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Abstract: We demonstrate a simple method to measure optomechanically induced transparency
(OMIT) in a Fabry-Perot based system using a trampoline resonator. In OMIT, the transmitted
intensity of a weak probe beam in the presence of a strong control beam is modified via the
optomechanical interaction, leading to an ultra-narrow optical resonance. To retrieve both the
magnitude and the phase of the probe beam, a homodyne detection technique is typically used.
We have greatly simplified this method by using a single acousto-optical modulator to create a
control and two probe beams. The beat signal between the transmitted control and probe beams
shows directly the typical OMIT characteristics. This method therefore demonstrates an elegant
solution when a homodyne field is needed but experimentally not accessible.
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1. Introduction

Cavity optomechanics has attracted much attention recently, see Ref. [1] for an overview. This
attention is partly due to the prospect of performing experiments involving non-classical states
of a macroscopically sized object. Such experiments typically overcome the thermal mechanical
motion by preparing the system in the quantum mechanical ground state. For applications such
as light storage [2], optical wavelength conversion [3] and delay lines [4], ground state cooling is
not a strict requirement. For example, an optomechanical delay line can be constructed around
the effect of optomechanically induced transparency or OMIT, the optomechanical equivalent to
electromagnetically induced transparency (EIT) [5, 6] in atomic systems. This effect is achieved
by driving the system with two tones, a control and probe beam, and has been demonstrated
by several groups [7–11], showing that OMIT has become a powerful tool to characterize
optomechanical systems. Consequently, different measurement schemes have been used to
perform these measurements. Here we demonstrate a straightforward, easy to implement method
to perform OMIT, together with a detailed model to analyze the data. Our method is not restricted
to a particular optomechanical system, nor does it require to be in the side-band resolved regime.

Using a membrane-in-the-middle set-up, Karuza et al. have shown how the transmitted control
beam can be used as a phase reference to perform a modified heterodyne detection technique [9].
Here we expand on this idea by measuring the beat signal from the control and probe beam, but
instead of using multiple acoustic-optical modulators (AOMs), we use a single AOM to create a
control and two probe beams via double side-band generation. Although a similar experiment has
been performed using a single electro-optical modulator (EOM) [11], we provide significantly
more theoretical and experimental details. For example, the presence of two probes instead of
one requires modification of the OMIT theory as we will show below.

This method is especially advantageous with low mechanical frequency systems. The typical
frequency difference between pump and probe beam is between 100 kHz and 1 MHz for such
systems. The OMIT feature itself however, is of the order of the mechanical linewidth [12].
Therefore the laser frequencies involved, need to be set with high precision. This can best be
accomplished using a lock-in amplifier. The reference frequency output of the lock-in amplifier
modulates the RF drive to the AOM to generate the pump and two probes, while the transmitted
intensity is recorded with the same lock-in amplifier. In this way the change in probe detuning
can not only be monitored with sub-Hz precision, but the common path of both control and probe
beams greatly increases the stability of the experiment.

First, we briefly describe the OMIT theory and show the modifications needed for the two probe
measurements. After the experimental details, we show how the typical OMIT features, namely
an ultra-narrow optical resonance, are recorded by independently controlling both control and
probe beam, something which was not possible in the work of Karuza et al. Finally, the results are
compared with theory. We find a good agreement and are able to reduce the transmitted intensity
of the probe beam by more than 4 orders of magnitude, resulting in a final optomechanical
cooperativity of 144±5.

2. Theory

A detailed theory for OMIT can be found in the work by Agarwal et al. [12]. A short summary is
given by Aspelmeyer et al. [1] of which we will repeat the key points.

The principle of OMIT is the following: a strong control beam is placed on the lower side-band
at a laser detuning of ∆ = −Ωm , where Ωm is the frequency of the mechanical resonator. A
second, weak, probe beam is placed at the cavity resonance, such that the mechanical resonator
is driven by the two photon interaction with both probe and control beam. This is schematically
depicted in Fig. 1(a). The strongly driven mechanical resonator modulates the control beam and
creates Stokes and anti-Stokes side-bands, indicated in blue in Fig. 1(a). The interference between
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Fig. 1. Schematic overview of the placement and relative location for the control and probe
beam. ∆ indicates the detuning of the control beam with respect to the cavity resonance, and
Ω is the probe detuning with respect to the control beam (a) The case with only a single
probe. The two blue lines indicate the Stokes and anti-Stokes side-bands generated via the
optomechanical interaction. (b) The case presented in this work, where two probes are used.

side-band and probe beam reduces the amplitude and changes the phase of the transmitted probe
beam. The dispersive behavior of the transmitted probe beam results in a change in group velocity
and can be viewed as a delay of the propagating beam.

