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We update the search for features in the cosmic microwave background (CMB) power spectrum due to
transient reductions in the speed of sound, using Planck 2015 CMB temperature and polarization data. We
enlarge the parameter space to much higher oscillatory frequencies of the feature, and define a robust prior
independent of the ansatz for the reduction, guaranteed to reproduce the assumptions of the theoretical model.
This prior exhausts the regime in which features coming from a Gaussian reduction are easily distinguishable
from the baseline cosmology. We find a fit to the l ≈ 20–40 minus=plus structure in Planck TT power
spectrum, as well as features spanning along higher l’s (l ≈ 100–1500). None of those fits is statistically
significant, either in terms of their improvement of the likelihood or in terms of the Bayes ratio. For the higher-
l ones, their oscillatory frequency (and their amplitude to a lesser extent) is tightly constrained, so they can be
considered robust, falsifiable predictions for their correlated features in the CMB bispectrum. We compute
said correlated features, and assess their signal to noise and correlation with the secondary bispectrum of the
correlation between the gravitational lensing of the CMB and the integrated Sachs-Wolfe effect. We compare
our findings to the shape-agnostic oscillatory template tested in Planck 2015, and we comment on some
tantalizing coincidences with some of the traits described in Planck’s 2015 bispectrum data.
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I. INTRODUCTION

The Planck collaboration [1] has released all the data taken
by the survey, including polarization power spectrum and
some results of the analysis of the bispectrum. However, a
likelihood for the cosmic microwave background (CMB)
bispectrum has not been released for public use. The analyses
carried out by the Planck collaboration in the context of
primordial fluctuations have not found any strong deviation
from the predictions of the canonical single-field slow-roll
inflation paradigm. In particular, they found no significant
deviation from the vanilla power-law power spectrum [2], nor
a detection of any shape of primordial non-Gaussianity [3].
Some hints are reported for small deviations on both data sets,
but always in the low signal-to-noise regime, under the
significance necessary to claim a detection. Some of those
hints persist from Planck 2013 [4,5] through Planck 2015
(and evenWMAP [6]), such as a dip atl ≈ 20 and some small
features in the CMB temperature bispectrum, which have
been deemed interesting by the Planck collaboration.
Many of the extensions of canonical single-field slow-roll

inflation predict [7] correlated features in both the two- and
three-point correlation functions.1 Notably, in a few cases,

the correlations can be computed explicitly [8–12]. When
modelswith correlated features are tested against the data in a
joint approach for different observables at the same time, the
significance of possible fits is expected to increase, as has
been reported in particular for oscillatory feature searches
combining CMB power spectrum and bispectrum [13–15]
(see also [16] for a model-independent approach).
This motivates us to update our ongoing search [17–19]

for features produced by transient reductions in the speed of
sound of the inflaton [9] with the new Planck 2015
temperature and polarization power spectrum data, in
preparation for a joint search including bispectrum data.
As a part of it, we have reevaluated the prior of our search to
ensure theoretical self-consistency in a more efficient way
(imposed a priori, not a posteriori) and enlarged the
parameter space such that it covers all the configurations
for which the feature is distinguishable from the baseline
cosmology. With the results of this updated search, we
formulate predictions for the CMB bispectrum that are
robust, i.e. are guaranteed to be theoretically self-consistent
and have a very narrow range of oscillatory frequencies.
They are also fundamentally different to the oscillatory
bispectrum templates tested by Planck so far, in that the
oscillations in the squeezed limit are out of phase by π=2
with those on the equilateral and folded limits.

1There is very extensive literature on this subject; we refer the
reader to the recent review [8].
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The present paper is structured as follows: we begin by
reviewing the theoretical framework for this family of
inflationary features, and describe their shape in the CMB
observables (Sec. II A); then, we present our ansatz for the
speed of sound reduction (Sec. II B) and discuss the prior that
we will employ in our sampling (Sec. II C). After discussing
the data sets and methodology with which our search has
been conducted (Sec. III), we present and discuss our results
for the CMB power spectrum (Sec. IV), and draw from them
predictions for the CMB bispectrum (Sec. V) which are
discussed in the context of Planck’s search for non-
Gaussianity. Finally, we discuss the relevance of our findings
and prospects for searches for features of this kind (Sec. VI).
The numerical tools used to carry out CMB bispectrum
computation and forecasts are described in the Appendix.

II. THEORETICAL MODEL AND PRIOR

A. Review of the theoretical model

We work in the framework of effective field theory of
inflationary perturbations [20], described in terms of the
Goldstone boson of time diffeomorphisms, πðt; xÞ. This is
related to the adiabatic curvature perturbation linearly:
Rðt; xÞ ¼ −HðtÞπðt; xÞ, with H ≔ _a=a and a is the scale
factor (from now on, we use natural units, ℏ ¼ c ¼ 1,
define the reduced Planck mass asM−2

Pl ≔ 8πG, and denote
physical time derivatives with an overdot, _≔ d=dt).
The effective quadratic action for π reads

S2 ¼ M2
Pl

Z
d4x

ϵa3H2

c2s

�
_π2 − c2s

ð∇πÞ2
a2

�
; ð1Þ

where ϵ ≔ − _H=H2 and the time-dependent speed of sound
cs that appears in the action accounts for the effect of the
heavy components of the field space that are made implicit
by the effective field theory.
In order to get a physical grasp of the significance of a speed

of sound reduction, carrying out explicitly the integration of
the heavy mode in a two-field scenario, one gets [21]

cs ¼
�
1þ 4_θ2

M2 − _θ2

�−2
; ð2Þ

where _θ is the angular velocity of the background trajectory
along the approximate minimum of the potential, and M2

would be the mass squared of the heavy modes perpendicular
to that trajectory if the trajectory were straight. Thus, soft,
adiabatic turns in the inflationary trajectory in field space
result in transient reductions of the speed of sound.2

We can rewrite the quadratic action (1) as

S2 ¼ S2;free þM2
Pl

Z
d4xϵa3H2ð−u _π2Þ; ð3Þ

where S2;free ≔ S2ðcs ¼ 1Þ and we have reparametrized the
varying speed of sound as [24]

u ≔ 1 −
1

c2s
; ð4Þ

which departs from zero towards negative values when the
speed of sound departs from unity. Treating the transient
speed of sound as a small perturbation of the free action and
using the in-in formalism [25], one sees that mild changes
in the speed of sound seed features in the primordial power
spectrum of curvature perturbations as [9]

ΔPR

PR
ðkÞ ¼ k

Z
0

−∞
dτuðτÞ sinð2kτÞ; ð5Þ

where PR ¼ H2=ð8π2ϵM2
PlÞ is the featureless nearly scale-

invariant power spectrum corresponding to the constant
case cs ¼ 1 (u ¼ 0), and where uðτÞ departs briefly and
softly from zero and back, and τ is the conformal time.
One can alsowrite the cubic action for the adiabatic mode:

S3 ¼ M2
Pl

Z
d4xϵa3H2

�
−2ð1 − uÞsHπ _π2

− u _π

�
_π2 −

ð∇πÞ2
a2

��
; ð6Þ

wherewe have introduced the relative derivative of the speed
of sound,

s ≔
1

H
_cs
cs
: ð7Þ

In the cubic action above, two important assumptions have
been made:

(i) Slow-roll contributions still present in constant-
speed-of-sound scenarios are neglected. They come
at order Oðϵ2; η2Þ [26], so in order for this
assumption to be correct (i.e. this here being the
main contribution to the cubic action), at least one of
u or s must be significantly larger than the slow-roll
parameters, at least at their maximum deviation
from zero.

(ii) The cubic action due to the speed of sound reduction
is treated perturbatively, so if we want to be sure that
higher order terms can be neglected, both the speed
of sound and its change rate as they appear in the
cubic action, u and s, must be significantly smaller
than 1 at their maxima.

