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Man’s longing for perfection finds expression in the theory of 

optimization. It studies how to describe and attain what is Best, 

once one knows how to measure and alter what is Good or Bad. 

(Beightler et al., 1979, p. 1) 

Introduction 
Optimisation of agent-based models is generally seen as a complex problem. Computation 

of a solution involves the execution of a simulation in all but the most trivial models. The 

search for optimal solutions is therefore computationally expensive, especially when the 

level of realism is high and the number of parameter combinations is large. This research 

applies Genetic Algorithm based search and optimisation techniques in an attempt to 

characterise Neanderthal mobility using a realistic large scale agent based modelling system. 

The methodology and software developed in this study are part of the doctoral research of 

the author. 

Genetic Algorithms 

Genetic Algorithms (GAs) form, together with Evolutionary Strategies and Genetic 

Programming, the Evolutionary Algorithm programming paradigm (Coello Coello, 2002). 

Differences between these techniques are fading (Michalewicz, 1992, p. 132), and while the 

chosen terminology no longer reflects our current understanding of genetics, they all aim to 

simulate an evolutionary process in the computer (Coello Coello, 2002). Basic elements in 

evolutionary algorithms are a population of individuals to work with, a string with values that 

define an individual which can be manipulated (referred to as the genes or the chromosome), 

a fitness function that calculates how well adapted an individual is within the modelled 

environment (Michalewicz, 1992), and an optimisation technique targeting optimal solutions.  

The term Genetic Algorithm was coined by John H. Holland (1975) but the general principle 

was already recognized by Alan Mathison Turing in the 1948 essay ‘Intelligent Machinery’: 

‘There is the genetical or evolutionary search by which a combination of genes is looked for, 

the criterion being the survival value’ (Turing, 1948, p.18). The idea is that an individual 

represents a single solution to the problem at hand; that individuals vary from one to the 

other; that an evaluation function represents the environment in calculating the fitness of 

each individual; and that the computer searches for the individual with the highest fitness 

value (the optimal solution) in the problem space, without actually programming that solution, 

but instead by manipulating the genes of the individuals (Coello Coello, 2002).  

GAs are very well adapted for nonlinear search spaces, with multiple locations present in 

those spaces that can yield good solutions. A non-traditional methodology is required when 

traversing these resulting parameter spaces searching for an optimal solution, where 

exhaustive search algorithms are replaced by a heuristic procedure. A GA differs from more 

traditional optimisation and search algorithms in at least four ways (Goldberg, 1989): 
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1. A GA searches in a population of points, not just a single point; 

2. GAs operate with probabilistic, unbiased transition rules, not deterministic ones; 

3. A GA operates on a set of parameter values, not the parameters themselves, and 

does not require any explicit knowledge of the actual structure of the solution space 

(what these parameters are about); 

4. A direct, explicit fitness function is used. 

For the structure of a GA, a probabilistic selection is made from the population based on 

some measurement of the individual’s adaptation to the environment or its fitness within it. 

The design of the fitness function is at the discretion of the modeller. After the selection of 

one or more individuals, operators are applied on the selection. These operators are inspired 

by the early perception of how the genomes of offspring were created in nature. They 

include Mutation, where random changes are made to the genes of an individual, and 

Crossover (a special kind of Recombination), where the genes of two individuals are mixed 

in sequence. Then the fitness function is calculated for the generated offspring, and the new 

individuals are inserted into the population, generally replacing other individuals. The 

process is then restarted, until some stop criteria are met. Generally the stop criterion is a 

certain value for the fitness function being attained, or no measurable improvement of the 

calculated fitness values after a certain number of generations. 

Agent Based Modelling 

An Agent-based Model (ABM) is a complex system aiming to reproduce the dynamics of the 

real world, and one that cannot be solved mathematically. Therefore GAs form a perfect 

exploration and tuning method for such models (Calvez and Hutzler, 2006). Emerging 

properties, high parameter sensitivity, and non-linear solutions often characterise the 

solution space for such models. There is no analytical description, and simulation results 

cannot easily be reduced to the input data. There is development and emergence in a non-

trivial way. As such they are well suited to modelling complex systems and to explore this 

complexity. Archaeological research questions connected to such models often incorporate 

the resultant output of the (inter)actions of many individuals through time, and as such can 

be targeted by ABM techniques (Lake, 2014). However, there have been few attempts to 

apply GAs to archaeological simulations, although they are implicitly used in the more widely 

applied Genetic Algorithm for Rule-Set Prediction tool (GARP) for biogeographical niche 

modelling (Banks et al., 2008). 

