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Hydrodynamic charge and heat transport on inhomogeneous curved spaces
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We develop the theory of hydrodynamic charge and heat transport in strongly interacting quasirelativistic
systems on manifolds with inhomogeneous spatial curvature. In solid-state physics, this is analogous to strain
disorder in the underlying lattice. In the hydrodynamic limit, we find that the thermal and electrical conductivities
are dominated by viscous effects and that the thermal conductivity is most sensitive to this disorder. We compare
the effects of inhomogeneity in the spatial metric to inhomogeneity in the chemical potential and discuss the
extent to which our hydrodynamic theory is relevant for experimentally realizable condensed-matter systems,
including suspended graphene at the Dirac point.
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I. INTRODUCTION

A theory of electrical and thermal transport necessarily
relies on a precise description of how translation symmetry is
broken. In conventional weakly coupled quasiparticle theories,
most collisions of electrons are with impurities or phonons
and relax momentum. In recent years, rapid progress towards
a theory of transport which also accounts for momentum-
conserving electron-electron interactions has been made [1].
One of the most useful tools that has arisen for understanding
transport in this limit is hydrodynamics. Hydrodynamics is the
effective theory describing the relaxation of any interacting
system to thermal equilibrium on long wavelengths. Such
a theory is suitable for any interacting metal where the
disorder which breaks translation invariance varies on only
long wavelengths compared to the electron-electron scattering
length [2–8]. Although this is a difficult regime to reach
experimentally, it has now become possible [9–12] (see also
[13]). A thorough understanding of the hydrodynamic regime
of transport is certainly necessary as a “solvable” limit of any
more complete theory of transport [14]. Hence, it is worthwhile
to have a systematic understanding of hydrodynamic transport
in a broad variety of systems.

The purpose of this paper is to describe hydrodynamic
transport on curved spaces.1 In electronic materials, the
presence of internal strain on a crystal lattice can be interpreted
as an effective distortion to the induced spatial metric [20]. As
the electronic charge-carrying degrees of freedom move in this
inhomogeneous metric, our results will be relevant for strongly
correlated systems in inhomogeneously strained crystals.
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‡ajlucas@stanford.edu
1Our formalism is relatively similar to the emergent “hydrody-

namic” formalism used to describe transport in strongly correlated
systems described via the anti-de Sitter/condensed matter theory
correspondence [4,15–18]. However, in most of these papers, the
random spatial metric is an emergent phenomenon from the point
of view of the bulk description of the field theory; the exception is
[19]. We emphasize that we are interested in scenarios where the
inhomogeneous spatial metric is a physical effect.

Following [7], we will focus on the relativistic hydrodynamic
equations as a model for transport in monolayer graphene in
the hydrodynamic limit. The techniques which we develop
straightforwardly generalize to other hydrodynamic models.

Recent experimental evidence [9] indicates that electrons
behave hydrodynamically in charge-neutral graphene. Collec-
tively, they behave as a Dirac fluid: a plasma of thermally
excited electron and holes which is likely to be strongly
interacting at “reasonable” temperatures T ∼ 100 K [21–23].
Crucial to the observation of this Dirac fluid is the reduction
and smoothing of “charge puddle” disorder, which corresponds
to inhomogeneities in the local chemical potential. This was
achieved by placing the graphene sheet in between layers
of another material: boron nitride [24]. Another way to
reduce charge puddle disorder in graphene is to “suspend”
graphene, leaving it unattached to any substrate [25,26]. For
mechanical reasons, dealing with such suspended graphene
can be challenging. The aspect we focus on here is that in
principle a suspended sheet of graphene, as it consists of
a single two-dimensional “membrane” of carbon atoms, is
susceptible to out-of-plane flexural distortions. From the point
of view of a two-dimensional effective theory for the Dirac
fluid, flexural disorder can be interpreted as disorder in the
spatial components of the space-time metric. Letting the local
height of the membrane be h(x,y), the metric is [20]

ds2 = (δij + ∂ih∂jh)dxidxj . (1)

In reality, h(x,y) need not be time -independent. However,
such flexural motion is expected to be quite slow relative
to electronic time scales, and we may approximate it as
static disorder. Hence, a study of hydrodynamic electron
transport in suspended graphene should naturally include
flexural distortions to the metric.

The outline of this paper, and our main conclusions, are
as follows. In Sec. II, we review the theory of linearized
relativistic hydrodynamics on curved spaces, which is relevant
for transport. In Sec. III we use this curved-space hydrody-
namics to solve for thermoelectric transport coefficients for
a fluid in a slowly varying chemical potential and spatial
metric. When the inhomogeneity is small, we give analytic
expressions for the thermal and charge conductivities as
functions, expressed entirely in terms of the inhomogeneous
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chemical potential and metric, and thermodynamic and hy-
drodynamic coefficients. When the inhomogeneity cannot be
treated analytically, we compute the transport coefficients
numerically. Because transport is dissipative, the transport
coefficients depend on hydrodynamic dissipation via viscosity
and a “quantum critical” conductivity. In the presence of
inhomogeneous chemical potentials, both dissipative channels
affect the conductivity significantly. However, for inhomo-
geneous strain viscous dissipation is far more relevant; in
fact, perturbatively, it is the only source of dissipation.
We discuss the application of our formalism to suspended
graphene in Sec. IV. This discussion includes a justification of
some of the statements in the Introduction. Our hydrodynamic
transport theory allows us to describe electronic scattering
off of certain long-wavelength phonons nonperturbatively in
the strength of electronic interactions. Although we will see
that most phonons cannot be accounted for in this limit, our
results may nonetheless be valuable for a more detailed study
of electron-phonon coupling.

Technical results are found in the appendices. We mostly
work in units where h̄ = kB = 1, and we also set the
effective speed of light vF = 1, as well as the electron
charge e = 1.2 When we discuss the application of our
formalism to suspended graphene, we will briefly restore
these dimensionful quantities.