For a Fabry-Perot based system, the field of a single transmitted probe in the presence of a
strong control beam is given by the following expression:

tp = ηκ
χaa (Ω)

1 + g2 χmech (Ω) χaa (Ω)
(1)

with the following parameters: η =
κex
κ is the coupling efficiency, κ is the cavity linewidth, κex

is the input coupling rate, Γm is the mechanical linewidth, g is the optomechanical multi-photon
coupling rate, χaa (Ω) is the optical susceptibility defined as χ−1

aa (Ω) = −i(Ω + ∆) + κ/2 and
χmech (Ω) is the mechanical susceptibility defined as χ−1

mech
(Ω) = −i(Ω−Ωm )+Γm/2. We have

introduced the detuning of the control beam as ∆ = ωcontrol − ωcavity and the detuning of the
probe beam as Ω = ωprobe −ωcontrol . Note that compared to some previous work [4,7], we use
a Fabry-Perot based system. When measuring the transmitted probe, instead of a transparency
window a dark window will appear. Effectively the transmission and reflection signals are
exchanged when comparing a Fabry-Perot system with a waveguide coupled cavity. We will
however still refer to an OMIT feature to be consistent with existing literature.

In our experiment the transmitted intensity of two probes spaced symmetrically around the
control beam is measured, see Fig. 1(b). In the side-band resolved regime, where κ � Ωm , probe
1 can be ignored. The experiment presented here operates in the regime where κ ≈ Ωm , so a
portion of probe 1 is still transmitted and the presence of this probe beam cannot be ignored. To
accurately describe the experiment, Eq. (1) is modified in the following way (see appendix):

tp = ηκ
2χaa (Ω)

[
−i + χaa (Ω)Ω

]
−i + 2χaa (Ω)Ω

[
1 + g2 χmech (Ω) χaa (Ω)

] . (2)

The transmitted intensity is obtained via
∣∣∣tp ∣∣∣2.

The transmitted intensity for both the single probe (blue) and two probes (red) are shown
in Fig. 2, for ∆ = −Ωm and Ωm = 1.6 κ while varying the probe detuning Ω. The presence
of the two probes modifies the OMIT feature slightly, but this effect becomes smaller when
the ratio Ωm/κ increases. Note that the typical OMIT dip is still nicely visible when using two
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Fig. 2. (a) Comparison of OMIT feature for one transmitted probe (blue) and two transmitted
probes (red) with Ωm = 1.6 κ. The control beam is placed at ∆ = −Ωm and the probe
detuning Ω is varied. (b) Close-up of the OMIT feature.

probes. This is important because from this dip both the total effective damping rate Γeff and the
multi-photon cooperativity C = 4g2/κΓm can be extracted. A convenient way to do this, is to
measure the transmitted intensity on resonance, i.e. with ∆ = −Ωm and Ω = Ωm , which is given
by ∣∣∣tp ∣∣∣2 =

(
2η

1 + C

)2 ∣∣∣∣∣1 +
1 + 2C

1 + i 4(1 + C) Ωm/κ

∣∣∣∣∣2 . (3)

In the sideband resolved limit, κ � Ωm , this reduces to the familiar expression [4, 7]:

∣∣∣tp ∣∣∣2 =

(
2η

1 + C

)2

. (4)

Finally, not only the magnitude of the transmitted probe but also the phase of the probe changes
when varying the probe detuning. The dispersive behavior of the transmitted probe beam leads
to a group delay. The argument of Eq. (2) gives the phase of the probe and the group delay is
obtained by taking the derivative of the phase:

τg =
dφ
dΩ

(5)

For ∆ = −Ωm , Ω = Ωm and assuming κ � Γm the group delay is given by

τg = −
2
Γm

( C
C + 1

) (
1 +

1
1 + 16 (1 + C)2 Ω2

m/κ2

)
. (6)

which in the limit for C � 1 results in τg = − 2
Γm

. Both the magnitude and the phase of the
OMIT feature can therefore be used to derive the system parameter C.

3. Experimental details

Our optomechanical system consist of a 5 cm long Fabry-Perot cavity with a trampoline resonator
as one of the end mirrors. As mentioned before we use a single AOM to generate a control and
two probe beams. To eliminate cavity or laser drift we use the scheme outlined in Eerkens et
al. [13]. One laser (Laser 1 in Fig. 3) is locked to the cavity resonance via the Pound-Drever-Hall
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Fig. 3. Experimental set-up. This is a modified version of the set-up presented by Eerkens
et al. [13]. The additional components needed to measure OMIT are highlighted with the
dashed blue line. The RF drive signal to the AOM is modulated at the reference frequency of
the lock-in amplifier to create a control and two probe beams. The transmitted intensity of the
control and probe beams is analyzed using the lock-in amplifier. The components displayed
are: LO: local oscillator, BS: beam splitter, PBS: polarizing beam splitter, EOM: electro-
optical modulator, OI: optical isolator and PI: proportional-integral feedback controller

