
THE GOULD’S BELT DISTANCES SURVEY (GOBELINS). III. THE DISTANCE TO
THE SERPENS/AQUILA MOLECULAR COMPLEX

Gisela N. Ortiz-LeÓn
1
, Sergio A. Dzib

2
, Marina A. Kounkel

3
, Laurent Loinard

1,2
, Amy J. Mioduszewski

4
,

Luis F. Rodríguez
1
, Rosa M. Torres

5
, Gerardo Pech

1
, Juana L. Rivera

1
, Lee Hartmann

3
, Andrew F. Boden

6
,

Neal J. Evans II
7
, Cesar Briceño

8
, John J. Tobin

9,10
, and Phillip A. B. Galli

11,12

1 Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58089, México; g.ortiz@crya.unam.mx
2 Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany

3 Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48105, USA
4 National Radio Astronomy Observatory, Domenici Science Operations Center, 1003 Lopezville Road, Socorro, NM 87801, USA

5 Centro Universitario de Tonalá, Universidad de Guadalajara, Avenida Nuevo Periférico No. 555, Ejido San José Tatepozco, C.P. 48525, Tonalá, Jalisco, México
6 Division of Physics, Math and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA

7 Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205, USA
8 Cerro Tololo Interamerican Observatory, Casilla 603, La Serena, Chile

9 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019, USA
10 Leiden Observatory, P.O. Box 9513, NL-2300 RA, Leiden, The Netherlands

11 Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão 1226, Cidade Universitária, São Paulo, Brazil
12 Univ. Grenoble Alpes, IPAG, F-38000, Grenoble, France

Received 2016 September 6; revised 2016 October 10; accepted 2016 October 10; published 2017 January 11

ABSTRACT

We report on new distances and proper motions to seven stars across the Serpens/Aquila complex. The
observations were obtained as part of the Gould’s Belt Distances Survey (GOBELINS) project between 2013
September and 2016 April with the Very Long Baseline Array (VLBA). One of our targets is the proto-Herbig
AeBe object EC95, which is a binary system embedded in the Serpens Core. For this system, we combined the
GOBELINS observations with previous VLBA data to cover a total period of 8 years, and derive the orbital
elements and an updated source distance. The individual distances to sources in the complex are fully consistent
with each other, and the mean value corresponds to a distance of 436.0±9.2 pc for the Serpens/W40 complex.
Given this new evidence, we argue that Serpens Main, W40, and Serpens South are physically associated and form
a single cloud structure.
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1. INTRODUCTION

The Serpens molecular cloud is a region rich in low-mass
star formation selected for observations as part of the Gould’s
Belt Distances Survey (GOBELINS; Ortiz-León et al. 2017).
There are two smaller regions, of ∼1deg2 in size, associated
with this cloud: Serpens Main and Serpens South. Serpens
Main (centered on R.A. 18 29 00h m s, decl. + ¢ 00 30 00 ;o Eiroa
et al. 2008) consists of three prominent subregions, namely, the
Serpens core, Serpens G3-G6, and VV Serpentis. Its northern-
most subregion is the Serpens core (also called Serpens North
or Cluster A; Harvey et al. 2006), a cluster of YSOs deeply
embedded with extinction exceeding 40 mag in the visual. This
subregion has numerous observations from X-rays to the
submillimeter that have revealed a large population of
protostars (e.g., Kaas et al. 2004; Eiroa et al. 2005; Harvey
et al. 2006, 2007; Winston et al. 2007, 2009; Oliveira
et al. 2010). Serpens G3-G6 (Cohen & Kuhi 1979), also
referred to as Cluster B, was identified by Harvey et al. (2006)
as a cluster of star formation harboring many previously
unknown young stellar objects (YSOs). Finally, VV Serpentis
is the southernmost subregion associated with the eponymous
star. Currently, the most extensive study of the young stellar
population in Serpens Main was conducted by the Spitzer
Legacy Program “From Molecular Cores to Planet-Forming
Disks” (c2d; Evans et al. 2003), where more than 200 Class 0
to Class III YSOs associated with IR excess were identified in
an area of 0.85 deg2 (Dunham et al. 2015). Serpens South
(centered on R.A. 18 30 00h m s, decl. - ¢ 02 02 00o , i.e., at an

angular distance of~3o south of Serpens Main) was discovered
by Gutermuth et al. (2008). Since then, it has received a lot of
attention because of the large number of extremely young
objects that it contains. It shows an unusually large fraction of
protostars (Gutermuth et al. 2008), presenting an excellent
laboratory to study the earliest stages of star formation.
To the east of Serpens South, at R.A. ~ 18 31 29h m s, decl.

- ¢ ¢¢02 05 24o , lies the W40 complex, named after the H II region
also known as Sharpless 2–64 (Smith et al. 1985; Vallee 1987).
This complex shows evidence for ongoing star formation since
it contains dense molecular cores (Dobashi et al. 2005),
millimeter-wave sources (Molinari et al. 1996; Maury
et al. 2011), and YSOs (Kuhn et al. 2010; Rodríguez
et al. 2010; Mallick et al. 2013). There is also a cluster of
massive stars that ionizes the H II region (Smith et al. 1985;
Shuping et al. 2012). Both Serpens South and W40 belong to a
larger complex of molecular clouds collectively known as the
Aquila Rift, a large elongated feature seen in 2MASS extinction
maps (Bontemps et al. 2010). The Aquila Rift was one of the
clouds targeted by the Herschel (André et al. 2010; Könyves
et al. 2015) and Spitzer (Dunham et al. 2015) Gould Belt
Surveys, which revealed hundreds of YSOs all across the
complex. Figure 1 shows the location of the Serpens Main
region as well as the position of W40 and Serpens South within
the Aquila Complex. We note that although Serpens and the
Aquila Rift do not formally belong to the Gouldʼs Belt, they are
usually included in Gould Belt Surveys because of their star
formation activity and because they were previously thought to
be closer to the Sun.
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The distances to the different regions in the Serpens/Aquila
Complex have been a matter of controversy. For Serpens Main,
there is an ample range of distances reported in the literature,
from 245±30 pc (Chavarria-K et al. 1988) to 650±180 pc
(Zhang et al. 1988). Most of these estimates are indirect, since
they are often based on spectroscopic parallaxes and extinction
measurements. Winston et al. (2010) constructed the X-ray
luminosity function of the Serpens cluster using different
distances to calculate the X-ray luminosity and fitted the data
with the distribution determined by Feigelson & Getman
(2005) for Orion, IC 348, and NGC 1333. The best fit to the
data was found to be at a distance to Serpens of -

