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The unconventional magnetotransport at the interface between transition-metal oxides LaAlO3 (LAO) and
SrTiO3 (STO) is frequently related to mobile electrons interacting with localized magnetic moments. However,
nature and properties of magnetism at this interface are not well understood so far. In this paper, we focus on
transport effects driven by spin-orbit coupling and intentionally neglect possible strong correlations. The electrical
resistivity tensor is calculated as a function of the magnitude and orientation of an external magnetic field parallel
to the interface. The semiclassical Boltzmann equation is solved numerically for the two-dimensional system
of spin-orbit coupled electrons accelerated by an electric field and scattered by spatially correlated impurities.
At temperatures of a few Kelvin and densities such that the chemical potential crosses the second pair of
spin-orbit split bands, we find a strongly anisotropic modulation of the (negative) magnetoresistance above
10 T, characterized by multiple maxima and minima away from the crystalline axes. Along with the drop of the
magnetoresistance, an abrupt enhancement of the transverse resistivity occurs. The angular modulation of the
latter considerably deviates from a (low-field) sinusoidal dependence to a (high-field) step-like behavior. These
peculiar features are the consequences of the anisotropy of both intraband and interband scattering amplitudes
in the Brillouin zone when the relevant energy scales in the system—chemical potential, spin-orbit interaction,
and Zeeman energy—are all comparable to each other. The theory provides good qualitative agreement with
experimental data in the literature.
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I. INTRODUCTION

Transition-metal oxide interfaces play a leading role in the
development of quantum-matter heterostructures, where novel
electronic states are achievable due to the combination of the
capabilities and rich variety of heterostructure engineering, the
collective interactions of complex oxides, and the emergent
properties of quantum materials [1,2]. A prototype system in
this field is the heterostructure formed by the perovskite oxides
LaAlO3 and SrTiO3. Since the experimental demonstration
[3] of electrical conduction at the interface between these two
materials, large attention has been drawn to this system in
particular due to its gate-tunable superconductivity [4–6] at
T � 300 mK. At slightly higher temperatures—in the range
1–20 K—magnetotransport has been an important tool for
the investigation of electronic and magnetic properties of the
interface that are believed to be strongly determined by mixing
of charge, spin, orbital, and lattice degrees of freedoms. A
number of signatures in the normal-state transport [7–10], such
as giant negative magnetoresistance, crystalline anisotropy,
anomalous Hall effect, and their striking change of behavior
when the system is tuned across a Lifshitz transition [11], have
been considered as evidence of magnetism at the interface. In
particular, Ruhmann et al. [12] suggested that the action of
the field on the interaction between conduction electrons and
localized magnetic moments induces a phase transition from
a Kondo-screened (high and isotropic resistance) phase to a
(low and anisotropic resistance) polarized phase, where the
unscreened moments act as magnetic scatterers.

However, experimental investigations of the magnetic land-
scape at the interface [13–18] reported qualitatively different
results. A strong ferromagnetic phase with large total magne-
tization was recently observed by magnetic force microscopy
[19] at room-temperature in the depleted (insulating) regime of
top-gated interfaces. On the other hand, the total magnetization

was found to disappear when the interface was doped enough
to be conducting. More questions about the origin and the
nature of magnetic structures at low temperatures remain to be
answered.

Electrons at the interface are subjected to a spin-orbit
interaction resulting from the interplay of the intrinsic spin-
to-angular momentum coupling of d atomic orbitals and
the additional interorbital coupling activated by inversion-
symmetry breaking at the interface. Experiments show that
the effective spin-orbit coupling (SOC) is highly tunable by
means of electrostatic gating: an increase of one order of
magnitude in the spin splitting at the Fermi level is estimated
in the overdoped regime [6,20,21]. Spin-orbit interaction at the
interface between complex-oxides has also been suggested as
a possible source of electronic phase separation [22,23] and
recently is the target of intensive effort in order to achieve
room temperature spin-charge conversion and generating
spin currents [24]. Although commonly acknowledged as an
important property of the system, only very recently has it
been shown to have dramatic effects on the magnetotransport
at the interface [25]. Semiclassical calculations of the behavior
of the electrical resistivity with an external magnetic field
parallel to the interface reproduced a large drop (up to 50–60%)
occurring on a field-scale of a few T due to the field-induced
suppression of the interband scattering. Importantly, the model
also suggests a simple explanation to the striking similarity
between gate-voltage and temperature dependence of the
magnetoresistance—revealed by the experimental data shown
in the same paper [25]—only in terms of properties of the band
structure and scattering by correlated impurities.

In this work we apply the semiclassical model to study
how the resistivity tensor evolves as a function of magnitude
and direction of the in-plane magnetic field. The electrical
response is found to be strongly anisotropic when the chemical

2469-9950/2017/95(20)/205430(13) 205430-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.205430


N. BOVENZI AND M. DIEZ PHYSICAL REVIEW B 95, 205430 (2017)

potential falls into a range of the spectrum where electrons
populate multiple subbands, with very different dispersions
and spin-orbital structures in momentum-space. Furthermore,
the anisotropy is characterized by a peculiar crossover from
moderate to high fields, an explanation of which requires us
to consider the angular dependence of both interband and
intraband scattering.