II. RELATIVISTIC HYDRODYNAMICS
ON CURVED SPACE

In this section we review and generalize to curved space-
time the hydrodynamic framework developed in [7]. This
framework describes the collective motion of the relativistic
electronic plasma in a disordered metal, where the disorder is
introduced via a spatially dependent chemical potential μ0(x).
When the chemical potential varies on a length scale larger than
the electron mean free path, a hydrodynamic description of
transport is sensible: all other microscopic degrees of freedom
have already reached local thermodynamic equilibrium. The
only relevant degrees of freedom for transport are locally
conserved quantities: energy, charge, and momentum. All the
spatial dependence of the parameters (such as local energy
density ε or shear viscosity η) is encoded by the functional
dependence of these quantities on the local μ0(x): e.g.,
η(x) = η(μ0(x)). Charge/chemical potential disorder is natural
for many metals, including graphene [7]. For slowly varying
disorder, this is also convenient because it is very naturally
included within a hydrodynamic framework.

Another type of universal disorder that is natural to consider
within a hydrodynamic framework is local inhomogeneity in
the space-time metric: as we described previously, this is a
model for strain in the crystal lattice. This strain can also
be natural in a broad variety of solids: occurring from either
in-plane strain or (in the case of suspended graphene) out-of-
plane bending of the crystal lattice. In the limit where this
strain is long wavelength, we can account for it by simply

2In materials such as graphene, the effective speed of light is set by
the Fermi velocity vF.

solving the hydrodynamic equations of motion, written in a
coordinate-independent fashion, on curved space-time.

Let us note that strain can also open up a gap � in certain
crystals, including graphene [27]. This will alter the effective
microscopic dispersion relation and hence the equations of
state. In the present work we have neglected this contribution,
and our theory is not valid if the strain is so large that
� ∼ T . For smaller strain, our theory remains valid, but there
will be additional x dependence of the thermodynamic and
hydrodynamic coefficients due to the local value of the gap.
For simplicity we will not explicitly account for this effect. Up
to the opening of a gap, the effects of strain are universal in
the hydrodynamic limit.

As we previously noted, the only quantities which are
globally conserved (up to external sources) are charge, energy,
and momentum [28]. The natural degrees of freedom are the
local number density n(x), the energy density ε(x), and the
momentum density �i(x). A more convenient approach is
to use their thermodynamic conjugates: the chemical potential
μ(x), temperature T (x), and velocity vi(x), respectively. These
are the standard choice of hydrodynamic variables. In rela-
tivistic systems this velocity is commonly written covariantly
as a four-velocity uμ(x) = (1,vi)/

√
1 − v2, constrained to

equal uμuνημν = −1, with ημν being the Minkowski metric:
ημν = diag(−1,1, . . . ,1).

The equations of motion are local conservation laws:

∇μT μν = F
νμ
ext Jμ, (2a)

∇μJμ = 0. (2b)

In the absence of an external electric field or temperature
gradient, there remains an external electromagnetic field due
to an inhomogeneous chemical potential: F

μν
ext = ∇μAν

ext −
∇νA

μ
ext, with

Aext = μ0(x)dt. (3)

The only nonvanishing components of the Maxwell tensor are
F ext

t i = −F ext
it = ∂iμ0(x). T μν(x,t) and Jμ(x,t) are the expec-

tation values of the local relativistic stress-energy tensor and
charge current, respectively. These conservation equations,
understood in terms of the covariant derivative ∇μ with respect
to the metric

ds2 = gμνdxμdxν = −dt2 + gij (x)dxidxj , (4)

are valid in any (curved) space-time, including those with an
inhomogeneous spatial curvature of interest to us.

In order for Eqs. (2) to be well posed, we must express the
expectation values of T μν and Jμ in terms of the hydrodynamic
variables μ, T , and uμ. We will expand T μν and Jμ in a
gradient expansion in derivatives: more physically, the small
parameter of the perturbative expansion is 	eek, with k being
the wave number of our perturbation and 	ee being the electron-
electron scattering length. In this paper, we will include only
terms with zero or one derivatives of x and t . This expansion
is well known for a relativistic fluid [28,29]:

T μν = (ε + P )uμuν + Pgμν − 2ηPμρPνσ∇(ρuσ )

−Pμν

(
ζ − 2η

d

)
∇ρu

ρ, (5a)
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Jμ = nuμ − σQPμν
(
∂μμ − μ

T
∂νT − Fνρ,extu

ρ
)
, (5b)

with η and ζ being the shear and bulk viscosity, respectively,
and σQ being a microscopic dissipative coefficient. As empha-
sized in [29], σQ should be interpreted as the finite electrical
conductivity of the charge-neutral plasma (up to hydrodynamic
long-time tails [1]), and for historical reasons it is sometimes
called the quantum critical conductivity. Finally, Pμν is the
projector orthogonal to the rest frame of the fluid, set by the
velocity uμ: Pμν = gμν + uμuν .

III. HYDRODYNAMIC TRANSPORT

We now wish to compute the thermoelectric conductivity
matrix of a fluid in such an inhomogeneous background. These
coefficients are defined as follows:(

J
avg
i

Q
avg
i

)
≡
(

σij T αij

T ᾱij T κ̄ij

)(
Ej

ζj

)
, (6)

where J
avg
i is the spatial average of the charge current defined

above, Q
avg
i is the spatial average of the heat current, defined

as

Qi ≡ T ti − μ(x)J i, (7)

Ej is an infinitesimal externally applied uniform electric
field, and ζj is an infinitesimal “thermal drive” analogous
to a homogeneous temperature gradient −∂j ln T . This more
formal notation will prove useful for our purposes.

Our goal is to compute σij , αij , ᾱij , and κ̄ij using the
hydrodynamic equations of motion. We will explicitly show
how this is done. First, let us note a few formal results.
Onsager reciprocity states that (with time-reversal symmetry)
ᾱij = αji and that σ and κ̄ are symmetric. In the hydrodynamic
framework on a curved space, we prove this in Appendix A.
Second, it is experimentally more common to measure a
thermal conductivity defined by

κij ≡ κ̄ij − T ᾱikσ
−1
kl αlj . (8)

This can be interpreted as the ratio of the average heat current
to a constant temperature gradient, subject to the constraint
that no net charge current flows. We will show results for κ̄

and for κ .