HomininSpace 

HomininSpace is an agent based modelling and simulation environment where a fluctuating 

carrying capacity in a reconstructed paleoenvironment is the key attractor for hominin 

dispersal (Scherjon, 2015a). Simulations executed in the HomininSpace modelling system 

are used to assess the character of past hominin dispersal, taking the patterns of presence 

and absence of Neanderthals in North-west Europe in the Middle Palaeolithic (130kya–

50kya) as a case study. Mobility, the sum of small scale movements through larger 

geographic and temporal scales, enables hunter gatherers to survive (Kuhn et al., 2016).  

Energy in the landscape, in the form of herds of medium to large ungulates, will support 

groups of Neanderthals moving through the reconstructed environment. That environment 

includes a topography influenced by fluctuating sea levels. The question is whether the 

dispersal and movement of Neanderthals was based on tracking preferred habitats. The 

tracking of favourable habitats has also been described as the ‘ebb and flow’ of populations 



(e.g. Hublin and Roebroeks, 2009), and involves individuals or groups of individuals moving 

in the area where the most favourable circumstances are found. Today the best known 

example of such behaviour is displayed by migratory birds, which fly south towards the 

Mediterranean or beyond in autumn and return when spring sets in. 

The ‘ebb and flow’ of moving populations has often been opposed to a ‘sources and sinks’ 

model, where local populations must adapt behaviourally and/or genetically to cope with the 

changing climate or subsequently become extinct when conditions become less favourable 

(Pulliam, 1988, 1996). They are replenished from more productive areas when the situation 

improves (MacDonald et al., 2012). Obvious examples of this ‘sources and sinks’ model are 

most species of flora. Since individuals of this kind cannot move by themselves, they 

invariably die when the climate deteriorates too far. For that species to live there again, the 

area must be re-colonized from other areas where local reproduction more than balances 

mortality. The question is whether Neanderthal dispersal patterns more closely resemble 

ebb and flow movement or a sources and sinks model. 

To address the mobility of Neanderthals, the two opposing types have been implemented in 

the parameterised model (16 parameters in total) underlying the HomininSpace simulation 

system. These types are termed Static and Dynamic. Simulations are executed for both 

types and a fitness function, and have been constructed to compare simulation results with 

the archaeological data. This fitness function counts and totals how often an archaeologically 

determined presence period is matched by a presence in the simulation at the same point in 

time. A period of presence is defined as the radiometrically determined date (with standard 

deviation) for an artefact or for sediment associated with the archaeology. For instance, it 

has been shown that Neanderthals were present in Pech de l'Azé IV with a 

thermoluminescence (TL) measurement on heated flint (Richter et al., 2013). This artefact is 

dated to 68.5 kya, with a standard deviation on this TL date of 6.6 ky. If in any simulation a 

Neanderthal group is within the area of Pech de l'Azé IV during the period 75.1-61.9 kya, 

each year of that presence is counted and added to the total simulation score. This sum is 

referred to as the MatchingVisits, and is the quantitative fitness value for that specific 

simulation (Calvez and Hutzler, 2006, p. 47). Initial results presented in earlier research 

suggested that for manually selected parameter values, the Static mobility type produced the 

best solution, or in other words that simulation results for Static hominins matched the 

Neanderthal archaeology best (Scherjon, 2015a). 

Each simulation is characterised by a combination of parameter values and a fitness value 

that is the result from running the simulation with those parameter values. This combination 

of parameter values is referred to as the chromosome for that individual simulation. GAs are 

then used to search for the parameter value combination that matches the archaeology best. 

An initial population is constructed by varying parameter values randomly, and then running 

the simulations with these parameter sets. Then, individual simulation results are used to 

select promising parameter combinations, running new simulations for the generated 

offspring in a search of the optimal solution. 

This rest of this paper is structured as follows: the next section will describe the implemented 

GA and the underlying data set. Then, results for the experiments are provided and 

discussed. The conclusions are presented in the last section, together with some directions 

for further research and suggestions about future use of genetic algorithms in archaeological 

ABMs. 



Materials and Methods 

In this research the following steps were implemented: 

1. The construction of a list of one thousand randomly created parameter sets that can 

be used as input to the HomininSpace modelling system. Default values for the 

parameters were selected from the literature, and the random values for the 

parameters were generated within the interval of 10%-200% of that default. 