The structure of the manuscript is the following. In
Sec. II, we summarize the results of two experiments on
LaAlO3/SrTiO3 interfaces that systematically investigate the
anisotropy of magnetotransport. This is not meant to be
a complete review of the wide literature concerning this
topic. In Sec. III, we introduce the theoretical model used
for the numerical calculations. Starting from a low-energy
noninteracting description of the two-dimensional electron
system at the interface [12] (details in Appendix A), we focus
on the structure of the spin-orbit coupling at the relevant
energy scales. Numerical results are obtained by solving the
Boltzmann transport equation in the weak-disorder limit, for
two different models of spatially correlated impurities [26,27].
In Sec. IV, we show results for the longitudinal and transverse
resistivity as a function of the amplitude and the orientation of
the in-plane magnetic field. Discussions and comments about
the dependence of the calculations on the different parameters
of the model are the subject of Appendix B. In Sec. V, we
analyze and highlight the competing effects of spin-orbit and
magnetic fields on the electronic states at the Fermi level
and, by consequence, on the scattering amplitudes describing
transitions between them. We isolate the different scattering
mechanisms leading to the abundance of features observed in
the angular-resolved magnetotransport. Section VI contains a
final summary and outlook.

II. ANISOTROPIC PLANAR MAGNETOTRANSPORT:
EXPERIMENTAL SIGNATURES

To date there is a very broad literature [6–11,13,20,25,28–
30] of experimental studies on the conducting interface
of LAO/STO heterostructures—grown along the (001)-
crystalline axis—in external magnetic field. Here we restrict
to low-temperature transport (yet above the superconducting
critical temperature Tc ∼ 300 mK) and magnetic field in
the plane of the interface. A first striking observation is
the qualitative change of transport properties that occurs
when the system undergoes a Lifshitz transition [11] by
tuning the density of carriers via an applied gate voltage.
Joshua et al. [9] measured the in-plane angular dependence
of the longitudinal (ρxx) and transverse (ρxy) resistivity of a
(back-gated) field-effect device by varying the angle between
the current and the magnetic field within the plane of the
interface. At low gate-voltage, ρxx depend very weakly on the
orientation φB of the magnetic field relative to the direction
of the current, and the maximum and minimum resistivity
are measured along the crystalline axes. At high voltage, the
response of the system is extremely sensitive to the magnetic
field: a large drop in ρxx while increasing the field-strength
occurs above a characteristic field Bc of order of a few T.
The latter is shown to have a dependence on the gate-voltage
VG, e.g., decreasing while increasing VG and diverging while
approaching the Lifshitz point from above. Moreover, the

magnetoresistance is strongly anisotropic and its angular
modulation is considered as the signature of a change of some
symmetry of the system. Additional peak and dip points appear
at intermediate angles. The percentage of anisotropy measured
at B = 14 T is about 20% of the average resistivity. Along with
that, the authors report an abrupt increase of the transverse
resistivity ρxy by increasing the field. Above 10 T, ρxy becomes
comparable to ρxx and characterized by a striking steplike
angular modulation. The magnitude of ρxy and its symmetry
(ρxy � ρyx) rule out any relevant contributions of the orbital
field due either to minimal misalignment between the direction
of B and the plane of the interface, or to the finite extension of
the gas in the out-of-plane direction. The crystalline symmetry
of the anisotropic response is revealed by the evolution of the
direction of the principal axes of the resistivity tensor. While
at low voltage (density) the principal axes follow the direction
of B, at high voltage and high magnetic field the principal
axes are pinned to diagonal directions (45◦,135◦,225◦,315◦):
the directions where maximum and minimum resistivity are
measured do not depend on the orientation of the magnetic
field.

Similar behavior on different samples was previously
reported by Ben Shalom et al. [8] who also investigated
the temperature dependence of the effect. Sharp minima
(maxima) of the longitudinal resistivity are measured when
the magnetic field is perpendicular (parallel) to the current.
The magnitude of the high-field anisotropy is consistent with
the finding of Joshua et al. [9] and is suppressed on the same
temperature-scale, which governs the magnetoresistance [25].

III. ELECTRONIC STRUCTURE AND THE BOLTZMANN
EQUATION WITH CORRELATED DISORDER

The low-energy electronic structure is obtained from the
single-particle Hamiltonian introduced by Ruhman et al. [12]
(in a three-orbital basis). The motions of the electrons is
confined to the plane of the interface (xy plane). (Recent ultra-
high-field measurements [28] are consistent with a fully two-
dimensional characterization of the mobile electron system.)
In terms of creation (annihilation) operators c

†
k,l,σ (ck,l,σ ) of an

electron with momentum k in the l = (dxy,dxz,dyz) orbital of
titanium atoms, the tight-binding Hamiltonian in the presence
of an external magnetic field,

H =
∑

k,l,l′,σ,σ ′
c
†
k,l,σ Hlσ,l′σ ′(k) ck,l′,σ ′ ,

H = HL + HSO + HZ + HB, (1)

is the sum of the kinetic term HL, the atomic spin-orbit
coupling HSO, the interorbital coupling HZ—which allows
electrons to hop from one metal site to another through
intermediate oxygen atoms [31] due to inversion-symmetry-
breaking at the interface—and the Zeeman coupling of the
magnetic field with spin (SAM) and orbital (OAM) angular
momentum. The matrix representations of these operators are
shown in Appendix A. The energy spectrum near the Lifshitz
point is plotted in Fig. 1(a). The interface-confinement breaks
the bulk degeneracy of dxy and dxz,yz states at k = 0, since the
former are characterized by small hopping amplitude along
the out-of-plane (z) direction and their energy at the �-point is
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FIG. 1. (a) Band dispersion along kx (at ky = 0) near the Lifshitz point. Colors distinguish the orbital character of the electronic states. (b)
Equienergetic surfaces at ε = μ (Fermi level) with on top textures of the the average spin (SAM) and orbital (OAM) angular momentum. Blue
(yellow) arrows correspond to states in the outer (inner) band of each pair of subbands. The complete set of parameters used for generating the
plots are listed in the first line of Table I (Appendix B).