+360 13
22 pc. The

only direct measurement of the distance to Serpens Main has
been obtained by Dzib et al. (2010, 2011) from the Very Long
Baseline Interferometry (VLBI) trigonometric parallax of the
YSO EC 95 associated with the Serpens Core. These authors
derived a distance to the Serpens Core of 415±5 pc and a
mean distance to the Serpens cloud of 415±25 pc. Later, they
updated the distance to the Core to 429±2 pc. However, the
usually adopted distance for Serpens Main and the Aquila Rift
as well is 259±37 pc, which was derived by Straižys et al.
(1996) from photometry of ∼100 optically visible stars, 18 of
which belong to Serpens Main. In a more recent paper, Straižys
et al. (2003) used 80 stars from their original sample, as well as
400 other stars, to measure the distance to the front edge of the
dark clouds (the extinction wall) in the Serpens/Aquila
complex. They placed this wall at 225±55 pc, and suggested
that the cloud is about 80 pc deep.

As we mentioned earlier, W40 and Serpens South are
embedded within the Aquila Rift. Estimates of the distance to
W40 seem to favor values between 455 and 600 pc (Kolesnik
& Iurevich 1983; Shuping et al. 2012), which suggests this
cloud lies somewhat farther away than the extinction wall of
the Aquila Rift. So far, there are no distance measurements to
sources in Serpens South, but many authors argue that the
region is at the same distance as Serpens Main, and adopt either
260 or 429 pc (e.g., Gutermuth et al. 2008; Maury et al. 2011;
Heiderman & Evans 2015; Plunkett et al. 2015; Kern
et al. 2016). It has also been argued that W40 and Serpens
South belong to the same continuous extinction feature and

should be part of the same complex, likely at the same distance
(Maury et al. 2011).
In this paper, we report on the distance to three stars in the

Serpens cloud core and four objects in the W40 cluster. The
observations were obtained as part of the GOBELINS project
(Ortiz-León et al. 2017) with the Very Long Baseline Array
(VLBA). We describe our targets and observations in Section 2.
The astrometry of our sources is given in Section 3. Finally, we
discuss our findings in Section 4 and provide a summary in
Section 5.

2. TARGET SELECTION AND OBSERVATIONS

While both thermal and non-thermal processes produce radio
emission in young stars, only brightness temperatures 106 K
will be detectable on VLBI baselines (Thompson et al. 2007),
which limits VLBI observations to non-thermal radiation.
Thus, our targets consist of young stars with potentially non-
thermal radio emission. This kind of emission is expected to be
produced in the coronae of magnetically active stars by
energetic electrons gyrating around the magnetic field lines
(Feigelson & Montmerle 1999).
In Ortiz-León et al. (2015), we reported on deep radio

observations carried out with the Karl Jansky Very Large Array
(VLA) of three of the most prominent regions in the Serpens/
Aquila Complex, namely, the Serpens Core, W40, and Serpens
South. A total of 18 possible targets (known or candidate
YSOs) for VLBA astrometry were identified across these three
regions, based on their compactness, negative spectral index,
and/or variability. The VLBA was pointed at the positions of
the 18 candidates; however, we also correlated (i.e., changed
the phase center of the correlation) at the positions of the other
sources that lie in the primary beam of the individual VLBA
telescopes (of ¢10 in size at 5 GHz). This provided an additional
63 sources, 3 of which turned out to be YSOs with detectable
non-thermal radio emission.
We refer the reader to Ortiz-León et al. (2017) for a detailed

description of our observing approach. Briefly, the VLBA
observations of GOBELINS were taken between 2013
September and 2016 April at n = 4.9 or 8.3 GHz (C- and

Figure 1. Extinction map of the Serpens and Aquila star-forming regions obtained as part of the COMPLETE project, based on the STScI Digitized Sky Survey data
(Cambrésy 1999). Red and blue polygons mark the structures corresponding to Serpens Main and the Aquila Rift, respectively, while cyan and yellow stars indicate
the center of the W40 and Serpens South regions. The white contour indicates an AV of 4.

2

The Astrophysical Journal, 834:143 (16pp), 2017 January 10 Ortiz-León et al.



