3D shapes for the calibration
particles, while some carving artifacts are still visible. A better result is shown for the 3D
models reconstructed with an ASD=21.

elements is 30 × 106; this represents the largest number of sampling elements. The smallest
number of elements is 1 × 106 which gives rise to a considerably different performance. The
given sampling volume is used in all experiments described in this paper.

4.2. Validation of the proposed method

In order to validate the accuracy of the proposed method, particles, i.e. beads, with a known
size distribution are used (GP 500 µm Control Particles, High Fluorescence, lot 110701, Union
Biometrica). The particles are used to calibrate the VAST BioImager system. Some typical
examples are depicted in Fig. 6(A), from which we can observe some variation in the diameter
of the particles. We assume that this variation in size is according to a Gaussian distribution as
given by the manufacturer, i.e. N (500, 25) measured in µm. We have acquired image sets from
the VAST BioImager for 25 calibration particles. Subsequently, the proposed 3D reconstruction
method is applied to these image sets.

If the size measured from the reconstructions corresponds with the distribution of the size of
the original calibration particles, it means that the proposed method can accurately recover the
3D object in terms of size and shape. To measure the diameter of the reconstructed calibration
particles, a 3D sphere is estimated to fit the dense surface points by minimizing a least squares
function. The result of the profile-based 3D reconstruction method can be affected by the Axial-
view Sampling Density (ASD) and the voxel size (sampling density). As far as the ASD is
concerned, more views may result in a more accurate and natural shape, similarly a higher
sampling density of the voxels may result in a more accurate representation of the shape.
Therefore, the experiments are designed to verify the accuracy according to these two parameters
as well as establishing the correctness of the measurement itself by comparing to analytical
representations or empirical observations. The results are presented in Table 1 - 3; here the
sampling density is denoted as SD given the size of the isotropic sampling element (in µm). For
all tables the horizontal direction, from left to right, indicates an increasing sampling density from
17.10 µm per voxel to 5.85 µm per voxel. The vertical direction indicates an increase of the ASD
from 4 to 84 views. We have configured our imaging system to take 84 images, corresponding
with a step-size of 4.3◦ per axial-view, in a full revolution of the shape. Initial experiments
have shown that a strategy of even axial-view sampling in a full revolution accomplishes the
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most stable performance. By resampling of the 84 views of 4.3◦, a range of different ASD’s is
obtained for the experiments.

Evaluations for diameter of the calibration particles We interpret the measurements of the
diameter in terms of the mean and standard deviation over the 25 calibration particles and present
the results in Table 1. The results show that from the proposed method accurate estimations are
obtained which are in range of the distribution (500 ± 25 µm) provided by the manufacturer.
The results vary with different ASD and SD. More specifically, an increase in the sampling
density results in an increase of the estimated diameter which asymptotically stabilizes at the
higher sampling densities. A high sampling density generates a smoother 3D surface, while for
lower resolutions the volumetric representation tends to be a little bit expanded. An increase
of the ASD results in an decrease of the estimated diameter while for higher ASD it stabilizes.
Using more views to reconstruct the 3D shapes causes less voxels to be preserved and the 3D
shapes seem to be more compact compared to the ones reconstructed by smaller ASD. We tested
whether our measurements were sufficiently accurate. In Table 1, in each second row, the T-test
scores are given per ASD. We state in the null hypothesis that the measured diameter from the 3D
reconstructed models equals to the values (mean, sigma) given by the manufacturer, i.e. 500 µm.
For a significance level of 0.01 (two-sided T-test), a value of 2.787 is given from the table of
selected values. From Table 1 one can appreciate that most T-test scores are smaller than the
selected value; this means that our measurements for the diameter of the calibration particles
from the 3D reconstructions are accurate. Especially, the values from the ASD of 21 combined
an SD of 6.93 or smaller come out very well.

Evaluations for volume and surface area of the calibration particles The calibration parti-
cles have been provided with an indication of the size distribution, i.e. given diameter. However,
the real distributions of the volume and surface area are unknown. In Table 2 and 3 the volume
and surface area of the calibration particles are presented as computed from the reconstructed
shapes in a range of parameters for ASD and SD. Volumes are computed directly from the
voxels in the shape, i.e. integrating over the residual voxels after reconstruction. For each object
a surface model is composed from a dense surface point cloud and a mesh triangulation from
these points. The surface area can be obtained by integrating over the facets of the meshes using
Heron’s formula [24] A = (s(s − a)(s − b)(s − c))(1/2) , where s = (a + b + c)/2 and a, b, c
represent the edge-length of a triangle. We assume that the shape of the calibration particles is
a standard sphere, consequently the diameters from Table 1 are used to obtain the analytical
computation of the volume and surface area by V = (4/3) ∗ π (d/2)3 and S = 4π (d/2)2 for each
set of parameters. For each ASD, the values measured from the reconstructions are listed in each
first row of Table 2 and 3, indicated with M. The second row for each ASD in Table 2 and 3 lists
the analytical computations, indicated with an A. The trends in Table 2 (Volume) and 3 (Surface
area) are similar to those observed in Table 1. While the ASD increases, the reconstructed shapes
are smoother and less voxels are preserved. Moreover, the variation in the results decreases at
higher SD with voxels smaller than than 6.93 µm.

