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We consider deep inelastic scattering thought experiments in unitary conformal field theories. We
explore the implications of the standard dispersion relations for the operator product expansion data. We
derive positivity constraints on the operator product expansion coefficients of minimal-twist operators of
even spin s ≥ 2. In the case of s ¼ 2, when the leading-twist operator is the stress tensor, we reproduce the
Hofman-Maldacena bounds. For s > 2, the bounds are new.
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I. INTRODUCTION AND SUMMARY

Conformal field theories (CFTs) in d spacetime dimen-
sions are described first and foremost by correlation
functions of local operators. The operator product expan-
sion (OPE) fixes these in terms of the spectrum of local
operators and their three-point functions. Conformal sym-
metry determines the three-point functions up to a set of
numbers. The spectrum of unitary CFTs is constrained by
unitarity bounds, which follow from the operator-state
correspondence and the requirement that states have
positive norm [1–3]. There are, however, less obvious
bounds coming from, for example, positivity of energy
correlators [4], deep inelastic scattering sum rules [5,6], and
causality [7].
In the case of energy correlators [4], one demands

positivity of the energy flux at infinity integrated over all
times. In the simplest case of a state created by a local
operator with a given momentum, this leads to new con-
straints on the three-point functions of operators with spin
and the stress-energy tensor of the type hO†

μ1…μsTμνOν1…νsi.
The positivity of the integrated energy flux is a plausible
assumption, but one may wonder whether there is an
independent argument for it. There have been a couple of
proposals in the literature. In Ref. [8], the energy flux
positivity has been derived from nontrivial assumptions
about the OPE and the spectrum of nonlocal operators.
Understanding the properties of these nonlocal operators
and their OPE in unitary CFTs is an open problem. Another
proposal has been put forward in Ref. [9], where the
OPE of two stress-energy tensors has been extrapolated
beyond the region of its validity to argue the energy flux
positivity.
In Refs. [5,6], it was shown that by considering a

setup where a particle with spin is scattered off a
massive state, one can relate (using the optical theorem)
the positivity of the inclusive cross section (unitarity
requires the cross section to be positive) with the OPE

data, thereby placing constraints on the latter.1 This
leads to the convexity property of the minimal-twist
operators which appear in the OPE of two Hermitian-
conjugate operators. In this paper, we use a similar deep
inelastic scattering (DIS) setup to derive the positivity of
the energy flux and related constraints on the OPE data
for operators with spin. The idea of using DIS together
with scale invariance is not new—for an example, see
Ref. [10]. We also discuss how to formulate the DIS
experiment purely in a CFT without considering a flow
to a gapped phase.
The results of our paper can be summarized as positivity

constraints on the coefficients of the operator product
expansion2

O†
jOj ∼

X
m

a�s;mOτ�;s þ � � � ; ð1:1Þ

whereOτ�;s is the minimal-twist operator of even spin s (the
twist is defined as τ ¼ Δ − s where Δ is the conformal
dimension and s is the spin), the index m refers to the
different tensor structures which appear in the DIS sum
rules, and the dots stand for the contribution of higher-twist
operators. Then, the coefficients a�s;m satisfy the following
conditions:

a�2;m ≥ 0; m ¼ 0;…; j;

a�s;m1
a�s;m2

≥ 0; m1; m2 ¼ 0;…; j: ð1:2Þ

1The assumption in Ref. [6] involves the existence of a relevant
operator which induces a renormalization group flow terminating
in a gapped phase; the scattering experiment involves the lightest
particle in that gapped theory. Here, we will argue that this
additional structure is not necessary.

2Three-point functions of operators with spin were analyzed in
Ref. [11]. a�s;m are certain linear combinations of the structures
from that paper as explained in detail in the main body of the
present paper.
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In the case of s ¼ 2, the bounds above (1.2) are the
familiar Hofman-Maldacena bounds [4,12] because the
minimal-twist spin-2 operator is always a stress tensor.
In fact, we can obtain more general bounds by consid-

ering a four-point function of the type

hO†
jOj

~O†
~j
~O~ji: ð1:3Þ

As before, we denote the minimal-twist operators which
appear in the expansion of the correlator (1.3) in the
s-channel by Oτ�;s and the corresponding OPE coefficients
by a�s;m and ~a�s;m. Then, a more general set of constraints
derived from DIS can be formulated as

a�s;m1
~a�s;m2

≥ 0; m1 ¼ 0;…; j; m2 ¼ 0;…; ~j:

ð1:4Þ
In the course of deriving the DIS sum rules, we assumed

a certain behavior for the scattering amplitudes in the
Regge limit. This translates into the lowest-spin sc for
which we can trust the sum rules. Thus, strictly speaking,
our argument implies (1.4) only for s ≥ sc, where sc is
some unknown number which depends both on the theory
and the external operators. However, when the external
operators are energy-momentum tensors, then there is
evidence that sc ¼ 2. We will discuss this point in
detail below.
The ideas explained here have various applications for

holographic theories, but we will pursue them elsewhere
[13]. One simple example that makes contact with
Refs. [7,14] is to consider a quartic scalar coupling in
the bulk ∼λð∂φÞ4. Denote the operator dual to φ by O. The
interaction ∼λð∂φÞ4 shifts the dimension of the spin-2
operator O∂μ∂νO to 2þ 2ΔO − λ. Therefore, convexity is
obeyed only if λ > 0, as demanded by causality in the
bulk [15].
The rest of the paper is organized as follows. In Sec. II,

we consider the DIS experiment with gravitons and derive
constraints on the OPE coefficients of two stress tensors in
a unitary CFT. In Sec. III, we generalize these consider-
ations to the case of generic operators. In Sec. IV, we derive
a relation between the bounds obtained from the positivity
of the energy flux and the DIS experiment. In Sec. V, we
comment on how one can set up the DIS experiment
without flowing to the gapped phase. Many technical
details are collected in the Appendixes.

II. DEEP INELASTIC SCATERING

Deep inelastic scattering probes the internal structure of
matter. The scattering process consists of bombarding a
target with a highly energetic quantum and examining the
final state. DIS was first used to probe the structure of
hadronic particles. The setup is depicted in Fig. 1. A lepton
emits a virtual photon which strikes a hadron. In principle,
to investigate the structure of the target jPi, one may shoot

different particles at it. A natural choice is particles which
couple to conserved currents. The options depend on the
theory, and the symmetries it preserves. A universal choice
to consider is the graviton. We can couple the stress-energy
tensor of the theory to the background graviton and perform
the DIS experiment. More generally, we can couple a
source to any operator of the theory.
We also have to specify the state jPi. For that, we

imagine that our theory is gapped, and we denote with jPi
the lightest, massive, one-particle state in the system which
we assume to be a scalar.
In the standard treatment of DIS, one can relate the deep

Euclidean (i.e., ultraviolet) data to the positive-definite total
cross section using dispersion relations. While our presen-
tation is aimed at being self-contained, one can consult, for
instance, the reviews [16,17].
It was already demonstrated in Refs. [5,6] that the ideas

of DIS can lead to nontrivial consequences for unitary
CFTs. There, it was argued that the minimal twist of
operators which appear in the OPE of Hermitian conjugate
operators is a monotonic, nonconcave function of spin
starting from some s ≥ sc.
In what follows, we will discuss the DIS experiment with

gravitons and restrict to the case of a scalar target jPi. Later,
we will argue that it is not necessary to make this series of
assumptions. Meanwhile, we make these assumptions in
order to simplify the presentation.

A. DIS experiment with gravitons

Let us consider the DIS experiment for the case of the
stress-energy tensor operatorTμνðxÞ. A backgroundgraviton
δgμνðxÞ couples to the theory via ∼

R
ddxTμνðxÞδgμνðxÞ. We

imagine that some physical particle emits an off-shell
graviton which strikes a state of the theory. So we have
in mind the setup of Fig. 1, only with the photon replaced by
the graviton.
A useful intermediate object to consider is the “DIS

amplitude.” For that, we imagine an exclusive process,

FIG. 1. A lepton emits a virtual photon which strikes a hadron.
The hadron breaks up into a complicated final state.
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where the graviton strikes the state jPi and the out states are
again a graviton (with the same polarization and momen-
tum) and the same initial state, hPj. This is depicted
in Fig. 2.
The amplitude for the “graviton-DIS” process depicted

in Fig. 2 is given by

Aðqμ; PνÞ ¼
Z

d4ye−iqyhPjT ðTðϵ⋆; yÞTðϵ; 0ÞÞjPi; ð2:1Þ

where the momentum of the target jPi is denoted by Pμ;
Tðϵ; yÞ≡ TμνðyÞϵμν, and ϵμν is a polarization tensor (ϵ⋆ is
the conjugate polarization tensor). We can shift ϵμν →
ϵμν þ qνlμ þ qμlν with arbitrary lν. This would not affect
the two-point function in the vacuum because of energy-
momentum conservation. But here we are dealing with a
two-point function in a nontrivial state so contact terms
may contribute. We therefore do not impose ϵ:q ¼ 0.
However, note that if we were to take ϵμν ∼ ημν, then we
would be studying the scattering of the conformal mode of
the metric, i.e., the dilaton. These scattering amplitudes are
suppressed at large q because the trace of the energy-
momentum tensor vanishes in a conformal field theory. We
therefore take the tensor ϵμν to be traceless.
We imagine a general massive (nonconformal, gapped)

theory, in which the lightest state is jPi. The above
amplitude depends on the mass scales of the theory, on
the polarization ϵμν, and on two kinematical invariants, i.e.,

q2 and x ¼ q2

2q:P. We promote x to a complex variable and

study the amplitude for fixed spacelike momentum q2 > 0.
Since jPi is the lightest particle of the theory (which we
assume to be a scalar for simplicity), the above amplitude
will have a branch cut discontinuity for −1 ≤ x ≤ 1, as
depicted in Fig. 3. The optical theorem relates the dis-
continuity across the cut in the x plane to the square of the
forward amplitude, which is positive definite.
For large (compared to the mass scale) and spacelike

q2 > 0, we can compute the DIS amplitude (2.1) with the
help of the OPE, which is determined in the ultraviolet
conformal field theory. The resulting expression is a series
expansion around x → ∞, valid for fixed and large q2 > 0.