X-bands, respectively). The data were recorded in dual
polarization mode with 256MHz of bandwidth in each
polarization, covered by eight separate 32MHz intermediate
frequency (IF) channels. VLBA project codes, observing dates,
pointing positions, and corresponding observing bands are

given in Table 1. Several sets of phase calibrators were chosen
according to their angular separations relative to target
positions and used for multi-source phase referencing. The
corresponding sets of calibrators for each pointing position
(target) are listed in Table 2. One or two targets were observed
in each observing session. These consisted of cycles alternating
between the target(s) and the main phase calibrator: target–
calibrator for single-target sessions, and target 1–calibrator–
target 2–calibrator for those sessions where two targets were
observed simultaneously. The secondary calibrators were
observed every ∼50minutes. The total integration time for
each target was ∼1.6 hr in projects that observed at 8.3 GHz,
and ∼1 hr at 4.9 GHz. Geodetic-like blocks, consisting of
observations of many calibrators over a wide range of
elevations, were taken before and after each session. These
were observed with 512MHz total bandwidth covered by 16
IFs and centered at n = 4.6 and 8.1 GHz for projects observing
at the C- and X-bands, respectively.
Data reduction was performed using AIPS (Greisen 2003),

following the strategy described in Ortiz-León et al. (2017).
Calibrated visibilities were imaged using a pixel size of
50–100μas and pure natural weighting. Typical angular
resolutions were 4 mas×2 mas (∼1.3 au at a distance of
429 pc) at 4.9 GHz and 3 mas×0.9 mas (∼0.8 au) at 8.3 GHz.
Noise levels were typically 30 and m -38 Jy beam 1 at the C- and
X-bands, respectively.
In addition, we will use data from VLBA projects BL155

and BL160 (P.I.: L. Loinard) and BD155 (P.I.: S. Dzib), which

Table 1
Observed Epochs

Project Observation VLBA Pointing Positions Observed
Code Date R.A. (a2000) Decl. (d2000) Band

BL175E0 2013 Sep 01 18:29:10.178 +01:25:59.56 C
18:29:27.366 +01:20:37.43

BL175E1 2013 Sep 02 18:29:30.714 +01:00:48.31 C
18:29:47.838 +01:14:21.66

BL175E2 2013 Sep 03 18:30:44.115 –02:01:45.66 C
18:31:21.969 –02:04:52.54

BL175E3 2013 Sep 05 18:29:49.507 +01:19:55.88 C
18:29:52.736 –01:51:59.93

BL175E4 2013 Sep 07 18:31:21.141 –02:04:31.08 X
18:29:16.120 +01:04:37.58
18:29:33.073 +01:17:16.39

BL175DX 2014 Feb 17 18:31:18.685 –01:54:55.99 X
BL175G0 2014 Mar 01 18:29:10.178 +01:25:59.56 C

18:29:27.366 +01:20:37.43
BL175G1 2014 Mar 03 18:29:30.714 +01:00:48.31 C

18:29:47.838 +01:14:21.66
BL175G2 2014 Mar 04 18:31:21.969 –02:04:52.54 C

18:30:44.115 –02:01:45.66
BL175G3 2014 Mar 06 18:29:49.507 +01:19:55.88 C

18:29:52.736 –01:51:59.93
BL175G4 2014 Mar 09 18:29:16.120 +01:04:37.58 X

18:29:33.073 +01:17:16.39
BL175GC 2014 Apr 01 18:28:54.46 +01:18:23.78 C

18:29:48.83 +01:06:47.46
BL175CR 2014 Oct 07 18:29:10.178 +01:25:59.56 C

18:29:27.366 +01:20:37.43
BL175CS 2014 Oct 12 18:29:30.714 +01:00:48.31 C

18:29:47.838 +01:14:21.66
BL175CT 2014 Oct 15 18:31:21.969 –02:04:52.54 C

18:30:44.115 –02:01:45.66
BL175EX 2015 Feb 27 18:29:10.178 +01:25:59.56 C

18:29:27.366 +01:20:37.43
BL175EY 2015 Mar 02 18:29:47.838 +01:14:21.66 C

18:31:18.685 –01:54:55.99
BL175EZ 2015 Mar 20 18:31:21.969 –02:04:52.54 C

18:30:44.115 –02:01:45.66
BL175GT 2015 Sep 15 18:28:54.46 +01:18:23.78 X

18:29:48.83 +01:06:47.46
BL175GU 2015 Sep 19 18:31:21.969 –02:04:52.54 C

18:30:44.115 –02:01:45.66
BL175GW 2015 Oct 04 18:29:10.178 +01:25:59.56 C

18:29:27.366 +01:20:37.43
BL175GX 2015 Oct 06 18:29:47.838 +01:14:21.66 C

18:31:18.685 –01:54:55.99
BL175GV 2015 Oct 11 18:31:21.141 –02:04:31.08 C

18:29:16.120 +01:04:37.58
18:29:33.073 +01:17:16.39

BL175GY 2015 Oct 13 18:29:49.507 +01:19:55.88 C
18:29:52.736 –01:51:59.93

BL175CU 2016 Feb 29 18:29:52.736 –01:51:59.93 C
18:31:21.141 –02:04:31.08

BL175F4 2016 Mar 20 18:29:33.073 +01:17:16.39 X
BL175F8 2016 Apr 28 18:29:47.838 +01:14:21.66 C

Table 2
Setup of Calibrators

R.A. Decl. Calibratorsa

(J2000) (J2000)

18:29:52.736 –01:51:59.93 J1834–0301, J1833+0115, J1824+0119,
J1821–0502

18:31:21.141 –02:04:31.08

18:29:47.838 +01:14:21.66 J1833+0115, J1826+0149, J1824+0119,
J1832+0118

18:29:30.714 +01:00:48.31

18:28:54.460 +01:18:23.78 J1832+0118, J1833+0115, J1826+0149,
J1824+0119

18:29:48.830 +01:06:47.46

18:31:21.969 –02:04:52.54 J1834–0301, J1833+0115, J1824+0119,
J1821–0502

18:30:44.115 –02:01:45.66

18:29:16.120 +01:04:37.58 J1826+0149, J1833+0115, J1824+0119,
J1832+0118

18:29:33.073 +01:17:16.39
18:29:10.178 +01:25:59.56
18:29:27.366 +01:20:37.43
18:29:33.073 +01:17:16.39

18:31:18.685 –01:54:55.99 J1834–0301, J1824+0119, J1819–0258,
J1833+0115

18:29:49.507 +01:19:55.88 J1826+0149, J1832+0118, J1833+0115,
J1824+0119

Note.
a First source in the list corresponds to main phase calibrator.
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were designed to only observe the source EC95 between 2007
December and 2016 January at n = 8.4 GHz. The images
corresponding to these old observations have noise levels
of m -76 Jy beam 1.