A. General solution

We now present the formal computation of the ther-
moelectric conductivity matrix. First, we note that in an
inhomogeneous metric gij (x) and chemical potential μ0(x),
there is an exact solution to the nonlinear equations of motion,

encoding that the fluid is at rest in local thermal equilibrium:

μeq(x) = μ0(x), (9a)

Teq(x) = T0, (9b)

uμ
eq(x) = (1,0), (9c)

where T0 is a constant. Then, because we are applying an
infinitesimal electric field and thermal drive, we look for only
the perturbations around equilibrium within linear response:

μ(x) ≈ μeq(x) + δμ(x), (10a)

T (x) ≈ Teq(x) + δT (x), (10b)

uμ(x) ≈ (1,δvi(x)). (10c)

Because the disorder explicitly picks out a preferred fluid
rest frame, it is often helpful to decompose (2) into timelike
and spacelike components. The hydrodynamic expansion of
the electric current within linear response gives

J t = n, (11a)

J j = nδvj − σQgij

(
∂iδμ − μ0

T0
∂iδT

)
, (11b)

while the stress-energy tensor reads

T tt = ε, (12a)

T ti = (ε + P )δvi (12b)

T ij = (P0 + δP )gij − η(∇̄j
δvi + ∇̄i

δvj )

−
(

ζ − 2

d
η

)
gij ∇̄kδv

k, (12c)

where ∇̄iv
j ≡ ∂iv

j + �
j

klv
j is the covariant derivative with

respect to the spatial metric gij and �
j

kl = 1
2gjm(∂kgml +

∂lgmk − ∂mgkl) is the Christoffel symbol. For simplicity, we
henceforth specialize to two spatial dimensions: d = 2.

The external electric field Ei and thermal drive ζi are added
by modifying the background vector potential A and space-
time metric g [1]:

A = μ0(x)dt + [Ei − μ(x)ζi]
e−iωt

iω
dxi, (13a)

ds2 = −dt2 + gij (x)dxidxj + 2
e−iωt

iω
ζidxidt. (13b)

We are interested in the thermoelectric conductivities within
linear response, so we need to calculate only the perturbations
δμ, δT , and δvi to linear order in Ei and ζi . After some algebra,
the linearized hydrodynamic equations can be found:

−∇̄i(σQ∂iδμ) + ∇̄i

(
σQ

μ0

T0
∂iδT

)
+ ∇̄i(nδvi) = −∇̄i[σQ(Ei − μ0ζi)], (14a)

∇̄i(σQμ0∂iδμ) − ∇̄i

(
σQ

μ2
0

T0
∂iδT

)
+ ∇̄i(sT0δv

i) = ∇̄i[σQμ0(Ei − μ0ζi)], (14b)

n∂j δμ + s∂j δT − ∇̄i[η(∇̄i
δvj + ∇̄j δv

i)] − ∂j [(ζ − η)∇̄iδv
i] = nEj + sT0ζj , (14c)

075150-3



SCOPELLITI, SCHALM, AND LUCAS PHYSICAL REVIEW B 96, 075150 (2017)

where ∇̄ is the covariant derivative with respect to the spatial component of the metric gij . These are elliptic differential equations
which can be straightforwardly solved numerically, as we describe in Appendix B.

B. Perturbative analytic solution

In the limit where gij is a perturbatively small deviation from flat space gij = δij + ĝij and the spatial variation of the chemical
potential around the average μ0(x) = μ̄0 + μ̂(x) is also perturbatively small, we can analytically compute the conductivity matrix
to leading order. The calculation is rather tedious and is presented in Appendix C.3 The transport coefficients can be expressed
in terms of the relaxation rate τ−1

ij for momentum. Assuming the density n is finite, one expects on general grounds [1]

σ ij ≈ n2τ ij

ε + P
, (15a)

αij ≈ nsτ ij

ε + P
, (15b)

κ̄ ij ≈ T s2τ ij

ε + P
, (15c)

where

τ−1
ij = (

τ−1
ij

)(μμ) + (
τ−1
ij

)(μh) + (
τ−1
ij

)(hh)
, (16)

with2

(
τ−1
ij

)(μμ) =
∑

k

kikj

k2

|T0n0ŝ(k) − T0s0n̂(k)|2 + k2σQ(η0 + ζ0)|T0ŝ(k) + μ0n̂(k)|2
σQ(ε0 + P0)3

, (17a)

(
τ−1
ij

)(μh) = 2η0

∑
k

kikj

μ̄0n(k) + T0s(k)

(ε0 + P0)2
ĝkl(−k)Pkl, (17b)

(
τ−1
ij

)(hh) = η0

ε0 + P0

∑
k

kikj ĝrs(k)ĝkl(−k)Pr(sPk)l . (17c)

We have defined the projector

Pij = δij − kikj

k2
. (18)

The pure charge disorder scattering rate (τ−1
ij )(μμ) was found

before in [7]. If the disorder in the chemical potential is
uncorrelated with the strain disorder, then after disorder
averaging, we expect (τ−1)(μh) ≈ 0.

As we have stated, τ−1
ij is the rate at which the fluid

can relax its momentum on the long-wavelength disorder.
As this is a dissipative process, it is necessarily the case
that τ−1

ij must depend on σQ, η, and/or ζ . As we show
in Appendix C, in this perturbative regime the charge and
heat currents are, at leading order, uniform. When there
are inhomogeneities in the chemical potential, momentum
relaxation can be non-negligible, even in the limit where

3Note that ĝij is quadratic in the height function of out-of-plane
distortions. For a chemical potential and induced metric with an
explicit small parameter u, μ0(x) = μ̄0 + uμ̂(x) and gij = δij +
u∂i ĥ∂j ĥ, with μ̂ and ĥ being O(1) functions. Hence, fluctuations
in the height function

√
uĥ must be parametrically larger amplitude

than the fluctuations in the chemical potential uμ̂ to have the same
effect on transport. When u → 0, the transport coefficients σij , αij ,
and κ̄ij will be O(u−2).

inhomogeneity is very long wavelength (k → 0). This is due
to the fact that a uniform fluid velocity, uniform charge, and
uniform heat current are not simultaneously consistent with
both charge and heat conservation: the heat and charge currents
must contain a purely dissipative component, which carries no
momentum. The conductivity associated with this incoherent
current is proportional to σQ; this explains the 1/σQ scaling of
the first term in (τ−1)(μμ). A nonrelativistic avatar of this effect
was emphasized in [2]. However, in the presence of strain or
metric disorder, there is no such impediment to a uniform
flow. In this case, dissipation arises due to viscous effects. As
viscosity vanishes, dissipation becomes weaker, and hence, the
thermoelectric conductivity matrix is proportional to 1/η.