To isolate the coefficient of the sth power of x in the
expansion, one computes the “s-moment” defined as
μsðq2Þ ¼

H
dxxs−1Aðx; q2Þ. As long as the amplitude

vanishes sufficiently quickly for small x, we can pull the
contour from infinity to the branch cut and write

I
dxxs−1Aðx; q2Þ ¼ 2

Z
1

0

dxxs−1Im½Aðx; q2Þ�; ð2:2Þ

where we assumed that s is even. For odd s, the contri-
bution from the left and the right cuts cancel each other.
For (2.2) to be valid for all s ≥ 2, we need to assume that

lim
x→0

Aðq2; xÞ < x−2: ð2:3Þ

In general, we only know thatA is bounded by some x−N in
this limit. (This is discussed in Ref. [18]; for a recent
discussion and references, see also Ref. [19].) However,
there are some pieces of evidence that (2.3) indeed holds for
graviton deep inelastic scattering. One is that the convexity
theorems derived from it in Ref. [6] hold in all known
examples. The other piece of evidence is that, as we will
show below, by assuming (2.3), we get precisely the
bounds of Ref. [4] if we focus on s ¼ 2. We will therefore
take (2.3) as an assumption in this section and revisit it in
the next section when we discuss more general DIS
gedanken experiments.3

Unitarity implies

Im½Aðx; q2Þ� ≥ 0; ð2:4Þ

which leads, via (2.2), to

P P

q q

* *

FIG. 2. The deep inelastic scattering amplitude. δg� stands for a
virtual graviton with momentum qμ.

FIG. 3. The analytic structure in the x plane.

3As mentioned in the Introduction, the bounds following from
s ¼ 2 constrain the allowed effective theories in anti-de Sitter. For
example, the bound on the sign of λ in the λð∂ϕÞ4 theory in anti-
de Sitter recently discussed in Refs. [7,14] immediately follows
from the convexity of anomalous dimensions, assuming the s ¼ 2
sum rule converges.
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I
dxxs−1Aðx; q2Þ ≥ 0; ð2:5Þ

imposing positivity relations on the coefficients of the OPE.
These constraints are in addition to the nonconcavity of the
minimal-twist function.

B. OPE in DIS kinematics

Our objective is to evaluate (2.1) with the help of the
OPE and investigate the positivity constraints one obtains
from (2.5). We start with the operator product expansion for
two energy-momentum tensors,

Tðϵ⋆; yÞTðϵ;0Þ ¼
X

s¼0;2;4…

X
α

f̂ðαÞ;μ1…μs
s ðy; ϵ;ϵ⋆ÞOðαÞ

μ1…μsð0Þ;

ð2:6Þ

where s denotes the spin of the operator and α labels
operators of the same spin. Actually, there could be
operators in other representations in (2.6), for example,
operators in mixed symmetric-antisymmetric representa-
tions (see, e.g., Ref. [20]). Since we are ultimately
interested in using the OPE to evaluate (2.1), we can

ignore the representations which have some of their indices
antisymmetrized because the corresponding expectation
values in the (scalar) state jPi vanish. For a similar reason,
we do not include descendants in (2.6); they give a
vanishing contribution because ∂μhPjOðxÞjPi ¼ 0.

For the operators OðαÞ
μ1μ2…μs in the even s symmetric

traceless representation which appear in the OPE (2.6), the

expectation values of OðαÞ
μ1μ2…μs in the state jPi are para-

metrized as

hPjOðαÞ
μ1μ2…μsð0ÞjPi ¼ BðαÞ

s Pμ1Pμ2…Pμs − � � � ; ð2:7Þ

where the BðαÞ
s are some dimensionful coefficients and the

dots stand for trace terms (terms involving the metric
tensor), which we will not need to specify. For example, in
the case of the stress tensor expectation value in a one-
particle state, we famously have [21]4

hPjTμ1μ2ð0ÞjPi ¼ Pμ1Pμ2 : ð2:8Þ

Therefore, the corresponding coefficient BT is determined
to be 1.
Conformal symmetry fixes the form of the leading OPE

coefficients for small enough y to be5

f̂ðαÞμ1…μsðϵ�; ϵ; yÞ ¼ yðτ
ðαÞ
s −2dÞ½âðαÞs;0 ðϵ⋆:ϵÞyμ1…yμs þ âðαÞs;1 ðϵ⋆:ϵÞλκyλyκyμ1…yμsðy2Þ−1

þ âðαÞs;2 ððϵ⋆Þκ1κ2yκ1yκ2Þðϵλ1λ2yλ1yλ2Þyμ1…yμsðy2Þ−2 þ � � ��; ð2:9Þ

where the dots denote terms which contain polarization tensors with noncontracted indices as well as terms subleading in
powers of y. Both of these will turn out to be subleading in the kinematics we are considering.
We now substitute (2.9) in (2.1) and take the Fourier transform, leading to

Aðqμ; PμÞ ¼
X

s¼0;2;4;…

X
α

ðϵ⋆:ϵÞ
�
âðαÞs;0B

ðαÞ
s

�
i
∂
∂q :P

�
s
− traces

�
fðαÞs;0 ðqÞ

þ ðϵ⋆:ϵÞλκ
�
i
∂
∂qλ

��
i
∂
∂qκ

��
âðαÞs;1B

ðαÞ
s

�
i
∂
∂q :P

�
s
− traces

�
fðαÞs;1 ðqÞ

þ
� ∂
∂qλ1

∂
∂qλ2 ðϵ

⋆Þλ1λ2
�� ∂

∂qκ1
∂

∂qκ2 ϵ
κ1κ2

��
âðαÞs;2B

ðαÞ
s

�
i
∂
∂q :P

�
s
− traces

�
fðαÞs;2 ðqÞ þ � � � ð2:10Þ

Here, the functions fðαÞs;mðqÞ are Fourier transformations of the “Feynman” propagators, defined as follows,

fðαÞs;mðqÞ ¼
Z

ddye−iqyðy2 þ iεÞ12τðαÞs −d−m; ð2:11Þ

and “traces” stands for terms of the form P2nðP: ∂
∂qÞs−2nð ∂

∂q :
∂
∂qÞn and 2 ≤ 2n ≤ s. We will soon see that these terms are

negligible in the limit we consider.

4We normalize the one-particle states as follows: hP0jPi ¼ ð2πÞd−1E~Pδ
ðd−1Þð~P0 − ~PÞ.

5Here, ϵ⋆:ϵ ¼ ϵ⋆αβϵαβ and ðϵ⋆:ϵÞλκ ¼ ϵ⋆λα ϵκα.

ZOHAR KOMARGODSKI et al. PHYSICAL REVIEW D 95, 065011 (2017)

065011-4



At this point, it is convenient to express the amplitude in

terms of the kinematical invariants, q2; x≡ q2

2P:q. We are

interested in the regime of large spacelike q2 > 0, but we
work to all orders in x. Therefore, for a given power of x,
we keep only the leading terms in the limit q2 → ∞. We
obtain

Aðq2; xÞ ¼
X
s

ðq2Þ−τ�s;0=2þd=2C�
s;0x

−sðϵ⋆:ϵÞ2

þ
X
s

ðq2Þ−τ�s;1=2þd=2C�
s;1x

−s ðϵ⋆:ϵÞλκqλqκ
q2

þ
X
s

ðq2Þ−τ�s;2=2þd=2C�
s;2x

−s

×
ðϵ⋆Þλ1λ2qλ1qλ2ϵκ1κ2qκ1qκ2

ðq2Þ2 ; ð2:12Þ

where τ�s;i denotes the twist of the minimal-twist operator
which contributes to the corresponding polarization tensor
structure. A priori we do not have to impose τ�s;i ¼ τ�s , but
generically we do expect this to be the case since there is no
symmetry principle that sets some of the tensor structures to
zero. Below, we assume that

τ�s;m ¼ τ�s ; ð2:13Þ

unless stated otherwise.6

The trace terms have been consistently neglected by
invoking the monotonicity of the twists [6]. Similarly, one
can verify that terms containing ϵ:P are irrelevant for our
consideration7 Among the set of operators of a given spin s,
only the one with the smallest twist, τ�s , has been retained in
(2.12). The corresponding coefficients, C�

s;m, are given by

C�
s;m ¼ 2τ

�
s−d−2mπ

d
2

Γðτ�s−d
2

þmþ sÞ
Γðmþ 2d−τ�s

2
Þ B�

sa�s;m; ð2:14Þ

which can be derived using the Fourier transform (2.11).
Explicit expressions for the a�s;m in terms of the â�s;m which
appear in (2.10) are given in Appendix A.

As long as we can deform the contour in the complex
plane as explained above (2.2), we can substitute (2.12) into
(2.5) to obtain various positivity relations as required by
unitarity, i.e.,

C�
s;m ≥ 0; m ¼ 0; 1; 2: ð2:15Þ

These three inequalities for each spin are achieved by
judicious choices of the polarization tensor. First, we
choose a convenient reference frame for the spacelike
momentum qμ ¼ ð0; 0;…; 0; kÞ. We then organize the
polarization tensor ϵμν according to its properties under
the subgroup of rotations which leave qμ invariant. There
are three possibilities, and each produces a single
constraint:

(i) We can take ϵ01 ¼ ϵ10 ¼ 1 and let all the other
components vanish. Then, only the first line in
(2.12) remains.

(ii) We take ϵ01 ¼ ϵ10 ¼ ϵ1ðd−1Þ ¼ ϵðd−1Þ1 ¼ 1, and all
the other components vanish. Only the second line in
(2.12) remains nonzero.

(iii) We take ϵ00 ¼ ϵðd−1Þðd−1Þ ¼ ϵ0ðd−1Þ ¼ ϵðd−1Þ0 ¼ 1
with the rest of the components set to zero. In this
case, only the last line in (2.12) is nonvanishing.