3. RESULTS

As mentioned earlier, we observed a total of 81 sources in
the Serpens/Aquila region. Their spatial distribution is shown
in Figure 2, while the source VLA coordinates, names, types,
fluxes, and brightness temperatures, Tb, are given in the first
eight columns in Table 3. Out of the total observed sources, 30
have been firmly detected. These are sources detected in several
epochs, with at least one detection at s5 , or sources detected
just in one epoch but at s6 , where σ is the rms noise measured
in the images. All sources show >T 10b

6 K, consistent with the
brightness temperature expected for non-thermal emission.

3.1. Individual Distances: Single Stars

Source positions at individual epochs were extracted by
performing two-dimensional Gaussian fits with the AIPS task
JMFIT. These and the associated uncertainties provided by
JMFIT, which are based on the expected theoretical astrometric
precision of an interferometer (Condon 1997), are listed in
Table 7. We analyze the motion of all objects detected in at
least two epochs. A total of 20 objects, which do not have a
firm classification in the literature, show a motion consistent
with that expected for background sources, i.e., their positions
remain systematically unchanged within the positional errors,
or even if they move, their derived parallaxes correspond to
distances larger than 1 kpc. This can be seen grapically in
Figure 3. The horizontal axis of this plot corresponds to the

position change rate in milli-arcseconds (mas) per year, which
we define as the shift in position between consecutive epochs,
normalized to one year, and averaged over all consecutive pairs
of epochs. The 20 unclassified objects have position change
rates below 3 mas yr−1, while objects that belong to Serpens or
W40 clearly show larger values because of the significant
contribution of their parallax and proper motion. We identify
these 20 objects as background sources and assign them a “B”
flag in Column 3 of Table 3. Note that not all of these sources
are necessarily extragalactic. Some might be Galactic objects
located behind the Serpens/Aquila complex. For example, the
fit to the positions of the source PMN1829+0101 yields a
distance of -

+4.025 0.600
0.854 kpc (Section 3.3). The large number of

background sources detected here with the VLBA is not
surprising. Oliveira et al. (2009) determined that 25% of the
YSO candidates with IR excess in the Serpens/Aquila complex
are actually background giants. As stated by these authors, this
is consistent with the location of the regions being close to the
Galactic plane.
Only eight VLBA-detected objects are previously known

YSOs, and one more object is a B1V star. Out of these nine
objects, two are resolved into double components in the
GOBELINS data, while seven are single stars. This gives a
total of 11 individual objects. The astrometry of five single
stars is given in the present section; the other two single objects
will be presented in a later paper because they were not
detected often enough to do astrometric fits. The two binaries
are discussed in Section 3.2.
Parallax, ϖ, position at median epoch, ( )a d,0 0 , and proper

motions ma and md are derived by fitting the equations

( ) ( ) ( ) ( )a a m d v= + +a a at t f tcos , 10

Figure 2. Spatial distribution of observed sources in the Serpens Core (left) and W40/Serpens South (right). Blue and cyan stars correspond to known YSOs and
YSOs with a distance estimation provided in this paper, respectively. Red squares mark the positions of other unclassified observed sources.
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Table 3
Detected Sources

GBS-VLA Other Type of Minimum Flux Maximum Flux Minimum Flux Maximum Flux log [Tb (K) ]
c SED

Namea Identifier Source at 5 GHz at 5 GHz at 8 GHz at 8 GHz Class
(mJy) (mJy) (mJy) (mJy)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Serpens Main