Summarizing,

max ðϵ; jηjÞ ≪ max ðjujmax; jsjmaxÞ ≪ 1: ð8Þ
2Sufficiently sharp turns would violate the adiabatic condition

that prevents quanta of the heavy degrees of freedom from being
produced [22,23]: j_csj ≪ Mj1 − c2s j.
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In Sec. II C, we discuss how to impose those bounds in a
natural way.
It is easy to check that the perturbative limit on jsjmax

ensures that the consistency conditions derived in [22,27,28]
are comfortably satisfied, setting a limit to the sharpness of
the reduction at least as stringent as the ones found in those
references. Thus, as long as our prior duly imposes those
bounds in jujmax and jsjmax, we eliminate the risk of fitting to
the data features whose computation can be found a poste-
riori not to be theoretically consistent.3

From the cubic action above, again using the in-in
formalism, one can compute the main contribution to the
bispectrum of the curvature perturbations [9],

BRðk1; k2; k3Þ ¼
ð2πÞ4A2

sM6
Pl

ðk1k2k3Þ2
X2
i¼0

ciðk1; k2; k3Þ
�
kt
2

�
i

×

�
d

dkt=2

�
i ΔPR

PR
ðkt=2Þ; ð9Þ

where kt ≔ k1 þ k2 þ k3. The scale-independent shape
coefficients ci are

c0 ≔ −
1

k2t
ðk1k2 þ …cyclicÞ þ 1

4

1

kt

�
k31
k2k3

þ …cyclic
�

−
3

2

1

kt

�
k1k2
k3

þ …cyclic
�
þ 1

4
kt

�
1

k1
þ …cyclic

�
−
5

4
;

ð10aÞ

c1 ≔
1

k2t
ðk1k2 þ …cyclicÞ − 19

32
þ 19

32
−
1

4

1

kt

�
k22 þ k23

k1
þ …cyclic

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

c1;sq

;

ð10bÞ

c2 ≔
1

4

1

k2t
ðk21 þ k22 þ k23Þ; ð10cÞ

where …cyclic means the two remaining cyclic permutations of
the ki (the missing ki’s in a term are understood to be
implicit, e.g. k1k2 þ …cyclic ≔ k1k2 þ k2k3 þ k3k1).
Notice that, unlike in most of the literature, we are not

extracting an overall amplitude fNL in front of the bispec-
trum. We could use jujmax as a proxy for fNL, redefining
ðΔPR=PRÞ⋆ ≔ 1=jujmaxΔPR=PR. Also, we notice that
there is a nonseparable prior on jujmax and jsjmax deter-
mined by Eq. (8) (and developed in Sec. II C). This
nonseparability of the amplitude from the rest of the shape
parameters should be taken into account when fitting this
template to the data, since the range of amplitudes jujmax
allowed by the prior depends on the value of jsjmax of the
tested template (see Sec. II C).

The main result from [9] is thus that features in the
power spectrum and the bispectrum are correlated in a
very simple, analytic way, and that both are easily
expressed in terms of a mild, transient reduction of the
speed of sound uðτÞ of the adiabatic mode. It is worth
remarking that both observables were recomputed in the
same theoretical framework using the generalized slow-roll
formalism in [18], and they were found to be consistent
with the expressions above, with agreement improving as
the reductions get sharper (large jsjmax), i.e. the regime
where the generalized slow-roll approximation works best.
Let us discuss a little the appearance of those features in

both observables. Let as assume that the speed of sound
reduction happens around a particular instant τ0, which we
will define as the instant of maximum reduction:
uðτ0Þ ≔ −jujmax. The rate of change s being limited from
below by the slow-roll parameters means that the reduction
must be approximately localized around τ0. The Fourier
transform in Eq. (5) turns that localization into a linear-in-k
oscillatory factor sinð2kτ0Þ for the power spectrum feature,
with possibly a small phase if the reduction is not
symmetric around τ0. The finite span in τ of the reduction
imposes a finite envelope on top of those oscillations, the
details of which (weight of the tails, symmetry) are
determined by the particular shape of uðτÞ.
In the bispectrum, all this remains true, the oscillatory

factor being sinðktτ0Þ. The variation along total scale kt ≔
k1 þ k2 þ k3 is given mainly by ΔPR=PR and its deriv-
atives, so when observed along kt in a particular direction
(i.e. a particular triangular configuration), the feature will
look similar to that on the power spectrum: an enveloped
oscillation. The amplitude and phase do change across
different triangular configurations: the central configura-
tions (i.e. those away from the squeezed limit, including the
equilateral and folded limits) are dominated by the term
with the second derivative, and may receive additional
contributions from the rest of the terms (mostly from the
zeroth derivative) if the reduction is not specially sharp, i.e.
jsjmax ∼ jujmax. The squeezed limit is completely defined by
the term c1;sq in the first derivative alone, which diverges
towards that limit as the inverse of the smallest wave
number. Despite there apparently being squeezed contri-
butions from c0 · ΔPR=PR, they cancel out, in agreement
with the consistency condition [26,30].
Due to the order of the derivatives, the oscillations in the

squeezed limits are out of phase by π=2 with respect to
those at the central configurations. This can be seen clearly
in Fig. 1(b), comparing the middle plot with the upper and
lower ones. This is the main difference with the shapes
tested so far on the Planck bispectrum in the 2013 [5] and
2015 [3] data releases (see Sec. V), which are all propor-
tional to sinðωkt þ ϕÞ, where the phase is the same for all
triangular configurations.
All the statements above about the characteristics of the

features are independent from the particular ansatz chosen
3This is different from the treatment in our previous work

[17,18], and also in [4,29] for steps in the potential.
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for the reduction, and are illustrated in Fig. 1. In the next
section, we present our case study: a Gaussian reduction of
the speed of sound.4

B. Gaussian ansatz for the reduction

As in our previous work [17–19], we propose a reduction
in the speed of sound as a Gaussian in e-folds (or,
equivalently, in physical time)5:

uðτÞ ≔ B exp f−βðN − N0Þ2g ¼ B exp

�
−β

�
log

τ

τ0

�
2
�
:

ð11Þ
This reduction is parametrized by its maximum intensity
B < 0, a sharpness β > 0 and an instant of maximum
reduction τ0 < 0 (or, equivalently, N0). As explained in the
last section, τ0 is the instant around which the reduction is
localized. The intensity and the sharpness here are related
to the maxima in the reduction jujmax and its rate of change
jsjmax as

jujmax ¼ −B and jsjmax ¼
ffiffiffi
β

2

r
−B

e
1
2 − B

: ð12Þ

Notice that this functional form has naturally three
parameters only, ðB; β; τ0Þ, exactly as many as we used

in the last section to characterize a reduction in a model
independent way: ðjujmax; jsjmax; τ0Þ. Also, a Gaussian is
one of the simplest functions that softly departs from zero
and returns.

C. Prior

In our previouswork [17–19], we imposed a uniform prior
directly on the parameters of the Gaussian reduction, and
checked that jsjmax ≪ 1 a posteriori. Since jsjmax depends on
both β and B simultaneously, see Eq. (12), a rectangular
region in ðB; βÞ does not map nicely into one in
ðjujmax; jsjmaxÞ, where the prior motivated by Eq. (8) should
be imposed. Thus, in those papers we successfully explored
the parameter region of interest, but in an inefficient manner:
regions of the parameter space not allowedby the theorywere
thoroughly explored to later be thrown away.
In this work, we make tabula rasa and try to approach

the prior choice in a model independent way, from the bare
consistency requirements of the theoretical framework,
Eq. (8) in Sec. II A:

max ðϵ; jηjÞ ≪ max ðjujmax; jsjmaxÞ ≪ 1:

This condition on-the-maximum gives the prior a framing
square shape, see Fig. 2(a): above the diagonal jujmax ¼
jsjmax, the limits given by this equation must be imposed on
jsjmax, whereas below the diagonal they must be imposed
on jujmax.
A good, simple choice for a prior that fulfills the

condition above, translating the strong inequalities into a
probability density which softly falls towards the limits,

(a) (b)

FIG. 1. Features in the primordial power spectrum (a) and bispectrum (b) [with ð2πÞ4A2
sM6

Plðk1k2k3Þ−2 · S ≔ BR] from a
Gaussian reduction in the speed of sound, Eq. (11), with parameters B ¼ −0.024, log β ¼ 5.6 and τ0 ¼ −203, corresponding
to one of our maxima a posteriori (see Table I). Notice the linear oscillation along the (total) scale for the (bi)spectrum, and
the π=2 phase difference between the squeezed and both the equilateral and folded shapes of the bispectrum, as discussed at the end
of Sec. II.