It is instructive to consider in detail the case s ¼ 2. In this
case, the operator of the smallest twist is none other but
the stress-energy tensor. Unitarity sets a lower bound on the
twist of all spin-s operators τs ≥ d − 2 (and when the
inequality is saturated, we get a conserved current) [1,3].
Hence, the energy-momentum tensor is the minimal-twist
operator with s ¼ 2 unless the theory has more than one
conserved spin-2 current. For the energy-momentum ten-
sor, we know from (2.8) that BT ¼ 1. It follows that (2.15)
directly imposes bounds on the OPE coefficients of
the CFT.
Remarkably, these bounds coincide with the energy flux

constraints obtained in Ref. [4]. To make this explicit, we
should relate the aT;m to the independent OPE coefficients
of TT ∼ T using the formalism of Refs. [11,24]. A similar
computation in d ¼ 4 was done in Ref. [9]. For generic d,
we get8

aT;0 ¼ −
dð2b − cÞ þ aðd2 þ 4d − 4Þ

4ð−2b − cð1þ dÞ þ að−6þ dþ d2ÞÞ ∼ nv ≥ 0;

aT;1 ¼
1

8

aðd2 þ 6d − 8Þ − bð2 − 3dÞ − 2dc
ð−2b − cð1þ dÞ þ aðd2 þ d − 6ÞÞ ∼ nf ≥ 0;

aT;2 ¼ −
1

32

dðd − 2Þð4aþ 2b − cÞ
ðaðd2 þ d − 6Þ − 2b − cð1þ dÞÞ ∼ ns ≥ 0;

ð2:16Þ

6One may worry that the large momentum limit of the DIS
amplitude is not correctly captured by the Fourier transform of
the OPE [22,23]. We expect this issue not to be relevant here,
because the terms which dominate over the Fourier transform of
the OPE in the large momentum limit come from “semilocal
terms” [23] in position space. It would be interesting to show that
this is indeed the case.

7Both ϵ:P and trace terms behave like xm−s with m > 0 for
small x. As a result, they only contribute to (2.5) for spins s0 < s.
Their contribution behaves like q−2τ

�
s (or higher power) in the

large q2 limit. However, the fact that the twist is a monotonically
increasing function of the spin [6], namely that τs > τs0 , implies
that it is subleading compared to the contribution q−2τ

�
s0 coming

from the leading-twist operator in the s0 sector.

8See Appendix B for details on the derivation of these
constraints.
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where ða; b; cÞ denote the parameters which determine
the three-point function of the stress-energy tensor in
the notations of Ref. [24] and ðns; nf; nvÞ in the basis
of structures generated by free field theories [12].
Equation (2.16) holds in any d ≥ 4. In d ¼ 4, it yields
the familiar expressions in four dimensions [4].
In d ¼ 3 dimensions, there are only two independent

conformal free theories (those of free scalars and of free
fermions), and the number of independent parameters in the
three-point function of the stress-energy tensor is accord-
ingly reduced to two. In this case, explicit computation
leads to two constraints ns ≥ 0, nf ≥ 0.9

Deep inelastic scattering allows for a clean separation
between infrared physics and ultraviolet physics. This is a
key ingredient in our arguments. In Ref. [9], an attempt to
use the OPE beyond its regime of validity has been
discussed. We are circumventing this conceptual difficulty
by the DIS analysis, which relates ultraviolet and infrared
data by a contour argument.
Let us now discuss the case of higher spins, s > 2. As

explained in Refs. [6,27,28], in this case, d − 2 ≤ τ�s <
2ðd − 2Þ, and because of this, the ratio of gamma functions
that appears in C�

s;m is positive definite. For spins s > 2, we
do not know the sign of B�

s , but we can still get some
mileage out the constraints above since B�

s does not depend
onm. Assuming that for the minimal-twist operator B�

s ≠ 0,
we get an infinite set of new bounds for unitary CFTs,

a�s;m1
a�s;m2

≥ 0: ð2:17Þ

This product appears naturally in the OPE of the four-
point function of stress-energy tensors. For this reason, it
seems reasonable to hope that the prediction (2.17) can be
tested in future studies of the conformal bootstrap for
operators with spin.

III. DEEP INELASTIC SCATTERING FOR
GENERIC OPERATORS

In the previous section, we considered the DIS of
gravitons which couple to the stress tensor Tμν. One can
naturally generalize this to any source that couples to some
operator Ojðϵ; xÞ,10 which is a symmetric, traceless CFT
operator of spin j and conformal dimension ΔO that
satisfies the unitarity bound ΔO − j ≥ d − 2.
For a generic external operator Ojðϵ; xÞ, we do not

commit on the rate of the decay of the amplitude for small x
(except that it is bounded by some power). We will be more
precise about this issue below.

The DIS amplitude of interest is

Aðq;PÞ ¼
Z

ddye−iqyhPjT ðO†
jðϵ⋆;yÞOjðϵ;0ÞÞjPi: ð3:1Þ

It is convenient to choose the polarization tensor as
follows [11],

ϵa1…aj ¼ ϵa1…ϵaj ; ð3:2Þ

where ϵ2 ¼ 0. So, we consider

Ojðϵ; yÞ≡Oa1…ajðyÞϵa1…ϵaj : ð3:3Þ

By a straightforward generalization of the previous analy-
sis, we obtain an expression for the DIS amplitude (3.1) in
the limit of large q2,

Aðq2; xÞ ¼
X
s

ðq2Þ−τ�=2þΔO−d=2x−s

×
Xj

m¼0

C�
s;mðϵ�:ϵÞj−m

ðϵ�:qÞmðϵ:qÞm
ðq2Þm ; ð3:4Þ

where the constants are defined as C�
s;m ∝ a�s;mB�

s with a
proportionality coefficient derived from the Fourier
transform (we will give explicit expressions soon) and
the asterisk represents the lowest twist for each spin-s
operator in the OPE. Substituting (3.4) into (2.5) leads
(after appropriate choices of the polarization tensor)
to positivity constraints on the coefficients of the
expansion,

C�
s;m ≥ 0; m ¼ 0; 1;…; j: ð3:5Þ

Focusing upon the stress-energy operator (s ¼ 2) on the
right-hand side of (3.4), we find positivity requirements
for the OPE coefficients in unitary CFTs. There are in
total (jþ 1) positivity conditions.
It is time to discuss to what extent we can trust (3.5) for

all s ≥ 2. The validity of (2.5) is dependent upon the
behavior of the DIS amplitude for fixed q2 and small x, or
equivalently, large ν ¼ 2P:q. If we assume

lim
x→0

Aðq2; xÞ ≤ x−N ð3:6Þ

for some integer N, the DIS sum rules and the bounds (3.5)
would be justified for s ≥ N.
We can try to obtain some information aboutN indirectly

as follows. As previously mentioned, C�
s;m is proportional

to the OPE coefficient times the expectation value B�
s up to

an overall number derived from a Fourier transform, as in
(2.11). For the case at hand, of generic external operators of
spin-j and conformal dimension ΔO, the relevant Fourier
transform is

9Two out of the three structures in (2.12) yield ns ≥ 0, and the
other one yields nf ≥ 0. In three dimensions, an additional parity
odd structure in the three-point function of the stress-energy
tensor is allowed [25,26]. Here and in the rest of this paper, we
restrict the discussion to parity even structures.

10Here, Ojðϵ; xÞ ¼ Oμ1…μjðxÞϵμ1…μj .
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Z
ddyeiqyðy2 þ iεÞ12τ�s−ΔO−m ¼ π

d
2Γ½d=2þ τ�=2−ΔO −m�
Γ½−τ�=2þΔO þm�

× ðq2=4− iϵÞ−τ�=2þΔOþm−d=2:

ð3:7Þ

The precise expression for Cs;m in terms of B�
s and the OPE

coefficients a�s;m is

Cs;m ¼ 4−β
π

d
2Γ½sþmþ τ�

2
þ d

2
− ΔO�

Γ½ΔO þm − τ�
2
� a�s;mB�

s ;

β ¼ −
τ�

2
þ ΔO þm − d=2 ð3:8Þ

and is obtained by differentiating (3.7) ðsþ 2mÞ times with
respect to qμ. The a�s;m are specific linear combinations of
the position space â�s;m, similarly to what happens in the
graviton DIS.
Let us consider now the case of the stress tensor

exchange, i.e., τ�T ¼ d − 2; s ¼ 2. In this case, BT ¼ 1,
which leads to aT;m ≥ 0 as long as the numerical factor in
(3.8) is positive definite. For τ�T ¼ d − 2 and s ¼ 2, the
arguments of the gamma functions in the numerator/
denominator of (3.8) are equal to dþmþ 1 − ΔO and
ΔO þmþ 1 − d=2 respectively. The latter is positive
definite by unitarity, but the former is not necessarily
positive. We get that it is positive definite only for11

ΔO ≤ dþ 1: ð3:9Þ

Equivalently, for ΔO > dþ 1, the Fourier transform
above is divergent, and we define it by an analytic
continuation. Assuming that the energy flux bounds still
hold, we would get an apparent contradiction for theΔO for
which the ratio of the Γ-functions changes sign (see
Appendix C for an explicit computation in the case of
scalar, external operators). We think that this signals
the need for subtraction in the sum rule.12 We consider
the example of a free scalar field in Appendix D, where the
scenario just described is explicitly realized. Summarizing,
for generic operators of conformal dimension ΔO and spin
j, we expect to trust the x sum rule and the derived
constraints (3.5), in the spin-s sector with s ≥ sc ≥ ΔO−
τ�sc
2
− d

2
, where sc is the first spin for which it holds

that s ≥ ΔO − τ�s
2
− d

2
.