J182854.44+011859.7 L ? L 0.26±0.05 >6.4 L
J182854.46+011823.7 L B 3.88±0.05 6.04±0.07 8.5 L
J182854.87+011753.0 L B 0.21 ± 0.04 0.24 ± 0.07 7.2 L
J182903.06+012331.0 L B 0.49±0.05 0.76±0.07 L 7.5 L
J182905.07+012309.0 L B 0.26 ± 0.04 0.31 ± 0.05 L >6.5 L
J182910.17+012559.5 SSTc2d J182910.2+012560 B 2.70 ± 0.05 3.45 ± 0.05 L 9.3 L
J182911.94+012119.4 L B 0.36±0.03 0.51±0.06 L 7.7 L
J182916.11+010437.5 SSTSL2 J182916.10+010438.6 B 0.33 ± 0.06 0.24 ± 0.05 0.26 ± 0.08 8.0 L
J182918.23+011757.7 SSTc2dJ182918.2+011758 B 0.19±0.05 0.25±0.05 L 7.3 L
J182926.71+012342.1 SSTSL2 J182926.72+012342.4 B 0.17 ± 0.05 0.25 ± 0.06 L 6.6 L
J182930.71+010048.3 PMN1829+0101 B 3.87±0.05 7.44±0.10 L 8.7 L
J182933.07+011716.3 GFM 11 YSO 0.19 ± 0.04 0.27 ± 0.05 0.33 ± 0.06 >6.6 Class III
J182935.02+011503.2 DCE08-210 5 B 0.14 ± 0.05 0.20 ± 0.04 L >6.3 L
J182936.50+012317.0 SSTc2d J182936.5+012317 B 0.14 ± 0.04 0.26 ± 0.05 L >6.4 L
J182944.07+011921.1 NVSS 182944+011920 B 1.41 ± 0.04 1.74 ± 0.04 L >7.2 L
J182948.83+010647.4 SSTc2d J182948.8+010648 B 0.35 ± 0.05 0.63 ± 0.07 7.5 L
J182949.50+011955.8 L B 1.96±0.07 2.40±0.07 L 7.6 L
J182951.04+011533.8 ETC 8 B 0.35 ± 0.06 0.59 ± 0.05 L 8.0 L
J182957.89+011246.0 EC95A YSO 0.26±0.05 1.18±0.04 L 8.3 P-HAeBe
J182957.89+011246.0 EC 95B 0.16 ± 0.04 1.17 ± 0.04 L 8.4
J182957.89+011246.0 EC95Cb L L 0.86±0.19 3.68±0.10 >7.4
J183000.65+011340.0 GFM65A YSO 0.26±0.05 0.50±0.04 L >6.7 Class III
J183000.65+011340.0 GFM65B 0.22±0.05 0.57±0.11 L 6.4
J183004.62+012234.1 GFM 70 B 0.41 ± 0.05 0.42 ± 0.05 L >6.6 L
J182952.73-015159.9 L B 0.20 ± 0.05 0.26 ± 0.07 L 6.6 L

W40

J183044.11-020145.6 2M18304408–0201458 B 1.65±0.06 2.15±0.06 L 7.9 L
J183114.82-020350.1 KGF 36 Star 0.41 ± 0.08 0.48 ± 0.05 0.36 ± 0.09 0.48 ± 0.08 7.3 L
J183118.68-015455.9 L B 0.43±0.10 0.52±0.06 1.14±0.18 7.0 L
J183122.32-020619.6 KGF 82 YSO 0.41 ± 0.05 0.26 ± 0.06 7.6 Class III
J183123.62-020535.8 KGF97 YSO 0.10±0.05 1.21±0.05 L 7.9 Class III
J183126.02-020517.0 KGF 122 YSO 0.20 ± 0.05 0.91 ± 0.06 L 8.0 Class II
J183127.45-020512.0 KGF133 YSO 0.45±0.07 0.51±0.06 2.40±0.11 7.7 Class II/III
J183127.65-020509.7 KGF138 YSO 0.35±0.06 L >6.5 HAeBe

Notes.
a GBS-VLA stands for Gould’s Belt Very Large Array Survey (Ortiz-León et al. 2015).
b Data corresponding to EC95C were taken as part of projects BL160 and BD155, and are shown here for completeness.
c Because most of the sources show significant flux variations, this value corresponds to the maximum brightness temperature.
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( ) ( ) ( )d d m v= + +d d dt t f t , 20

to the measured positions and separately minimizing ca
2 and cd

2

along the R.A. and decl. directions, respectively. Here, fα and fδ
are the projections of the parallactic ellipse over α and δ,
respectively. The values of the parallax determined in R.A.
(va) and decl. (vd) were then weighted-averaged to produce a
single parallax value. The fit is then repeated to solve for the
remaining parameters while holding the best-fit parallax
solution constant. We show the resulting best fits in Figure 4
and summarize the derived astrometric parameters in Table 5.
Errors in the model parameters depend on the positional
uncertainties of all the individual detections as measured by
JMFIT. However, systematic offsets in positions could be
introduced by errors in station coordinates, Earth rotation
parameters, reference source coordinates, and tropospheric
zenith delays (Pradel et al. 2006). When data from many

epochs are available, these systematic offsets can be estimated
by scaling the positional errors provided by JMFIT until the
reduced c2 of the fit becomes equal to 1 (e.g., Menten
et al. 2007). Here we are not able to apply this approach given
that we typically have three to four epochs available for each
source. We thus estimate systematic errors by using the
empirical relations found by Pradel et al. (2006), according to
which the VLBA astrometric accuracy scales linearly with the
target to reference source angular separation. We obtain

–a dD =cos 0.052 0.070 mas and –dD = 0.124 0.182 mas by
extrapolating the astrometric errors given in Tables 3 and 4 in
Pradel et al. (2006) for a source at a decl. of 0o (the range in
errors corresponds to the different source to calibrator angular
separations). In order to estimate the offsets introduced by
ionospheric phase delays, we follow the approach outlined in
Kounkel et al. (2017). Source positions were referenced to a
secondary phase calibrator by adding offsets such that the