4As an alternative approach, one could parametrize the
equation of state of the inflaton and derive from it the variation
in the speed of sound, as in [31].

5Choosing a Gaussian in τ would have been problematic: it
would never be exactly zero by τ0, as required for the expression
of the bispectrum in Eq. (9).
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would be a symmetric log-Beta distribution6 defined over
the interval ½maxðϵ; jηjÞ; 1�7:

max ðlog10jujmax; log10jsjmaxÞ ∼ Betaða; aÞ with a > 1;

max ðjujmax; jsjmaxÞ ∈ ½max ðϵ; jηjÞ; 1�: ð13Þ

The lower the value of the shape parameter, a > 1, the more
disperse the distribution. The choice of a logarithmic pdf is
based on the limits of the interval being typically 2 orders
of magnitude apart. The symmetry of the Betaða; aÞ
distribution weighs both extremes equally, e.g. there is
the same probability mass to the left of twice the lower
limit, than to the right of half the upper limit. In this work,
we choose a ¼ 5, which places the 95% confidence level
interval at approximately double/half the boundaries, and
the 68% at thrice/third.
The lower limit in the expression above depends on the

slow-roll parameters ϵ and η. Strictly, we should impose a
joint prior on ðjujmax; jsjmax; ϵ; ηÞ which would account for
the moving lower bound on Eq. (8). Alternatively, we could
impose an equivalent prior on ðjujmax; jsjmax; ns; rÞ, since
ðns; rÞ are directly determined by the slow-roll parameters.
On the instant of maximum reduction τ0, the theoretical

model imposes no requirements within the range ðτi; 0Þ,
where τi < 0 is the unknown conformal time at which
slow-roll inflation started, and τ ¼ 0 the conformal time
corresponding to the end of slow-roll inflation. Regarding
the density of the prior on τ0, two natural choices would be
either a uniform prior on τ0 (no preference on the instant of

maximum reduction in conformal time) or a uniform prior
on logð−τ0Þ [no preference in physical time or in e-folds,
since t ∝ N ∝ logð−τÞ]. The choice depends on which of t
or τ one considers the natural time scale of inflation.
The prior distribution described above, for either choice

of prior density on τ0, defines a weakly informative
Bayesian prior on the reduction of the speed of sound. It
is independent of the particular model for the reduction, and
motivated only by computational consistency.
Not all parameter combinations allowed by that prior

generate features whose effect is observablewithin the CMB
window of scales, and even among those that do, some are
not easily distinguishable from a similarly looking change in
the slow-roll or backgroundparameters.We restrict ourselves
to exploring the subspace of the prior corresponding to
features that are observable and distinguishable:
Observability: If the reduction happens too early, it will
not leave any trace on the observable scales of the CMB
power spectrum window. One can easily check that, for
reasonable values of jujmax and jsjmax, features happening
before τ0 ¼ −8000 leave no trace in the CMB power
spectrum. On the other hand, since jujmax ¼ −B determines
the amplitude of the feature in the power spectrum, we can
ignore values of jujmax < 10−3, which can never lead to
significant improvements in the likelihood.8

Distinguishability: We discard parameter combinations
corresponding to features whose appearance mimicks
changes of the slow-roll parameters or the background
cosmology. In [17], we found that this was achieved by
imposing that the feature is well contained within the
observable scales, and that it performs at least four full

FIG. 2. Prior on intensity and sharpness of the speed of sound reduction in this work, (a), and in previous works, (b).

6This is not to be confused with the sharpness parameter β of
the Gaussian reduction defined above.

7For a randomvariable x in the domain [0, 1], x ∼ Betaða; bÞ has
a probability density function PðxÞ ¼ xa−1ð1 − xÞb−1=Nða; bÞ,
with Nða; bÞ ≔ ΓðaÞΓðbÞ=Γðaþ bÞ.

8If we were fitting these features to the CMB bispectrum, we
should allow for even smaller values of jujmax, since the
amplitude of the bispectrum features is also proportional to their
sharpness, due to the derivatives in Eq. (9).
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oscillations within that window. Those conditions are
guaranteed respectively by imposing a minimum sharpness
of the Gaussian reduction of log β ≥ 0 [see thick red line in
Fig. 2(a)], and a minimum oscillatory frequency of
jτ0j ≥ 70. This assumption also justifies ignoring effects
from higher order slow-roll parameters, such as running of
the spectral index.
This immediately defines the interesting range of τ0 to be

explored: τ0 ∈ ½−8000;−70�. This interval covers 3 orders
of magnitude, so the balance may be tilted towards a log-
uniform choice. Nonetheless, we sample both choices,
uniform and log-uniform, to keep our analysis robust. In
our previous work [17–19] and also here (see Sec. IV), we
find that τ0 is well constrained by the data, so the choice
between priors here is not a vital one.
These assumptions also allow us to simplify the prior

on ðjujmax; jsjmaxÞ. The requirements for distinguishability
ensure that there are no significant degeneracies in the
posterior between the feature and the slow-roll parameters,
i.e. the estimation of the slow-roll parameters from Planck
data are robust with respect to the introduction of the
feature. This robustness means that we can fix the lower
limit in Eq. (8) to the values found by Planck for the slow-
roll parameters: although relaxing that limit would allow
for smaller values of the feature parameters, those would
never produce significant posterior probability, since they
necessarily correspond to disfavored values of the slow-roll
parameters.
We choose to fix that lower bound in Eq. (8) to the

central value of Planck’s estimate for η (the largest of the
slow-roll parameters), using temperature and polarization
data and assuming a featureless power spectrum with free
running of the spectral index [2]. That is η ¼ 0.03. The
choice of the central value instead of the upper bound is not
necessarily problematic, since the prior density on
maxðjujmax; jsjmaxÞ decays fast towards that limit: for a
Betað5; 5Þ, Planck’s 2 − σ upper bound η ≈ 0.05 falls under
the leftmost 5% of prior mass of maxðjujmax; jsjmaxÞ.
In summary, the subspace of the Bayesian prior that we

actually explore is given by

τ0 ∈ ½−8000;−70� and max ðlog10jujmax; log10jsjmaxÞ
∼ Betað5; 5Þ; max ðjujmax; jsjmaxÞ ∈ ½0.03; 1�; ð14Þ

with either a uniform or a log-uniform density on τ0 and
additional limits on ðjujmax; jsjmaxÞ given by log β ≥ 0 and
some minimum value for jujmax for which the features
would be unobservable in the power spectrum due to their
small intensity (jujmax ≥ 10−3 would be enough; in prac-
tice, we use log β ≤ 14 for this limit, imposing a minimum
value for jujmax in the range 10−4 − 10−3, depending on
jsjmax). The density of this prior corresponds to the shading
in Fig. 2(a).
We shall not forget that the regions of the full prior

discarded by observability and distinguishability are

actually allowed by the theory, and therefore the full prior
must be taken into account in a full evidence computation.
But such computation is beyond the scope of this paper.
Let us now compare the new prior with the one we used

in our previous work [17–19], which is uniform over the
region plotted in Fig. 2(b). If we plot the density of the new
prior on top of the old uniform prior, we see that
approximately 2=3 of its area is unshaded, i.e. has null
probability density under the new prior. If we trust that the
new prior appropriately accounts for the consistency
requirements of the theory, then sampling from the old
prior leads to oversampling theoretically uninteresting
regions, while undersampling the interesting ones. Thus,
we consider the present choice more reasonable and
efficient, since not only are we more likely to find fits
of theoretically allowed features, but we are also able to do
it in a fraction of the sampling time.