Taking the reconstruction effects shown in Fig. 6(C) into account, it can be appreciated that a
ASD of 21 is a reasonable choice to generate a smooth and natural shape with very few carving
artifacts. Moreover, one can observe very small differences between the measured and analytical
values for an ASD of 21 as of the SD of 6.93; i.e. the shape of the calibration particle is well
preserved and reconstructed with such set of parameters. In comparison, a larger value of ASD
requires more camera projections and the 3D reconstruction is therefore computationally more
expensive; a sampling density smaller than 6.93 µm requires more memory and computation to
ensure the precision. So, the results in this experiment indicate that the proposed method can
obtain accurate 3D reconstructions measured in size, volume and surface area; the ASD of 21
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and SD of 6.93 µm are empirically selected as the configurations for the further experiments.

4.3. Evaluations of performance on application with zebrafish larvae

In order to obtain 3D reconstructions and evaluate the performance of the proposed method as
applied to zebrafish specimens, we first assemble a large number of image sets of zebrafish larvae
with the help of the axial-view imaging architecture presented in section 3.1 and put the images
in a dataset. We have chosen the most frequently used larval stages (for VAST BioImager) to
be represented in the dataset; meaning 3 groups, i.e. 3, 4 and 5 days post fertilization (dpf),
containing 12, 24 and 24 instances, respectively. Although the VAST BioImager is suitable
for live imaging, for this experiment, we have used fixed samples of one and the same strain,
i.e. ABxTL wild type. All samples were fixed in 4% PFA/PBS (PFA: paraformaldehyde; PBS:
Phosphate-Buffered saline). For the imaging, the samples were kept in a solution of PBS
with 0.3% Tween-80. For each specimen, the same imaging setup of the VAST BioImager is
consistently used (cf. calibration experiment configuration). Specifically, in one full revolution,
84 views are captured with equal step size. Other ASDs, e.g. 42, 21 etc., are evenly sampled
from the these 84 views. In the acquisition, the rotation steps between any two contiguous views
are considered to be equal. However, due to the drift on the electro-mechanical parts of the VAST
imager, we have to take into account that there can be a variation in the step size. If present, this
variation can seriously affect the 3D reconstruction of the zebrafish specimens and therefore a
calibration of the camera system is, therefore, very necessary.

In Table 4 and 5, we list the volume and surface area for the three groups of larval stages. For
these tables the horizontal direction indicates an increase in ASD. In order to get a better idea
of the the data, we visualized Table 4 and 5 in Fig. 7 and 8, in which the voxel residual volume
(VRV) and the surface area are plotted as a function of the ASD, respectively. For all three groups
the trend is similar, as the ASD increases the VRV decreases. This can be explained from the
methodology as only voxels which are visible to most of the views are preserved. Consequently,
less voxels will be preserved when more views are employed. The decrease of VRV rapidly
changes in an asymptotic fashion of VRV for an ASD larger than 7. The asymptote indicates
that we do not need an abundance of sampling views, an ASD of 42 or 84 does not result in
a much better reconstruction and therefore these are unnecessary for the reconstruction of the
zebrafish larvae in our application. The VRV changes with the growth of the zebrafish for the
different larval stages; i.e. as the zebrafish grow, the VRV increases. Similar trends can also
be found in Fig. 8 which depicts the asymptotics of surface area for the 3D zebrafish models.
External conditions influence growth as it also depends on the feeding policy. At some point in
development the larvae have used all their yolk and are thereafter depending on nutrients in the
medium. So, if the amount of nutrients is low, a delayed growth will occur. From Fig. 7 it can be
concluded that an ASD of 7 is already a good option for this application. However, integrating the
results from all experiments, shows that an ASD of 21 achieves the best performance measured in
terms of size, volume and area. In order to appreciate this, the reconstructed results are visualized
for an identical zebrafish specimen in Fig. 9. For a ASD of 4 or 7, the 3D models exhibit lots
of artificialities. The space carving effects generate some flat regions on the surface. However,
with a higher ASD value, such as 12 or 14, the 3D reconstruction results improve; the surface
of the shape is still rough though. As of an ASD of 21 or larger, one can appreciate that results
are more or less similar; the 3D shapes all appear smooth and natural. The visualization quality
does not improve much for an ASD larger than 21, while a large ASD is computationally much
more expensive. The empirical ASD of 21 is therefore a motivated tradeoff over a range of
considerations regarding the 3D reconstruction of zebrafish larvae and the measurement thereof.

