
ARTICLE

Coherent optomechanical state transfer between
disparate mechanical resonators
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Systems of coupled mechanical resonators are useful for quantum information processing

and fundamental tests of physics. Direct coupling is only possible with resonators of very

similar frequency, but by using an intermediary optical mode, non-degenerate modes can

interact and be independently controlled in a single optical cavity. Here we demonstrate

coherent optomechanical state swapping between two spatially and frequency separated

resonators with a mass ratio of 4. We find that, by using two laser beams far detuned from an

optical cavity resonance, efficient state transfer is possible. Although the demonstration is

classical, the same technique can be used to generate entanglement between oscillators in

the quantum regime.
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Hybrid quantum systems have been developed with
various mechanical, optical, and microwave harmonic
oscillators1–6. The coupling produces a rich library

of interactions including two-mode squeezing7–10, swapping
interactions1, 3, 11, 12, back-action evasion13, 14, and thermal
control15–17. In a multimode mechanical system, coupling reso-
nators of different scales (both in frequency and mass) leverages
the advantages of each resonance. For example: a high frequency,
easily manipulated resonator could be entangled with a low fre-
quency massive object for tests of gravitational decoherence18–20.
Through a process similar to STIRAP (stimulated Raman adia-
batic passage)21 in atomic physics it is possible to couple two very
different mechanical resonators with an effective beam splitter
interaction. We investigate this interaction, and demonstrate
efficient and coherent state transfer between two frequency
separated mechanical resonators in the same cavity.

Efforts are under way to control systems with several
mechanical modes at the quantum level2, 22, 23. Hybridization and
coherent swapping have been observed in optomechanical12, 23, 24

and electromechanical25–27 systems with nearly degenerate
modes. Because the interaction between two coupled resonators
decreases dramatically with frequency separation, either precise
fabrication or frequency tuning is required to ensure degenerate
mechanical modes. In many of these systems a separate optical
cavity is necessary to control the motion of each mechanical
resonator, which leads to complicated systems12, 27. Dynamically
coupling non-degenerate resonances together in a single cavity
avoids these technical difficulties, while still allowing for indivi-
dual control of each resonance. In an optomechanical system
where mechanical resonances are spaced further apart than the
optical cavity linewidth, each resonance can be addressed inde-
pendently with a laser detuned to that mechanical resonance
frequency.

Here we investigate the real time dynamics of a coupled mode
system and show coherent optomechanical state swapping
between two mechanical modes. High swapping efficiency is
possible in a region with large beam detuning from the cavity
resonance. We discuss implementation of this method in the
quantum regime and some capabilities of interacting quantum
systems with large frequency separation.

Results
Optomechanical system. Our optomechanical system consists
of a room temperature Fabry−Pérot cavity with one fixed end
mirror, one moving end mirror on a trampoline (resonator 1)
and one trampoline membrane (resonator 2)28–30 inside the
cavity as shown in Fig. 1. The radiation pressure force on the
resonators from photons in the cavity and the position
dependent cavity phase shift mediate an interaction between
the two resonators and the optical cavity5. The resonator fre-
quencies are ω1/2π = 297 kHz for the end mirror and ω2/2π =
659 kHz for the membrane and the optical decay rate of the
cavity is κ/2π = 200 kHz, so the system is in the resolved side-
band regime.

Optomechanical swapping. We couple the two non-degenerate
modes by modulating the inter-resonator coupling coefficient
between resonators 1 and 2 at their difference frequency. Buch-
mann and Stamper-Kurn31 found that an equivalent effect is
produced by injecting two laser beams separated by the
mechanical difference frequency into an optomechanical cavity.
In the microwave regime it has been shown that driving with two
tones leads to an avoided crossing of the mechanical energy levels
of two resonators with different frequencies22, 32. Here, a single
laser beam detuned from cavity resonance by the mechanical

frequency of one resonator swaps excitations between that reso-
nator mode and the optical cavity mode33. A second laser beam
detuned by the other mechanical frequency will concurrently
swap excitations of the other resonator with the optical mode,
resulting in a net swapping between the two mechanical modes.
A schematic diagram of the exchange operation and the effective
Λ-type system produced is shown in Fig. 2. This interaction can
be described by the beam splitter Hamiltonian31:

Hint ¼ J
2

b†1b2 þ b†2b1
� �

; ð1Þ

where J is the optomechanical swapping rate, and bj is the
annihilation operator for the jth mechanical mode.