III. DATA SETS AND SAMPLING
METHODOLOGY FOR THE POWER SPECTRUM

The features from the reduction are computed using a
fast Fourier transform to perform the integral of the
reduction in Eq. (5). The primordial power spectrum is
then fed to a modified version of the CAMB Boltzmann code
[32,33]. We modified CAMB to adaptively increase the
sampling density on k and l only where necessary.
The features are fitted to the unbinned CMB TT, TE and

EE power spectra of the Planck 2015 data release [1,34]. The
inclusion of the polarized spectra is an update on the previous
searches thatweperformedusingPlanck’s 2013data [17,18].
The use of the unbinned likelihoods is justified by the high
oscillatory frequency that the features can reach: the Δl ¼
30 binning of the multipoles corresponds roughly to a
binning of Δk ¼ 2 × 10−3 Mpc−1 in primordial scales,
which is smaller than a full oscillation as soon as
jτ0j > 1500, and we do explore much higher values.
The sampling is performed with the sampler/integrator

POLYCHORD [35], which was chosen especially because of
its multimodal sampling capabilities, since we know the
likelihood to be multimodal from previous searches [17,18].
Handling of the theory and likelihood codes and the sampler
is performed with COSMOCHORD, a modified version of
COSMOMC[36] that incorporates POLYCHORD as a sampler.9

For the sake of performance, the value of the nuisance
parameters of the Planck 2015 likelihood, which describe
the foreground effects and experimental calibration that
affect the CMB measurement, are fixed to their best fit
achieved by the Planck Monte Carlo sample with binned,

9Our last search [19] was conducted with the MULTINEST
nested sampling algorithm [37–39]. The POLYCHORD sampler
used in this work is an improvement on MULTINEST, that it is
tailored for high-dimensional parameter spaces, thanks to the use
of slice sampling at each iteration to sample within the hard
likelihood constraint of nested sampling.
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polarized baseline likelihood (LOWTEB+PLIKHM_
TTTEEE) and baseline ΛCDM model.10,11 When not
sampled (e.g. in the bispectrum study), the cosmological
parameters are fixed to the best fit of that same sample.
For each choice of prior density for τ0, we have run

COSMOCHORD with 16 MPI processes, each allowed to
thread across eight CPU cores. The POLYCHORD algorithm
has been run in multimodal mode, with 1000 live points,
and a stopping criterion of 1=100 of the total evidence
contained in the final set of live points. Since we have fixed
the value of the nuisance parameters, there was no speed
hierarchy of which to take advantage. With these param-
eters, each run was completed within a few days.

IV. RESULTS OF FITS TO THE
POWER SPECTRUM

We have performed the sampling on the CMB power
spectrum data as described in the last section, varying the
baseline ΛCDM cosmological parameters ðΩbh2;Ωch2;
θMC; τreio; logAs; nsÞ over a wide uniform prior, and the
feature parameters ðτ0; jujmax; jsjmaxÞ using the prior
described in Sec. II C.
As stated in Sec. II C, we have sampled twice, with two

different priors for τ0: one is a uniform prior on jτ0j, which
assigns equal probability for a reduction occurring at any
conformal time, and another with a uniform prior in
log10 jτ0j, which assigns equal probability for a reduction
occurring at any physical time. Both cases are physically
well motivated. The result of both samples can be seen in
Fig. 3, and the most relevant modes are shown in Table I.
The reference value χ2 ¼ 34655.5 for the effective χ2, used
in Fig. 3 and Table I, has been obtained from a run with the
same likelihood and a featureless primordial power spec-
trum. Those differences in χ2 are shown as an approximate
reference, since we have not used a thorough maximization
algorithm. The size of the decrease in χ2 does not amount to
a detection, neither does the Bayes ratio: this model is
disfavored with respect to the baseline ΛCDM when
considering power spectrum data only.
We found no significant degeneracies between the

parameters of the feature and those of the baseline
cosmological model; the correlation coefficients stay below
jρj < 0.1 for most combinations, and only for some
combinations with ðΩbh2;Ωch2; nsÞ the correlation coef-
ficient grows up to jρj ≤ 0.18, which is still smaller than
what was found in fits to the 2013 data [18]. This is
consistent with the assumptions made in Sec. II C in order
to avoid those degeneracies, namely the lower bounds
jτ0j ≥ 70 and log β ≥ 0, which together enforce a minimum
number of oscillations to occur within the CMB window.

FIG. 3. Marginalized 1d posteriors and 2d χ2 scatter plots for
the feature parameters ðτ0; jujmax; jsjmaxÞ and the derived
parameter log β of Eq. (11). The prior on ðjujmax; jsjmaxÞ is
described in Sec. II C, with the 1d marginalized prior in the
dashed red line—compare the ðjujmax; jsjmaxÞ posterior with the
prior in Fig. 2, and notice how almost nothing is learned about
jsjmax from the data. The prior on τ0 is either log uniform, (a),
or uniform, (b). The color scale shows the Δχ2 of the
unbinned, polarized Planck 2015 likelihood, and differences
are given with respect to the best fit of the baseline model to a
featureless power spectrum. The modes observed along τ0 are
described in Table I.

10See Table 2.6 in [40].
11We have verified that varying the nuisance parameters has a

negligible effect on our results.
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Looking at the marginalized posterior for jτ0j, we
identify the following modes (see Table I):
Low jτ0j: two modes at τ0 ∼ −100;−200. They both have a

very well-determined oscillation frequency τ0 and an
amplitude jujmax of a few 0.01’s. Due to their low τ0,
we take their confidence level intervals from the log-
uniform-τ0 sample, where they are better resolved.
Both modes correspond to the sharp regime,
jsjmax ≫ jujmax, or high β.

High jτ0j: one mode at τ0 ∼ −800, with characteristics
similar to the two modes above, but worse χ2 and
looser constraints on the parameters. Also, a much
broader mode with τ0 ∼ −1100, with a wide posterior
on τ0, unbounded amplitude (constrained by the prior),
and a clearly lower sharpness β than the rest of the
modes, which places it in the not-so-sharp regime,
jujmax ≈ jsjmax. Despite their different regime, the
boundary between these two modes is not clearly
defined, so we have imposed it at τ0 ¼ −840—thus
their 68% C.L. limits on τ0 are just an approximation.

On the very high jτ0j > 2000 region, we do not find any
significant mode. This is probably due to their high
oscillatory frequency: the transfer functions are almost
constant with respect to them, so their projection on the
CMB sky smears out most of their intensity, needing too
high values of jujmax ¼ jBj that are disfavored by the prior.
In all the modes above, jsjmax is constrained by the prior

only. This lack of predictivity on jsjmax was already
observed in our previous work with Planck 2013 data
[17–19]; there, it appeared as a degeneracy between the
parameters ðB; log βÞ of the Gaussian ansatz of Eq. (11).
Moving along that degeneracy eventually saturated the
jsjmax < 1 bound, which is avoided now by the new and
more realistic prior. That degeneracy still persists, in a
milder version, between log10 jujmax and log10 jsjmax. As
explained in [17,18], the degeneracy was caused by the fact
that a simultaneous increase in jBj and log β produces
almost no changes in the aspect of the feature in the CMB
power spectrum (Fig. 9 in [18]): a larger log β shifts the
mode towards smaller scales, where damping and lensing
erases most of the primordial information, while a larger
value of jBj keeps the power at larger scales constant. The
new prior avoids this effect, as it is illustrated by the
difference between the current ðτ0; log βÞ profile in Fig. 3

and the corresponding ones in our previous work: Fig. 1 in
[17], Fig. 5 in [18], and Fig. 2 in [19]—in the last ones, the
mode continues towards higher values of log β with almost
constant χ2, well past the jsjmax ¼ 1 mark.
Comparing these results with our previous searches in