lowered by an amount �E. At low density, only dxy bands are
populated and the effective spin-orbit interaction of ordinary
Rashba-type, with coupling constant αR ∼ �Z�SO/�E [32]
(�Z and �SO are the inversion-symmetry breaking and atomic
spin-orbit parameter respectively, see Appendix A). A change
in the topology of the Fermi surface, due to the onset of occu-
pation of a new pair of bands, occurs at a threshold density n∗.

The interplay of HSO and HZ produces strong orbital
hybridization and spin-splitting for electronic states at points
in the Brillouin zone where light and heavy bands would cross
each other at HSO = HZ = 0. In the absence of magnetic field,
analytical expressions for the effective Rashba-like coupling
of the surface states of SrTiO3 and KTaO3 were derived by Kim
et al. [33]. A similar derivation (valid near the �-point) was
worked out by Zhou et al. [34]. Here we resort to numerical
diagonalization of the Hamiltonian, including the Zeeman
coupling HB = μB(L + gS) · B/h̄ of the magnetic field B
with the orbital (L) and spin (S) angular momentum. As
shown in Fig. 1(b), at T = 0 the Fermi level is characterized
by two small surfaces, elongated along the symmetry axes
of the crystal, and two larger and less anisotropic ones.
Importantly, the group velocity vk,ν = h̄−1∂εk,ν/∂k is no
longer parallel to the momentum for large sections of the Fermi
surfaces.

We calculate the expectation-value of the spin and orbital
angular-momentum operators on the eigenstates. At B = 0,
the z component of both is quenched to zero because of time-
reversal and π -rotation symmetry around the z axis and will
stay zero as long as the magnetic field has no component in the
out-of-plane direction. Following the evolution of the average
SAM on the large Fermi surfaces in the top-right quadrant
of the Brillouin zone (ϑ < 90◦), it is found to be parallel to
the y axis at small ϑ (small ky), it suddenly undergoes a 90◦
rotation in the vicinity of ϑ = 45◦ and finally aligns to the x

axis at ϑ > 45◦. The magnitude of the OAM is peaked near
the hybridization gaps while it is very small on the remaining
sectors of the Fermi surfaces. Electronic spectrum and the
spin-orbital structure at the Fermi level are consistent with

the data reported by King et al. [35] for the surface states of
SrTiO3.

The eigenstates |ψk,ν〉 = |uk,ν〉eik·r and the eigenvalues εk,ν

of the Hamiltonian 1 enter the Boltzmann transport equation

− e(vk,ν · E)
∂f0

∂εk,ν

=
∑
k′,ν ′

(gk,ν−gk′,ν ′ )qkν,k′ν ′δ(εk,ν−εk′,ν ′ ),

(2)

returning the shift in the electron distribution gk,ν due to
the action of an accelerating electric field E and scattering
by impurity centers. f0(ε) is the equilibrium Fermi-Dirac
distribution function and vk,ν = h̄−1∂εk,ν/∂k. Spatial
correlations between different impurities can be introduced
via a Gaussian potential,

U (r) =
∑

i

Uie
−|r−r i |2/ξ 2

, (3)

where the amplitudes Ui of the individual scatterers are
randomly distributed with uniform probability in the
symmetric range [−δ/2,δ/2] and ξ is the characteristic decay-
length of the two-point correlator (that is Gaussian as well).

At leading order in the Born approximation and averaging
over the ensemble of impurity configurations, the amplitude
of elastic scattering from the initial state |ukν〉 to the final state
|uk′ν ′ 〉 is

qkν,k′ν ′ = 2
3π3h̄−1δ2ξ 4nimp e−ξ 2|k−k′|2/2|〈ukν |uk′ν ′ 〉|2, (4)

nimp being the density of impurities.
An alternative model was considered by Fu et al. [27], who

calculated the density-dependence of the resistivity in mul-
tisubband accumulation layers (heterojunctions of polar and
nonpolar perovskites, such as LAO and STO), where electrons
are scattered by the potential generated by surface roughness.
In their model, spatial disorder-correlations decay exponen-
tially. In momentum-space, the elastic scattering amplitude,

qkν,k′ν ′ = 2π2δ2ξ 2

h̄
nimp(1 + ξ 2|k − k′|2)

−3/2|〈ukν |uk′ν ′ 〉|2,
(5)
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FIG. 2. Angular modulations of (a–c) the longitudinal magnetoresistance MR and of (b–d) the transverse resistivity ρxy at several values
of the B-field in the range 2–20 T. The temperature is T = 1 K and the density n = 2.2×1013 cm−2 (chemical potential at half of the gap
between dxz and dyz states at k = 0). In (a) and (b), scattering amplitudes given by Eq. (4). In (c) and (d), scattering amplitudes given by Eq. (5).
Parameters listed in Table I (Appendix B).

decays algebraically as a function of the momentum trans-
ferred to the impurity (qkν,k′ν ′ ∝ |k − k′|−3 at large |k − k′|).
The scattering with large momentum-transfer (and hence
backscattering) is stronger for this model than for the Gaussian
model of Eq. (4).