To investigate this interaction, we prepare one resonator in an
excited state and then observe the swapping dynamics of the
coupled system. We excite resonator 2 into a large coherent state
by applying a voltage at its resonance frequency to an electrode
behind the sample and then turn on the two laser beams. Figure 3
shows the measured amplitude of motion of the two resonators.
We observe in real time as the mechanical excitation is swapped
back and forth between the two resonators in a repeatable
fashion. Figure 3b shows the response to a single optical swapping
interaction. The operation can be modeled as an underdamped
exchange between two coupled harmonic oscillators, and the fits
indicate that our system operates in this regime (Methods
section). The motion dips down to the thermal fluctuation level
every time the state is exchanged, indicating complete state
swapping. We now investigate the efficiency of the system and its
coupling to different loss baths.

Power and detuning dependence of swapping parameters. If the
transfer rate, J, is much slower than the mechanical frequencies,
the classical amplitudes of the modes b1 and b2 evolve slowly.
Under this approximation the transfer rate, J, and total loss rate Γ
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Fig. 1 Optomechanical set-up with two resonators in an optical cavity. a A
schematic diagram of the optical cavity with two mechanical trampoline
resonators. The resonators are constructed from low pressure chemical
vapor deposition (LPCVD) silicon nitride. One resonator has a distributed
Bragg reflector (DBR) mirror b and one resonator is a bare membrane c.
b and c are optical microscope images of the two resonators, with 1 mm
scale bar. The resonators are suspended from a shared outer resonator to
provide mechanical isolation from the environment. This figure is not to
scale
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are given by:

J ¼ 2g1g2
ffiffiffiffiffiffiffiffiffi
n1n2

p ω� Δ

κ2=4þ ω� Δ
� �2 � ωþ Δ

κ2=4þ ωþ Δ
� �2

 !
; ð2Þ

Γ ¼
X
i;j¼1;2

nig2j κ

κ2=4þ Δi � ωj
� �2 � nig2j κ

κ2=4þ Δi þ ωj
� �2 þ γj

2
; ð3Þ

ni ¼ Pin
2�hωLi

κex
κ2=4þ Δ2

i

; ð4Þ

where gj, ωj, and γj are the single photon optomechanical cou-
pling rate, mechanical frequency and mechanical damping rate of
the jth mode. Δi and ni are the detuning to the red side and cavity
photon number of the ith cavity mode. Δ and ω are the mean
detuning and mean frequency of the two modes. ωLi is the laser
frequency of the ith beam, κex is the input coupling rate and Pin is
the input optical power. The swapping rate, J, is the sum of two
Fano-like resonances from each set of matched sidebands. These
exchange the mechanical state through a virtual state near the
optical cavity resonance as pictured in the two insets in Fig. 2b.
The Lorentzian resonances in the expression of the loss rate, Γ,
are the optically induced loss or gain of the jth mode due to the
ith laser beam. There is one term for each of the eight sidebands
(Fig. 2a, b). The complete model is given in Methods section.