(PDH) technique [14]. This laser serves purely as a reference and is not used to read out the
motion of the resonator. A second laser (Laser 2 in Fig. 3) is, with a variable frequency offset,
locked to the first laser one free spectral range away using an optical phase locked loop. From
this second laser the control and probe beams are derived. An overview of the experimental
set-up is presented in Fig. 3. To be able to measure OMIT, our existing set-up is expanded to
include an AOM and lock-in amplifier. These components are highlighted with the blue dashed
line. The lock-in amplifier is used to modulate the RF drive to the AOM, generating two probes
via double sideband generation. By adjusting the modulation frequency, the detuning of the
probe beams is set. The power of the control beam is adjusted by changing the magnitude of the
RF drive to the AOM, while the power of the probe beams is adjusted by changing the amplitude
of the modulation. Typically only a few µW of optical power is used for the probe beams, while
the power of the control beam can be varied separately. The transmitted intensity is recorded
using a photodetector and analyzed using the same lock-in amplifier to obtain both phase and
amplitude of the transmitted probes.

The measurements are performed using a nested trampoline resonator [15]. The optical
and mechanical properties of the system are characterized separately. Via an optical cooling
experiment (see Ref. [13]) the optical linewidth is determined to be 185±4 kHz. Based on
the reflected and transmitted intensity, the coupling efficiency η is estimated to be 0.3. The
mechanical resonator is characterized by measuring its mechanical thermal noise spectrum with a
side-of-fringe lock to a low finesse cavity. An intrinsic mechanical linewidth of Γm = 30±0.1 Hz
and a mechanical frequency of 291.8 kHz was obtained. The mode-mass of the resonator is, via
COMSOL, estimated to be 180 ng. Although these parameters are relatively modest compared
to our previous work (see Ref. [15]), they suffice for demonstrating optomechanically induced
transparency.
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Fig. 4. Demonstration of optomechanical induced transparency. The probe detuning Ω is
varied for different values of the pump detuning ∆.

4. Results

To demonstrate optomechanically induced transparency, the probe intensity and phase are
recorded while the probe detuning Ω is varied. In Fig. 4 the results are shown for five different
pump detunings ∆. Regardless of the pump detuning, a significant dip in probe intensity always
occurs for a probe detuning Ω = Ωm . This is a key feature of OMIT. Experiment and theory
are in good agreement, as evidenced by the fitted red line using Eq. (2). For the fit three free
parameters are used: pump detuning ∆, optical linewidth κ and pump laser power. The value
for the optical linewidth, 193±4 kHz, is in agreement with the separate characterization of the
set-up.

To investigate the OMIT feature in more detail, the control beam is set at ∆ = −Ωm and the
probe detuning is varied around Ω ≈ Ωm . The effect of pump power is shown in Fig. 5. The
top two panels show the intensity of the transmitted probe and the intensity of the transmitted
probe on resonance. The transmitted probe intensity can be changed more than four orders of
magnitude by varying the power of the control beam. The bottom panels show the phase of the
transmitted probe and the group delay derived from the derivative of the phase, see Eq. (5). The
dashed line is the theoretical minimum set by −2/Γm . Note that a negative group delay suggests
a superluminal group velocity, an effect which has been studied extensively in the past (see
Ref. [16] for an overview). Both the transmission on resonance and group delay can be fitted
using Eqs. (3) and (6) to obtain the optomechanical cooperativity for each control beam power.
For the highest laser power a maximum cooperativity of 144±5 is achieved.

We can also achieve optomechanically induced amplification by setting the detuning of the
control beam to ∆ = +Ωm . Note that the system is only stable when the effective mechanical
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Fig. 5. For a fixed control detuning of ∆ = −Ωm the control beam power is varied. (a)
The transparency window increases with laser power. (b) Transmitted probe intensity on
resonance. (c) Phase of the transmitted probe. (d) Group delay obtained via the derivative of
the phase.

291.6 291.8 292
Probe detuning Ω (kHz)

1.0

1.5

2.0

2.5

3.0

P
ro

b
e
 i
n
te

n
si

ty
 (

a
rb

. 
u
n
it

s)

(a)

291.6 291.8 292
Probe detuning Ω (kHz)

5

0

5

10

15

20

25

30

P
ro

b
e
 p

h
a
se

 (
d
e
g
.) (b)

Fig. 6. Demonstration of optomechanically induced amplification by placing the pump at
∆ = +Ωm . (a) Transmitted probe intensity (b) Phase of transmitted probe.
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damping is still positive, which requires C < 0.5 when critical coupling is assumed. Increasing
the control beam power further leads to parametric amplification of the mechanical mode. The
result of a blue detuned control beam is shown in Fig. 6. Now an increase in transmitted probe
together with a positive group delay of 5.9 ms is achieved. Comparing this delay to the cavity
lifetime shows that the delay has increased with a factor of 3700. As before, the maximum delay
is limited to 2/Γm = 10.6 ms. Increasing the mechanical quality factor will create a longer delay,
but this requires also careful adjustment of the control beam power to stay below the threshold
for parametric amplification. However, a delay of 5.9 ms is already significant; more than 1000
km of fiber is needed to achieve the same effect.