IV. DIS VS ENERGY CORRELATOR: ARE THE
CONSTRAINTS ALWAYS EQUIVALENT?

In this section, we show that the constraints one gets from
the positivity of the energy flux in a state producedby a given
local operator Oj of spin j imply the constraints obtained
from the DIS s ¼ 2 sum rule. More precisely, for the case of
external operators which are conserved currents, we show
that the constraints derived from the DIS sum rule and those
obtained from the positivity of the energy correlators are
equivalent. On the other hand, for generic operators, the
energy correlators constraints are stronger than the ones
which follow from the DIS s ¼ 2 sum rule. The bounds that
are associated to s > 2 in DIS do not follow in any simple
way from the positivity of the energy flux.
Consider now the energy flux operator, defined as in

Ref. [4],

EðnÞ ¼ lim
r→∞

rd−2
Z

∞

−∞
dtT0iniðt; rniÞ; ð4:1Þ

and n ¼ ð1; ~nÞ, or equivalently one can define the calo-
rimeter operator in a manifestly covariant way [29]. The
expectation value of the energy flux on the state

jOjðϵ; kÞi ¼
Z

ddyeikxOjðϵ; xÞj0i; ð4:2Þ

obtained by acting with the operator Oj carrying momen-
tum k on the vacuum, is fixed by rotational invariance up to
a few parameters;

hEðnÞiO:ϵðkÞ ∼ hOjðϵ; kÞjEðnÞjOjðϵ; kÞi

¼ ðk2ÞΔ
ðk:nÞd−1

Xj

l¼0

Dlðϵ�:ϵÞj−l
ðϵ�:kÞlðϵ:kÞl

ðk2Þl :

ð4:3Þ
Here, we imposed the transversality condition ϵ:n ¼ 0.
Notice that usually the polarization tensor is chosen such
that ϵ:k ¼ 0 (see, for example, Ref. [4]); however, for the
purpose of comparison with DIS, the choice above is more
convenient. Conformal invariance determines the three-
point correlation functions up to a few numbers, and thus
the Dl can be expressed as linear combinations of those
numbers. Requiring positivity of the energy, hEðnÞi ≥ 0,
leads to (jþ 1) linear constraints on the parametersDl ≥ 0
or, equivalently, on the constants which determine the
three-point functions hOTOi.
Below, we show that the constraints obtained from the

computation above in the ϵ:n ¼ 0 “gauge” are identical to
the ones derived from DIS, assuming that we can trust the
s ¼ 2 dispersion relation integral.

A. Computing the energy correlator

Consider the three-point function hO†ðx1; ϵ�ÞTμνðx2Þ×
Oðx3; ϵÞi. Together with the two-point function

11When ðd − ΔO þ 1Þ is a negative integer, the Fourier trans-
form of the integral should be regulated by adding a local term to
cancel the Γ-function pole. The result for the overall coefficient is
still a number of alternating sign.

12It can be easily seen that doing subtractions in the x sum rule
used in the previous section automatically projects out all low-
spin operators from the OPE.
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hO†ðx; ϵ�ÞOðx; ϵÞi, it can be used to compute two objects:
the one-point energy correlator and the OPE coefficient in
O†ðx; ϵ�ÞOð0; ϵÞ ∼ Cμνðx; ϵÞTμνð0Þ. The latter is useful to
obtain the DIS constraints as discussed in the previous
sections. It was observed in Sec. II that in some cases, the
constraints obtained via the two methods coincide.
In this section, we show that the two always produce the

same constraints provided that ϵ:n ¼ 0. First, we consider
the energy correlator as defined in Ref. [29]. We will use
the formalism of Ref. [11] and restrict our discussion to
operators which are symmetric and traceless tensors. The
three-point function we are interested in is

hO†
jðx1; ϵ�ÞTðx2; n̄ÞOjðx3; ϵÞi

¼
P

αiV
v1
1 V

v2
2 V

v3
3 H

h12
12 H

h13
13 H

h23
23

xdþ2
12 x2τ̄−ðdþ2Þ

13 xdþ2
23

; ð4:4Þ

where τ̄ ¼ Δþ j and n̄ ¼ ð1;−~nÞ and the exponents vi and
hij obey the following constraints:

v1 þ h12 þ h13 ¼ j;

v2 þ h12 þ h23 ¼ 2;

v3 þ h13 þ h23 ¼ j: ð4:5Þ
So, different structures are labelled by the fh12; h23; h13g. Of
course, on top of these constraints, one should impose the
conservation condition or—possibly—permutation sym-
metry. For our argument, imposing those is not necessary.
The method we are using is the one of Ref. [30]. The

relevant notation is introduced in Appendix E. We start by
expressing the energy correlator one-point function using
(4.1) and (4.4). We then take the limit for the stress tensor
approaching null infinity with the help of Appendix F. The
result can be expressed as follows,

P
αfh12;h13;h23gV̂

v1
1 V̂

v2
2 V̂

v3
3 Ĥh12

12 Ĥ
h13
13 Ĥ

h23
23

ðx21:nÞdþ2
2 ðx213Þτ̄−

ðdþ2Þ
2 ðx23:nÞdþ2

2

; ð4:6Þ

where we introduced

V̂1 ¼ −
x13:ϵ�x12:n − ϵ�:n x2

13

2

x23:n
; V̂2 ¼

x13:n
x213

;

V̂3 ¼ −
x13:ϵx23:n − ϵ:n x2

13

2

x12:n
;

Ĥ12 ¼ −ϵ�:n; Ĥ13 ¼ ϵ�:ϵx213 − 2x13:ϵ�x13:ϵ;

Ĥ23 ¼ −ϵ:n: ð4:7Þ
Setting ϵ:n ¼ 0 leads to further simplifications. The three-
point function then reduces to

Xj

h13¼0

αf0;h13;0g
ðϵ�:x13ϵ:x13Þj−h13
x12:n

dþ2
2 x23:n

dþ2
2

Ĥh13
13 ðx13:nÞ2
x2τ̄−ðd−2Þ13

: ð4:8Þ

Next, we integrate over the position of the detectorR∞
−∞dðx2:nÞ. This boils down to the replacement ðx12:nÞ−dþ2

2 ×

ðx23:nÞ−dþ2
2 →ðx13:nÞ−ðdþ1Þ in the formula above (see

Appendix F for the precise formula). Notice that after this
replacement, the dimensionality of the object (4.8) is ð1þ2ΔÞ,
as it should be for a correlator which measures energy.13

The final step in the computation of the energy correlator
is the Fourier transform, which implements the insertion of
an operator with a given momentum. This leads to the
following expression for the energy flux one-point function,

hEðnÞiO:ϵðkÞ ∼
Z

∞

0

dssd
Z

ddx13e−iðk−snÞ:x13

×

Pj
h13¼0 αf0;h13;0gðϵ�:x13ϵ:x13Þj−h13ðx13:nÞ2Ĥh13

13

ðx213Þτ̄−
d−2
2

≥ 0;

ð4:9Þ
wherewe ignored an overall positive constant. Recall that in
the formula above, the propagator is the Wightman one and
the integral has nonzero support only for ðk − snÞ timelike
and having positive energy.Wewill not need to compute this
integral explicitly.

B. Computation on the DIS side

Let us repeat the computation on the DIS side. We start
with the analysis of the OPE. The relevant formula is the
following [11]:

Oðϵ�; x13ÞOðϵ; 0Þ
∼Oð0; ∂zÞtðx13; ϵ�; z; ϵÞx−ðΔ1þΔ3−Δ2þs1þs2þs3Þ

13 : ð4:10Þ
The polynomial tðx13; ϵ�; z; ϵÞ is fixed by the three-point
function to be

tðx13; ϵ�; z; ϵÞ ¼
X

αfh12;h13;h23gðx213Þv2þh12þh23ð−1Þv1þv3

× ðϵ�:x13Þv1
�
x13:z
x213

�
v2

× ðϵ:x13Þv3ðϵ�:zÞh12Ĥh13
13 ðz:ϵÞh23 : ð4:11Þ

This leading contribution to the sum rules comes from the
term h12 ¼ h23 ¼ 0 as explained before.14Moreover, we are
interested in the case Oð0; ∂zÞ → Tμν. For this case, we get

hPjOðϵ�; x13ÞOðϵ; 0ÞjPi

∼
hPjTð0; ∂zÞjPi

ðx213Þτ̄−
d−2
2

Xj

h13¼0

αf0;h13;0gðϵ�:x13ϵ:x13Þj−h13

× ðx13:zÞ2Ĥh13
13 ; ð4:12Þ

13The 2Δ piece cancels when we divide by the two-point

function, which is given by
Hj

13

ðx2
13
Þτ̄.

14Effectively, this is equivalent to setting ϵ�:P ¼ ϵ:P ¼ 0.
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where∼ denotes that we neglected the contribution of all the
other operators present in the OPE. Now, it is trivial to act
with ∂z, which boils down to z → p,

hPjOðϵ�; x13ÞOðϵ; 0ÞjPi

∼ 2

Pj
h13¼0 αf0;h13;0gðϵ�:x13ϵ:x13Þj−h13ðx13:PÞ2Ĥh13

13

ðx213Þτ̄−
d−2
2

:

ð4:13Þ
Finally, we must take the Fourier transform with respect to
x13, which, assuming we can trust the dispersion integral,
leads to the following constraint,Z

d4xe−iqx

×

Pj
h13¼0 αf0;h13;0gðϵ�:x13ϵ:x13Þs3−h13ðx13:PÞ2Ĥh13

13

ðx213Þτ̄−
d−2
2

≥ 0;

ð4:14Þ
where q is spacelike and x213 is the usual time-ordered
propagator.

C. Relation between energy correlators and DIS

We will now use the results of Secs. IVA and IV B to
find a precise relation between the energy correlator and the
DIS amplitude. Combining Eqs. (4.9) and (4.14), we can
express the energy correlator one-point function as follows,

hEðnÞiO:ϵðqÞ ∼
Z

∞

0

dssdImq2 ½A2ðq2; ϵ:q; p:qÞ�q→q−P;P→sn;

ð4:15Þ
whereA2ðq2; ϵ:q; P:qÞ is defined as the term in the full DIS
amplitude Aðq2; ϵ:q; p:qÞ,

Aðq2; ϵ:q; P:qÞ ¼
Z

ddye−iqyhPjT ðOjðϵ�; yÞOjðϵ; 0ÞÞjPi;

ð4:16Þ
derived from the OPE coefficient of the stress-energy tensor
operator. Recall that we consider polarization tensors
satisfying ϵ:n ¼ 0.