Both optomechanical gain and loss should be avoided, as gain
can introduce noise into the system. Because Γ decreases more
quickly than J with increasing Δ, the ideal detuning is on the red
side of the cavity, far from all resonances, in a region with
negligible optomechanical amplification. Figure 4 shows an
exploration of state swapping in a region with large detuning.
The range is limited to regions of coherent swapping, where J> Γ.
We observe the expected dependencies on detuning and input
power for the coupling and loss rates. For smaller detunings the
dominant loss is residual optical cooling of resonator 2, a by-
product of its unmatched red sideband. For large detunings
mechanical leakage to the environment dominates, and the peak
efficiency is in the middle at Δ/2π= 2.3 MHz.
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Fig. 2 Generating coupling between two resonators with two laser drives.
a A single laser drive (red arrow) sent into the cavity produces four
sidebands, two for each resonator. The laser is detuned from a cavity
resonance on the right. b A second laser can be added to generate optical
swapping. (ii) and (v) are overlapping sidebands of the two resonators.
The insets indicate the analogy to state transfer in an atomic Λ-type
system. The quantum number states are the photon occupation of the
cavity, phonon occupation of resonator 1 and phonon occupation of
resonator 2. Detuning from the intermediary state avoids losses due to
light leaking out of the cavity. (iii) and (iv) are the unmatched sidebands of
resonator 1 and (i) and (vi) are the unmatched sidebands of resonator 2.
By adjusting the laser detuning, the sidebands (i−vi) can be separately
aligned with the cavity resonance to interact with one resonator at a time
or both at once. In the case shown here, the state of resonator 2 is
swapped with the cavity, because sideband (vi) is aligned to the cavity.
This figure is not to scale
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Fig. 3 Optomechanical swapping between mechanical resonators. aWe alternate turning on a mechanical drive (black) and an optical swapping field (red),
while continuously measuring the root mean square (RMS) amplitude of motion of the two resonators. This single-shot measurement shows the
repeatable dynamics of the system. b A single swapping interaction (the dashed box in a) shows phonon Rabi oscillations. Solid lines are fits to the
measured data points, and the dotted line indicates the thermal motion of the two resonators. Because the motion dips down to the thermal noise level
every period, there is complete state swapping. The inset shows one such dip after a single complete state transfer
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Discussion
Two useful operations in a quantum network of oscillators are a
complete state transfer (π-pulse) and a partial state transfer (π/2-
pulse) to generate an entangled state. If we terminate the swap-
ping after one of these pulses, 58% of the phonon occupation is
conserved in a π-pulse and 77% of the occupation is conserved in
a π/2-pulse (Methods section). The swapping rate demonstrated
here at room temperature is not sufficient to overcome the large
thermal decoherence rate (nth γ) from the environment even at
millikelvin temperatures. However, both the efficiency of transfer
and the swapping rate could be improved significantly by
decreasing the cavity loss. The finesse of our cavity is currently
limited by absorption in the membrane trampoline, and we
estimate that using a thinner membrane would improve the
finesse by at least a factor of four. Most of the detunings close to
the cavity resonance are in the overdamped regime, where energy
transfer is only possible with large losses. With an increased
finesse, a point close to the cavity resonance appears where the
positive and negative components of Γ cancel, leading to nearly
lossless classical state transfer (>99% efficiency). In the quantum
regime, the negative component of Γ introduces extra deco-
herence, so the quantum state transfer is more limited (56%
efficiency). However, the effects of coherent swapping should still
be visible (Methods section.)

Although, we have focused on swapping states between the
fundamental modes of two resonators, the technique is general and
can also be applied to higher order modes of the same resonator.
We apply the exact same scheme to swap energy between the
fundamental (ω1/2π= 659 kHz) and the first excited (ω2/2π=
1199 kHz) mode of the membrane trampoline (data in Supple-
mentary Fig. 1). Sequential swapping pulses between many
mechanical modes in a cavity could generate a large network of
coupled modes. Each mode is individually addressable because of
its frequency separation from the other modes. Low frequency
resonators with long mechanical lifetimes could serve as storage for
quantum information generated with a high frequency resonator.

This technique can also be used to study quantum mechanics
in a high-mass system. Larger systems tend to suffer from small
optomechanical coupling rates and slow interactions. We can
instead prepare a quantum superposition state in a high fre-
quency resonator with large optomechanical coupling and
transfer it into the high-mass resonator. After letting the system
evolve for an extended period, then transferring the motion back
to the high frequency resonator, we can determine if the state
decohered. Finally, this work could be extended to provide
directional adiabatic transfer of states with STIRAP by using
separate time-varying intensity pulses for the two input laser
beams21.

In conclusion, exchange of mechanical energy between modes
which are naturally uncoupled opens up many possibilities in
quantum and classical physics. We have investigated the real time
dynamics of such a system. We demonstrate that despite the
many loss effects present, efficient coherent state transfer between
two spatially and frequency separated mechanical resonators is
possible. These results can be extended to the quantum regime to
investigate quantum effects with many diverse mechanical
oscillators.

The authors would like to acknowledge a related manuscript
which appeared during the completion of this manuscript34.