We consider scatterers with no internal degrees of freedom
(scalar impurities); nevertheless the (interband) scattering
amplitudes with ν 
= ν ′ are nonzero due to the off-diagonal
Hamiltonian elements in the orbital basis (Appendix A). Here
we calculate the longitudinal and transverse magnetoresistivity
for both models and find—at fixed density—close similarity
in the outcomes, albeit the density-dependence of bare resis-
tivities may be quite different in the two cases [27].

IV. NUMERICAL RESULTS

At linear order in the electric field E, the electron
distribution gk,ν is expressed in terms of the band- and
momentum-dependent vector mean-free-path (vmfp) �k,ν[26]
as

gk,ν = −e(∂f0/∂εk,ν)E · �k,ν . (6)

Eigenvalues εk,ν and eigenvectors uk,ν of the Hamiltonian
Eq. (1) are calculated by numerical diagonalization. The
components of the in-plane magnetic field are

Bx = B cos φB By = B sin φB, (7)

where we introduced the magnitude B = |B| and the angle
φB measured counterclockwise from the x axis. The (mobile)
electron density is constant (at any B) and, as a consequence,
the chemical potential μ(B,φB) ≡ μ(B) is determined by
demanding

n =
∫ ∞

ε0

dε f0[ε,μ(B),T ] N (ε), (8)

where N (ε) is the density of states at energy ε and ε0 is the
energy of the bottom of the lowest conduction band.

From the distribution function, the conductivity tensor σ

follows as

(σ )ij = e
∑
k,ν

(vk,ν)i
∂gk,ν

∂Ej

. (9)
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FIG. 3. Longitudinal magnetoresistance at T = 1 K for different orientations φB (dashed lines) and averaged over all the angles (red solid
line). Numerical values on the left axis. Angular-maximum of ρxy as a function of B rescaled by its value at B = 10 T (solid gray line) with
numerical values on the right scale. A comparison between calculations for scattering models (4) and (5) is shown.

By inverting σ we finally calculate longitudinal and transverse
resistivity,

ρxx = σyy

σxxσyy − σ 2
xy

, ρxy = − σxy

σxxσyy − σ 2
xy

. (10)

We show below results of calculations of the magnetore-
sistivities at temperature T = 1 K and carrier density n =
2.2×1013 cm−2, where the Fermi level cross the second pair
of bands and is approximately at the middle of the gap (at
k = 0), between dxz and dyz states [dashed line in Fig. 1(a)].
Two other bands remain a few meV (≈�SO/2) above μ and
do not play any role here since we only consider elastic
scattering. (The gap is larger than the thermal broadening of
the Fermi-Dirac distribution at low-temperature.) In Fig. 2, the
magnetoresistance MR = ρxx(B)/ρxx(0) − 1 and the rescaled
transverse resistivity ρxy/ρ

max
xy (10 T) are shown as a function of

the angle φB and B between 2 and 20 T, for the two scattering
models (4) and (5). ρxy is rescaled by its maximum value over
the angular range [ρmax

xy ≈ ρxy(φB = 45◦]) at 10 T in order to
get rid of the dependence on the parameters nimp and δ.

In the range 4–10 T (at lower fields the effects are moderate)
the angular modulation of the longitudinal MR has cusp-like
dips at φB = 90◦, 270◦ (magnetic field perpendicular to the
current) and rounded maxima at φB = 0◦, 180◦ (magnetic field
aligned to the current). The magnitude of the negative MR and
the anisotropy progressively increase with the field-strength.
The transverse resistivity has a sinusoidal modulation with
maxima and minima shifted by 45◦ with respect to ρxx .
However ρxy is about a factor 100 smaller than ρxx . Above 10 T
the angular MR develops additional maxima and minima near
diagonal orientations (φB = 45◦, 135◦, 225◦, 315◦) that unlike
the main extremal points—fixed at multiples of 90◦—do not
only move up and down but also shift in angular position as
the field is progressively increased. In the same field-range
where these additional features characterize the MR, ρxy

increases by (more than) one order of magnitude. Another
striking feature is the change in the angular modulation of
the transverse resistivity that substantially deviates from the
sinusoidal low-field behavior.

The B-dependence of the magnetoresistance at different
angles φB is shown in Fig. 3. Amplitude, shape, and the
field-scale of the MR all change with φB . Moving from a
configuration with magnetic field parallel to the direction
of the current (φB = 0◦) toward the opposite configuration
(φB = 90◦), the magnitude of MR grows by a factor ∼3 at
20 T. Moreover, the field-scale where the slope of MR becomes
negative—and large in magnitude—decreases by moving the
field away from the direction of the current. The results
are consistent with previous calculations [25] of the MR at
φB = 90◦, albeit here calculated in a different SOC-regime
(see Appendix B). The angular-maximum of the transverse
resistivity ρxy exhibits a strong enhancement around starting
at ∼10 T for the Gaussian-model (slightly higher field for
the exponential model). The slope of ρxy(B) softens at the
very high fields, where the magnetoresistance at φB = 45◦
shows the onset of saturation in the case of Gaussian disorder
potential. For the other model, instead, the curvature of the
MR(φB = 45◦) is still negative at B = 20 T (no saturation in
this field-range) that also produces a nonsaturating ρxy .