Planck 2013 and WiggleZ data [17–19], we see that the
modes at τ0 ≈ −100;−200 correspond respectively to
the modes E, C already found there.12 Mode A appears
as a very faint mode with τ0 ≈ −377 and jujmax ≈ 0.02.
However, modes B and D of Planck 2013 have no
corresponding significant signal in Planck 2015, neither
does the mode found at τ0 ≈ −540 in [19]. To check
whether those modes are still present in Planck 2015 but
have been suppressed by the new prior, we reran the chains
with the old nonrealistic prior, uniform on ðB; log βÞ, and
the binned likelihoods—we still found no trace of 2013’s
modes B or D, but we did find a mode close to τ0 ≈ −540,
albeit with a very high jsjmax that would discard it under the
new prior. The disappearance of mode B may be related to
that mode’s benefiting from the spurious wiggle at l ∼
1800 in Planck 2013’s TT power spectrum.
To assess the effect of the new high-l CMB polarization

data in our samples, we repeated the analysis of the
uniform-τ0 case with Planck 2015’s unbinned TT power
spectrum likelihood plus the low-l polarized likelihood.
We found that the high-l polarized data enhances the mode
100 while it significantly dampens the mode 1000, which
shows up more intensely and with a sharper τ0 C.L. interval
when using TTþ lowTEB. The other two modes do not
receive a large correction.
The residuals of these modes with respect to the best fit

of a featureless ΛCDM baseline model are shown in Fig. 4,
and their respective improvements in goodness of fit χ2 per
multipole are shown in Fig. 5. We can see that modes 100
and 200 span across most of the multipole range, fitting
diverse structures in TT and EE. The mode 800 is restricted
to the first acoustic peak and fits a small number of apparent
wiggles in the data. The maximum a posteriori (MAP) of

TABLE I. 68% confidence level intervals and maxima a posteriori (MAP, in parenthesis) for the modes described in the text and
visible in Fig. 3. The Δχ2 of the MAPs are given with respect to the best fit of the baseline model to a featureless power spectrum. We
also provide C.L. intervals for the derived Gaussian ansatz parameters ðB; log βÞ. The C.L. intervals of τ0 for modes 100 and 200
correspond to a Gaussian in log jτ0j. Notice the similarity of the bounds on jsjmax along the table: they all correspond approximately to
the prior limits (Sec. II C).

Mode name jτ0j log10 jujmax log10 jsjmax −102B log β Δχ2MAP

100 [100(102)105] ½−1.82ð−1.59Þ − 1.47� ½−1.11ð−0.91Þ − 0.62� [1.5(2.6)3.4] [4.4(4.8)6.8] −11
200 [195(203)207] ½−2.16ð−1.62Þ − 1.44� ½−1.01ð−0.78Þ − 0.57� [0.7(2.4)3.7] [4.5(5.6)8.2] −8
800 [770(801)830] ½−2.06ð−1.37Þ − 0.77� ½−0.94ð−0.53Þ − 0.47� [0.1(4.3)17.0] [2.0(5.6)8.2] −6
1000 [935(1099)1631] ½−2.78ð−0.51Þ − 0.45� ½−1.03ð−0.63Þ − 0.54� [0.1(31)35] [0(1.5)7.2] −4.5

12Notice that mode E on Planck 2013 was previously discarded
due to its low jujmax and jsjmax. The corresponding one in Planck
2015 does not have that problem, since at least jsjmax is large
enough.
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1000 tries to fit the dip in temperature at l ≈ 20 and the
following peak at l ≈ 40, at the cost of raising the power at
l ≈ 10 and below (a similar feature in 2015 data has been
reported in [2,41–44]). Despite the goodness of the fit, this

is in conflict with the apparent lack of power at very small
multipoles seen in Planck’s data, and may impose an even
more stringent upper limit on the relative amplitude r of the
tensor primordial power spectrum. We leave the study of
this possibility for future work.
We could ask whether two or more of those modes could

be present in the data simultaneously. This would corre-
spond to the case of the inflaton suffering two consecutive

FIG. 4. Differences between the best fit to the Planck 2015 power
spectrum (using polarized low- and high-l likelihoods [45]) of the
ΛCDM baseline model, and the MAPs of modes 100 (blue solid,
darker), 200 (orange solid), 800 (orange dashed) and 1000 (blue
dashed, darker) from Table I. Notice howmode 1000 (blue dashed,
darker) fits the minus/plus structure at l ≈ 20–40, how mode 800
(orange dashed) fits some apparentwiggles at the fist acoustic peak,
and how modes 100 and 200 fit small deviations from the baseline
model across a higher range of multipoles (cf. Fig. 5).

FIG. 5. Difference in effective χ2 per multipole between the maxima a posteriori of the modes cited in Table I and the best fit to the
Planck 2015 power spectrum of the ΛCDM baseline model, using temperature and polarization data (dark) and temperature data only
(clear), cf. Fig. 4. Negative values indicate a better fit by the feature model. For the sake of clarity, the multipoles are approximately
binned proportionally to the oscillation frequency of each mode.

FIG. 6. Speed of sound reduction in terms of u ¼ 1 − c−2s for
the modes described in Table I, in logarithmic scale for τ, and
with the same colors as in Fig. 4 (the correspondence between
colors and τ0’s is here obvious).

ROBUST PREDICTIONS FOR AN OSCILLATORY … PHYSICAL REVIEW D 96, 083515 (2017)

083515-9



reductions in its sound speed, e.g. due to two consecutive
turns in field space. The complete answer to that question
would come from a fit of two simultaneous features with
the restriction that they do not overlap in τ. Their respective
features in the CMB power spectrum may or may not
overlap. The subset of the parameter space in which the
power spectrum features do not overlap can be charac-
terized using the present search: any pair of the modes that
we found that do not overlap either on τ or on the power
spectrum could have occurred together. Looking at Figs. 4
and 6, we observe that the only two possible combinations
would be those of mode 1000 with either 100 or 200.

V. PREDICTED BISPECTRUM FEATURES

We have computed the CMB temperature bispectrum
(TTT) (see e.g. Fig. 7) using an extension of the expansion
in total scale proposed in [46], described in the Appendix.
As expected, and similarly to what happens for the power
spectrum, we find the CMB TTT bispectrum to be close to
the primordial oscillatory shape described in Sec. II and
Fig. 1(b), modulated by the transfer functions.
Due to the lack of a publicly released bispectrum

likelihood, we have not been able to perform a joint
analysis of the power spectrum and bispectrum. But already
at this point, we can use the posterior modes in the last
section (see Table I) to make predictions for future searches
in the bispectrum and to compare them to present searches
of similar templates, if any. The basis of those predictions is
the narrow constraints on the oscillatory frequencies jτ0j of

the features, and their rather well-defined intensity jujmax,
especially for modes 100 and 200, but also for mode 800 to
a lesser extent. If a fit to the bispectrum of this kind of
features hits any of these thin regions in τ0 and shows a
similar intensity jujmax, this would strongly hint towards the
presence of a reduction in cs in the regime considered here.
As we stated in the previous section, the power spectrum
data is not able to constrain jsjmax beyond its prior. Thus,
we cannot predict a more concrete value for it.
We would like to especially remark modes 100 and 200

(see Table I) as predictions for a signal in the bispectrum.
Their TTT bispectra (see Fig. 7) approximately presents
some of the characteristics described in the reconstructed
Planck bispectrum (Sec. VI.2.1 in [3]): a plus-minus
structure in the equilateral limit at the l’s corresponding
to the first acoustic peak, ltotal ∈ ½400; 1200�, and a negative
peak (though preceded by a positive one) associated to the
equilateral third acoustic peak, ltotal ∈ ½2300; 3000�. They
also present additional structure in other limits and scales,
where nothing has been particularly reported by the Planck
collaboration in [3,5], except for a mention of small features
in the folded limit and the squeezed limit, the last one
claimed to be associated to the secondary bispectrum of the
correlation between the gravitational lensing of the CMB
and the integrated Sachs-Wolfe (ISW) effect. The coinci-
dence between the bispectra predicted by modes 100 and
200 and the description of Planck 2015’s bispectrum is
tantalizing, given that the predicted features come from a fit
to the power spectrum only.
We can assess the likelihood that our predictions are found

when tested directly on Planck 2015 data, as well as their
correlations with other primordial and secondary templates
that have already been searched for. To do that, we use the
Fisher matrix formalism, assuming an idealized version of
Planck’s effective beam and noise, and taking into account
the TTT bispectrum only. In this formalism, the signal-to-
noise ratio of a bispectrum template under an experimental
model is given by the square root of the autocorrelation of the
template through a covariance matrix that accounts for the
expected experimental errors; the correlation between two
templates, carrying the meaning of the fraction of the
intensity of a template that can be inferred from a measure-
ment of a different one, is given by the covariance between
these two templates. The details of how this signal to noise
and correlations have been computed can be found in
Appendix A 5. The results for modes 100 and 200 are shown
in Table II. The signal to noise for both modes is approx-
imately the same, and it could possibly grant a detection if
this template was tested against data containing the corre-
sponding physical signal. We can also observe that between
one-half and two-thirds of the signal to noise stems from the
divergent squeezed limit only. We have also computed the
correlation betweenmodes 100 and 200 and the ISW-lensing
bispectrum, and found it to be very small despite the
oscillatory nature in the squeezed limit of both the ISW-
lensing bispectrum and our template.