C. Numerical solution

In order to make more precise predictions, the theory
introduced in the previous section ought to be supplemented
with specific equations of state. As noted in [7], the equations
of state for a quasirelativistic fluid with gapless excitations,
such as the Dirac fluid in graphene, are rather constrained. If
we focus on the physics near the charge neutrality point for
simplicity, we find

n(μ0) = C2μT + O

(
μ3

T

)
, (19a)
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FIG. 1. Numerical simulation of the transport coefficients in dimensionless units for weak disorder with C0 = C2 = σ0 = 1. For
convenience, in all of our figures, we have restored dimensional prefactors of h̄, e, T0, and kB. Numerical results (circles) agree very
well with the theoretical results (15) and (17) (solid lines). In the first row, only charge disorder is present, and the dependence on the shear
viscosity is very weak. Switching on strain disorder considerably increases the sensitivity to shear viscosity η. The results have been averaged
over 20 disorder configurations.

s(μ0) = C0T
2 + C2

2
μ2 + O

(
μ4

T 2

)
, (19b)

η(μ0) = T 2η0 + O
(
μ2), (19c)

ζ (μ0) = 0, (19d)

σ (μ0) = σ0 + O

(
μ2

T 2

)
, (19e)

where the constants σ0, η0, and C0,2 are dimensionless. For
simplicity we have assumed that the bulk viscosity ζ = 0; we
did not find that a finite ζ led to qualitatively different physics
than a finite η.

Using the spectral methods of [7], described in Appendix B,
we have numerically solved (14) with the equations of state
(19) in inhomogeneous chemical potentials and metrics. We

have always taken periodic boundary conditions and assumed
that the metric disorder and chemical potential disorder are
uncorrelated for simplicity.

Denoting spatial averages with E[· · · ], let us define

ε2
C = T −2E[(μ(x) − μ̄0)2], (20a)

ε2
S = T 2E[h(x)2]. (20b)

These two parameters quantify the relative amount of
charge vs strain disorder. The overall prefactors of temperature
T are chosen so that εC,S are dimensionless numbers. In Fig. 1,
we demonstrate quite clearly the dramatic effects of viscosity
on transport in the presence of strain disorder, as explained in
the previous section.

The other dissipative channel is the one controlled by the
microscopic conductivity σQ. The presence of σQ is essential:
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FIG. 2. Numerical simulation of the Lorenz ratio L, with C0 = C2 = 1 and η0 = 5, with variable σQ. Left: only strain disorder (εC = 0 and
ε2

S = 0.001); right: only charge disorder (εC = 0.001). As expected, the Lorenz ratio is much more sensitive to σQ with strain disorder, relative
to charge disorder.
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for vanishing σQ = 0 there can be no heat current in the absence
of an electric current, so κ = 0. So a clear way to observe the
effects of σQ is in the Lorenz ratio

L = κ

T σ
, (21)

where for simplicity we have assumed isotropic trans-
port coefficients (this is the case for isotropic disorder).
For perturbatively small disorder, we estimate the Lorenz
ratio [7]

κ ≈

⎧⎪⎪⎨
⎪⎪⎩

(ε + P )τ

T 2σQ

n0 ≈ 0,

(ε + P )3σQ

T 2n4τ
otherwise,

(22)

as can be seen from the analytic results. For chemical potential
disorder, we expect that (at small σQ) τ ∼ σQ, so κ does not
depend strongly on σQ. When all disorder is in the strain, τ

does not depend on σQ, so L has much stronger dependence
on σQ. This is shown in Fig. 2.

The numerical results in Figs. 1 and 2 are still fully in the
perturbative analytic regime. For larger disorder the analytic
results are no longer quantitatively correct, even though the
differences remain small and the qualitative features stay the
same. This is shown in Fig. 3.

A clear indication that one is outside the perturbative regime
is that the results can no longer be described in terms of a
sum of inverse scattering times. This is depicted in Fig. 4.
Beyond the perturbative regime, we find that the analytic
expression overestimates the conductivity in the presence of
strain disorder and underestimates the conductivity in the
presence of charge disorder.

IV. APPLICATION TO SUSPENDED GRAPHENE

We now turn to the application of our formalism to
hydrodynamics in the Dirac fluid in monolayer graphene
[21,22]. Graphene is a honeycomb lattice of carbon atoms
in two spatial dimensions, with the low-energy dispersion
relation

εa(k) = h̄vF|k|. (23)

The a label denotes spin and valley indices and will mostly be
ignored for the purposes of this paper: neither the interactions
nor the disorder couples to spin here. These electrons interact
with one another via long-range Coulomb interactions. Thus,
strictly speaking, the hydrodynamics of graphene cannot be
relativistic hydrodynamics.

However, as we have seen, transport is a linear response
calculation. The key input from relativistic hydrodynamics
was that the energy current and momentum density were
identical; this reduced the number of hydrodynamic variables
present. This follows trivially from the (weak-coupling) action
for the Dirac fluid, so we expect that the nonrelativistic
nature of the interactions will not play an important role in a
transport calculation. Furthermore, as one can show following
[7,30], the effect of Coulomb interactions can be absorbed
into a (nonlocal) redefinition of μeq and δμ, so the final
equations governing transport remain unchanged. Some of the
literature also includes a long-lived (but not exactly conserved)

imbalance mode in the hydrodynamic description [31–33]; for
simplicity, we have not accounted for this effect. Indeed, the
predictions of relativistic hydrodynamics have been confirmed
experimentally in [7,9] (see also [34,35]).

The key advance for the observation of hydrodynamic
behavior was the growth of high-quality graphene crystals,
sandwiched between layers of hexagonal boron nitride. This
dramatically reduced the size and number of charge puddles,
local inhomogeneity in the chemical potential [24]. As a con-
sequence, the disorder in graphene became weak enough that
hydrodynamic effects were observable at T � 100 K. (When
T � 100 K, electron-phonon coupling appears to significantly
degrade the electronic energy and momentum and hence
hydrodynamic behavior.)

Another possibility for limiting the amount of disorder
in graphene is to suspend it [25,26]. The charge puddles in
suspended graphene are also inherently quite weak. However,
suspending graphene leads to a new source of disorder: flexural
(out-of-plane) distortions of the graphene crystal. As we noted
in the Introduction, these distortions lead to an effective spatial
metric gij given by (1). In the limit where electron-electron
interactions are negligible, these flexural modes are known to
dominate the resistivity at low temperatures [36]. Our goal is
to understand the implications of these flexural distortions
on transport in suspended graphene in the hydrodynamic
limit. As we have already shown the consequences of (1)
on transport, our goal here is simply to estimate the size of
h(x,y) in suspended graphene and to comment on whether the
hydrodynamic approximation is ever sensible.