Equation (3.4) allows us to write A2ðq2; ϵ:q; P:qÞ in the
following form,

A2ðq2; ϵ:q; p:qÞ ¼ ð2P:qÞ2
Xj

m¼0

ðq2 − iεÞ−d−1þΔj−m

× CT;mð2ϵ:qÞmð2ϵ�:qÞmðϵ�:ϵÞj−m;
ð4:17Þ

where the Fourier transform has been obtained following
the Feynmann -iε prescription. The coefficients CT;m are
defined as

CT;m ¼ 4−β
π

d
2Γ½−ΔO þmþ dþ 1�
Γ½ΔO þmþ 1 − d=2� aT;m

β ¼ ΔO þmþ 1 − d; ð4:18Þ
where aT;m denote the constant OPE coefficients of the
energy-momentum tensor. Observe that the Γ-function in
the denominator of (4.18) is positive definite by unitarity
but the one in the numerator is not necessarily positive
definite, as discussed in detail in Sec. III.
The energy flux expectation value in (4.15)depends on

Imq2A2ðq2; ϵ:q; P:qÞ, which is equal to

Imq2A2ðq2; ϵ:q; p:qÞ ¼ ð2P:qÞ2θðq0Þθð−q2Þ

×
Xj

m¼0

~CT;mð2ϵ:qÞmð2ϵ�:qÞm

× ðϵ�:ϵÞj−mð−q2Þ−d−1þΔj−m;

ð4:19Þ
where ~Cm are equal to

~CT;m ¼ 4−βπ
d
2
þ1

Γ½ΔOþmþ 1−d=2�Γ½ΔO−m−d�aT;m: ð4:20Þ

Note that the product of Γ-functions appearing in ~CT;m is
not positive definite, either. For operators of spin j,
unitarity implies that ΔO −m − d ≥ ðj −mÞ − 2, whereas
for scalars, i.e., j ¼ m ¼ 0, unitarity leads to
ΔO − d ≥ − d

2
− 1. Substituting (4.19) into (4.15) yields

hEðnÞi ∼
Xj

m¼0

~Cmð2ϵ:qÞmð2ϵ�:qÞmðϵ�:ϵÞj−mð2n:qÞ2

×
Z

∞

0

dssdþ2θðq0 − sÞθð−ðq2 − 2sq:nÞÞð−ðq2 − 2sq:nÞÞΔO−d−m−1

¼
Xj

m¼0

amð2ϵ:qÞmð2ϵ�:qÞmðϵ�:ϵÞj−mð2n:qÞ2θðq0Þθð−q2Þð−q2ÞΔO−d−m−1
�

q2

2q:n

�
dþ3

×
Γðdþ 3Þ

ΓðΔO −mþ 3ÞΓ½ΔO þmþ 1 − d=2� : ð4:21Þ
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Positivity of (4.21) is equivalent to (jþ 1) positivity
relations, one for each value of m, obtained by appropri-
ately choosing the polarization tensors ðϵ�; ϵÞ. In other
words,

EðnÞ ≥ 0⇔ am
Γðdþ 3Þ

ΓðΔO −mþ 3ÞΓ½ΔO þmþ 1 − d=2� ≥ 0:

ð4:22Þ

Notice, that the Γ-functions in (4.22) are now positive
definite by unitarity, i.e.,

ΔO ≥ d − 2þ j ≥ d − 2þm ≥ m − 3;

ΔO ≥ d − 2þ j ≥ d=2 −m − 1; ð4:23Þ

allowing us to write

EðnÞ ≥ 0⇔ am ≥ 0; m ¼ 0; 1;…; j: ð4:24Þ

Equation (4.24) establishes the equivalence between the
constraints obtained from DIS and those derived from the
positivity of the energy correlators for a certain class of
transverse polarizations. This class of polarizations
exhausts all possible choices for conserved currents. A
generic operator, however, may also have longitudinal
polarizations. To examine in detail what happens for
generic operators, we consider below the case of a non-
conserved spin-1 current.

D. Nonconserved spin-1 current

Let us consider the three-point function which involves
two operators of spin 1, with a generic twist. Its general
form is [31]

hOðx1; z1ÞTðx2; z2ÞOðx3; z3Þi ¼
1

xdþ2
12 x2τ̄−ðdþ2Þ

13 xdþ2
23

×

�
a1V2

2H13 þ
ðd − 2Þ2a2

2

�
V2
2V1V3 − V2

2V1H23 þ 2V3H12 þ V2H13

d − 2
þ 2H12H23

ðd − 2Þ2
�

− 2ðd − 1Þa3
�
V2
2V1V3 þ

V2

2
½V2H13 þ V1H23 þ V3H12�

��
: ð4:25Þ

Here, ðz1; z2; z3Þ denote the correponding polarization
tensors. The coefficients a2 and a3 are proportional to
the structures hJTJi generated in the theory of a free boson
and free fermion respectively for conserved spin-1 current
J. We can compute the energy correlator as explained
above. Stress tensor Ward identities relate this three-point
function to the two-point function hOðz1; x1ÞOðz3; x3Þi
[24]. This can be translated into a relation between the
parameters ða1; a2; a3Þ appearing in (4.25). To find this
relation, we require instead that the two-point function is
correctly reproduced after integrating the energy flux
correlator over the position of the detector. This leads to
the following constraint:

a1 ¼ −ðΔ − dþ 1Þða2 þ a3Þ: ð4:26Þ

Notice that for Δ ¼ d − 1, which corresponds to the case of
a conserved current, a1 ¼ 0, as it should (in this case, only
two independent structures are expected to appear). Re-
flection positivity of the two-point function then yields

hOOi ∼ a2 þ a3 > 0: ð4:27Þ

Computing the energy flux correlator after imposing
(4.26), and requiring it to be positive definite, results in the
following two conditions:

a2 < 0;

a3 ≥ −
a2

ðΔ − dþ 1Þ
ðΔþ 1Þð2Δþ ðd − 2Þðd − 1ÞÞ

2Δþ d − 2
;

a2 ≥ 0;

a3 > −
2ðΔ − dþ 1ÞðΔ − 1Þ

2ðΔ − dþ 1ÞðΔ − 1Þ þ dΔ
a2: ð4:28Þ

We should stress here that in deriving (4.28), we did not
require ϵ:n ¼ 0. Notice that when Δ → d − 1, the solution
which corresponds to the first line of (4.28) disappears,
whereas the second line approaches the bounds of con-
served currents [4]. Indeed, for Δ ¼ d − 1, we recover the
usual a2 ≥ 0 and a3 ≥ 0 conditions.
On the other hand, we can compute the DIS bound or,

equivalently, restrict our consideration to ϵ:n ¼ 0 in the
energy correlator computation. The result is the same for
a2 ≥ 0, but for the other case, we get

a2 < 0;

a3 > −
a2

ðΔ − dþ 1Þ
4ðΔ − 1Þ þ ðd − 4Þðd − 2Þ

4
: ð4:29Þ

It is easy to see that the bounds derived from the positivity
of the energy correlator are stronger than those obtained
from DIS, for any Δ > d − 1.
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E. Nonconserved spin-2 current

Similarly, we computed the energy correlator for a
generic nonconserved spin-2 current. There are six different
structures that appear in the three-point function. Matching
to the two-point function after integrating over the position
of the detector fixes one of the constants in terms of the
others. We again find that the constraints from the energy
correlator are stronger than the ones from DIS for non-
conserved spin-2 operator. In the limit Δ → d, the con-
straints derived from DIS become equivalent to those
required by the positivity of the energy correlator, as
predicted by the general argument above.

V. DIS IN A CFT

A consistent unitary CFT should produce correlation
functions that are reflection positive. As is often the case, it is
easier to analyze the constraints following from reflection
positivity in the Lorentzian signature. Obviously, these
constraints should hold independently of whether or not
the CFT admits an renormalization group flow to a gapped
phase. In this section, we reformulate the sum rules studied
in the previous sections purely in the CFT language. Instead
of a proton, we consider the state jPi defined as follows,

jPi≡
Z

ddyeiPyOðyÞj0i; ð5:1Þ

where OðxÞ is an arbitrary, scalar operator.
The expectation value of the stress-energy tensor on the

state jPi is determined by Lorentz invariance up to two
numbers,

hPjTμνjPi ¼ c1PμPν þ c2ημνP2; ð5:2Þ
where c1, c2 are some dimensionful coefficients.
Conformal invariance allows us to further express c2 in
terms of c1. We will not consider the second term on the
right-hand side of (G2) since it belongs to the so-called
trace terms, the contribution to the OPE of which is
negligible for large, spacelike momentum. Instead, we
show in Appendix G that c1, up to an overall divergent
term, is positive definite. The divergence can be easily
regularized; for example, we can imagine making the norm

finite by considering e−
y2
0
þ~y2

σ2 for the wave function.
We next consider the DIS amplitude defined as follows,

Aðq2; ϵ:q; P:qÞ

¼
Z

ddye−iqyhPjT ðOjðϵ�; yÞOjðϵ; 0ÞÞjPiconn

¼
Z

ddye−iqyðhPjT ðOjðϵ�; yÞOjðϵ; 0ÞÞjPi

− hPjPih0jT ðOjðϵ�; yÞOjðϵ; 0ÞÞj0iÞ; ð5:3Þ
where operators are ordered as written and T ð…Þ stands for
time ordering.

The imaginary part of (5.3) is positive definite. To see
this, recall that the imaginary part of the full correlator is
given by the positive-definite Wightman function and that
the imaginary part of the disconnected piece is independent

of x ¼ q2

2P:q and vanishes for spacelike q2.