FIG. 7. Equilateral, squeezed and folded limits of the CMB
TTT bispectrum of themaximum a posteriori of modes 100 (blue,
darker) and 200 (orange). The x axis is the total scale lt ≔
l1 þ l2 þ l3 and the bispectra are weighted by a constant shape
in the Sachs-Wolfe approximation: bconst ¼ ð27Q3

i¼1ð2li þ
1ÞÞ−1ððlt þ 3Þ−1 þ l−1

t Þ [47–49]. In the equilateral limit, notice
how both bispectra present a plus-minus structure in the first
acoustic peak (l ∈ ½400; 1200�) and a negative peak at lt ≈ 2600,
similar to what is described on Planck TTT bispectrum data [3].
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Direct searches for features have been performed in the
bispectrum of both data releases of Planck, first using only
the TTT bispectrum [5] and later including polarization and
much higher oscillatory frequencies [3]. There, it was stated
that oscillatory features that connected the aforementioned
structure found in Planck’s bispectrum achieved higher
significance, but in neither of those cases a fit was found
with a significance high enough to be called a detection;
nevertheless the results from fits of oscillatory features were
deemed “interesting hints of non-Gaussianity.”
We can speculate whether our predictions are consistent

with those hints. In particular, let us look at the linearly
oscillating templates tested by them, whose frequency very
precisely satisfies ω ≈ jτ0j. None of the templates tested by
Planck present the shape weighting and difference in phase
between limits of our shapes, or their particular enveloping,
that enhances the signal at high-l. So we focus on the
simplest case of a constant feature [Eq. (15) of [3]]
Bðk1; k2; k3Þ ∝ sin½ωðk1 þ k2 þ k3Þ þ ϕ�=ðk1k2k3Þ2, unen-
veloped and shape agnostic. Its correlations with our modes
100 and 200 for a frequency ω ≈ jτ0j and the sine and
cosine phases are shown in Table II. As we can see, the sine
case is the most highly (anti)correlated one.13

Interestingly, the Planck collaboration does find a peak at
ω ≈ 100, with a phase close to zero (especially in polari-
zation; the phase is not so small in temperature) and a
negative amplitude with signal to noise of the expected
order of magnitude (∼0.5 times the signal to noise of our
templates). We find this coincidence tantalizing, and look
forward to testing our templates against Planck data
directly in a joint search.

VI. CONCLUSIONS AND DISCUSSION

We have updated our ongoing search for features from
transient reductions in the speed of sound of the inflaton

with the new Planck 2015 polarized power spectrum data.
We have proposed and explored a prior that exhausts the
regime in which a feature coming from a Gaussian
reduction in the speed of sound of the inflaton would be
clearly distinguishable from the baseline cosmology. Since
the prior is exhaustive and Planck’s temperature power
spectrum is cosmic-variance limited for almost all the range
that is relevant for inflationary features, we can consider
these results definitive for the Gaussian ansatz, at least until
higher signal-to-noise polarization data is available for
multipoles in the range l ¼ 500–1500.
We have found some modes that, though not statistically

significant using power spectrum data only, have a very well
constrained oscillation frequency and a rather well-defined
amplitude, whereas their sharpness, in terms of jsjmax, is not
constrained by the data but by the prior, which comes from
the theoretical self-consistency. The predicted correlated
bispectra of two of these modes show traits similar to those
described in Planck’s TTT bispectrum; in addition, Planck’s
search for linearly oscillatory features picks up the frequency,
sign and approximate phase of one of them.
This apparent similarity, though not at all conclusive,

motivates us to repeat the present search in the future,
including Planck’s temperature and polarization bispectra,
and using the prior described in Sec. II C. Such a search
should also expand to regions of higher jτ0j (higher
oscillatory frequency) where nothing was found in the
power spectrum—the amplitude of the bispectrum features,
contrary to that of the power spectrum’s, is proportional to
the oscillatory frequency due to the derivatives in Eq. (9)
[12], and this significantly enhances the signal to noise of
highly oscillatory features [46]. If the features correspond-
ing to these modes are actually present in the data,
combined searches in both the power spectrum and
bispectrum are expected to greatly raise the significance
of the fits [13,15], hopefully to detectionlike levels.
If that combined search still fails to deliver enough

significance, we will have to wait until larger tomographic
data sets are available, such as 21 cm tomography [50,51] or
the next generation of Large Scale Structure surveys [52,53].
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the TTT bispectrum between the MAP of each mode with the
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Mode S/N S=Nsqueezed Corr cos Corr sin Corr ISW-l

100 7.4 4.5 −0.26 −0.59 −0.03
200 7.5 4.0 −0.21 −0.65 −0.04
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to the cosine case; but not so surprising when one considers that,
on top of the different enveloping, there is a strong difference
in scaling towards the squeezed limit between our template
[divergent at miniðkiÞ → 0] and the constant feature (constant).
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APPENDIX: BISPECTRUM COMPUTATION

1. Review of expansion in total scale

We attempt to apply the method proposed in [46], based
on an expansion in the total scale kt ≔ k1 þ k2 þ k3. There,
one assumes that the primordial bispectrum can be written
such that the shape function does depend on the total scale
only, i.e.

BRðk1; k2; k3Þ ¼
ð2πÞ4A2

s

ðk1k2k3Þ2
SðktÞ: ðA1Þ

Then one expands the shape function in a Fourier series in
an interval ½kt;min; kt;max� in whose extremes the shape
function is zero, up to a sufficient order nmax:

SðktÞ ¼
Xnmax

n¼0

½αncnðktÞ þ βnsnðktÞ�; ðA2Þ

where we have abbreviated

cnðkÞ ≔ cos

�
2πn

k
kt;max − kt;min

�
;

snðkÞ ≔ sin

�
2πn

k
kt;max − kt;min

�
: ðA3Þ

The coefficients of the Fourier series are

αn ¼
2

kt;max − kt;min

Z
kt;max

kt;min

dktSðktÞcnðktÞ;

ðαn → βn; cnðktÞ → snðktÞÞ: ðA4Þ

A crucial advantage of this method is that the sine and
cosine in the total scale are separable:

cnðktÞ¼ cnðk1Þcnðk2Þcnðk3Þ− ½snðk1Þsnðk2Þcnðk3Þþ …cyclic�
ðA5Þ

snðktÞ¼−snðk1Þsnðk2Þsnðk3Þþ½cnðk1Þcnðk2Þsnðk3Þþ …cyclic�;
ðA6Þ

where …cyclic means the two remaining cyclic permutations of
the ki.
Now, remember that the primordial bispectrum gets

projected to the reduced CMB bispectrum as

bl1l2l3
¼
�
2

π

�
3
Z

drr2
Z

dk1dk2dk3ðk1k2k3Þ2

×BRðk1;k2;k3Þ
Y3
i¼1

ΔliðkiÞjliðkirÞ: ðA7Þ

Defining

Cln ≔
2

π

Z
dkjlðkrÞΔlðkÞcnðkÞ;