In this paper, we will account for the flexural modes by
considering motion on a curved space. In the limit where
there are well-defined quasiparticles, it is common to interpret
the strain not as the metric deformations (1) but as emergent
magnetic fields [37,38]. A priori, this is quite subtle: a magnetic
field breaks time-reversal symmetry, while (14) preserves
time-reversal symmetry. The resolution to this puzzle is that
there are two Dirac points in the Brillouin zone in graphene,
and the emergent magnetic field has opposite signs in each
valley. The Dirac fluid of graphene, accounting for both
valleys, will remain invariant under time reversal in the
presence of strain. Nonetheless, as we mentioned previously,
strain can open a gap, so it may be possible that in graphene
the presence of strain leads to modifications of the effective
hydrodynamics. These are questions worth considering more
carefully in future work.

With these caveats, let us, nonetheless, estimate the hydro-
dynamic momentum relaxation rate due to long-wavelength
flexural fluctuations in graphene.

A. Classical flexural phonon dynamics

The classical action describing flexural phonons in
graphene is [36]

S =
∫

d2xdt
[ρ

2
(∂th)2 − κ

2
(∂i∂ih)2

]
, (24)

where h is the height of the graphene membrane at position
(x,y). The parameters κ ∼ 1 eV and ρ ∼ 7 × 10−7 kg/m2
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FIG. 3. Numerical simulation of the transport coefficients in dimensionless units with C0 = C2 = σ0 = 1. The circles represent the
numerical results, while the solid lines represent the theoretical results (15) and (17). The agreement between numerics and analytics decreases
upon increasing the strength of disorder, although the agreement remains better for larger strain disorder vs chemical potential disorder. The
results have been averaged over 20 disorder configurations.

[39]. Assuming a square membrane of size L and writing

h(x,y,t) =
∑

k

hk(t)eik·x (25)

with allowed wave vectors k = 2π/L × (nx,ny), we obtain

S =
∫

dt
∑

k

L2

[
ρ

2
ḣkḣ−k − ρω(k)2

2
hkh−k

]
. (26)
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FIG. 4. We analyze the validity of the perturbative solution by
comparing the ratio of the numerically estimated scattering rate
τnum = (ε + P )σ/n2 to our analytic prediction τan (17). The dots
represent the ratio of scattering rates in the presence of pure strain
disorder with ε2

S in the interval [0.01,0.1]. The crosses represent
pure charge disorder with εC in the interval [0.001,0.1]. We have set
μ̄0/T = 2. In the perturbative regime where τ−1 → 0 the analytic
and numerical results match, as they must.

As expected, we find a set of decoupled harmonic oscillators
with

ω(k) ≡
√

κ

ρ
k2. (27)

In quantum mechanics, phonons are quantized, so we
should check the length scales at which this classical descrip-
tion will fail. This occurs when the occupation number of a
given phonon mode is comparable to 1, which occurs when
h̄ωk ∼ kBT . This occurs when

k �

√
kBT

h̄

√
ρ

κ
∼ 1

0.2 nm

√
T

100 K
. (28)

For the remainder of this section, we will restore factors of h̄,
kB, etc. The hydrodynamic description fails when

k � kBT

h̄vF
∼ 1

100 nm

T

100 K
. (29)

At any reasonable experimental temperature, there are a
classically large number of thermally excited flexural phonons
at wave numbers in the hydrodynamic regime. We also learn
that there is a large range of wave numbers where the phonons
cannot be treated hydrodynamically. Hence, we expect a
further contribution to momentum relaxation due to these
higher-wave-number phonons, which must be computed using
a more microscopic description, such as kinetic theory.

Next, we must ask whether or not the classical dynamics of
flexural phonons is slow enough that the background metric
may be treated as static. The fastest phonon dynamics in the
hydrodynamic regime occurs for fluctuations hk with k of
order (29). Plugging into (28), we see that the fastest phonon

dynamics in the hydrodynamic regime occurs at a rate

ω ∼
√

κ

ρ

(
kBT

h̄vF

)2

∼ 10−5 T

100 K
tee. (30)

Hence, the metric configuration h(x,y), on hydrodynamic
length scales, is essentially frozen in place on electronic
time scales, justifying the assumption in our previous hy-
drodynamic analysis that the background geometry is time
independent.

B. Contribution to momentum relaxation time

We now compute the contribution of long-wavelength
fluctuations to the relaxation time for momentum. First, we
must compute the typical size of thermal fluctuations in hk.
Using the classical equipartition theorem and recalling that
hk contains two independent harmonic oscillators (real and
imaginary parts),

〈|hk|2〉 = 2T

κk4L2
. (31)

We have once again reverted to natural units. A straightforward
computation, presented in Sec. C 1, reveals that

1

τ
= 3

16π2

η

ε + P

T 2

κ2ξ 2
. (32)

The hydrodynamic result can be trusted only until ξ � 1/T ,
so we estimate that the contribution of (hydrodynamically)
long-wavelength flexural phonons to the momentum relaxation
time is

1

τ
∼ ηT 4

κ2(ε + P )
. (33)

Near the charge neutrality point, the thermodynamic prefactors
scale with known powers of temperature, and we obtain
τ−1 ∼ T 3.

Of course, this must be compared with the other contri-
butions to the momentum relaxation time, including the scat-
tering off of short-wavelength phonons. Using kinetic theory,
this has been estimated to be τ−1 ∼ T 2 [39,40]. Typically, one
would account for electron-phonon scattering using kinetic
theory, treating each electron-phonon scattering event as a rare
and independent process. However, we have just seen that in
the hydrodynamic limit, a classical electron fluid with many
electron-electron collisions moves in an approximately frozen
phonon background. Thus, one electron can be correlated with
the same phonon over many collisions. These correlations
suggest that the molecular chaos assumption underlying the
kinetic description (that scattering events are uncorrelated with
each other) could easily break down.