2. The creation of simulation results from two initial populations; one of Static and a 

second of Dynamic hominins. This involved running all 1000 parameters sets 

constructed in the first step for both mobility settings, and calculating the fitness value 

for each combination for both settings. 

3. Run GAs for both initial populations, using as selection criterion the match with the 

archaeology. As two variants were applied to the Dynamic hominins, the result is 

three data sets. 

4. Analyse these three data sets to find the most optimal solution, or the ‘Perfect 

Neanderthal’. 

5. Explain the results, using correlation analysis on the initial populations and 

computation of the coefficient of variation for the results from the GAs. 

The parameters that are used in the model underlying the HomininSpace (HS) modelling 

system are described in Table 1. There are 16 parameters in total, distributed in three 

groups: those for Demographics, for Energetics and one for Group Dynamics. Parameters 

are based on ethnographic data (default) with wide plausible extended value ranges, from 

which instance values are randomly selected. Employing these 16 parameters, if you need 

to systematically explore the total parameter space, this can exponentially expand the 

number of parameters. For example, if you take only three values per parameter (a minimum, 

a maximum and a middle value), this would require the simulation of a 3^16 parameter set 

(or almost 300 million simulations). Therefore the combinatorial explosion with so many 

parameters requires a non-exhaustive exploration. Nevertheless, due to the non-linear 

character of the solution space, an automatic and systematic exploration of parameter space 

is needed (Calvez and Hutzler, 2006). 

Table 1 - The parameters and default values for the modelled hominins in HomininSpace. 

 

The implemented GA in the HS system selects individuals from the population using a 

tournament selection procedure (Miller and Goldberg, 1995). For the selection of each 

individual, a tournament is organised in which n random individuals are chosen from the 

population. From this subset the highest ranking (most optimal) solution is declared winner. 

This procedure ensures that even mediocre solutions can produce offspring. The selected 

individuals participate in the creation of the next generation of seven new individuals through 

the application of several operators. HS implements a real-coded GA where each individual 

is represented by a string of 16 integer values, one for each model parameter (Herrera et al., 

1998). Then additional simulations for the newly generated parameter combinations are 

executed, the fitness value computed, and the offspring is added to the general population. 

This process is repeated until the end of each experiment (see Figure 1).  



 

Figure 1 - Application of Genetic Algorithms in the HomininSpace modelling system. 

The operators that are applied are crossover and mutation. Mutation is implemented as the 

random modification of one single parameter value by plus or minus 10%, and thus 

implements a low rate mutation mechanism to increase coverage of the search space and to 

prevent convergence to a local optimum (Yao, 1993). An additional advantage of the chosen 

mutation operator is that when needed, the search space can be expanded even beyond the 

original chosen random value domain. In other words, values can be created that are not 

present in the (initial) population (Djurišić et al., 1997). Crossover aims to recombine two 

good parent solutions into potentially even better offspring solutions. Implemented is a 

uniform multi-point crossover, where the offspring is a single individual that is a stochastic 

mix of the parameter values from both parents (Syswerda, 1989). This combines very well 

with tournament selection (Djurišić et al., 1997, p. 7860). Seven individuals (four crossover 

results, three mutations) are created in each generation, because the hardware running the 

experiments has seven parallel processors available for executing simulations.  

 

Figure 2 - Mutation operator (left) and uniform crossover operator (right) producing offspring individuals 
(denoted by C). 

 

Since offspring is added to the population without any replacement of parents or other less 

performing individuals, no lineage is terminated prematurely, and each individual competes 

until the very end of each experiment. This also ensures that the best performing individuals 

survive intact within each generation. However, successful lineages tend to dominate the 

tournaments, which can be used to create an informed stop criterion for the GA. 

Results 
Two experimental setups were created: one for Static hominins (those that stay in the same 

area even when the climate deteriorates) and one for Dynamic hominins (that constantly 

move to that area that has the most resources). In each experiment, initial populations were 

created by running 1000 simulations with randomly created parameter values (the same 

values for both experiments). The fitness value (referred to as MatchingVisits) is shown for 

both experiments in Figure 3. Static results are first plotted and then overlain by Dynamic 

results. Most obvious are the overall green peaks, suggesting the more optimal solutions are 

for Static hominins. Of interest are the simulations with better Dynamic results, which in 

Figure 3 are the results in red peaks, with some more promising results highlighted in blue in 

the figure. These two sets are used as input for the GAs, for which the results are presented 

below. 