A number of typical examples of models from 3D reconstructed zebrafish larvae are shown
in Fig. 9. For each zebrafish developmental stage in our experiment two individuals have been
selected; the 3D shapes are visualized with and without texture mapping. The texture mappings
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are just serving visualization purposes, where texture is used to add some realism to the view.
The specimens, in this stage, are still partially transparent, therefore, some artificial mapping
was applied to obtain a realistic visualization. For measurement the binary volume models are
used (depicted in green).

4.4. 3D measurements on zebrafish larvae

From the aforementioned experiments we can conclude that an accurate reconstruction can be
obtained from our method and from the 3D reconstruction accurate measurements can be made.
In order to assess the shape and size in a high-throughput setup we use the database of our
samples to find the distributions per larval stage. From our empirically established parameters we
reconstruct our images to 3D models using a ASD of 21 and a voxel sampling density of 6.93 µm.
On these models, the computations are performed, the volume and surface area expressed in
µm3 and µm2 respectively. Over the measurements per group, the mean and standard derivation
are calculated and a Gaussian distribution is applied to model the data. In order to compare the 3
groups of larval stages the density distributions are normalized. The distribution of the volume
is shown in Fig. 11. The trend as seen in Fig 7 is reflected in the results in that the volume of
5 dpf zebrafish is the largest, and that of 3 dpf zebrafish is the smallest. The volume is more
discriminative for the 3 dpf and 5 dpf zebrafish. The 3 dpf and 4 dpf zebrafish appear to be very
similar in volume, which can be seen from the large overlap of the two distributions. Indeed,
these larval stages are very similar in shape and appearance and this is also illustrated in Fig. 10.
The distribution of surface area is shown in Fig. 12 and can be interpreted in similar fashion
to the volume measurement. A plot for the the joint distribution of volume and surface area is
shown in Fig. 13. Although the distributions of 4 and 5 dpf zebrafish are close to each other we
can clearly separate the 3 centres. This experiment provides significant quantitative information
on zebrafish larvae because from the distributions, given the larval stage, the regularity of the
shape can be directly assessed. The distributions provide an absolute reference baseline of
volume and surface area for zebrafish in 3 larval stages. This is very important for applications
in toxicology and drug targeting in which quantities of specific substances need to be related to
volume and shape and phenotypical information on dose and effect. These need to be derived
from measurements on the specimen. Moreover, as the readout of effects of substances is often
measured with fluorescent probes, a relation to volume is even more important. In addition to
these basic measurements other 3D features can be considered, e.g. moments, wavelets, shape
descriptors, etc. This will further strengthen the phenotypical description and assessment of
zebrafish larvae in high-throughput imaging applications.

In order to make sure that we could measure the specific characteristics of the given larval
stages, we used fixed specimens. In a control experiment we have used living larvae staged by
specialists and imaged with the VAST BioImager under exactly the same conditions. We used 7
examples from 4 dpf and 8 examples from 5 dpf. The results of the measurements are shown
in Table 6. From these results one can appreciate that they are all within the range of the fixed
specimens.

So, we validated our methodology for the 3D reconstruction and measurements and at the
same time showed the importance of the baseline measurements for the 3 larval stages; the major
stages in compound screens with zebrafish. The reference values for volume and surface area
as well as their distributions for the different larval stages can be directly used in experiments.
Consequently, for phenotype analysis an assessment for relative size and shape can be made.
Moreover, features that are frequently used for phenotyping zebrafish and thereby evaluating
anomalies can be related to size and shape to better assess the effect under study.
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Fig. 7. Voxel residual volume of zebrafish larval stages against ASD. The descending trends
of the voxel residual volume are clearly demonstrated in the graph for all 3 groups of
zebrafish larvae at increasing ASD. However, after an ASD of 7 the decrease tends to be
assymptotic, especially after an ASD of 21. This means that dense axial-view sampling
(like 42, 84, etc.) for our 3D zebrafish reconstruction and measurements is unnecessary. The
consistent differences of the volume for the three larval stages can be observed.

Axial-view sampling density (ASD)

4 7 12 14 21 28 42 84

S
u

rf
a
c
e
 a

re
a

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00
×10

6
µm

2

3 dpf zebrafish

4 dpf zebrafish

5 dpf zebrafish

Fig. 8. Surface area of zebrafish larval stages against ASD. The trend in surface area is
similar to that of the volume as depicted in Fig. 7. The surface area is computed from a mesh,
to suppress noise a mesh smoothing, i.e. implicit fairing, with 10 iterations was applied to
all meshes [33].