Additional mechanical strain induced by the contacts in
a realistic sample of graphene changes the low-frequency
dispersion relation of flexural modes from quadratic to linear
[39,40]. Such a change would alter (31). But from the form of
(32) it is clear that the smallest-wavelength phonons are most
efficient at relaxing momentum. Hence, as long as the quadratic
dispersion relation is restored by k ∼ 	−1

ee , we expect that (32)
approximately accounts for the hydrodynamic contribution to
the electron-phonon momentum relaxation rate.
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Depending on the nonlinear properties of an elastic mem-
brane, there can be significant renormalization of the effective
κ which should be used in (31) due to thermal fluctuations
[41]. This effect has been seen recently in molecular dynamics
simulations [42] and in experiment [43]. In a very simple
approximation, one estimates that κeff ∼ √

T K/q as q → 0;
K is a constant associated with certain nonlinearities in the
elastic free energy. If this renormalization is significant in
the hydrodynamic regime, then we expect that the temperature
scaling in 1/τ will be reduced by a factor of approximately T 3.

Finally, we note that there are other phonon modes which
we could account for. In particular, there are also in-plane
deformations that naturally arise, where the point xi is
displaced to xi + di(x). In the presence of both a fluctuating
height h(x) and displacement di(x), the general expression for
gij is [20]

gij = δij + ∂idj + ∂jdi + ∂ih∂jh. (34)

The in-plane phonons of graphene are linearly dispersing,
so 〈|dk|2〉 ∼ k−2, in contrast to (31). However, the metric
itself depends on d, not on d2, and contains one fewer
spatial derivative. Putting this together and generalizing the
discussion in Sec. C 1, we estimate that τ−1 ∼ T 4. Hence,
flexural phonons are more important than longitudinal phonons
in the hydrodynamic limit.

V. CONCLUSION

In this paper, we have described the effects of inhomo-
geneous slowly varying strain on hydrodynamic transport in
strongly correlated electron fluids. We have demonstrated that
for a (quasi)relativistic system with only strain disorder, the
conductivities depend only on the viscosity of the electronic
fluid (at least when inhomogeneity is small).

The conventional theory of electron-phonon scattering
estimates the relaxation rate by simply computing low-order
Feynman diagrams. Such an approach is sensible when the
mean free path is much larger than the wavelength of both
the electrons and the phonons. However, it is plausible that in
charge-neutral graphene and other strongly correlated electron
fluids, the electronic mean free path could be short compared
to the wavelength of some phonons. Our hydrodynamic
description is the appropriate description of scattering off
of these long-wavelength phonons, although we must bear
in mind that there will inevitably be a larger number of
shorter-wavelength phonons, which are not entirely captured
by our hydrodynamic model.

A large open problem involves extending the theory of
transport beyond the hydrodynamic limit. In the limit of
weak interactions, this can be achieved using kinetic theory:
while challenging, it is possible to completely characterize
the ballistic-to-hydrodynamic crossover in this limit [14]. It
would be interesting to understand how the hydrodynamic
limit of electron-phonon coupling that we have demonstrated
in this work can be understood from such a kinetic theory
framework.
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APPENDIX A: ONSAGER RECIPROCITY

In this appendix we show that Onsager reciprocity is satis-
fied on a curved background. This is a nontrivial consistency
check of our formalism, as it has to be satisfied for any
time-reversal-symmetric theory of transport.

We begin by introducing some shorthand notation for our
proof, following [4]. We denote a uniform spatial average with
E[X] = ∫

ddx
Ld

√
gX, where g is the determinant of the spatial

metric gij . We define the vectors

Fα
i ≡

(
Ei

ζi

)
, (A1a)

�α ≡
(

δμ

T −1δT

)
, (A1b)

J α
i =

(
δJi

δQi

)
, (A1c)

ρα =
(

n

T s

)
, (A1d)

�αβ =
(

σQ − σQμ0

−σQμ0 σQμ2
0

)
, (A1e)

σ
αβ

ij =
(

σij T αij

T ᾱij T κ̄ij

)
. (A1f)

It is straightforward to see that Eqs. (14) are equal to

0 = ∇iJ αi = ∇i

(
ραvi − �αβ∇i�

β + �αβF
β

i

)
, (A2a)

0 = ρα
(∇i�

α − Fα
i

)− ∇j (ηijkl∇kvl). (A2b)

We have denoted

ηijkl = η(gikgjl + gilgjk) +
(

ζ − 2η

d

)
gijgkl. (A3)

To prove Onsager reciprocity we must prove that

σ
αβ

ij = σ
βα

ji . (A4)

By linearity, we may write the solutions to these equations of
motion as

�α =
d∑

J=j=1

�αβJ F
β

j , (A5a)

vi =
d∑

J=j=1

viJβF
β

j . (A5b)
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We have denoted the index J in capital letters to emphasize
that �J is not a contravariant vector and that viJ is a
contravariant vector, not a tensor. Equation (A2) then becomes

∇i(ρ
αviJβ − �αγ ∇i�γβJ ) = −∇i

(
gJi�αβ

)
, (A6a)

ρα∇i�
αβJ − ∇j

(
ηijkl∇kv

βJ

l

) = ρβδJ
i . (A6b)

Now, by definition

σαβIJ = E
[
ραδI

i v
iJ
β − �αγ gIi∇i�

γβJ + �αβδIJ
]
. (A7)

We now use the left-hand side of (A6) to rewrite the coefficients
of the first two terms of (A7) after integrating by parts the
second term of (A7) [note thatE[X∇iY

i] = −E[Y i∇iX]; this
can be easily seen using ∇iY

i = g−1/2∂i(g1/2Y i)]:

σαβIJ = E[[ργ ∇i�
γαI − ∇n(ηinrs∇rvs)]viJ

β

+ [∇k(�γδ∇k�δαI − ργ vkαI )]�γβJ + �αβδIJ ].

(A8)

We next integrate by parts the viscous part of the first term,
as well as the second term. Using the fact that E[Yi∇jZ

ij ] =
−E[Zij∇jYi], this can easily be done. We find

σαβIJ = E[ργ ∇i�
γαI viJβ + ργ viIα∇i�

γβJ

+ ηinrs∇rvsIα∇nviJβ − �γδ∇k�δαI∇k�
γβJ

+�αβδIJ ]. (A9)

It is straightforward to determine from this expression, as
well as the symmetry properties of ηijkl , that σαβIJ = σβαJI ,
proving Onsager reciprocity.