Methods
Optomechanical system. The optomechanical system is an extension of previous
systems35. We use a Fabry−Pérot cavity with one fixed end mirror with a nominal
radius of curvature of 50 mm. The other side of the cavity is formed by two
trampolines fabricated on opposite sides of a tethered silicon block (Fig. 1). The
block acts as a mechanical low pass filter and provides greater than 65 dB of
vibration isolation from the environment36. The cavity alignment uses the same
technique used for single trampoline resonators35. Four piezo motors adjust the
cavity in-coupling and three motors align the cavity itself. The DBR mirror on the
trampoline is only 75 μm in diameter, so we align the beam waist of the cavity
mode close to the DBR to avoid clipping losses. Mode calculations indicate that the
beam radius should be ~ 16 μm at both the DBR and bare membrane trampoline.
Based on the free spectral range of the cavity, we estimate an exact length of 50.18
mm. The cavity is slightly longer than 50 mm because the mismatch in stress
between the silicon nitride and the DBR mirror leads to a slight inward curvature
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Fig. 4 Parameter dependence of optomechanical swapping rate and total loss rate. Optomechanical swapping rate, J a, and total loss rate, Γ b, are
measured as a function of detuning (Δ/2π). The dashed lines are two parameter fits based on Equations (2) and (3). For clarity the higher power
measurements of Γ are vertically offset by 2 and 4 Hz as indicated by the dotted lines. c J and Γ are measured as a function of input power at a detuning of
1.87MHz (indicated by black dotted line in a and b). The dashed lines are two parameter fits based on Equations (2) and (3). The ratio between the
measured optical power and the input power Pin and the mean bare mechanical dissipation rate (γ1 + γ2)/2 are the fitting parameters (Methods section).
Statistical uncertainties are smaller than the point size
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with a radius of ~1.5 mm37. Because the two resonators are fabricated on the same
chip, no extra alignment is needed for the additional membrane trampoline in the
middle. This technique could be extended to even more resonators by attaching
multiple chips together.

The system behaves as the sum of its two constituent parts: a traditional
optomechanical cavity with a single moving end mirror and a membrane in the
middle system30. A membrane in the middle system has a finesse which depends
on the position of the membrane with respect to the nodes of the cavity38, 39.
Supplementary Fig. 2a shows a periodic finesse response as, we vary the node
position by changing wavelength. The optical cavity loss is dominated by
absorption in the membrane trampoline. We numerically model the system with
the transfer matrix method40 and extract the imaginary refractive index (nim=
3.2 × 10−5) of the Si3N4 membrane and the chip thickness (470 μm.) Both values
match expectations38. The nitride we use is about 10 times thicker than many other
membrane in the middle set-ups4, 28–30, so we can likely reduce optical losses with
a thinner membrane. We have achieved finesses up to 180,000 in the same set-up
without the membrane present36.

We also investigate the optomechanics of each individual mode.
Supplementary Fig. 2b shows the optical damping of each resonator as a
function of detuning. The damping can be modeled perfectly using the linear
optomechanical Hamiltonian for a single resonator5, indicating that with a single
laser beam the modes can be treated independently. From these measurements
and others, we extract the optical decay rate, κ/2π= 200± 10 kHz, the mechanical
frequencies ω1/2π= 297 kHz and ω2/2π= 659 kHz, the mechanical damping
rates γ1/2π= 1.5± 0.1 Hz and γ2/2π = 1.0± 0.1 Hz, and the single photon
optomechanical coupling rates g1/2π= 0.9 ± 0.1 Hz and g2/2π= 1.3 ± 0.1 Hz.
From finite element analysis simulations, we determine that the effective masses are
~m1= 150 ng and m2= 40 ng.

Fabrication. The fabrication process is a slight modification of the procedure for
nested trampoline resonators36. We summarize here: 450 nm of LPCVD (low
pressure chemical vapor deposition) high stress silicon nitride is deposited on both
sides of a silicon wafer, followed by a commercial SiO2/Ta2O5 DBR mirror on the
front and a SiO2/SiN layer on the back. The mirror is etched with inductively
coupled plasma (ICP) CHF3 into disks for the cavity end mirror and a protective
ring. The back SiO2/SiN films are etched with CHF3 ICP into a protective ring. The
silicon nitride layers on both sides are then etched with CF4 to produce the front
and back side trampolines. The silicon underneath the devices is removed with a
deep reactive ion etch, followed by an etch in TMAH (tetramethylammonium
hydroxide) solution. The devices are dipped in buffered HF to remove the top
protective layer of SiO2 from the mirror.

