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Abstract

Current observations of the atmospheres of close-in exoplanets are predominantly obtained with two techniques:
low-resolution spectroscopy with space telescopes and high-resolution spectroscopy from the ground. Although
the observables delivered by the two methods are in principle highly complementary, no attempt has ever been
made to combine them, perhaps due to the different modeling approaches that are typically used in their
interpretation. Here, we present the first combined analysis of previously published dayside spectra of the
exoplanet HD209458b obtained at low resolution with HST/Wide Field Camera 3 (WFC3) and Spitzer/IRAC
and at high resolution with VLT/CRIRES. By utilizing a novel retrieval algorithm capable of computing the joint
probability distribution of low- and high-resolution spectra, we obtain tight constraints on the chemical
composition of the planet’s atmosphere. In contrast to the WFC3 data, we do not confidently detect H2O at high
spectral resolution. The retrieved water abundance from the combined analysis deviates by 1.9σ from the
expectations for a solar-composition atmosphere in chemical equilibrium. Measured relative molecular abundances
of CO and H2O strongly favor an oxygen-rich atmosphere (C/O<1 at s3.5 ) for the planet when compared to
equilibrium calculations including O rainout. From the abundances of the seven molecular species included in this
study we constrain the planet metallicity to 0.1–1.0× the stellar value (1σ). This study opens the way to
coordinated exoplanet surveys between the flagship ground- and space-based facilities, which ultimately will be
crucial for characterizing potentially habitable planets.
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1. Introduction

Fifteen years of observations with photometry and low-
dispersion spectroscopy (LDS) have significantly advanced our
understanding of exoplanet atmospheres (e.g., Sing et al. 2016). In
particular, the Hubble Wide Field Camera 3 (WFC3) has
produced robust and repeatable observations, resulting in
physically sensible atmospheric composition interpretations. Its
band around 1.4μm has a strong diagnostic power since it targets
major sources of opacity for exoplanet atmospheres (primarily
H2O, but also CH4, HCN, and NH3). The interpretation of LDS
data is also supported by mature retrieval algorithms (e.g.,
Madhusudhan & Seager 2011; Benneke & Seager 2012; Line
et al. 2013; Waldmann et al. 2015). When multiple species
overlap, however, ambiguities arise in molecular identification
and abundance determinations.

High-dispersion spectroscopy (HDS) from the ground has
recently emerged as an additional tool to characterize exoplanet
atmospheres (e.g., Snellen et al. 2010, 2014; Brogi et al. 2012).
HDS is able to distinctly determine the presence of specific
molecular species, despite overlap. For emission spectra, absorp-
tion and emission are intrinsically discriminated, allowing the
direct detection of thermal inversion layers. Due to the large
opacity difference between the core and the wings of molecular
lines, HDS probes a broad range in atmospheric temperatures and
pressures. However, retrieving atmospheric properties (especially
absolute molecular abundances) from HDS data is challenging.
This is partly due to the loss of the planet+star continuum from

self-calibration of the data, and additionally to the lack of robust
retrieval algorithms. Inference in HDS data analysis is done
through forward modeling since atmospheric signatures are
searched by cross-correlating with template spectra, which
combines the signal of tens or hundreds of molecular lines. Not
only is this process computationally cumbersome, but also the
statistical properties of the resulting cross-correlation functions
(CCFs) are far from trivial.
In this Letter, we present a novel analysis technique to combine

the strengths of high-resolution and low-resolution spectroscopy.
We demonstrate the method on dayside spectroscopic observa-
tions of the hot Jupiter HD209458b (Charbonneau et al. 2000;
Henry et al. 2000). As one of the best-characterized transiting
exoplanets, it is the ideal target for testing our new method. We
aim to show that when combining LDS and HDS, the sensitivity
to a wider range in atmospheric pressures and the ability of HDS
to disentangle overlapping molecular features can significantly
improve the inference of the chemical compositions of exoplanet
atmospheres.

2. Observations and Reanalysis of CRIRES Spectra

The LDS data set used for this work is described in Line
et al. (2016) and shown in Figure 1. It consists of eclipse
observations of HD209458b obtained with Hubble/WFC3 in
the range 1.125–1.655 μm and with Spitzer/IRAC at
3.6, 4.5, 5.8, and 8.0 μm from Diamond-Lowe et al. (2014).