ðCln → Sln; cnðkÞ → snðkÞÞ; ðA8Þ

and, equivalently,

Cl1l2l3;n ≔ ð2πÞ4
Z

drr2½Cl1nCl2nCl3n
− ðSl1nSl2nCl3n þ …cyclicÞ� ðA9Þ

Sl1l2l3;n ≔ ð2πÞ4
Z

drr2½−Sl1nSl2nSl3n

þ ðCl1nCl2nSl3n þ …cyclicÞ�; ðA10Þ

where …cyclic means the two remaining cyclic permutations of
the li. The final reduced bispectrum is

bl1l2l3 ¼ A2
s

Xnmax

n¼0

ðαnCl1l2l3;n þ βnSl1l2l3;nÞ: ðA11Þ

The reduced bispectrum is thus separable, but there is an
additional advantage: whatever model parameters the
primordial shape depends upon are now contained in the
Fourier coefficients αn and βn (and, indirectly, in the choice
of nmax and the interval ½kt;min; kt;max�). Thus, if we want to
compute the CMB bispectrum for different values of the
primordial model parameters, while keeping the back-
ground cosmology unchanged, we only need to recalculate
the Fourier coefficients, and we can reuse already pre-
computed and stored, projected Fourier modes Cl1l2l3;n
and Sl1l2l3;n.

2. Extension and applicability to
our bispectrum template

Let us now write a slightly more complicated template:

BRðk1; k2; k3Þ ¼
ð2πÞ4A2

s

ðk1k2k3Þ2
½fðk1Þgðk2Þhðk3Þ þ …perms�SðktÞ;

ðA12Þ

where …perms here runs over the possible combinations of the
three functions and the three momenta. For symmetry
reasons, this is the way a separable factor would take; e.g.
the simplest casewould be k1 þ k2 þ k3, which corresponds
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tof ¼ k=2; g ¼ h ¼ 1, andk1k2k3would correspond tof ¼
g ¼ h ¼ 6−1=3k (these decompositions are not unique).
Now let us promote the Cln and Sln to operators over

functions of a single ki:

Cln½f� ≔
2

π

Z
dkjlðkrÞΔlðkÞcnðkÞfðkÞ;

ðCln½f� → Sln½f�; cnðkÞ → snðkÞÞ: ðA13Þ
and, equivalently,

Cl1l2l3;n½f; g; h� ≔ ð2πÞ4
Z

drr2
X
ðf;g;hÞ

½Cl1n½f�Cl2n½g�Cl3n½h�

− ðSl1n½f�Sl2n½g�Cl3n½h� þ …cyclicÞ�
ðA14Þ

Sl1l2l3;n½f;g;h�≔ ð2πÞ4
Z

drr2
X
ðf;g;hÞ

½−Sl1n½f�Sl2n½g�Sl3n½h�

þðCl1n½f�Cl2n½g�Sl3n½h�þ …cyclicÞ�; ðA15Þ

where the sum runs over all six permutations of the three
functions f, g, h. In this case, the total reduced bispectrum
would be

bl1l2l3 ¼A2
s

Xnmax

n¼0

ðαnCl1l2l3;n½f; g;h� þ βnSl1l2l3;n½f; g; h�Þ:

ðA16Þ

If we have more terms with said structure, we can recover
the full bispectrum by just summing them over.
At this point, one may wonder how much complication

we have introduced with respect to the method presented in
[46]. To see that, let us detail the expected computational
sequence if we want to obtain the full bispectrum:
(1) Compute the Cln and Sln for each l and n we are

interested in. In this extension, this must be done at
worst three times per term, for three different f, g, h
per term. That is at worst 3nterms.

(2) Further integrate on r the necessary combinations of
the Cln and Sln to get the Cl1l2l3;n and Sl1l2l3;n. In
this case, this must be done once per term, times the
three cyclic combinations of the functions, so
3nterms again.

(3) Decompose the shape functions SðktÞ on Fourier
modes and sum those over the Cl1l2l3;n and Sl1l2l3;n.
In the extension, this must be done once per term:
nterms slower.

Thus, given that the two first steps are the ones that take
longest by far and dominate the computation time, the
extension is 3nterms as slow (or a smaller number of times
nterms if two or all three of f, g and h are the same, or if they
are the same within a term or between terms).

However, if we are not interested in varying the back-
ground cosmology, and if the parameters of the primordial
model enter through SðktÞ only or as some external intensity
factor fNL, but not through the functions f, g and h, steps 1
and 2 can be precomputed and stored. In that case, if one
leaves the background cosmology unchanged, only step 3 is
carried out and this method is only nterms slower. Notice that
the choice of the maximum order nmax and the interval on
which the Fourier decomposition is carried out depend
implicitly on the model parameters; e.g. a higher frequency
oscillation of the primordial shape requires a higher nmax,
which may not have been precomputed yet.
In any case, remarkably, the computational costs grow

only linearly with the number of terms, allowing us to
compute more complicated nonseparable bispectra that
account for a richer set of physical scenarios.

3. Notes on precision

Every step in the computation described above, 1 to 3,
has its own considerations regarding precision: first,
the computation of the integrals of the Cln and Sln, then
the computation of Cl1l2l3;n and Sl1l2l3;n, and finally, the
Fourier decomposition of the shape functions.

a. Computation of Cln and Sln

We want to compute the integrals in Eq. (A13) with
enough precision. They have four elements: three oscil-
latory functions (a transfer function, a spherical Bessel
function and a sine or cosine) and a coefficient function of a
single k.
To begin with, let us assume that the coefficient functions

are very smooth compared to the rest of the oscillatory
factors, so we can care about the sampling of the oscillations
only. This is a reasonable hypothesis at least in the case that
we are considering: they are monomials of a low degree.
For the oscillatory functions, we will parametrize the

integration precision though an adaptive parameter NI,
meaning the number of samples per oscillation of the fastest
oscillator for each combination of l and n. In this paper, we
use NI ¼ 20, which should be enough for most purposes.
The integrals are performed using a Simpson integrator.

Spherical Bessel functions.—They behave in the asymp-
totic limit as

lim
x→0

jlðxÞ ∼ xl lim
x→∞

jlðxÞ ∼
1

x
cos

�
x − ðlþ 1Þ π

2

�
:

ðA17Þ
Therefore, to be sure to have NI samples per oscillation, it
is enough to have a δx ¼ 2π=NI. In our particular case, the
function is evaluated at x ≔ rk, which means that the
wavelength along k is 2π=r. The distance along the line of
sight, r, is evaluated later over a small interval around
recombination. The worst-case scenario, the shortest
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wavelength, corresponds to the maximum r of that interval.
Thus, the desired sampling density on k will be

δk ¼ 2π

NIrmax
; ðA18Þ

where rmax is the maximum sampling value for the distance
to recombination. For a reasonable value of rmax≃
1.5 × 104 Mpc, this means δk≃ 2 × 10−5 Mpc−1.

Transfer functions.—They are roughly proportional to
jlðrrekÞ, so the sampling strategy is the same as the last
one, since rmax is sampled very close to recombina-
tion, rmax ≃ rre.