Experimental procedure. We now turn to the generation of optomechanical state
swapping. We use a two laser scheme as depicted in Supplementary Fig. 3. One
laser is locked to the cavity resonance with the Pound−Drever−Hall technique41

using an avalanche photo diode as a detector, and the error signal is sent to two
lock-in amplifiers, each of which monitors one mechanical frequency and extracts
the amplitude of motion of the corresponding resonator. Before the swapping
experiment shown in Fig. 3 is performed, we calibrate the mechanical motion of the
devices by measuring the thermal motion for ~1min. The optomechanical gain
rate is less than 20% of the mechanical damping rate, and hence we do not expect
or observe notable contributions to the noise from optomechanics. Another laser is
passed through an acousto-optic modulator (AOM) with an RF drive that we
modulate fully at half the mechanical difference frequency. The first order dif-
fracted mode contains the two frequencies that we use to drive optomechanical
swapping in the cavity. We have verified that the carrier frequency is completely
suppressed and that higher harmonics are insignificant with cavity transmission
measurements. We cannot measure the optical input power directly, so we split off
some power before the cavity to measure. Finally, a ring electrode behind the outer
resonator is used to excite the motion of the trampoline resonators using the
dielectric force from the gradient of the electric field42.

We repeat this experiment for many powers and detunings, and extract the
swapping rate and loss rate for each instance. The unmatched sidebands in Fig. 2b
produce loss, but they also shift the frequencies of the two mechanical resonances.
Therefore, when performing the detuning and power sweeps shown in Fig. 4 the
spacing between the two laser beams must be continuously adjusted to match the
mechanical difference frequency. The readout laser can optomechanically decrease
or increase the bare mechanical linewidths of the resonators a small amount
depending on the lock settings. We therefore fit the mean bare mechanical
linewidth and the ratio between the measured optical power and the input power
for every sweep shown in Fig. 4. We also perform a swapping experiment using the
two lowest order modes of the membrane trampoline to verify that the exact same
scheme works for a single membrane in the middle. The swapping is shown in
Supplementary Fig. 1.

Two-tone swapping interaction theory. Because the experiment performed here
is entirely classical, we limit ourselves to the classical optomechanical equations of
motion following a similar path to Shkarin et al.23. However, the results can be
generalized to the quantum regime31. The linearized equations of motion for the

cavity field fluctuations, a, and mechanical displacements, b1 and b2, are given by:

_a ¼� κ
2 þ iωc
� �

aþP
j
i gja
xzpm

bj þ bj�
� �

þ ffiffiffiffiffiffi
κex

p
ain1e�i ωcþΔ1ð Þt þ ain2e�i ωcþΔ2ð Þt� �

;

ð5Þ

_bj ¼ � γj
2
þ iωj

� �
bj þ igja

�a: ð6Þ
After some algebraic manipulation, we arrive at the following equations for the

adiabatic time evolution of the amplitude of the two resonators:

_b1 ¼ � γ1tot
2

þ iδω1

� �
b1 þ � γ12

2
þ i

~J
2

� �
b2; ð7Þ

_b2 ¼ � γ2tot
2

þ iδω2

� �
b2 þ � γ12

2
þ i

~J
2

� �
b1; ð8Þ

γjtot ¼ γj þ
X
i¼1;2

2nig2j κ

κ2=4þ Δi � ωj
� �2 � 2nig2j κ

κ2=4þ Δi þ ωj
� �2 ; ð9Þ

δωj ¼
X
i¼1;2

nig2j Δi � ωj
� �

κ2=4þ Δi � ωj
� �2 � nig2j Δi þ ωj

� �
κ2=4þ Δi þ ωj

� �2 ; ð10Þ

~J ¼ 2g1g2
ffiffiffiffiffiffiffiffiffi
n1n2

p ω� Δ

κ2=4þ ðω� ΔÞ2
� ωþ Δ

κ2=4þ ðωþ ΔÞ2
 !