Table 4
Measured Positions of EC95

Julian Day Projecta α (J2000.0) sa δ (J2000.0) sd
EC 95A
2454800.39885 BL160 18 29 57.89186638 0.00000180 1 12 46.110101 0.000069
2454890.14136 BL160 18 29 57.89217322 0.00000048 1 12 46.106940 0.000018
2455171.38315 BL160 18 29 57.89222331 0.00000098 1 12 46.095333 0.000041
2455268.11855 BL160 18 29 57.89247995 0.00000202 1 12 46.092081 0.000067
2455356.87555 BL160 18 29 57.89242962 0.00000117 1 12 46.089683 0.000054
2455936.29042 BD155 18 29 57.89251865 0.00000457 1 12 46.068868 0.000150
2455937.28769 BD155 18 29 57.89253227 0.00000298 1 12 46.068531 0.000082
2456522.68545 BD155 18 29 57.89239849 0.00000095 1 12 46.053528 0.000034
2456524.67999 BD155 18 29 57.89238944 0.00000228 1 12 46.053868 0.000114
2456538.70634 BL175 18 29 57.89232999 0.00000204 1 12 46.054528 0.000066
2456720.20849 BL175 18 29 57.89263275 0.00000445 1 12 46.049701 0.000122
2456943.59865 BL175 18 29 57.89233271 0.00000528 1 12 46.043694 0.000186
2457507.02912 BL175 18 29 57.89266020 0.00000104 1 12 46.032795 0.000036
EC 95B
2454457.31822 BL156 18 29 57.89095609 0.00000120 1 12 46.107905 0.000038
2454646.81935 BL160 18 29 57.89095848 0.00000481 1 12 46.107242 0.000186
2454724.60637 BL160 18 29 57.89080948 0.00000083 1 12 46.105900 0.000029
2454800.39885 BL160 18 29 57.89088405 0.00000217 1 12 46.104416 0.000089
2454890.14136 BL160 18 29 57.89112095 0.00000388 1 12 46.103859 0.000138
2454985.89100 BL160 18 29 57.89106970 0.00000414 1 12 46.104177 0.000240
2455074.64800 BL160 18 29 57.89091190 0.00000082 1 12 46.103134 0.000032
2455268.11855 BL160 18 29 57.89131814 0.00000402 1 12 46.100962 0.000162
2455356.87555 BL160 18 29 57.89128563 0.00000363 1 12 46.101013 0.000176
2455442.64072 BL160 18 29 57.89116731 0.00000472 1 12 46.099877 0.000202
2455936.29042 BD155 18 29 57.89185545 0.00000614 1 12 46.091786 0.000156
2456522.68545 BD155 18 29 57.89246953 0.00000063 1 12 46.081657 0.000023
2456524.67999 BD155 18 29 57.89246863 0.00000421 1 12 46.081514 0.000137
2456538.70634 BL175 18 29 57.89244323 0.00000760 1 12 46.081859 0.000200
2456720.20849 BL175 18 29 57.89295395 0.00000877 1 12 46.078949 0.000243
2456943.59865 BL175 18 29 57.89292358 0.00000378 1 12 46.072521 0.000108
2457084.21205 BL175 18 29 57.89339762 0.00000179 1 12 46.068654 0.000071
2457302.61352 BL175 18 29 57.89339468 0.00000865 1 12 46.063242 0.000279
2457391.30720 BD155 18 29 57.89364862 0.00000016 1 12 46.060099 0.000006
2457507.02912 BL175 18 29 57.89389465 0.00000108 1 12 46.058656 0.000036
EC 95C
2454724.60637 BL160 18 29 57.89856745 0.00000305 1 12 46.205651 0.000108
2455936.29042 BD155 18 29 57.89945356 0.00000060 1 12 46.166823 0.000019

Note.
a VLBA project code.
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position of this secondary calibrator remains fixed in all
epochs. We repeat the astrometric fits to the re-referenced target
positions, obtaining a different solution to that derived when all
positions are referenced to the main phase calibrator. We take
the difference in the distance solutions divided by the angular
separation between the two phase calibrators as the phase
gradient across the sky introduced by ionospheric delays. On
average, this yields additional systematic offsets of
a dD =cos 0.026 mas and dD = 0.042 mas in decl. In total,

systematic errors of –a dD =cos 0.058 0.075 mas and
–dD = 0.130 0.187 mas were added quadratically to the

statistical errors provided by JMFIT at each individual epoch
and used in the last iteration of the fits.

We discuss separately the properties of these objects in the
following sections. Sources names come from the X-ray
surveys by Giardino et al. (2007, GFM) and Kuhn et al.
(2010, KGF).

3.1.1. GFM 11=GBS-VLA J182933.07+011716.3

GFM 11 is a Class III YSO (Giardino et al. 2007). Its
spectral type remains somewhat uncertain: between G2.5
(Winston et al. 2010) and K0 (Erickson et al. 2015). The
source has a spectral index13 of +0.3±0.2, and shows high
levels of variability in both VLA (>73%; Ortiz-León
et al. 2015) and VLBA observations. Based on optical
spectroscopy, Erickson et al. (2015) estimated a mass of

M2.0 for the source.

3.1.2. KGF 36=GBS-VLA J183114.82-020350.1

This source, identified as a main sequence star of B1 spectral
type by Shuping et al. (2012), is located in the W40 cluster. Its
radio flux as measured by the VLA shows variations of

44 9% on timescales of months at 4.5 GHz, and it has a
spectral index of +0.3±0.2. Shuping et al. (2012) also
suggested that KGF36 is probably a binary source due to the
presence of strong He I 1.083 μm absorption in the star spectra.
However, our VLBA observations have detected a single
source with no sign of a close companion in the parallax fit.
Non-thermal emission has been confirmed in other early-type B
stars. The source S1 in Ophiuchus (Andre et al. 1988) is
perhaps the most documented case. Kuhn et al. (2010) derived
a photometric mass of M17 from a color–magnitude J versus
-J H diagram assuming distance of 600 pc and age of 1Myr.

3.1.3. KGF 97=GBS-VLA J183123.62-020535.8

KGF 97, whose spectral type is unknown, is a YSO also
located in the W40 cluster. Since the source does not show
excess in the infrared Ks band, it is classified as a Class III
object, with a mass of  M3.3 1.0 (Kuhn et al. 2010; reduced
by a factor of ∼2 given a distance of 436 pc). The source is
found to be very variable in our VLBA observations by a factor
>10. Additionally, it is one of the few sources of the cluster
detected in circular polarization (Ortiz-León et al. 2015), a
strong signature of gyrosynchrotron radiation. The spectral
index is −0.1±0.1.