Fourier series basis.—Since the wavelength of the basis
function of order n is ðkt;max − kt;minÞ=n, the necessary
sampling here is

δk ¼ kt;max − kt;min

NIn
: ðA19Þ

Notice that for an interval of order 0 length we would need
to go to an order n ∼ 104 in the Fourier expansion for the
basis functions to oscillate faster than the transfer and
spherical Bessel functions. Thus, it will be the last ones that
in most cases will impose the sampling density.

b. Computation of Cl1l2l3;n and Sl1l2l3;n

The next step is to compute the integral along the line of
sight from the recombination epoch to the present day in
Eq. (A14). Roughly speaking, the CMB temperature
anisotropy is mainly produced by the inhomogeneities
on the last-scattering surface, after photon-electron decou-
pling, so that the CMB photons are almost free to propagate
until they reach us today. Mathematically, this means that
each multipole of the CMB radiation transfer functions
behaves like a Dirac delta function centered at l ∼ rreck.
Hence, it is enough to sample a thin interval around rrec ≃
1.4 × 104 Mpc [54]. In this work, we sample 200 points
linearly spaced in the interval ½1.3304; 1.5284� × 104 Mpc,
and integrate using a Simpson quadrature.

c. Fourier decomposition: Limits, order
and sampling in l

Limits of the Fourier decomposition.—In the choice of the
limits of the interval of the Fourier decomposition,
½kt;min; kt;max�, we must take into account two things.
First, it is preferable that the shape functions are zero in
both extremes of the interval; otherwise we can expect
Gibbs overshoots and ringing in the extremes of the
interval, and in order to suppress them we would need
to go to higher order of the Fourier series, adding computa-
tional costs. Second, since the Fourier reconstruction is
periodic outside the interval, if the interval is smaller than
the sampling interval of the transfer functions, we may find
copies of the shapes at higher k’s. Given that the maximum

kt reached is 3 times the maximum ki sampled in the
transfer functions, that have a sampling interval of roughly
ki ∈ ½10−6; 0.35� Mpc−1, a good choice is to take the
decomposition interval as kt ∈ ½0; 1� Mpc−1. As long as
the Gibbs artifacts happen mostly at the end of the interval,
they would be hidden by the low value of the transfer
functions there.
Maximum order of the Fourier series.—The order of the
Fourier series must be high enough to correctly represent
the shape functions, which is completely model dependent.
This is best checked by directly comparing the original
bispectrum shape with the reconstruction from the Fourier
decomposition.
Sampling in l space.—Approximately, l≃ rrek; thus, if a
sampling density δk accurately represents the primordial
bispectrum, a corresponding δl ¼ rreδk should provide a
good sample of the bispectrum. For computational fea-
sibility, we may reduce the sampling density in l and
construct a sufficiently accurate spline approximation, in
order to calculate e.g. the signal to noise.

4. Application to our case

Let us repeat the equation of the primordial bispectrum:

BRðk1; k2; k3Þ ¼ jujmax
ð2πÞ4A2

s

ðk1k2k3Þ2
X2
i¼0

ciðk1; k2; k3Þ

×

�
d

dkt=2

�
i 1

jujmax

ΔPR

PR
ðkt=2; jsjmax; τ0Þ;

ðA20Þ
where kt ≔ k1 þ k2 þ k3. The ci coefficients are given
in Eq. (10).
We have made explicit the dependence on the parameters

of the reduction in cs, ðjujmax; jsjmax; τ0Þ, to highlight an
important property of this expression:

(i) jujmax enters only as an overall factor (the combi-
nation juj−1max

ΔPR
PR

does not depend on it).
(ii) jsjmax and τ0 enter only through juj−1max

ΔPR
PR

.
The rest of the factors do not depend on the particular
choice for the reduction. Thus, we can precompute all the
integrals Cl1l2l3;n and Sl1l2l3;n for all function combina-
tions, which amounts for most of the computing time for
the full CMB bispectrum calculation. Later, for a particular
choice of parameter values for the reduction, we can very
quickly compute the Fourier decomposition of the total-
momentum-dependent part, and sum the terms using the
precomputed integrals.
We also need to care about two model-dependent aspects

of the precision: the maximum order of the Fourier
decomposition nmax and the necessary sampling in l (so
we can interpolate for a faster computation of S/N). The
determinant quantity in both cases is the maximum
oscillatory frequency of the feature, and thus the maximum
jτ0j that we are interested in.
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For nmax, notice that the characteristic order of the feature,
i.e. that whose Fourier frequency is equals the oscillatory
frequency of the feature, is jτ0jðkt;max − kt;minÞð2πÞ−1.
Decomposing the shape functions up to twice that frequency
should provide uswith a good reconstruction. For the sake of
safety, we may increase that order by a small security factor:

nmax ¼ jτ0jðkt;max − kt;minÞ
1

π
ð1þ ϵÞ: ðA21Þ

For themaximum jτ0jweare interested in this paper, 1600, an
interval of 1 Mpc−1, as stated in the previous section, and a
security factor of 1þ ϵ ¼ 1.5, the maximum order that we
need to precompute is nmax ¼ 765 (400 is enough for the
high β regime).
Regarding the sample in the l-space, notice first that,

approximately, l≃ rrek. In the l-space, we aim at correctly
sampling the feature oscillation. With the relationship
stated above, the wavelength in l of the feature is,
approximately, rre2π=jτ0j. This means that if we wanted
a reasonable amount of 20 samples per feature oscillation,
to get a good interpolation, we would need a sam-
pling Δl≃ 3.
Here, we may notice that we can take advantage of the

two different regimes, jsjmax ≫ jujmax and jsjmax ≈ jujmax,
discussed in Sec. II A: the features of highest β
(jsjmax ≫ jujmax) have also a lower jτ0j, at most around
820, which means that Δl≃ 5 is enough sampling. On the
other hand, the features at lowest β (jsjmax ≈ jujmax), though
they present a higher jτ0j and thus need a sampling ofΔl≃
3 or smaller, are dead by kt ¼ 0.03 Mpc−1, which corre-
sponds roughly to lt ¼ l1 þ l2 þ l3 ≃ 400. Thus we can
sample more finely up to that lt, and more coarsely after it,
allowing for higher computational efficiency.

5. Fisher matrix elements, signal
to noise and correlations

We will use the spectra predicted/obtained to compute
signal to noise and shape correlations through the Fisher
matrix [54] between two temperature bispectra i and j,
assuming homogeneous noise:

Fij ≔
X

lmin≤l1≤l2≤l3≤lmax

2

π

�
l1 þ

1

2

��
l2 þ

1

2

��
l3 þ

1

2

�

×

�
l1 l2 l3

0 0 0

�
2 bðiÞl1l2l3b

ðjÞ
l1l2l3

σ2l1l2l3

; ðA22Þ

where lmin and lmax are the minimum and maximum
values allowed for individual multipoles, here respectively
2 and 2000, and σ2l1l2l3 is the approximate cosmic variance
for a small bispectrum [55–58]

σ2l1l2l3 ≈ Cl1Cl2Cl3Δl1l2l3=fsky; ðA23Þ

where Cli is the observed spectrum Cl;obs ¼ Cl;theo þ
Nlb−2l , where we have assumed an effective Gaussian
beam with θFWHM ¼ 7.25 arcmin and white noise with
standard deviation σN ¼ 33 μK arcmin, and the map mask
leaves a sky fraction fsky ¼ 0.76. The geometrical factor
Δl1l2l3 enforces the triangular condition on the three l’s
and evaluates to 1,2,6 respectively for the cases of all l’s
being different, two being equal and all being equal. For i
and j being two different bispectra, we assume the same
background cosmology, and only a different inflationary
model. We compute the necessary Wigner 3 − j symbol
using the WIGXJPF algorithm [59].
From this Fisher matrix, one can derive the signal to

noise and the correlation between two bispectra i and j
as [60]

�
S
N

�
i
¼ ffiffiffiffiffiffiffi

Fi;i

p
and Ci;j ¼

Fi;jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fi;iFj;j

p : ðA24Þ

Notice that the correlation between two bispectra is inde-
pendent of the amplitude of either.
We compute the Fisher matrix elements summing by

slices of constant lt ≔ l1 þ l2 þ l3, with li ∈ ½2; 2000�,
and interpolating the values we have not sampled in our
bispectrum computation. We sample as many slices as we
can within the target error for the Fisher matrix elements
(5%–10%).
In principle, we could have taken advantage of the

actual separability of the modal-expanded shape to
precompute some of the steps of the Fisher matrix
computation, and even maybe to create a Komatsu-
Spergel-Wandelt estimator, as is done in [46].
However, we choose not to do so in the present work:
the amount of precomputation needed is high, due to the
sizable number of different combinations of ci coeffi-
cients, and for now we do not want to streamline the
Fisher matrix element computations—we are not scan-
ning the parameter space of the feature, but just comput-
ing signal to noise and correlations for particular
parameter combinations.
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