; ð11Þ

γ12 ¼ g1g2
ffiffiffiffiffiffiffiffiffi
n1n2

p κ

κ2=4þ ðω� ΔÞ2
� κ

κ2=4þ ðωþ ΔÞ2
 !

: ð12Þ

Although these equations look complex, they can be matched up term for
term with the effects of each sideband. γjtot and δωj are the optical damping
and optically induced frequency shift on the jth resonator due to the ith beam
in the cavity. There are eight of these terms total, one for both sidebands on both
lasers from both resonators. ~J and γ12 are the bare optomechanical transfer rate
and the loss induced decrease in the transfer rate. The first term in ~J is produced
as the net effect of two optomechanical swapping interactions with the cavity as
depicted in the right inset of Fig. 2b. The second term in ~J is produced by two
optomechanical two-mode squeezing interactions with the cavity (left inset of
Fig. 2b). If we absorb the frequency shifts into b1 and b2, the solutions are of the
following form:

b1 tð Þ ¼ c1e
�Γt=2 sin

Jt
2

� �				
				; ð13Þ

b2 tð Þ ¼ c2e
�Γt=2 cos

Jt
2

� �				
				; ð14Þ

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~J
2 � γ122 þ γ1tot � γ2totð Þ2

2

s
; ð15Þ

Γ ¼ γ1tot
2

þ γ2tot
2

; ð16Þ

where c1 and c2 are constants dependent on the initial conditions of the system.
When we apply the swapping pulses to the optical cavity, we see decaying
oscillations which can be fitted precisely with the above equations. For large
detunings where J> Γ, J is approximately ~J , so we treat them interchangeably in the
main text.

We define the classical efficiency of an exchange pulse as the total number
of phonons in the system after the pulse divided by the initial number of
phonons in resonator 2. The efficiency of a π-pulse is exp(−π Γ/J) and the efficiency
of a π/2-pulse is exp(−π Γ/2 J). The efficiency of a π-pulse both theoretically
and experimentally is plotted in Supplementary Fig. 4 as a function of detuning.
A number of regions are inaccessible, because the optical damping is too large,
and J becomes imaginary. In these overdamped regions, energy can still be
transferred, but there is no coherent state transfer. If the optical cavity losses
are reduced by a factor of four, more regions of small detuning would become
accessible.

Thus far we have focused on the losses in the system, or the positive
contributions to Γ. However, Γ has some contributions which are negative and
correspond to parametric driving of the system. Parametric driving leads to an
exponential increase in the motion of the resonators and is therefore equally as
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unsuited to efficient state transfer as configurations with large loss. However, it is
possible to find detunings for which the heating and cooling contributions cancel,
and Γ goes to zero. For these detunings classical state transfer is lossless, and the
efficiency of state transfer goes to 1. In the current system such cancelation points
only exist on the blue side of the cavity where the system is inherently unstable.
However, if the cavity losses were reduced, a cancelation point appears on the red
side, indicated by the star in Supplementary Fig. 4b. At this point the driving due to
one laser beam just on the blue side of the cavity resonance is canceled by the
cooling due to the other laser close to the red sideband of resonator 1. This leads to
significantly higher classical efficiency (> 99%) and faster state transfer (J = 18
kHz).

In the quantum regime, calculations of the efficiency are more complicated. The
parametric driving, which can allow for efficient classical transport, also introduces
extra noise. Furthermore, quantum states with small phonon occupation have a
large thermalization rate due to the high thermal occupation of the bath, even when
the resonator is cooled down to millikelvin temperatures. In Supplementary Fig. 4b,
we compare the classical and quantum efficiencies. At small detunings the
quantum efficiency is limited by parametric driving and at large detunings by
thermalization. Supplementary Fig. 4b also assumes a bath temperature of 10 mK
and an improved linewidth of 10 mHz, which is in line with the improvements seen
at cryogenic temperatures for many silicon nitride devices43, 44. These
improvements should be enough to start using this protocol in the quantum
regime.

Data availability. All data are available from the authors upon request.
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