5. Conclusions and future work

An automated system is presented in which images of zebrafish larvae are acquired and used
to reconstruct to 3D models so that 3D measurements can be applied on the whole specimen.
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4 axial-views 7 axial-views

12 axial-views 14 axial-views

21 axial-views 28 axial-views

42 axial-views 84 axial-views

Fig. 9. Visualizations of 3D reconstructions for a range of different ASD using the same
zebrafish larva instance. The use of an ASD=4 (A) and an ASD=7 (B) results in the 3D
reconstructions presenting lots of sharp and flat surface elements which are generated by
the carving effects of profile-based 3D reconstruction method. The use of an ASD=12 (C)
and an ASD=14 (D) results in an improvement of the 3D models, but some carving artifacts
remain. Using an ASD=21(E) to an ASD=84 (H) results in accurate and natural-shaped
3D models. For our particular problem domain, this suggests that both sparse and dense
axial-view sampling are not the optimal configuration for zebrafish larva 3D reconstruction.
Sparse axial-view sampling produces poor 3D models while dense axial-views sampling
requires more computation time whilst the effects do not improve accordingly.

The system integrates the axial-view imaging, segmentation, camera system optimization and
a profile-based 3D reconstruction method. The 3D measurements of volume and surface area,
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Fig. 10. Visualization of 3D models of 3 zebrafish larval stages (3 dpf, 4 dpf and 5 dpf).
Each box represents a reconstructed 3D model for one specific zebrafish larvae visualized
from three different viewpoints. The 3D volumetric representations are shown in green on
the left side in each box. The models with texture-mapping are in the right side of each box.
(A) 3D models of two selected 3 dpf zebrafish larvae. (B) 3D models of two selected 4 dpf
zebrafish larvae. (C) 3D models of two selected 5 dpf zebrafish larvae. Variation in size
and shape between stages and within stages (interclass and intraclass) can be appreciated
from the visualizations. A remarkable intraclass discrimination originates from the size
and color of the yolk. In addition, animations of the 3D zebrafish models are available at:
http://bio-imaging.liacs.nl/galleries/VAST-3Dimg/.

as well as the 3D visualization become available through the proposed method on zebrafish
larvae using high-throughput imaging. From the research presented in this paper, the important
conclusions are that (1) accurate 3D measurements for the zebrafish larvae can be made in
high-throughput; (2) as of now a metrical reference of shape descriptors for 3 important larval
stages is produced and (3) the methodology for these measurements is validated. The results are
directly applicable for a range of different in vivo applications, such as toxicology, drug targeting
and infection studies. Further research will be directed to 3D shape alignment so that an even
better match between different zebrafish instances can be given. Subsequently, other 3D features
will be explored to accomplish elaborate classification of subtle differences between different
treatment groups of zebrafish in experiments. The VAST-camera provides good overview images
which have been employed for this study. The same methodology can be applied with the
microscope camera. The higher numerical aperture and the magnification of the lenses in the
microscope will then provide 3D details of the specimen in similar fashion. The tradeoff of
using a confocal or wide field approach for such applications needs to be assessed from future
results. Alternative to the axial-reconstruction with the VAST BioImager, Optical Projection
Tomography (OPT) imaging can be probed. This imaging approach has been successfully applied
in zebrafish research [34] and, recently, successful high-throughput applications in zebrafish
have been reported [35].

As indicated, the measurements and their distributions provide reference values for volume
and surface area (size and shape). This supports the assessment of other observations as we now
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Fig. 11. Distribution of volume of zebrafish larval stages (3 - 5 dpf). X axis: volume; Y axis:
normalized probability density. The color-filled triangles on the Volume-axis indicate the
locations of the mean for each of the 3 distributions. The numerical values of the mean and
standard deviation are indicated with corresponding double-sided colored arrows. One can
see that the volume of older zebrafish larvae is always larger than the younger ones. The
growth rate increases more from 4 dpf to 5 dpf compared to that from 3 dpf to 4 dpf.
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Fig. 12. Distribution of surface area of zebrafish larval stages (3 - 5 dpf). X axis: surface
area; Y axis: normalized probability density.

can relate the effect of a change in size to a norm. In like manner, the VAST system can be used
to provide distributions of other morphometrical landmarks in zebrafish development; to this
end the microscope can be used to acquire axial-views at higher resolution and, in that manner,
provide 3D features. These features can be combined with volume/surface area features to enable
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Fig. 13. Joint distribution of volume and surface area of zebrafish larval stages (3 - 5 dpf).
X axis: volume; Y axis: surface area. The 3 joint distributions have overlap with respect to
each other, especially for the 4 dpf zebrafish larvae. Nevertheless, individual distribution
centers can still be separated. The color schema is similar to that of Fig. 11 and Fig. 12

relative comparisons between experiments. Such analysis will further enhance our understanding
of phenotypes in zebrafish and their exposure to experimental conditions which is a necessity for
high-throughput analysis.
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