V. DISCUSSION

At T = 0, all of the conductivity of a metal is effectively
carried only by electrons at the Fermi level. In favor of
a clearer discussion, hereafter we neglect the effects of
low finite temperature—these are crucial quantitatively, but
do not alter the underlying mechanism. Therefore, we can
consider only electronic states at the Fermi level, characterized
by εk,ν = μ(n,B) [where μ is determined at any B self-
consistently according to Eq. (8)].

At low-density, where only the lowest dxy states are
populated, the spin-orbit coupling is weak and produces
two nearly degenerate chiral bands with k-linear Rashba
splitting [32]. In this limit, anisotropic scattering does not
produce anisotropic magnetoresistance, even in the presence of
spin-selective scattering [36]. Results of low-density calcula-
tions are shown in Fig. 8 in Appendix B.
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In Sec. III it was highlighted that above the Lifshitz point—
and particularly when the chemical potential is approximately
at the middle of the gap between dxz and dyz states—spin-orbit
coupling is sharply enhanced around particular directions in
the Brillouin zone (hybridization gaps). For both models of
disorder, backscattering in the outer bands is suppressed at
ξ � 1/kout

F (kout
F is the average Fermi-momentum in the outer

bands which are almost fully isotropic). Scattering processes
with small transfer of momentum |k − k′| coincide with
low-angle processes. (This is not the case for the highly
anisotropic innerbands.) Because of the small (intraband)
backscattering amplitudes for electrons in the outermost
bands, effective current-relaxation is achieved through forward
(interband) scattering to the innermost bands. The latter have
low mobilities due to the small velocities and large intraband
scattering rates (small |k − k′|).

With the electric field in the x direction, the trend of the
longitudinal (transverse) resistivity as a function of B follows
the field-dependence of the non-equilibrium distribution gk,ν

on sections of the large (outermost) Fermi surfaces where
the component of the band velocity vx

k,ν (vy

k,ν) is large. As
evident from Figs. 2 and 3, the field scale where negative
magnetoresistance sets on is angle-dependent, while the largest
MR always occurs at φB = 90◦, 270◦.

At B = 0 the spin-ordering on neighboring Fermi surfaces
around the avoided crossings of dxy and dxz,yz states in the
top-right quadrant of the Brillouin zone is |↓〉|↑〉|↑〉|↓〉 [SAM
in Fig. 1(b)]. By switching up the magnetic field, the ordering is
reversed for the inner bands, precisely at points in the Brillouin
zone where the component of the magnetic field on the (local)
axis of spin-orbit field �SO

k = �SO
k n̂k fulfils the condition

B · n̂k � �SO
k . (11)

This leads to |↓〉|↑〉|↓〉|↑〉 spin-ordering near the hybridization
gaps and to reduction of the total amount of interband
scattering between pairs of states (k,ν) and (k′,ν ′), which
have minimal interband distances |k − k′| and parallel spins
at B = 0.

The suppression of the scattering on a scale set by Eq. (11)
is most effective for enhancing (reducing) the longitudinal
conductivity (resistivity) at angles φB such that at points
in the Brillouin zone where B is perfectly aligned to �SO

k ,
the component vx

k,ν of the band-velocity is maximum (φB =
90◦, 270◦).

At higher fields (above 10 T) the intraband scattering
between pairs of states in the two outermost bands becomes
relevant. In Fig. 4, the calculated vectors mean-free-path �k,ν

are plotted on top of the corresponding Fermi surfaces for
different configurations of the magnetic field. In particular,
when the field is oriented far from the crystalline axes the spin-
orbital splitting in the outer bands is selectively modulated,
depending on the relative orientation of B and �SO

k .
With reference to the plot in Fig. 4(d), it is important to

notice that the two outer bands cross each other at an angle
ϑ = ϑ ≈ 10◦, while they are split along the complementary
direction (90◦ − ϑ) (top-right quadrant). The amplitudes of
scattering between dxy states (red section) to hybrid dxy/dxz

states at ϑ ≈ ϑ are enhanced by the magnetic field than

compared to the amplitudes of scattering to states at ϑ ≈
(90◦ − ϑ).

To better illustrate the consequences of this, we formally
express the solution of the Boltzmann Eq. (2) in the recursive
form

�k,ν = vk,ντk,ν +
∑
k′ 
=k

qkν,k′ν ′

⎧⎨
⎩vk′,ν ′τk′,ν ′

+
∑

k′′ 
=k,k′
qk′ν ′,k′′ν ′′

⎧⎨
⎩vk′′,ν ′′τk′′,ν ′′

+
∑

k′′′ 
=k,k′,k′′
qk′′ν ′′,k′′′ν ′′′ vk′′′,ν ′′′ + · · ·

⎫⎬
⎭

⎫⎬
⎭, (12)

where τk,ν is the bare band- and momentum-dependent
relaxation-time,

τk,ν =
∑
k′,ν ′

qk,ν,k′ν ′ . (13)

When the low-angle scattering is anisotropic, scattering-in
corrections to �RTA

k,ν = τk,νvk,ν calculated in relaxation-time
approximation (RTA) [37,38] substantially affect magnitude
and direction of the vector mean-free-path, which gets tilted
(away from the direction of the velocity vk,ν) toward the
direction of enhanced scattering (ϑ). The anisotropy of the
scattering effectively acts as a force in momentum space,
driving a shift of the electron distribution around the Fermi
surface, similar to the action of the Lorentz force in real
space when a magnetic field is applied perpendicular to the
plane. This mechanism is sometimes referred to as effective
Lorentz force (ELF) and is known to be responsible for
transport anomalies in multiband systems [39,40]. However,
it is usually investigated in addition to an actual orbital field.
By gradually varying B and φB , magnitude and direction of
the ELF at a point (k,ν) change non monotonically. In other
words, the scattering amplitudes are nonmonotonic functions
of the magnetic field and the direction of the tilting of �k,ν

undergoes multiple reversals when the magnetic field changes
in magnitude and/or direction.