As demonstrated above, all the typical OMIT features are reproduced using the method
with two probe beams. Furthermore, the increased stability of the common path of both local
oscillator and signal is beneficial for a wide variety of experiments. Finally, for some experimental
configurations the implementation of a homodyne/heterodyne detection scheme is technically
not possible. The method presented in this work is an elegant solution to this problem.

5. Conclusion

In conclusion, we have presented a simple and straightforward method to measure optomechan-
ically induced transparency. Using a single AOM and lock-in amplifier, OMIT can easily be
measured with full control and high precision of both control and probe detuning. The working
principle is demonstrated using a relatively modest optomechanical system in terms of system
parameters, making this method applicable to a wide variety of systems. Furthermore, the modi-
fied heterodyne technique demonstrated here as well as the generation of multiple tones via a
single AOM can be applied to a variety of experiments within the field of optomechanics.

Derivation of the transmission with two probes

Here we briefly show how Eq. (2) is derived using an approach similar to Weis et al. [7]. The
classical optomechanical equations (in the rotating frame) are the following:

da(t)
dt

= (i(∆ + Gx(t)) −
κ

2
)a(t) +

√
ηκsin (t) (7)

d2x(t)
dt2 = −Γm

dx(t)
dt
− Ω2

m x(t) +
~G
m
|a(t) |2 (8)

in which a(t) is the optical field inside the cavity, G the optical frequency shift per displacement,
x(t) the mechanical displacement and sin (t) the input field.

The motion of the harmonic oscillator can be treated as a small perturbation around some
mean displacement: x(t) = x̄ + δx(t). Similarly the effect of this motion on the cavity field can
be treated as a perturbation: a(t) = ā + δa(t). Substituting these assumptions in Eqs. (7) and (8)
yields:

dδa(t)
dt

= (i[∆ + G( x̄ + δx(t))] −
κ

2
)(ā + δa(t)) +

√
ηκ(s̄in + δsin (t)) (9)

d2δx(t)
dt2 = −Γm

dδx(t)
dt

− Ω2
m ( x̄ + δx(t)) +

~G
m

[(ā + δa(t))(ā∗ + δa∗ (t))] (10)

Setting δa(t) = 0 and δx(t) = 0 results in the following steady state solution:

ā =

√
ηκ s̄in

i(∆ + Gx̄) − κ/2
(11)

x̄ =
~G

mΩ2
m

|ā |2. (12)
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Inserting the steady state solution back in Eqs. (9) and (10) leads to the following equations for
δx(t) and δa(t):

dδa(t)
dt

= (i∆ −
κ

2
)δa(t) + iGāδx(t) + δsin (t) (13)

d2δx(t)
dt2 = −Γm

dδx(t)
dt

− Ω2
mδx(t) +

~Gā
m

[δa(t) + δa∗ (t)] (14)

Note that we have dropped second-order terms and assumed that the static radiation pressure is
negligible.

Instead of a single probe as the input, we now have two probes at frequencies ±Ω, therefore
δsin (t) = sp

(
e−iΩt + e+iΩt

)
. As an ansatz to solve Eqs. (13) and (14) we use the following:

δa(t) = A−e−iΩt + A+e+iΩt (15)

δa∗ (t) = (A+)∗e−iΩt + (A− )∗e+iΩt (16)

δx(t) = Xe−iΩt + X ∗e+iΩt . (17)

Inserting the drive δsin (t) and the ansatz back in Eqs. (13 - 14), and solving for A− and A+

results in:

A+ = sp
√
ηκ

χaa (Ω)
[
i − 2χaa (Ω)Ω

]
−i + 2χaa (Ω)Ω

[
1 + g2 χmech (Ω) χaa (Ω)

] (18)

A− = sp
√
ηκ

i χaa (Ω)
−i + 2χaa (Ω)Ω

[
1 + g2 χmech (Ω) χaa (Ω)

] . (19)

This is the resulting field for each probe inside the cavity. In the end we measure, via the beat
with the control beam, the coherent sum of the two transmitted probes, therefore:

tp =

√
ηκ

sp

[
A+ + A−]

(20)

which after some manipulation leads to Eq. (2).
In the presence of additional optical losses, defined as κloss , the transmitted probe of Eq. 20

becomes:
tp =

ηκ

sp (
√
ηκ +

√
κloss )

[
A+ + A−]

(21)
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