APPENDIX B: NUMERICAL SIMULATIONS

The hydrodynamic equations can be solved on a periodic
domain of L × L grid points with pseudospectral methods
[44]. The domain is reduced to a set of uniformly distributed
grid points xI , and the continuous partial differential equation
(14) is approximated by the discrete form

Lu = s, (B1)

where

u =
⎛
⎝δμ(xI )

δT (xI )
δvi(xI )

⎞
⎠ (B2)

are the data we wish to solve for,

s =
⎛
⎝−∇̄i

σQ(Ei − μ0ζi)
∇̄i

σQμ0(Ei − μ0ζi)
nEj + sT0ζj

⎞
⎠ (B3)

is the source for the linearized hydrodynamic equations due to
the external fields Ei and ζi (henceforth, the dependence on xI

of coefficients is implicit), and L is the discretized differential
operator

L =

⎛
⎜⎝

−∇̄i
σQ∂i ∇̄i

σQ
μ0

T0
∂i ∇̄in

∇̄i
σQμ0∂i −∇̄i

σQ
μ2

0
T0

∂i ∇̄i sT0

n∂j s∂i −√
g

−1
∂k

√
gη(∇̄k

gji + ∂j δ
k
i ) + η(∂jgkl) ∇̄(k

δ
l)
i − ∂j (ζ − η)∇̄i

⎞
⎟⎠. (B4)

The derivative operators in this equation are understood to act on everything to their right, unless contained within parentheses.
They are approximated on the discrete grid using spectral methods. By inverting the system (B1), we find expressions for δμ,
δT , and δvi , from which it is simple to compute the spatially averaged charge and heat currents and hence the thermoelectric
conductivity matrix.4

The disorder consists of random sine waves both for the chemical potential and for the strain:

μ0(x) = μ̄0 +
∑

|nx |,|ny |�k

μ̂0(nx,ny) sin

(
φx + 2nxπx

kξ

)
sin

(
φy + 2nyπy

kξ

)
, (B5a)

h(x) =
∑

|nx |,|ny |�k

ĥ(nx,ny) sin

(
φ′

x + 2nxπx

kξ

)
sin

(
φ′

y + 2nyπy

kξ

)
, (B5b)

where μ̄0 is constant, φx,y is uniformly distributed on
[0,2π ), and μ̂0(nx,ny), ĥ(nx,ny) are uniformly distributed
on [−c,c], with c = √

(2 − δnx,0 − δny,0)/2. We have chosen
this expression for c such that both charge disorder and
strain are not altered by a random homogeneous offset. k

4The operator L has two zero eigenvectors, corresponding to a
constant shift of μ and T . This can be fixed by eliminating an
appropriate pair of rows/columns from the matrix L to enforce the
constraints μ(0) = T (0) = 0.

denotes the number of sine waves in a given direction. In all
simulations we have used L = 8k + 3 grid points in the x and y

directions.
The numerical simulations were performed using a finite

number of disorder modes k, both for the charge disorder
and for the strain disorder. This introduces another form of
finite-size effect to the results. It can be partially reduced
by averaging over multiple disorder realizations. We also
caution that due to the nonlinear way that strain couples
to the hydrodynamic equations, an h(x) which varies with
the wavelength ξ leads to a varying metric on the scale
ξ/2, which can source the equations of motion at even

075150-10



HYDRODYNAMIC CHARGE AND HEAT TRANSPORT ON . . . PHYSICAL REVIEW B 96, 075150 (2017)

0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

εc

τ a
n
/τ

n
u
m

0 0.02 0.04 0.06 0.08 0.1
0.95

1

1.05

1.1

ε2
s

τ a
n
/τ

n
u
m

η0 = 1
η0 = 5
η0 = 30

FIG. 5. Statistical deviations in the relaxation time for momentum, extracted from the numerically computed conductivity in simulations
with k = 2 and averaged over 100 disorder configurations. In the left plot, we have assumed all disorder is in the chemical potential; in the
right plot, all disorder is in the metric. Finite-size effects and statistical fluctuations are more significant in the latter case; this is likely due to
the very nonlinear way that strain disorder couples to the hydrodynamic equations.

shorter wavelengths due to the nonlinear metric dependence
in covariant derivatives.

Despite these caveats, we expect that our numerical
methods will converge exponentially quickly upon increasing
L [44]. Simple tests confirm this [7]. We expect therefore
that the results presented in the main text are a reasonable
quantitative characterization of hydrodynamic transport in the
presence of disorder. We have also found that the deviations
in transport coefficients from one realization of disorder to the
next are relatively mild: see Fig. 5 for an example of the size
of deviations from one realization of disorder to the next.

APPENDIX C: WEAK DISORDER

In this appendix, we perturbatively calculate the transport
coefficients assuming that the inhomogeneity is small. The
calculation is analogous to that in [4,7]. As we discussed
in the main text, it is necessary for �μ ∼ u and �h ∼ √

u,
with u → 0; this will lead to transport coefficients which are
perturbatively large: σij ∼ u−2. We will denote with n̂(k) the

charge density at wave number k and denote the metric as

gij = δij + ĝij , (C1)

with ĝ ∼ u being perturbatively small. To leading nontrivial
order, gij ≈ δij − ĝij , with the indices raised trivially using
the flat-space metric.

Upon Fourier transforming δμ, δT , and δvi , we write

δμ =
∑
k �=0

μ(k)eik·x, (C2a)

δT =
∑
k �=0

T (k)eik·x, (C2b)

δvi = v̄i +
∑
k �=0

vi(k)eik·x. (C2c)

We will show that to leading order in u, μ(k) ∼ T (k) ∼
vi(k) ∼ u−1, while v̄i ∼ u−2. Let us begin by writing down the
O(u) equations for μ(k), T (k), and vi(k). In these equations,
indices may be raised and lowered freely since all corrections
are higher order in u. We obtain

ikin0v
i(k) + σQ0k

2

(
μ(k) − μ0

T0
T (k)

)
+ iki v̄

i n̂(k) + iki v̄
in0

ĝkk(k)

2
= 0, (C3a)

ikiT0s0v
i(k) − σQ0k

2μ0

(
μ(k) − μ0

T0
T (k)

)
+ iki v̄

i ŝ(k)T0 + iki v̄
is0T0

ĝkk(k)