Therefore, the electron distribution

gk,ν ∝ �k,ν · E (14)

may increase or decrease depending on whether the tilting
points to the x or y axis, respectively. The appearance of
secondary maxima and minima of the MR at intermediate
orientations of the magnetic field, and the shift in their angular
positions as a function of B, follow by the dynamics of the
ELF-texture around the Fermi surfaces.

Finally, let us discuss what are the effects on ρxy , which gets
no contribution from the interband scattering. It is uniquely
the intraband scattering that is responsible for the planar
Hall-effect (transverse resistivity in presence only of in-plane
magnetic field). We need to look at the total contribution of
states with opposite velocities in the direction orthogonal to the
electric field and understand why an imbalance between their
occupations is generated by the magnetic-field. With reference
to states in the bottom-right quadrant (270◦ < ϑ < 360◦), the
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FIG. 4. Fermi surfaces at n = 2.2×1013 cm−2 for different configurations of the in-plane magnetic field: (a) B = 0 T, (b) B = 20 T φB = 90◦,
(c) B = 10 T φB = 45◦, (d) B = 20 T φB = 45◦. Magnitude and direction of the vector mean-free-path �k as a function of the momentum
k on the outermost bands (which support all of the total conductivity at any fields) are represented by arrows—colors distinguish the two
bands of each pair. The longitudinal conductivity σxx is proportional to the average x-component of the vector mean-free-path. (At φB = 0, 90◦

ρxx = σ−1
xx .) The modulation of the vmfp in (c) is mirror-symmetric with respect to the crystalline axes; hence, σxy(ρxy) ≈ 0 because states with

opposite velocities compensate each other with equal weights �x . Instead in (d) the texture of the vmfp clearly violates the symmetry resulting
in a finite and large σxy .

scattering-in corrections are large and isotropic; hence, they
bring a total contribution to the magnitude but, importantly,
no contribution to the direction of �. According to Eq. (12),
these states have �k,ν ∝ vk,ν (as it would be according to
RTA) but the magnitudes of the vectors are much larger
than the corresponding RTA results. Similarly, states in the
top-left quadrant of the Brillouin zone also have �k,ν ∝ vk,ν .
However the scattering-in corrections are smaller for such
states because the magnetic field does not suppress—but
rather enhances—the spin-orbital splitting at any point in the
quadrant. From Eq. (14) (with E ‖ x̂), we conclude that an
imbalance is produced between the occupation of electronic
states with velocity −v

y

k (bottom-right) and the occupation of
states with velocity v

y

k (upper-left), which leads to a large ρxy

(∼0.1 · ρxx at B = 20 T and parameters in Table I).

At constant B, the angular modulation of ρxy sharply
ramp up when the angle φB takes a value such that at
isolated points in the Brillouin zone the spin-orbital splitting is
totally suppressed by the Zeeman field. Once this occurs, the
low-angle scattering suddenly becomes strongly anisotropic
and then remains stable until the field is rotated far enough
to let the spin-orbital splitting open again. This results in a
flattening of the peaks of ρxy more or less pronounced in all
the plots shown in this paper (Figs. 2, 6, 7, and 8).

VI. CONCLUSIONS

In this work, we investigated magnetotransport at the
conducting interface of heterostructures formed by transition-
metal oxides LaAlO3 and SrTiO3 and, in particular, the
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dependence of the resistivity tensor on the magnitude and
orientation of an in-plane magnetic field.

Effects of many-body interactions (e.g., electron-electron
[41,42] or magnetic couplings [9,12]) are neglected, while
spin-orbit coupling is treated with a microscopic model of the
low-energy conduction states including six electronic bands.
The Boltzmann Eq. (2) for electrons scattered by correlated
impurities—with correlations decaying on a characteristic
length scale ξ—is solved numerically as a function of the
external field. Our main finding is a crossover from the
low-field regime of weak anisotropy to the high-field regime of
strong anisotropy which results from important changes in the
electronic structure at the Fermi level when the carrier-density
is tuned above the Lifshitz point [12]. However, we remark that
is not simply the onset of the occupation of anisotropic bands
to determine a change of the magnetotransport properties,
but rather the selective modulation of the impurity-scattering
connecting pairs of states at the Fermi level. In the presence of
magnetic field, the spin-orbital structure of the Bloch states is
locally modified depending on the relative orientation of spin-
orbit and magnetic fields. In particular, the effect is enhanced in
the vicinity of (avoided) band crossings when the component
of the magnetic field on the local (band- and momentum-
dependent) axis of the spin-orbit field is comparable to the
magnitude of the latter. Scattering amplitudes to and f rom

these states are then extremely sensitive to the magnitude and
direction of the magnetic field.