The HDS data consist of two half nights of dayside spectra
taken with VLT/CRIRES in the range 2.287–2.345 μm at a
resolution of 100,000 and are described in detail in Schwarz
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et al. (2015). We only include the nodded observations (two out
of three sets of data) for which we have a good understanding
of the instrument. We utilize the same calibrated and extracted
spectra as Schwarz et al. (2015), with one important difference.
In our current analysis, we also estimate the weight of each
CRIRES detector based on the injection and retrieval of an
artificial signal. The artificial signal is the best-fitting, CO-only
model spectrum of Schwarz et al. (2015), scaled to planet/star
flux units following their prescriptions, and Doppler-shifted to
the planet radial velocity computed with a semi-amplitude of
KP=(145.9±2.4) km s−1. The orbital solution is obtained
from the literature (Knutson et al. 2007; Torres et al. 2008),
assuming a circular orbit.

The scaled and shifted model is injected in the data at 5× the
nominal level, which allows us to achieve an / S N 3 in all of
the four detectors. The injection occurs as early as possible in
the analysis, i.e., after the spectra are aligned to the common
telluric reference frame. We then remove telluric lines and
cross-correlate the residual spectra with the model as in Brogi
et al. (2014). The injected artificial signal is retrieved by co-
adding the CCFs from each night and each CRIRES detector at
the planet radial velocity. We find that all four CRIRES
detectors contain significant signal, but their relative weight
differs between nights and between detectors, possibly due to
varying observing conditions and the unequal density of CO
spectral lines with wavelength. When weighting the CCFs
between the observed spectra and the model by the square of
the measured artificial S/N (i.e., max(CCF)/rms(CCF)), the
tentative detection of Schwarz et al. (2015) becomes a solid
detection of CO in absorption at / =S N 5.3. We do not
proceed to explore their full model grid at this stage, but we
utilize the weighting and the analysis described above to test a

novel retrieval method. We note that no detection is obtained
from models containing H2O alone.

3. Joint LDS+HDS Analysis

Our aim is to combine the complementary information from
LDS and HDS and compute a joint posterior distribution. LDS
data can be compared to models in a straightforward manner
(e.g., via “chi-square”), whereas the signal in HDS data is
extracted by cross-correlating with a family of models. We thus
need to define an appropriate metric for quantifying the fit
quality of a model to HDS data. Since comparing models via
cross-correlation is computationally expensive, we also need to
design an efficient exploration of the parameter space.

3.1. A Metric for the Fit Quality of
High-resolution Model Spectra

The CCF between the data and a model is maximized when
both the position and the strength of spectral lines relative to
each other match. However, due to invariance under scaling,
maximizing the cross-correlation signal is not equivalent
to matching the absolute line-to-continuum contrast. This
additional constraint can be fulfilled by minimizing the residual
cross-correlation signal when each model is subtracted
from the data. In other words, the best-fitting model will
maximize the cross-correlation with the observed spectra and
minimize the cross-correlation with the model-subtracted data.
These two requirements are incorporated into a consistent
statistical framework adapted from Brogi et al. (2016):

1. The model is directly cross-correlated with the data after
telluric lines are removed.7 No match would produce a
distribution of cross-correlation values consistent with
random noise, i.e., with a flat line. The deviation from a
flat line therefore indicates that a signal of some kind is
detected. This is quantified by computing the c2 of the
cross-correlation values around the planet radial velocity
(cdir

2 ). The probability of measuring cdir
2 given n degrees

of freedom ( )cP n,dir
2 is computed and translated into a σ

value sdir for a Normal distribution with a two-tail test. A
range of planet radial-velocity semi-amplitudes KP within
4σ from the literature value is explored.

2. The model is scaled to the observed planet/star flux ratio,
Doppler-shifted based on the same range of KP indicated
above, and removed from the data (i.e., injected with a
scaling factor of −1). Telluric lines are again removed
and the residuals cross-correlated with the model. A
perfect match between the planet signal and the scaled
model will result in a perfect subtraction. Therefore the
CCF of the residuals will be consistent with random
noise, which means its σ value ssub computed as above
from the chi-square csub

2 of cross-correlation values will
be approximately zero.