Let us recall the analytic structure of Aðq2; ϵ:q; P:qÞ. It
has discontinuities for ðPþ qÞ2 < 0 and ðP − qÞ2 < 0.
These can be rewritten as

−
1

1þ P2

q2
≤ x ≤

1

1þ P2

q2
; ð5:4Þ

where x≡ q2

2P:q. We can then proceed as before. We have to
assume a certain behavior at infinity to use the dispersion
relations, but otherwise all the formulas are identical to the
ones in the previous sections. Formulated in this language,
B�
s from Secs. II and III are simply proportional to the

corresponding three-point couplings. This is why (1.4)
follows.

VI. CONCLUSIONS

In this paper, we considered the DIS experiment in a
unitary CFT. The basic object under consideration is the
scattering amplitude (3.1). Using it, one can write the
standard sum rules (2.2) which relate the OPE data to
the integrated positive-definite cross section.
An interesting case to consider is the graviton DIS in a

CFT which flows to a gapped phase. In this case, the
structure of the amplitude is given by (2.12), and the
positivity of the cross section leads to the constraints (2.16)
which are the well-known Hofman-Maldacena constraints.
More general constraints exist in each even spin sector
(2.17). These can be therefore viewed as generalized
Hofman-Maldacena constraints.
We studied the general DIS experiment with some

spinning external operators and elucidated the relation
between the bounds produced by DIS and energy correlator
considerations. Our first conclusion is that the s ¼ 2 DIS
bounds are equivalent to the energy flux constraints
computed for a subclass of polarization tensors. This
follows from the relation (4.15) which is the result of an
explicit computation.
Considering the DIS experiment which involves non-

conserved spin-1 and spin-2 currents, we found that,
generically, the constraints obtained from the energy
flux positivity are stronger than those coming from the
DIS s ¼ 2 sum rule, as explained in Sec. 3. 4. The differ-
ence between the two methods disappears in the limit when
the operators become conserved. Understanding better the
origin of this difference is an important open problem.
Finally, we reformulated the DIS experiment purely in

CFT terms. The role of the DIS amplitude is played by the
four-point correlation function (5.3), with the particular
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ordering of operators and a special choice of external wave
functions. Positivity of the cross section translates to
positivity of the norm, and the usual problem with the
dominance of the unit operator does not appear because of
the choice of ordering and kinematics.
In writing the sum rules, we assumed a certain behavior

of the amplitude in the Regge limit. We expect that this
behavior depends both on the details of the theory and on
the properties of the operators involved. This can be easily
seen to be the case for the free scalar theory (see
Appendix D). In the bulk of the paper, we simply assumed
that we can write the sum rules and derived the conse-
quences. However, for the graviton DIS, it is legitimate
to assume that all the sum rules for s ≥ 2 converge.
This produces various results that are satisfied in all the
examples known to us.
Our analysis indicates that there are infinitely more

constraints on the three-point function of spinning oper-
ators than have been known before. It would be very
interesting to see what can be learned about them using
other methods. These include integrability [32], numerical
[33] and analytic bootstrap [28], and casuality [7].
There are several directions in which our analysis can be

generalized. One direction involves considering operators
in generic representations of the Lorentz group both for the
probe operator and for the target, including the parity odd
structures in d ¼ 3. One may also consider the odd spin
sum rules. In this case, the OPE data for the minimal-twist
odd spin operators are related to the difference of cross
sections of the type σpn − σpn̄ where n̄ refers to an
antiparticle. This difference is not known to be positive
definite. The recent conjecture for bounds on the hJJJi
three-point coupling put forward in Ref. [28], together with
the convergence of the s ¼ 1 sum rule, would imply the
sign definiteness of (roughly)

R
∞
0 dxðσpn − σpn̄Þ ≥ 0. It

would be interesting to investigate this further.
Another interesting open avenue is bounding the non-

integrated expectation value of the stress tensor in a given
state and deriving the consequences for the OPE. In a
classical theory, the expectation value of the stress-energy
tensor is non-negative. In a quantum theory, however, the
expectation value can be locally negative, but as reviewed
in this paper, the integrated over time expectation value is
expected to be non-negative. A more refined version of
this statement is that there are bounds on how negative
the local expectation value of the stress tensor in a given
state could be [34,35]. This was recently discussed in
Refs. [36,37] and in Ref. [38] where bounds on the three-
point function of the stress tensor in a unitary four-
dimensional CFT were obtained. It would be interesting
to understand if these bounds could be strengthened and
what constraints on the spectrum and the three-point
functions of the CFT they imply.
One of the puzzling features of AdS=CFT is the

emergence of locality on the sub–anti-de Sitter scale. It

is believed [39] that CFTs with large central charge N and a
large gap in the spectrum of higher-spin currents Δgap ≫ 1

are described at low energies by Einstein’s theory in
AdSdþ1 with all higher-derivative corrections suppressed
by the gap Δ−1

gap. Proving this using purely CFT methods
seems to be a necessary and important step in our under-
standing of the AdS=CFT correspondence and more gen-
erally quantum gravity. An even more ambitious goal is to
show that every theory with such properties is a string
theory. We hope that methods developed in this paper could
be useful to make progress in this direction.
In Ref. [40], it was shown, using bulk arguments, that

the picture described above follows from causality in the
case of the simplest possible observable, namely, the
graviton self-coupling. Showing this for all correlation
functions and using purely CFT methods is still an open
problem.
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APPENDIX A: RELATION BETWEEN a�s;m AND
â�s;m IN THE TT ∼ T OPE

In this Appendix, we present the relation between the
Fourier transformed OPE coefficients â�s;i and the coeffi-
cients a�s;i which characterize the OPE in position space, as
defined in (2.9),

a�s;0 ¼ is
�
â�s;0 þ

â�s;1
2d − τ�s

þ 2â�s;2
ð2d − τ�sÞð2d − τ�s þ 2Þ

�
;

a�s;1 ¼ −is4
�
â�s;1 þ

4â�s;2
2d − τ�s þ 2

�
;

a�s;2 ¼ isâ�s;2: ðA1Þ
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APPENDIX B: DIS FOR THE STRESS-ENERGY
TENSOR OPERATOR

Here, we explicitly evaluate the aT;m and derive (2.16).
Our starting point is Eq. (6.38) of Ref. [24]. Requiring that
ϵ2 ¼ ðϵ�Þ2 ¼ ϵ:P ¼ ϵ�:P ¼ 0 and neglecting trace terms
leads us to consider only the following terms from
Eq. (6.38) of Ref. [24]:

Â1
μνσραβðyÞCT →

d − 2

dþ 2
ð4aþ 2b − cÞH1

αβμνσρðyÞ

þ daþ b − c
d

H2
αβμνρσðyÞ

þ 2daþ 2b − c
dðd − 2Þ H3

αβμνσρðyÞ: ðB1Þ

Evaluating the Fourier transform together with the appro-
priate contractions yields

Z
ddye−iqyϵ�;μϵ�;νH1

αβμνσρϵ
σϵρPαPβ

¼ −
1

8

πd=2

Γðd=2þ 1Þ
ð2ϵ�:qÞ2ð2ϵ:qÞ2

ðq2Þ2 ð2P:qÞ2q−2

þ 1

2

πd=2

Γðd=2þ 1Þ
ðϵ�:ϵÞð2ϵ�:qÞð2ϵ:qÞ

q2
ð2P:qÞ2q−2

−
1

2

πd=2

Γðd=2þ 1Þ ðϵ
�:ϵÞ2ð2P:qÞ2q−2 ðB2Þ

Z
ddye−iqyϵ�;μϵ�;νH2

αβμνσρϵ
σϵρPαPβ

¼ πd=2

Γðd=2Þ
ðϵ�:ϵÞð2ϵ�:qÞð2ϵ:qÞ

q2
ð2P:qÞ2q−2

Z
ddye−iqyϵ�;μϵ�;νH3

αβμνσρϵ
σϵρPαPβ

¼ −2
πd=2

Γðd=2 − 1Þ ðϵ
�:ϵÞ2ð2P:qÞ2q−2: ðB3Þ

Collecting the appropriate factors from (B2)–(B3) leads
to (2.16).

APPENDIX C: SCALAR DIS

Here, we consider the simplest example of a DIS
experiment, where the external operator is a scalar.
Following Ref. [24], we consider

hTμνðx1ÞOðx2ÞOðx3Þi ¼
1

xd12x
2Δ−d
23 xd31

Iμν;σρðx13ÞtσρðX12Þ;

ðC1Þ

where

hOðxÞOð0Þi ¼ N
x2Δ

hTμνðxÞTρσð0Þi ¼ CT
Iμν;ρσðxÞ

x2d

Iμν;ρσ ¼
1

2
ðIμσðxÞIνρðxÞ þ IμρðxÞIνσðxÞÞ −

ημνηρσ
d

Iμν ¼ ημν − 2
xμxν
x2

ðC2Þ

and

tμν ¼ a

�
X̂μX̂ν −

1

d
ημν

�
X̂μ ¼

Xμffiffiffiffiffiffi
X2

p ðC3Þ

and Xij is defined as

Xij ¼ −Xji ¼
xik
x2ik

−
xjk
x2jk

;

X2
ij ¼

x2ij
x2ikx

2
jk

i ¼ 1; 2; 3; i ≠ j; j ≠ k; i ≠ k: ðC4Þ
The three-point function (C1) in the limit yμ ≡ ðx2 −
x3Þμ → 0 yields

hTμνðx1ÞOðx2ÞOðx3Þi≃y∼0
Iμν;ρσðx13Þ

x2d13
ð−Þd tρσðyÞ

y2Δ−d

≃CρσðyÞCT
Iμν;ρσðx13Þ

x2d13
⇒CρσðyÞCT

¼ð−Þd tρσðyÞ
s2Δ−d

; ðC5Þ

leading to

OðyÞOð0Þ ∼ � � � þ CμνðyÞTμνð0Þ þ � � � ; ðC6Þ

where the dots represent the contributions of other oper-
ators in the OPE. We therefore express CμνðyÞ as follows:

CμνðyÞ ¼
a
CT

�
1

4ðΔ − d
2
− 1ÞðΔ − d

2
Þ ∂μ∂ν

1

yΔ−
d
2
−1

− ημν
Δ − d

dðΔ − d
2
Þ

1

yΔ−
d
2

�
: ðC7Þ

Cμν does not contribute to conformal Ward identities as can
be immediately seen from Eqs. (13.a) and (13.b) of
Ref. [24]. This is to be contrasted with the OPE coefficient
Ĉμν in the OPE OðsÞTμνð0Þ ∼ ĈμνðsÞOð0Þ. In the latter
case, the conformal Ward identities relate the three-point
function coefficient a with the coefficient N of the two-
point function hOðxÞOð0Þi in (C2) as follows (see
Eq. (6.20) of Ref. [24]):
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a ¼ −
dNΔ

ðd − 1ÞSd
: ðC8Þ

For a unitary CFT, Eq. (C8) implies that a ≤ 0.
To obtain the contribution of the stress-energy tensor in the scalar DIS amplitude Aðx; q2Þ ¼R
ddye−iqyhPjOðyÞOð0ÞjPi, we simply need to take the Fourier transform of the OPE coefficient (C7), taking into

acount the expectation value of the stress-energy tensor and disregarding the trace terms. Explicitly, we have that

Aðx; q2Þ ¼ � � � − BT
a
CT

1

4ðΔ − d
2
− 1ÞðΔ − d

2
Þ ðP:qÞ

2

Z
ddye−iqyy−Δþd=2þ1 þ � � �

¼ � � � − BT
a
CT

ð2q:PÞ2 1

16

πd=2þ1Γðd − Δþ 1Þ
πΓðΔ − d=2þ 1Þ ðq2=4 − iεÞΔ−d−1 þ � � �

¼ � � � − BT
a
CT

πd=2þ1Γðd − Δþ 1Þ
πΓðΔ − d=2þ 1Þ ðq2=4 − iεÞΔ−dþ1x−2 þ � � � ðC9Þ

Notice that the sign of the term in (C9) is equal to the sign of the Γ-function in the numerator. This is because a < 0 from the
Ward identities and Eq. (C8), BT ¼ 1, and unitarity requires that CT > 0 and Δ − d=2þ 1 > 0. As long as Δ < dþ 1, the
Γ-function is positive definite and the positivity constraints from DIS are trivially satisfied. On the other hand, when
Δ > dþ 1, the Fourier integral is divergent, and the moments are not well defined. Naively applying the DIS positivity
relations (2.5) for this case would lead to inconsistencies due to the periodically alternating sign of the Γ-function.

APPENDIX D: DIS IN THE FREE FIELD THEORY

Let us consider a free massless scalar ϕðxÞ and the DIS amplitude for ϕnþ1ðxÞ,

AðP; qÞ ¼
Z

ddxe−iqxhPjϕnþ1ðxÞϕnþ1ð0ÞjPi ¼
Z

ddx
e−iðq−PÞx þ e−iðqþPÞx

ðx2 þ iεÞnd−22

∼ ½ððq − PÞ2 − iεÞnd−22 −d
2 þ ððqþ PÞ2 − iεÞnd−22 −d

2�Γð
d
2
− n d−2

2
Þ

Γðn d−2
2
Þ

¼ ðq2Þnd−22 −d
2

��
1 −

1

x
−
M2

q2
− iε

�
nd−2

2
−d
2 þ

�
1þ 1

x
−
M2

q2
− iε

�
nd−2

2
−d
2

�
×
Γðd

2
− n d−2

2
Þ

Γðn d−2
2
Þ : ðD1Þ

We see explicitly what is happening in this example.
The amplitude has an imaginary part exactly where
expected, for −ð1−M2

q2 Þ−1≤x≤ ð1−M2

q2 Þ−1. Moreover, the

imaginary part is positive definite.
To write the dispersion relations, we have to explore the

behavior at x → 0. The amplitude behaves as

AðP; qÞ ∼ x−ðnd−22 −d
2
Þ; ðD2Þ

and for the sum rule to converge, we thus get

s0 > n
d − 2

2
−
d
2
¼ Δ − dþ 1: ðD3Þ

The Γ-function which appears in the Fourier transform of
the OPE that becomes negative has the argument

Γ
�
s0 −

�
Δ − dþ 1 −

τ� − ðd − 2Þ
2

��
: ðD4Þ

For the case at hand, τ� ¼ d − 2, and we see that the
convergence of the sum rule goes in parallel with the
positivity of the Γ-function.

APPENDIX E: KINEMATICS OF THE
THREE-POINT FUNCTIONS

Here, we collect some of the notation that we used in the
bulk of the paper:

n ¼ ð1; ~nÞ; n̄ ¼ ð−1; ~nÞ; x:n ¼ −tþ ~x:~n;

x2ij ¼ −ðti − tjÞ2 þ ð~xi − ~xjÞ2;
x2�;ij ¼ −ðti − tj � iϵÞ2 þ ð~xi − ~xjÞ2;

−2Pi:Pj ¼ x2ij; Zi:Zj ¼ zi:zj; Pi:Zj ¼ xij:zj:

ðE1Þ

The conformal covariants, as defined in Ref. [11], are
given by
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V1 ¼ V1;23 ¼
Z1:P2P1:P3 − Z1:P3P1:P2

P2:P3

¼ −
x12:z1x213 − x13:z1x212

x223
;

V2 ¼ V2;31 ¼
Z2:P3P2:P1 − Z2:P1P2:P3

P1:P3

¼ −
x23:z2x212 þ x12:z2x223

x213
;

V3 ¼ V3;12 ¼
Z3:P1P3:P2 − Z3:P2P3:P1

P1:P2

¼ −
x23:z3x213 − x13:z3x223

x212
;

H12 ¼ −2ðZ1:Z2P1:P2 − Z1:P2Z2:P1Þ ¼ z1:z2x212 − 2x12:z1x12:z2;

H13 ¼ −2ðZ1:Z3P1:P3 − Z1:P3Z3:P1Þ ¼ z1:z3x213 − 2x13:z1x13:z3;

H23 ¼ −2ðZ2:Z3P2:P3 − Z2:P3Z3:P2Þ ¼ z2:z3x223 − 2x23:z2x23:z3: ðE2Þ

APPENDIX F: COMPUTING THE ENERGY CORRELATOR

To compute the energy correlator, we have to first take the limit limx2:n̄→∞ðx2:n̄Þd−2 of (4.4). Here, we write down some
useful formulas which allow us to analyze the limit easily15:

lim
x2:n̄→∞

x212 ¼ −x2:n̄x12:n; lim
x2:n̄→∞

x223 ¼ x2:n̄x23:n;

lim
x2:n̄→∞

x12:z1 ¼ −
1

2
x2:n̄z1:n; lim

x2:n̄→∞
x23:z3 ¼

1

2
x2:n̄z3:n;

lim
x2:n̄→∞

x13:z1 ¼ x13:z1; lim
x2:n̄→∞

x13:z3 ¼ x13:z3;

lim
x2:n̄→∞

x23:z2 ¼ x2:n̄; lim
x2:n̄→∞

x12:z2 ¼ −x2:n̄; ðF1Þ

Using (F1), we find that the covariant structures of (E2) can be expressed in this limit as follows:

V1 → −
x13:z1x12:n − z1:n

x2
13

2

x23:n
; V2 → ðx2:n̄Þ2

x13:n
x213

; V3 → −
x13:z3x23:n − z3:n

x2
13

2

x12:n
;

H12 → −ðx2:n̄Þ2z1:n; H13 → z1:z3x213 − 2x13:z1x13:z3; H23 → −ðx2:n̄Þ2z3:n: ðF2Þ

Thus, in the limit, we get

1

ðx212Þ
dþ2
2 ðx213Þτ̄−

ðdþ2Þ
2 ðx223Þ

dþ2
2

→
1

ðx2:n̄Þdþ2

1

ðx21:nÞdþ2
2 ðx213Þτ̄−

ðdþ2Þ
2 ðx23:nÞdþ2

2X
αiV

v1
1 V

v2
2 V

v3
3 H

h12
12 H

h13
13 H

h23
23 → ð−ðx2:n̄Þ2Þv2þh12þh23

X
αiV̂

v1
1 V̂

v2
2 V̂

v3
3 Ĥh12

12 Ĥ
h13
13 Ĥ

h23
23 : ðF3Þ

Notice that due to (E2), v2 þ h12 þ h23 ¼ s2 ¼ 2, and the correlator has the expected asymptotic behavior 1
ðx2:n̄Þd−2.

Gathering the results above, we conclude that after taking the limit, the correlator reduces to

P
αfh12;h13;h23gV̂

v1
1 V̂

v2
2 V̂

v3
3 Ĥ

h12
12 Ĥ

h13
13 Ĥ

h23
23

ðx21:nÞdþ2
2 ðx213Þτ̄−

ðdþ2Þ
2 ðx23:nÞdþ2

2

; ðF4Þ

where we introduced

15x2 ¼ x2:n
2
n̄þ x2:n̄

2
n.
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V̂1 ¼ −
x13:z1x12:n − z1:n

x2
13

2

x23:n
; V̂2 ¼

x13:n
x213

; V̂3 ¼ −
x13:z3x23:n − z3:n

x2
13

2

x12:n
;

Ĥ12 ¼ −z1:n; Ĥ13 ¼ z1:z3x213 − 2x13:z1x13:z3; Ĥ23 ¼ −z3:n: ðF5Þ

For the integration over the position of the detector, recall
the following formula:

Z
∞

−∞
dðx2:nÞ

1

ðx12:nÞaðx23:nÞb
¼ 2πi
ðx13:nÞaþb−1

Γðaþb− 1Þ
ΓðaÞΓðbÞ :

ðF6Þ

APPENDIX G: POSITIVITY OF THE
EXPECTATION VALUE OF THE

STRESS-ENERGY TENSOR IN A CFT

Let us define a state jPi as follows,

jPi≡
Z

ddxeiPxOðxÞj0i; ðG1Þ

whereOðxÞ is an arbitrary, scalar operator. The expectation
value of the stress-energy tensor on the state jPi is
determined by Lorentz invariance up to two numbers,

hPjTμνjPi ¼ c1PμPν þ c2ημνP2; ðG2Þ
where c1, and c2 are some dimensionful coefficients.
Conformal invariance allows us to further express c2 in terms
of c1. Here, wewill not consider the second term on the right-
hand side of (G2) since it belongs to the so-called trace terms,
the contribution in the OPE of which is negligible for large,
spacelike momentum. We would like instead to determine
explicitly c1 and show that, up to an overall divergent term
which can be easily regularized, it is positive definite.
To this end, we consider the following three-point

function in the CFT,Z
ddxddyeiPxe−iPyhOðyÞTμνnμnνOðxÞi; ðG3Þ

with nμ some null vector and OðxÞ the scalar operator of
conformal dimension Δ associated to the state jPi.