Our results are in good qualitative agreement with exper-
iments [9], although some features of the experimental data
remain not fully captured by our simple model.

The physics of complex oxide interfaces is interesting and
promising for the development of electronic devices at the
nanoscopic length scale. Our work highlights the richness
of electronic transport characterizing the system due to the
unconventional structure of its spin-orbit coupling. It hopefully
provides a further step towards a better understanding of the
role of spin-orbit interaction in the conducting properties of
oxide interfaces.
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APPENDIX A: SINGLE-PARTICLE HAMILTONIAN

To model the conduction bands at the interface we use a
single-electron Hamiltonian [12], where the electronic states
are derived from the t2g (dxy , dxz, and dyz) orbitals of Ti-
atoms. Accounting for a total number of six degrees of freedom
(three orbitals times two spin components), the translational
invariant Hamiltonian in momentum space has a 6×6 matrix-
representation that is the sum of the four terms in Eq. (1). The
kinetic Hamiltonian,

HL =

⎛
⎜⎝

εxy(k) − �E 0 0

0 εxz(k) δ(k)

0 δ(k) εyz(k)

⎞
⎟⎠ ⊗ σ̂0, (A1)

εxy(k) = 2tl(2 − cos kx − cos ky),

εxz(k) = 2tl(1 − cos kx) + 2th(1 − cos ky),

εyz(k) = 2th(1 − cos kx) + 2tl(1 − cos ky),

δ(k) = 2td sin kx sin ky, (A2)

describes electrons hopping between Ti-orbitals on adjacent
sites in the interfacial (xy) plane. dxy orbitals have all the
lobes lying on the xy plane, x- and y-hopping amplitudes are
equivalently described by a single light matrix elements tl .
Instead, dxz and dyz orbitals have both lobes in-plane and in
the direction normal to the interface, giving rise to one light
and one heavy (th < tl) matrix element, respectively. �E is
the gain in the on-site energy of dxy states confined at the
interface compared to the on-site energy of dxz/dyz states.
Interorbital matrix elements ∝ sin kx sin ky account for dxz/dyz

hybridization with a strength td ≈ th (however, this term does
not affect at all the results of our calculations).

At the interface the confining electric field along the
z-direction breaks the inversion-symmetry and activates
transitions from dxy orbitals—which are even under mir-
ror symmetry—to dxz and dyz orbitals—odd under mirror
symmetry—on adjacent metal sites. The inversion-breaking
term has the form

HZ = �Z

⎛
⎜⎝

0 i sin ky i sin kx

−i sin ky 0 0

−i sin kx 0 0

⎞
⎟⎠ ⊗ σ̂0. (A3)

Atomic spin-orbit coupling is the same as for the bulk STO
system, that is

HSO = �SO

2

∑
i=x,y,z

σi ⊗ Li = �SO

2

⎛
⎝

0 iσ̂x −iσ̂y

−iσ̂x 0 iσ̂z

iσ̂y −iσ̂z 0

⎞
⎠, (A4)

with

Lx = h̄

⎛
⎝

0 i 0
−i 0 0
0 0 0

⎞
⎠, Ly = h̄

⎛
⎝

0 0 −i

0 0 0
i 0 0

⎞
⎠, Lz = h̄

⎛
⎝

0 0 0
0 0 i

0 −i 0

⎞
⎠ (A5)
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FIG. 5. Average spin (SAM) and orbital (OAM) angular momentum around the Fermi surfaces at B = 0 (top), B = 20 T and φB = 90◦

(middle), and B = 20 T and φB = 45◦ (bottom). �SO > �Z and carrier density n = 2.2×10−13 cm−2, as the calculations in Sec. IV.
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the representations of the components of the orbital angular-momentum. Last, the Zeeman Hamiltonian HB = μB(L + gS) ·
B/h̄ is

HB = μB

⎛
⎝g(Bxσ̂x + Byσ̂y)/2 iBxσ̂0 −iByσ̂0

−iBxσ̂0 g(Bxσ̂x + Byσ̂y)/2 0
iByσ̂0 0 g(Bxσ̂x + Byσ̂y)/2

⎞
⎠, (A6)

with Bx = |B| cos φB, By = |B| sin φB and S = h̄σ̂/2.
The expectation-values of the spin and orbital angular

momenta are shown (Fig. 5) at zero and high magnetic field
for two particular orientations φB = 90◦ (largest MR) and
φB = 45◦ (approximately largest ρxy signal) and the set of
parameters in the first line of Table I.

APPENDIX B: DEPENDENCE OF THE ANISOTROPY
ON THE PARAMETERS OF THE MODEL

The parameters that define the model of the interface are
taken within the ranges that are set by theoretical and exper-
imental results in literature, e.g., first-principles calculations,
ARPES measurements on the surface of STO [35,43,44], and
more recently available soft-x-ray ARPES on the LAO/STO
interface [45]. Further estimates from transport measurements
[6,21,30,46] give more informations at least about the order
of magnitude of the energy scales in the system. Below we
list and discuss the choices of the parameter-values in the
paper and show results of additional calculations at different
parameters than in the main text, showing a striking stability
of the qualitative features of the data in parameter space. (The
calculations here are for Gaussian-correlated impurities.)