3. The best-fitting model is found by maximizing the
difference s s sD = -dir sub. In this study, this is
equivalent to maximizing the c c cD = -2

dir
2

sub
2 , but

this formulation is more general, as it allows us to test
additional parameters when subtracting the model, e.g.,
line broadening due to rotation as in Brogi et al. (2016). It

Figure 1. Dayside spectrum of HD209458b. Bottom: LDS data
(WFC3+Spitzer, black diamonds), with the best-fitting low-resolution model
spectrum and its 1σ uncertainty overplotted in red. Top: best-fitting HDS model
from this analysis, matching the range of CRIRES 2.3 μm data.

7 Stellar lines—especially CO lines—are negligible in these CRIRES spectra,
and no spurious cross-correlation from the star is detected at KP=0 and at the
systemic velocity of HD209458.
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only requires adjusting the degrees of freedom n when
computing ( )cP n,2 .

3.2. Exploring the HDS Parameter Space

The algorithm outlined in Section 3.1 runs in approximately
2.5 minutes per model on a single core of a modern UNIX
machine. It is therefore computationally too expensive to run a
full MCMC for the HDS data that would include 105–106

models. However, since our final goal is to produce the joint
posterior distribution of LDS and HDS data combined, we can
neglect regions of the parameter space that are already strongly
disfavored by the LDS analysis. This is done by feeding the
HDS analysis with a set of models sampled from the LDS
posterior distribution of Line et al. (2016). The parameteriza-
tion consists of molecular abundances for seven species (CO,
H2O, CH4, CO2, C2H2, NH3, HCN) and five additional
parameters to sample the temperature–pressure profile as in
Parmentier & Guillot (2014). The 12-dimensional LDS
posterior is sampled with 5000 points, and the corresponding
high-resolution, disk-integrated emission spectra are computed
via line-by-line radiative-transfer calculations with the CHI-
MERA (Line et al. 2013, 2014, 2015) emission forward model.
We assume a cloud-free atmosphere in this pilot study.
Examples of LDS and HDS model spectra are shown in
Figure 1.

We use the absorption cross-section database (and references
therein) from Freedman et al. (2008) with subsequent upgrades
described in Freedman et al. (2014). The database comprises
pre-computed cross-sections on a grid of temperature and
pressure points sampled at intervals of 0.01 cm−1. This
corresponds to a resolution of R∼430,000, enough to resolve
the individual lines at the CRIRES wavelengths over the
physically relevant ranges of temperatures and pressures.8 The
opacity sources include H2–H2/He collision-induced absorp-
tion and molecular absorption due to the seven species listed
above. Note these are the same opacities used for the LDS data
retrieval in Line et al. (2016).

3.3. Computing the Joint Posterior

We compute the significance of the high-resolution models
as explained in Section 3.1. To translate this information into
an HDS posterior, we bin the parameter space by 0.4 in log10
(abundance). We then assume that in a posterior-sampling
algorithm such as an MCMC, a model nσ deviant from the
best-fitting model would be extracted with a probability

( )=P N n , where N denotes a Normal distribution. As an
example, the best-fitting model has P=1 and a model 2σ
deviant P=0.046. The occupancy of a bin in the parameter
space is therefore given by the sum of all the probabilities of
the models falling in that range. The corresponding histogram
is also computed for the LDS posterior. In this case, the
occupancy is given by the number of models falling in each bin
as derived from the LDS retrieval analysis. In order to compute
the joint posterior, we multiply the HDS and LDS posterior
histograms, bin by bin. This is equivalent to multiplying the
probabilities, which means we are treating LDS and HDS as
two independent measurements of the same quantities. Figure 2

shows examples of the two-dimensional, LDS (left panels), and
LDS+HDS (right panels) posteriors, obtained with the above
method. The 1σ, 2σ, and 3σ confidence intervals are obtained
by normalizing the histogram by the total occupancy and
cutting the cumulative density function at 61%, 13.5%, and
1.1%, respectively.
Since the HDS posterior is not obtained by freely exploring

the parameter space, but it has been conditioned by the LDS
analysis, our joint posterior is reliable only when the sampling
is sufficiently dense to fill the whole two-dimensional
parameter space, i.e., within the 3σ confidence interval. This
is why in Figure 2 we generically draw in light gray the region
of the parameter space more than 3σ deviant from our best
estimate of the parameter, without assigning any further
confidence interval. In Section 6, we further discuss the limits
of this approach.