For convenience, will work in light-cone coordinates
with

ds2 ¼ −dxþdx− þ δijdxidxj ðG4Þ
and choose nμ ¼ ð0; 1; 0;…; 0Þ so that we only need to
compute hPjT−−jPi. With this choice, we expect that
hPjTμνjPi ¼ c1ðP:nÞ2 ¼ c1

4
ðPþÞ2, disregarding for the

moment possible divergences.
We start from the general form of the three-point

function of two scalar operators and the stress-energy
tensor, as given in (III. 1) of Ref. [24],

hOðyÞTμνð0ÞOðxÞi ¼ 1

ydxdðy − xÞ2Δ−d tμνðX23Þ; ðG5Þ

where

tμνðXÞ ¼ a

�
X̂μX̂ν −

1

d
ημν

�
; X̂μ ¼

Xμffiffiffiffiffiffi
X2

p : ðG6Þ

Xij is defined as follows:

Xij ¼ −Xji ¼
xik
x2ik

−
xjk
x2jk

;

X2
ij ¼

x2ij
x2ikx

2
jk

i ≠ j; j ≠ k; k ≠ i: ðG7Þ

Note that the overall coefficient a is completely determined
by Ward identities (see Eq. (6.20) of Ref. [24]),

a ¼ −
dNΔ

ðd − 1ÞSd
< 0; ðG8Þ

withN the normalization constant of the two-point function
of OðxÞ and Sd the volume of the d-dimensional sphere.
Using (G5)–(G7) leads to

hPjT−−jPi ¼
a
4

Z
ddxddy

ðyþx2 − xþy2Þ2eiPðx−yÞ
ðy2 þ iϵy0Þd2þ1ðx2 − iϵx0Þd=2þ1½ðy − xÞ2 þ iϵðy0 − x0Þ�Δ−d=2þ1

; ðG9Þ

where the −iϵ presiption is the appropriate one for the Wightman correlator. We split the integral in (G9) into three separate
integrals by expanding the square in the numerator. Each integral is of the form

Im;lðPÞ ¼
Z

ddxddy
ðyþx2Þmðxþy2ÞleiPðx−yÞ

ðy2 þ iϵy0Þd2þ1ðx2 − iϵx0Þd=2þ1½ðy − xÞ2 þ iϵðy0 − x0Þ�Δ−d=2þ1
; ðG10Þ

where m;l ¼ 0, 1, 2 and mþ l ¼ 2.
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First, we express each factor in the denominator as follows:

x2 − iϵ ¼ ðxþ þ iϵÞ
�
−x− þ

X
i

ðxiÞ2
xþ

− iϵ

�

y2 þ iϵ ¼ ðyþ − iϵÞ
�
−y− þ

X
i

ðyiÞ2
yþ

þ iϵ

�

ðy − xÞ2 þ iϵ ¼ ðyþ − xþ − iϵÞ
�
−y− þ x− þ

X
i

ðyi − xiÞ2
yþ − xþ

þ iϵ

�
: ðG11Þ

Then, we introduce Schwinger parameters

�
−x− þ

X
i

ðxiÞ2
xþ

− iϵ

�
d=2þ1−m

¼ id=2þ1−m

Γðd=2þ 1 −mÞ
Z

∞

0

ds1s
d=2−m
1 e−is1ð−x

−þ
P

i
ðxiÞ2
xþ −iϵÞ

�
−y− þ

X
i

ðyiÞ2
yþ

þ iϵ

�
d=2þ1−l

¼ ð−iÞd=2þ1−l

Γðd=2þ 1 − lÞ
Z

∞

0

ds2s
d=2−l
2 eis2ð−y

−þ
P

i
ðyiÞ2
yþ þiϵÞ

�
−y− þ x− þ

X
i

ðyi − xiÞ2
yþ − xþ

þ iϵ

�Δ−d=2þ1

¼ ð−iÞΔ−d=2þ1

ΓðΔ − d=2þ 1Þ
Z

∞

0

ds3s
Δ−d=2
3 eis3ð−y

−þx−þ
P

i
ðyi−xiÞ2
yþ−xþ Þ ðG12Þ

and over ðx−; y−Þ to obtain ð2πÞ2δðs1 þ s3 − pþ=2Þδð−s2 − s3 þ pþ=2ÞθðPþ
2
− s3Þ. The integration over ðs1; s2Þ then

becomes trivial; this amounts to setting s1 ¼ s2 ¼ Pþ
2
− s3 and multiplying with an overall factor of ð1=2Þ2—note that the

integrations of the δ-fucntions are from zero to infinity.
In what follows, we find it convenient to keep the variables s1 and s2 and perform the relevant substitution later. The next

step is to perform the integration over the ðxiÞ and then over the ðyiÞ. The former reads

Z �Yd−2
i¼1

dxi
�
exp

�
iPixi − is1

ðxiÞ2
xþ

þ is3
ðxiÞ2

yþ − xþ
− 2is3

yixi

yþ − xþ

�
¼ π

d−2
2

ð−iAÞd−22 exp

�
−i

P
iðPi − 2s3

yi

yþ−xþÞ
2

4A

�
ðG13Þ

and the latter reads

Z �Yd−2
i

dyi
�
exp

�
−iPiyi þ is2

ðyiÞ2
yþ

þ is3
ðyiÞ2

yþ − xþ
− i

s23
A

ðyiÞ2
ðyþ − xþÞ2 þ i

s3
A
Pi yi

yþ − xþ

�

¼ π
d−2
2

ð−iBÞd−22 exp

�
−i

P
iðPiÞ2ð−1þ s3

Aðyþ−xþÞÞ2
4B

�
; ðG14Þ

where

A≡ −
s1
xþ

þ s3
yþ − xþ

; B≡ s2
yþ

þ s3
yþ − xþ

−
s23

Aðyþ − xþÞ2 : ðG15Þ

Next follows the integration over the variables xþ; yþ, i.e.,

Z
dxþdyþ

ð−ABÞ2−d2 exp
n
−i ~P

2

4

	ð−1þ s3
Aðyþ−xþÞÞ

2

B þ 1
A



− i P

−

2
xþ þ i P

−

2
yþ

o
ðxþ þ iϵÞd=2þ1−l−mðyþ − iϵÞd=2þ1−m−lðyþ − xþ − iϵÞΔ−d=2þ1

: ðG16Þ

A little bit of algebra combined with the substitution s1 ¼ s2 ¼ Pþ
2
− s3 yields

−AB ¼ Pþ

2

ðPþ
2
− s3Þ

xþyþ
ð−1þ s3

Aðyþ−xþÞÞ2
B

þ 1

A
¼ 2ðyþ − xþÞ

Pþ ; ðG17Þ
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which allows us to express (G10) as follows,

Im;lðPÞ ¼ Cθ
�
Pþ

2

�Z
Pþ=2

0

dssΔ−d=2
�
Pþ

2
− s

�
d=2−m−lþ1

×
Z

dxþdyþ
e−i

P2

2Pþðyþ−xþÞ

ðxþ þ iϵÞ2−l−mðyþ − iϵÞ2−l−mðyþ − xþ − iϵÞΔ−d=2þ1
; ðG18Þ

where

C≡
�
Pþ

2

�
1−d=2 π2i−mð−iÞ−lþΔ−d=2þ1πd−2

Γðd=2þ 1 −mÞΓðd=2þ 1 − lÞΓðΔ − d=2þ 1Þ : ðG19Þ

The integral over s is equal to

Z
Pþ=2

0

dssΔ−d=2
�
Pþ

2
− s

�
d=2−m−lþ1

¼
�
Pþ

2

�
Δþ2−m−l Z 1

0

duuΔ−d=2ð1 − uÞd=2−m−lþ1

¼
�
Pþ

2

�
Δþ2−m−l ΓðΔ − d=2þ 1ÞΓðd=2 −m − lþ 2Þ

ΓðΔ −m − lþ 3Þ : ðG20Þ

The integral over xþ; yþ yields

Z
dxþdyþ

e−i
P2

2Pþðyþ−xþÞ

ðxþ þ iϵÞ2−l−mðyþ − iϵÞ2−l−mðyþ − xþ − iϵÞΔ−d=2þ1
→lþm¼2

¼ ð2πÞ2iΔ−d=2þ1

ΓðΔ − d=2þ 1Þ θ
�
Pþ

2

�
θ

�
−

P2

2Pþ

��
−

P2

2Pþ

�Δ−d=2−1 Z ∞

0

duuΔ−d=2δ2ð1 − uÞ; ðG21Þ

where we have isolated the divergent term in the dimensionless integral over u.
Gathering all the results, bearing in mind that Eq. (G9) can be written as

hPjT−−jPi ¼
a
4
ðI2;0 − 2I1;1 þ 2I0;2Þ; ðG22Þ

leads to

hPjT−−jPi ¼ ~aθ

�
Pþ

2

�
θð−P2Þ

�
−
P2

4

�Δ−d=2−1�Pþ

2

�
2

; ðG23Þ

where

~a ¼ −
a
4
ð2πdþ2Þ2 d − 1

Γðd=2þ 1ÞΓðd=2Þ
1

ΓðΔþ 1ÞΓðΔ − d=2þ 1Þ limϵ→0
δðϵÞ: ðG24Þ

Given that a < 0, for any unitary theory where Δ − d=2þ 1 ≥ 0, ~a is positive definite.
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