Hopping elements tl , th, confinement energy �E, atomic-
spin orbit strength �SO, and inversion-asymmetry parameter
�Z are measured in meV; the g-factor is dimensionless and
the disorder correlation-length ξ is measured in units of the
lattice constant a. The values of the light and heavy mass
corresponding to the hopping parameters tl and th are 0.6 me

and 19 me, respectively (me is the bare electron mass).
The value of �SO from ab initio calculations [47] or

transport experiments [6,21] is estimated in a wide range
10 ÷ 25 meV. (In a seminal work on Raman scattering for the
bulk STO system Uwe et al. [48] extracted the value 18 meV.)
Here we consider the values �SO = 7 meV and �SO = 9 meV
(so just below the lower limit of the estimated range) and
produce qualitatively similar results for the anisotropy, while
at the same time changing also g and �Z. In principle, one
could take larger values of �SO and slightly different hopping
elements and still remain in a regime where our results still
hold. Moreover, we point out that the strong anisotropy of the
spin-orbit field around the Fermi surfaces [35]—with a large

TABLE I. Parameters used for the calculations in the paper,
ordered according to the figures they refer to.

Fig. tl th �E �SO �Z g ξ

2, 3, 8 400 12.5 65 7 2.5 5 5
6 400 12.5 65 9 4 −3.4 5
7 400 12.5 65 7 2.5 5 4, 6, 8

enhancement of the effective orbital angular momentum near
hybridization gaps—so far has not been considered in fitting
transport measurements, which might return overestimated
values of �SO.

Outcomes of Boltzmann calculations [25] were found in
good agreement with the experimentally measured magnetore-
sistance at φB = 90◦ (no transverse current, hence σxy = 0)
in the regime of strong inversion-symmetry-breaking �Z >

�SO. Here we recover a comparable MR—and comparable
field-dependence—in the different (and maybe more realistic)
regime �Z < �SO. We can understand this similarity observed
in two completely different regimes by realizing that the
reversal of the spin-ordering on neighboring Fermi surfaces
induced by the magnetic field, which reduces the overall
forward scattering and hence lowers the resistance, occurs in
both cases regardless of the relative orientation of orbital and

FIG. 6. MR and ρxy/ρ
max
xy (10 T) at negative g-factor (full set of

parameters listed in the second line of Table I).
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ξ= 8

FIG. 7. MR and ρxy/ρ
max
xy (10 T) at different values of the disorder correlation-length ξ (full set of parameters listed in the third line of Table I).

FIG. 8. MR and ρxy/ρ
max
xy (10 T) at lower carrier-densities than the calculations in the main text.
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spin angular momenta (which is different in the two regimes).
For �Z we consider values below 5 meV, which was identified
as an upper bound to the real value by Ruhman et al. [12].

It is known that the g-factor for electrons confined in
quantum wells, like InSb and GaAs [49] can substantially
differ from the conventional value g = 2. In Sec. IV we show
results for g = 5, one of the two possible outcomes (the other
one is g = −3.4) of a fit to Shubnikov-de Haas oscillations
at low temperature [30]. (Note that changing the g-factor is
not simply equivalent to rescale the magnetic field: magnetic
field also couples to the orbital angular-momentum and the
relative strength 〈μ · B〉/〈L · B〉 is dependent on g.) Yet
the phenomenology of the anisotropy which we extensively
discussed in Sec. V is recovered at negative g = −3.4
(Fig. 6).

Variations in the correlation-length ξ are also considered.
While there is no simple way to extract informations from
experiments, it is reasonable to limit ξ within a range of
one order of magnitude. Indeed, a too large ξ (>10 a0 with
a0 = 0.4 nm the lattice constant) would require to treat the
impurities as a disordered medium rather than independent
scatterers. Calculations in the main text refer to ξ = 5 a0.
Below, results for ξ = 4, 6, 8 are shown (Fig. 7). Qualitatively
the results are very similar if ξ |�kbs| > 1 where |�kbs| ∼
2kout

F is the momentum-transfer for backscattering in the
large outer band (approximately equal to twice the average
Fermi momentum) and at the same time not larger than

10–15 a0—with a0 = 0.4 nm the lattice constant—whereby
also the zero-field interband scattering is highly reduced. Note
that the density of impurities nimp and the amplitude δ both
drop out the expressions for MR and ρxy/ρ

max
xy (10 T).

Finally, let us comment on the density-field dependence
of our calculations. A universal scaling of the MR-curves as
a function of carrier-density, if the magnetic field is rescaled
by a density-dependent characteristic value, seems to be a
general feature of the experimental data [9,25]. This is not
recovered by the Boltzmann model (even within this different
spin-orbit regime) pointing to a physics that might be unrelated
to spin-orbit coupling.

In Fig. 8 we show results of calculations at two different
densities than the calculations in the main text: n= 1.5×
1013 cm−2 (below the Lifshitz point) and n= 2.1×1013 cm−2

(above the Lifshitz point). The total absence of magnetoresis-
tance at the lowest density (left panel) simply comes from the
absence of interband scattering (since only the lowest dxy states
are filled). At higher density (right panel) the high-field MR
is characterized by multiple maxima and minima as in Fig. 2.
It is worth to notice that there is larger discrepancy between
MR (φB = 0) and MR (φB = 90) than compared to the results
at n = 2.2×1013 cm−2 (Fig. 2). This gap is progressively
reduced as the chemical potential is increased up to the middle
of the spin-orbit gap at the �-point. Densities too close to the
Lifshitz point are not considered here. (The weak-disorder
approximation fails approaching band-edges where kF → 0.)
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