4. Results

The combination of low- and high-resolution spectroscopy
of HD209458b improves constraints on both the vertical

Figure 2. Example of combined LDS and HDS analysis. Top: the log
(abundance) of carbon monoxide is plotted against that of water vapor and
carbon dioxide. Bottom: retrieved atmospheric pressure as function of
temperature. The 1σ, 2σ, 3σ, and >3σ confidence intervals are plotted in
grayscale (from black to light gray).

8 We also tested higher-resolution (0.001 cm−1) tabulated cross-sections
computed with the HITRAN HAPI module and the HITEMP database and
found negligible differences with the 0.01cm−1 grid.
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thermal structure and the molecular abundances of its
atmosphere.

The bottom panel of Figure 2 shows that the confidence
intervals for the retrieved temperature–pressure (T–p) profile
shrink across the whole pressure range. The joint analysis
points to a nearly isothermal atmosphere, except between 0.1
and 10 bars where we measure a lapse rate of ∼250 K per
pressure decade.

Figure 3 shows the marginalized joint posterior distribution of
the seven species included in our models (in black), compared to
the posterior distribution from the low-resolution data only (in
gray). The joint analysis significantly improves constraints on
H2O and CO (log10 ( ) [= - --

+
-
+VMR 4.97 , 3.800.32

0.42
0.53
0.51], respec-

tively). Their relative abundance is consequently tightly con-
strained to log10 ([CO]/[H2O])= -

+1.0 0.44
0.48 (Figure 4). Relative

abundances with methane, which is non-detected, are instead
looser as expected, with log10 ([CO]/[CH4])=5.4±1.5 and
log10 ([H2O]/[CH4])= -

+4.4 1.4
1.3.

CH4 and NH3 would be detectable in these CRIRES data if
sufficiently abundant (VMRs >10−5

–10−4). Their non-detec-
tion therefore tightens the upper limits on joint posterior
abundances. The marginal improvement in the CO2 posterior is
unexpected. Except for abundances > -10 2, clearly excluded,
CO2 shows negligible spectral lines at 2.3 μm. We indeed
tested that removing CO2 from the analysis does not alter the
inference on the other species or the T–p profile, which points
to a non-detection in HDS data. However, CO and CO2 are
both opacity sources in the Spitzer4.5 μm channel. Their
individual abundances cannot be easily disentangled with LDS
data, as shown by the broad LDS posterior in Figure 2 (top left
panel). We suggest that the improved inference on CO when
adding CRIRES spectra indirectly constrains CO2 through
the SpitzerIRAC measurement. Similar correlations within the
LDS data are invoked to explain the small improvement in
the joint posteriors of HCN and C2H2, negligible species at the
wavelengths of these CRIRES observations. If both CO and
CO2 are removed from the analysis, the joint posteriors only
show a marginal improvement in H2O abundance. This
suggests that CO carries the large majority of the HDS signal,
in line with the direct cross-correlation described in Section 2,
but in tension with the clear detection of H2O in the WFC3
passband.

We compare our measured abundances to the expectations
for solar composition and chemical equilibrium, at =p 0.1 bar
(representative of LDS spectra) and T=1350 K, including
oxygen rainout due to enstatite/forsterite condensation.
(Figure 3, blue solid lines). We find that CH4 (at 2.6σ) and
H2O (at 1.9σ) are both underabundant compared to the
expectations.

We repeat the above calculations for a range of C/O and
compute the expected relative abundances (Figure 4, blue lines).
[CO]/[H2O] shows a clear (3.5σ) preference for C/O<1,
consistent with the stellar C/O of 0.46±0.05 (Brewer &
Fischer 2016). Relative abundances with CH4 also constrain
C/O<1 at s>3 .
We attempt a model-independent measurement of C/O and

metallicity for the planet. We implicitly assume that molecular
species not included in the analysis have negligible contribution to
the planet spectrum. We compute the C/O by dividing the
number densities of C and O atoms derived from the volume
mixing ratios of molecular species. Although we obtain a tight
estimate of = -

+C O 0.97 0.03
0.01, we caution that oxygen rainout is

likely to bias this measurement toward higher C/O. We calculate
a planet metallicity of [( ) ( ) ] = - -

+
log M H M H 0.4910 0.48

0.51 (or
0.11–1.0×stellar, s1 ) by assuming H2/He=0.193 and deriving
the mole fractions of hydrogen and metals based on their
stoichiometry. We adopt a stellar metallicity of ( ) =M H

´ -9.7 10 4 (Brewer et al. 2016). HD209458b sits below the
mass–metallicity relation for solar system and extrasolar planets
(Figure 5).