 

Figure 3 - Results for the simulations of the initial populations for both experimental setups. On the 
vertical axis the score for MatchingVisits, and on the horizontal axis is the simulation number. For each 
simulation two results are plotted; for Static in green and for Dynamic in red. In the circles there are three 
Dynamic peaks, meaning that for those simulations Dynamic scores higher than Static. 



However, first a characterisation of the parameter influence is undertaken by calculating a 

Pearson product-moment correlation coefficient (PCC) for each parameter against the 

fitness value, in both experimental starting populations. The PCC gives the degree of linear 

dependence between two ratio-scale variables, and can be a positive, a zero or a negative 

correlation (Fletcher and Lock, 2005, p. 117). These results are presented in Table 2. For 

Static hominins the Birthrate, Max_ForagingRange and to a lesser extent the 

CohortSize_Fertile are positively correlated. In addition, negative correlations are especially 

clear in DeathRate_PostFertileCohort, and also to a lesser extent in 

DeathRate_PreFertileCohort, DeathRate_FertileCohort and GroupSizeFertile_BeforeMerge. 

For Dynamic hominins, a positive correlation was found for Max_ForagingRange, Birthrate 

and GroupSize_BeforeSplit. There is a negative correlation between fitness value and 

DeathRate_FertileCohort, GroupSizeFertile_BeforeMerge, and Temperature_Tolerance. 

Table 2 - The Pearson correlation coefficient for each parameter against the MatchingVisits fitness value. 
** denotes a significant correlation, which for easy reference is also colored red. Parameter names are 
taken from the source code. 

 

GAs were executed for both experimental setups. For the Static hominins, 731 new 

individuals were generated. The stop criterion was an experiment duration of two weeks, and 

no further improvement after 13 generations (>100 individuals). The maximum value of 

3,945,109 was obtained in simulation number 1638. For Dynamic hominins, 540 extra 

simulations were run. Here the maximum of 3,948,133 was reached in simulation 1495, and 

after an additional 45 simulations with no improvement the experiment was ended (end 

result higher than Static max). In total 3271 simulations were executed, with an average 

execution time of 20 minutes per simulation. 

 

Figure 4 - GA results for both Dynamic (red) and Static hominins (green). 

The top 5 results for both experimental setups are presented in Table 3. To illustrate the 

effect of the optimisation effort that GA can achieve, the best results from both initial 

populations are also included. It shows that improvement is especially spectacular for 

Dynamic hominins; changing from a maximum score of 2.4m to 3.9m (where Static hominins 

achieve an improvement from 3.5m to 3.9m). These results can be compared against results 

from previous research (Scherjon, 2015b) where manually constructed parameter 

combinations were executed for both Static and Dynamic hominins (Figure 5). Parameter 

values here were derived from the ethnographic literature and modified slightly to 

accommodate expected Neanderthal deviation (for instance, energy usage was increased, 

see Verpoorte, 2006). Although the implemented system was subsequently further 

developed, the general trend was clear: for the manually constructed parameter sets, Static 

simulations always scored higher than Dynamic (comparable to most of the non-GA 

optimized results presented in Figure 3). In that research, no higher scoring Dynamic 

simulations were found. 

Table 3 - Top 5 results for both Dynamic and Static hominins, results with and without GA optimisation. 

 



Figure 5 - Taken from Scherjon (2015b). For each simulation the simulation scores for Static hominins 
are better than those from the corresponding (same parameter value) Dynamic simulations. The 
simulation score quantifies the match with the actual archaeology. 

 

Discussion 
The results from previous research in Scherjon (2015b) that are reproduced in Figure 5 were 

explained to a large extent by the more intense resource competition that would result from 

Dynamic behaviour. Areas with many resources would attract all hominins from the 

surrounding area, who would then deplete the resource patches, with resulting food 

shortages for all. Apparently, though, there are hominin types that follow a Dynamic strategy 

and that do show a good (and even best) match to the archaeology (Table 3). To 

characterise these dynamic hominins, the values for all significant parameters for the 30 

most optimal solutions implementing the Dynamic mobility pattern are presented in Figure 6.  

Figure 6 shows that the most successful Dynamic hominins all have a relatively high birth-

rate, around 46% (dark blue line). It also shows that the difference between number 1 and 

number 2 is only a slight decrease in the variable GroupSize_BeforeSplit, the variable that 

indicates when groups become unstable (note that there can be other differences in the non-

significant variables). This variable is also the most variable one. Also observe that the value 

suggested in the literature is 25 (Sørensen, 2009), which here is only sported by the 25th 

ranked Dynamic simulation.  