2
= 0, (C3b)

ikin0μ(k) + ikis0T (k) + η0k
2vi(k) + ζ0kikj v

j (k) + v̄j kj

[
η0kkĝki(k) + (ζ0 − η0)ki

ĝkk

2

]
= 0. (C3c)

Upon solving for T (k), μ(k), and kivi(k) at leading order, we obtain

T (k) = − iki v̄i

σQ0k2(ε0 + P0)2
{σQ0k

2(η0 + ζ0)[μ0n̂(k) + T0ŝ(k)]T0 − T0n0[T0s0n̂(k) − T0n0ŝ(k)]}

+ iT0
ki v̄i

k2(ε0 + P0)
η0[kj ĝjk(k)kk − k2ĝll(k)], (C4a)

μ(k) = − iki v̄i

σQ0k2(ε0 + P0)2
{σQ0k

2(η0 + ζ0)[μ0n̂(k) + T0ŝ(k)]μ0 + T0s0[T0s0n̂(k) − T0n0ŝ(k)]}

+ iμ0
ki v̄i

k2(ε0 + P0)
η0[kj ĝjk(k)kk − k2ĝll(k)], (C4b)

kiv
i(k) = − ki v̄

i

ε0 + P0
[μ0n̂(k) + T0ŝ(k)] − ki v̄

i ĝkk(k)

2
. (C4c)
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It is also helpful to combine these equations to obtain

η0k
2vi(k) = η0

(
ki

ĝll

2
− kkĝki − kiPmnĝmn − μ0n̂ + T0ŝ

ε0 + P0
ki

)
kj v̄j . (C5)

We now spatially average the momentum conservation equation at O(u0) and find

n0Ei + T0s0ζi =
∑

k

{
n̂(−k)ikiμ(k) + ŝ(−k)ikiT (k)

+ η0

2
ikkĝll(−k)[(∇kvi)(k) + (∇ivk)(k)] − ikiη0ĝkl(−k)(∇kvl)(k)

}
. (C6)

It is helpful to spatially average the last column of (B4) without an overall metric factor to obtain this equation as many total
derivative terms are shown explicitly. Next, we note that in all terms in this equation, we may raise and lower spatial indices with
the flat-space metric, as long as we keep in mind

(∇kv
i)(k) = ikkv

i + i

2
(kj ĝik + kkĝij − ki ĝjk)v̄j + · · · . (C7)

Our goal is to eliminate μ(k), T (k), and vi(k) in favor of v̄j . Given (C4) and (C5), this is straightforward but tedious. We find
that

n0Ei + T0s0ζi = (ε0 + P0)

[(
τ−1
ij

)(μμ)
+
(
τ−1
ij

)(μh)
+
(
τ−1
ij

)(hh)
]
v̄j , (C8)

where

(
τ−1
ij

)(μμ)
=
∑

k

kikj

k2

|T0n0ŝ(k) − T0s0n̂(k)|2 + k2σQ(η0 + ζ0)|T0ŝ(k) + μ0n̂(k)|2
σQ(ε0 + P0)3

, (C9a)

(
τ−1
ij

)(μh)
= 2η0

∑
k

kikj

μ̄0n(k) + T0s(k)

(ε0 + P0)2
ĝkl(−k)Pkl, (C9b)

(
τ−1
ij

)(hh)
= η0

2(ε0 + P0)
kikj

[
|ĝll(k)|2 + |ĝkl(k)|2 + 2

∣∣∣∣kkkl

k2
ĝkl(k)

∣∣∣∣
2

− 2ĝmm(−k)
kkkl

k2
ĝkl(k) − 2

kmkn

k2
ĝml(−k)gnl(k)

]
. (C9c)

From (C8) we obtain an expression for v̄j . Using Ji ≈ n0v̄i and Qi ≈ T0s0v̄i , we obtain (15) and (17).

1. Phonon contribution

Let us now evaluate the contribution of flexural phonons to the momentum relaxation time. In order to evaluate the momentum
relaxation time, we need to evaluate thermal averages which can be written in the generic form

∑
q,r

〈
kikjqkhq(q − k)lhk−qrmhr(r + k)nh−r−k

〉1
2

(PmnPkl + PkmPln)

= 2
∑

q

kikjqkqm(q − k)l(q − k)n

(
2T

κL2

)2 1

[q2(q − k)2]2

1

2
(PmnPkl + PkmPln)

= 2
∑

q

kikjqkqmqlqn

(
2T

κL2

)2 1

[q2(q − k)2]2

1

2
(PmnPkl + PkmPln). (C10)

In the second line, we have used (31) to remove thermal averages of hk, and in the third line we have used the fact that kiPij = 0.
Now, we need to evaluate the sum over q. In general, we will find

∑
q

qkqlqmqn

[q2(q − k)2]2
= A(δij δkl + δikδjl + δilδjk) + B

(
kikj

k2
δkl + five permutations

)
+ C

kikj kkkl

(k2)2
, (C11)
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but due to the projectors coming from the formula for τ−1, we need to compute only the coefficient A. We do so by assuming
that k = kx̂ and then set all indices k = l = m = n = y in (C11). In order to approximate the sum over q with an integral, we
employ the standard substitution

∑
q

→ L2
∫

d2q
4π2

. (C12)

Hence, we find

∑
q

q4
y

[q2(q − k)2]2
= 3A ≈ L2

4π2

∫ ∞

0
dq

∫ 2π

0
dθ

q sin4 θ(
q2 + k2 − 2kq cos θ

)2

= L2

4π2

∫ ∞

0
dq

3πq

8k4q4

(
q4 + k4 − ∣∣k4 − q4

∣∣) = 3
L2

4π2

π

4k2
. (C13)

Hence, we find a finite value for A. In contrast to A, one can show that other coefficients in (C11) do have logarithmic divergences.
Given the value for A, we find

2
∑

q

kikjqkqmqlqn

(
2T

κL2

)2 1

[q2(q − k)2]2

1

2
(PmnPkl + PkmPln)

= kikj

(
2T

κL2

)2

(PmnPkl + PkmPln)(δij δkl + δikδjl + δilδjk)
L2

16πk2
= 1

L2

3kikj

2πk2

T 2

κ2
. (C14)

Employing

∑
k

kikj

k2
≈ L2

8πξ 2
δij , (C15)

we find (32).
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