3.1.4. KGF 122=GBS-VLA J183126.02-020517.0

This source was classified as a low-mass Class II YSO by
Shuping et al. (2012) based on the analysis of infrared data. It
shows high flux variations in both VLA ( 52 5% at 4.5 GHz)
and VLBA observations, and has a negative spectral index of
−0.6±0.2. Kuhn et al. (2010) estimated a photometric mass
of M16 for the source and a bolometric luminosity of

´ L2.9 104 , assuming 600 pc as the distance to the cluster (a
lower distance of 436 pc reduces the luminosity and mass by a
factor of ∼2). Thus, the source may be associated with an early-
type source. We discard the last measured source position for
the derivation of the astrometric parameters because it
significantly deteriorates the quality of the fit and, since we
ignore the source of any positional error that may be introduced
in this particular epoch, we cannot correct the source position.

3.1.5. KGF 133=GBS-VLA J183127.45-020512.0

KGF 133 was identified as a Class II/III YSO by Mallick
et al. (2013) based on Spitzer and near-IR data. Like the rest of
the VLBA-detected YSOs, the source is very variable in radio,
with fluctuations of 96 1% at 4.5 GHz (Ortiz-León
et al. 2015). The spectral index of the source is +0.3±0.2.
The mass of the source is not yet well constrained. Kuhn et al.
(2010) derived a photometric mass of M24 (reduced to

~ M12 for a distance of 436 pc), but the associated error is
uncertain and not provided by these authors.

3.2. Multiple Systems

3.2.1. GFM 65=GBS-VLA J183000.65+011340.0

This source is an M0.5, M0.96 star (Winston et al. 2010)
located in the Serpens Core. It was classified as a Class III

Figure 3. Histogram of position change rate for all sources detected at least
twice toward Serpens/Aquila. The sources previously identified as members of
the complex are shown as a blue histogram. These are 10 sources: 5 single
YSOs, the 4 components of the two binary systems, and the B1V star. The
source KGF138 is not shown because it has been detected only once. Other
sources, whose classification is unknown in the literature, are shown as a red
histogram.

13 From VLA measurements published in Ortiz-León et al. (2015). The
spectral index was taken between 4.5 and 7.5 GHz.
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object by Giardino et al. (2007). Based on multi-epoch VLA
observations, Ortiz-León et al. (2015) found that the source
shows large flux variations (>75%) on timescales of months,
and measured a spectral index of −0.9±0.4. Both properties
of the radio emission are fully consistent with its non-thermal
nature. Because of this variability, the source has been detected
with the VLBA just in three of the six observed epochs.
Another source, possible a gravitationally bound companion,
was detecetd in two epochs separated by ∼5 mas from the
primary. We are not able to constrain the orbit of the system
using our current small number of detections. We perform the

parallax fit for only one component following the procedure
described in Section 3.1.

3.2.2. EC 95=GBS-VLA J182957.89+011246.0

EC 95 is located in the Serpens core. The system is formed
by two close components first observed by Dzib et al. (2010).
Early estimations of its spectral type (∼K2 star), age (∼105
years), and mass (∼4M) indicated that the source is a proto-
Herbig AeBe star (Preibisch 1999). Dzib et al. (2011) reported
observations from 11 epochs taken with the VLBA at 8 GHz

Figure 4. Observed positions and best fits for six sources. Measured positions are shown as green dots, and expected positions from the fits as blue squares. The blue
dotted line is the full model, and the red line is the model with the parallax signature removed. The red squares indicate the position of the source expected from the
model without parallax, while magenta dots are measured positions with parallax signature removed. The arrow indicates the direction of position change with time.
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and reported a distance to the source of 429±2 pc. Earlier,
Dzib et al. (2010) performed a circular Keplerian orbit fit to the
data from 8 of these 11 epochs, constraining the orbital period
of the system to 10–20 years.

In order to derive the full orbital parameters of EC95, we
carried out follow-up VLBA observations as part of the project
coded BD155, which observed the system at 8 GHz in five new
epochs. The source has also been monitored with GOBELINS
at 5 GHz, and six additional epochs are available. The new
observations together with those previously reported by Dzib
et al. (2011) cover a baseline timescale of ∼8 years, i.e., a
significant fraction of the orbit. Old data were recalibrated by
homogeneously applying the same calibration strategy as for

the new data, and combined with the GOBELINS observations
to form a single data set. The data were fitted with two models.
In the first “Full model,” we fit the orbital and astrometric
parameters of the system simultaneously. Orbital elements in
this model are period (P), time of periastron passage (T),
eccentricity (e), angle of line of nodes (Ω), inclination (i), angle
from node to periastron (ω), semimajor axis (a1) of the primary,
and mass ratio (m m2 1). Astrometric parameters include center
of mass at the first epoch of the GOBELINS observations
where the primary is detected (a ,CM,0 dCM,0), parallax (ϖ),
and proper motion (ma, md) of the system. For this fit, a
grid of initial guesses of P, e, T, and ω is explored. The final
values of these parameters are fine-tuned by the code, and the

Table 5
Parallaxes and Proper Motions

GBS-VLA Other Identifiera Parallax m da cos md Distance
Name (mas) (mas yr−1) (mas yr−1) (pc)
(1) (2) (3) (4) (5) (6)

J182933.07+011716.3 GFM 11 2.313±0.078 3.634±0.050 −8.864±0.127 432.3±14.6
J182957.89+011246.0 EC 95 2.291±0.038 3.599±0.026 −8.336±0.030 436.4±7.1
J183000.65+011340.0 GFM 65b 2.638±0.118 1.573±0.070 −6.513±0.152 379.1±17.0
J183114.82-020350.1 KGF 36 2.302±0.063 0.186±0.053 −6.726±0.121 434.5±11.8
J183123.62-020535.8 KGF 97 2.186±0.076 −0.258±0.058 −7.514±0.135 457.5±16.0
J183126.02-020517.0 KGF 122 2.372±0.120 4.586±0.074 −7.946±0.167 421.5±21.4
J183127.45-020512.0 KGF 133 2.385±0.098 −0.330±0.049 −7.746±0.111 419.3±17.3

Notes.
a GFM—Giardino et al. (2007); EC—Eiroa & Casali (1995), KGF—Kuhn et al. (2010).
b Parallax solution could be affected by unmodeled binary motion.