To understand these results further, it is important to realise that the fitness value is 

constructed by matching with presence data in the archaeological record. These data points 

are spread through the simulation area, both in space and time. The theoretical best match 

would be attained by a hominin that is present everywhere all the time (!). Such a hominin 

cannot be sustained by the limited amount of resources produced by the environment. So 

the system, implemented in a GA, searches for a sub-optimal solution, and detects a family 

of solutions that represents a hominin type which is not, as such, recognised in the literature. 

This is a hominin that constantly travels through the landscape within very small groups 

(around ten individuals) and with a very high birth-rate (close to the physical limit a female 

modern human body would be able to sustain, around 46%).  

 

Figure 6 - The top 30 Dynamic hominins, for all significantly correlated parameters. 

When inspecting the non-significant parameters for the same set of solutions (Figure 7), it 

becomes clear that values for these vary more than for the significant parameters. This 

makes sense since they influence the final result less. Contra-intuitive energy related 

variables are also non-significant for scoring against the archaeology (not included in the 

figure).  

 

Figure 7 - The non-significant parameters for the 30 best ranking Dynamic simulations. 



Conclusions 
A Genetic Algorithm (GA) has been implemented in the HomininSpace simulation system 

(HS) to systematically explore the parameter space that results from the chosen parameter 

set in the underlying model. Simulation results are compared against an archaeological 

record of actual presence data, resulting in a quantitative fitness value per simulation. It is 

shown that the implemented GA is capable of finding more optimal fitting parameter value 

combinations that result in a higher fitness value than informed manually selected parameter 

values. When applied to the research question on Neanderthal mobility, it must be 

concluded that the results for both strategies are very comparable. The fitness values for 

improved individuals are within the same order of magnitude, and there is no statistically 

significant difference between Static and Dynamic hominins (contrasting previous research). 

However, it is interesting that the best matching simulations were those which, by a narrow 

margin, have hominins that are implementing a Dynamic mobility strategy.  

The model not only implements the mobility type, but also many other parameters involved. 

This results in the following characterisation of the most optimal fitting solution in the model 

underlying HS. The ‘perfect’ Neanderthal: 

 implements a Dynamic mobility strategy; 

 has a (very) high birth-rate; 

 sports low death rates for pre-fertile and fertile segments; 

 has high death rates for the post-fertile segment; 

 has a low energy intake; 

 can resist cold fairly well; 

 has a short childhood; 

 operates in relatively small groups; 

 hunts and collects from a large foraging range. 

From these results it can be concluded that the implemented Genetic Algorithm works. It 

improves upon randomly constructed initial population results and falsifies previous research: 

the evolved Dynamic Neanderthals have an equal or better fit than all Static ones (evolved 

or manually constructed). The search for optimal solutions is generic, systematic and 

produces better results than informed manual selection of parameter values. The character 

of the parameter values for the set of most optimal solutions confirms the statistical analysis 

on the significance of certain parameters on the fitness value. This information can be used 

in future parameter reduction efforts on the model, but care must be taken; some parameters 

which are unimportant in some simulations, might be important in others, and vice versa (for 

example see the Temperature_Tolerance and the death rate for the post-fertile cohort 

parameter). 

Genetic Algorithm techniques applied in ABM are, unfortunately, computationally expensive, 

since the calculation of the fitness value is the actual simulation run with the evolved 

parameter set. Therefore the following elements must be considered carefully when 

constructing a GA for an archaeological ABM: the total computational costs, stochasticity in 

the genetic algorithm, choice of GA operators, the stop criterion and the chosen fitness 

function. And as with all stochastic modelling: nothing is guaranteed!  



It is acknowledged that the simulation results are matched against presence data only, and 

this has a major impact on the direction of the search for optimal solutions. The best match 

with the archaeology would be achieved by a simulated hominin that is present everywhere 

all the time. Such is a general issue when using archaeological data, since ‘absence of 

evidence is not evidence of absence’ (Phillips et al., 2006). However, archaeologists are 

quite convinced that Neanderthals were not present in certain areas at certain points in time 

during the simulated period (Ashton, 2002; Wragg Sykes, 2017). Further research should 

take into account the tendency to fill the landscape when presence only information is used 

and should investigate the effects of incorporating evidenced absence. 
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