5. Robustness against Different Molecular Line Databases
and T–p Parameterization

The completeness and accuracy of molecular line list
databases can influence the template-matching technique
utilized for HDS studies (e.g., Hoejimakers et al. 2015). Here,
we explore the sensitivity of our joint retrieval to two different
line lists for water vapor, namely, the Freedman et al. (2014)
and the HITEMP2010 (Rothman et al. 2010) databases. On
small wavelength ranges (10 nm), the two line lists produce
models only mildly correlated (correlation of 0.35–0.4).
Furthermore, their cross-correlation peaks a few km s−1 from

Figure 3. Marginalized probability density function for the abundances of the seven species considered in this study. The LDS posterior (in gray) is compared to the
joint LDS+HDS posterior (in black). The 15.9%–84.1% quantiles are shown with dotted lines, and the values for solar composition and chemical equilibrium with
blue solid lines.

Figure 4. Relative abundances of CO, CH4, and H2O derived from the joint
LDS and HDS analysis. Black dotted lines denote the 1σ confidence intervals.
Blue lines show the expected values for C/O=0.5 (solid), C/O=0.1
(dashed), and C/O=1 (dotted) (see Section 4).
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zero lag, detectable at spectral resolutions above 2–3×104.
This indicates a mismatch in both line position and line
strength potentially affecting the measured planet radial
velocity, line broadening, and significance of high-resolution
models. This could bias measurements of mass and orbital
inclination of non-transiting planets, planet rotation, and the
current analysis. We therefore repeat the retrieval with spectra
produced with the HITEMP2010 database. When H2O is mixed
with the other species and over the full wavelength coverage of
the CRIRES observations (2.27–2.35 μm), the agreement
between the two analyses is remarkable, and we recover
consistent best-fitting values for absolute and relative molecular
abundances. We note, however, that since water is not
confidently detected in these HDS data it is advisable to
further investigate this aspect in future work.

We also ran this analysis with the T–p profile parameteriza-
tion of Madhusudhan & Seager (2011). This allows more
flexibility in the upper atmosphere, where HDS data should be
more sensitive. Although with larger error bars, we confirm the
qualitative results of Section 4 regarding abundances and C/O
ratio. Compared to the previous parameterization, we retrieve a
non-isothermal atmosphere across a wider range in pressure
(10−4

–10 bar, with an average lapse rate of ∼160 K/decade).
Furthermore, higher metallicity values (0.56–21×stellar) are
allowed.

6. Caveats and Future Improvements

As the first attempt at combining LDS and HDS, this study
necessarily simplifies some details. First, the HDS analysis is
conditioned on the posterior of the LDS analysis. Although this
choice is consistent with our intent of computing a joint
posterior distribution, it prevents us from exploring regions of
the parameter space strongly disfavored by low-resolution
spectra that could potentially be a good match to high-
resolution spectra. Given the sample size of 5000 points, we
can reliably produce a joint posterior distribution for the 1σ,
2σ, and 3σ confidence intervals, with the least significant

regions of the parameter space possibly affected by the
sampling. In the future, we will explore algorithms capable
of speeding up the comparison of model spectra to HDS data,
so that a full MCMC will become feasible. In this way, we will
compute the LDS and HDS posteriors independently, which
will fully highlight the strengths and weaknesses of both data
sets and the power of combining them.
Another aspect that is worth mentioning is that in the current

implementation we are equally weighting the HDS and LDS
data. This is supported by similar evidence for CO+CO2 (4.1σ)
and H2O (6.2σ) reported in Line et al. (2016) and the detection
of CO at S/N=5.2 in CRIRES data. Future work will be
devoted to further assessing the relative weight of each data set.
This will enhance our predictive capabilities for designing
coordinated observations with ground-based facilities and the
James Webb Space Telescope.
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financed by The Netherlands Organisation for Scientific
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