Figure 5. Observed positions of EC 95 and best astrometric fits. Left: measured positions of each component are shown as red and blue circles. The solid lines show
the fit corresponding to the “Full model” described in the text. The arrow indicates the direction of position change with time. Middle: the squares mark the measured
positions with the parallax signature removed, while the dashed lines are the fits from the “Full model,” also without parallax. Right: green dots mark the position of
the center of mass derived using the solutions from the orbital model for the mass ratio. The green dashed line is the model for the motion of the center of mass of the
system, while the red line is this same model with the parallax signature removed. The red squares indicate the position of the center of mass expected from the model
without parallax.
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remaining model parameters are fitted directly. The first
panel of Figure 5 shows the resulting best-fit curve and the
measured positions of both components of the system, while
the second panel shows the same fit without parallax and
measured positions with parallax signature removed. Finally,
the motion of the barycenter is shown in the last panel of the
same figure.

In the second “Relative Model,” we use the Binary
Star Combined Solution Package (Gudehus 2001) to fit the
positions of the secondary relative to the primary component
and solve for P, T, e, Ω, i, ω, and a. The total mass of the
system is then derived from Kepler’s law. The solutions found
by the “Full model” are used as initial guesses for this fit.
Uncertainties in the orbital elements are computed from the
scatter on model parameters. The best-fit solution is shown in
Figure 6 and compared with the solution found by the “Full
model.” Solutions for the orbital elements from both models
are given in Table 6. Dzib et al. (2010) argued that one of the
system components should be considerably more massive than
the other; however, their reported observations only covered a
small fraction of the complete orbit. Here, based on a larger
number of observations, we have derived a similar mass for
both components, while the total mass of ~ M4 is consistent
with that estimated in past works (Preibisch 1999; Pontoppidan
et al. 2004) and with the spectral type of the source.

A third source is detected in the EC95 system at two epochs
at 8 and 61σ, respectively. This source was located ∼145 mas
to the northeast of the barycenter of the close binary, at a
position angle of 48°.3 on 2008 September 15, and ∼138 mas in

the same direction, at a position angle of 52°.4 on 2012 January
9 (see Table 4). The third source was also detected in near-IR
(NIR) observations taken at the VLT on 2005 May 11 and 22
(Duchêne et al. 2007). A map of the system as seen in NIR
emission is shown in the first panel of Figure 7. The
northernmost source is EC92, a young (~105 years), Class I
(Pontoppidan et al. 2004) and low-mass ( ~ M0.5 ; Preibisch
1999) star. EC95 is the brightest source to the south in the
map. While the two close components of EC95 are unresolved,
the third component is clearly visible, at a position angle of
47°.2 and separation of 152 mas from the close binary, i.e., at a
position similar to that of the radio source seen in our VLBA
images (Figure 7, right). Given the short angular separation of
the third component relative to the close binary, it is possible
that the three sources form a bound system. To investigate this
possibility, we include two more free parameters in the “Full
model,” corresponding to the acceleration terms in R.A., aα,
and decl., aδ. We find that these acceleration terms are zero
within the errors, and that the motion of the barycenter of the
close binary remains linear during the timescale covered by our
observations. This suggests that the third source may be much
less massive than the close binary and following a very long
period orbit. Actually, if we assume that the total mass of the
system is M4.2 , i.e., that the mass of the third source is
negligible, we estimate an orbital period ∼260years. The
change in angular separation of the third companion (detected
first in the NIR and then in the VLBA images) relative to the
barycenter of the close binary is ∼20 mas in 6.7 years, while the
position angle only changes ∼5°over this timescale. This is
consistent, within the errors, with the expected motion of the
companion on a circular orbit that has the period estimated
above. Unfortunately, the third companion has remained
undetectable in the radio since 2012. If there were more
detections, we could constrain its astrometric parameters and
investigate a possible acceleration induced by its orbital motion
around the close binary.
Finally, we note that Dzib et al. (2011) estimated a distance

to EC95 of 429±2 pc by separately modeling the source
motion of each component as a superposition of parallax and
uniform accelerated proper motion. The derived distance from
the “Full model” is 435.2±6.0 pc, which is consistent within
s1 with the previous determination.

3.3. Comments on Other Sources: PMN 1829+0101

PMN 1829+0101=GBSVLA J182930.71+010048.3 is a
strong radio source with reported VLA fluxes of
196.0±5.9mJy at 1.4 GHz (Ofek & Frail 2011) and
32.10±5.60mJy at 4.5 GHz (Ortiz-León et al. 2015). The
source shows an extended structure of ~ 1. 4 in the 4.5 GHz
VLA images, but this emission is filtered out by the VLBA.
There is a counterpart in X-ray emission at ~ 1. 3 (XMM-

Figure 6. Relative positions of the components of the young binary system
EC95. The green points mark the detections with the VLBA. Green and cyan
solid lines correspond to the “Relative astrometry” and “Full model” orbital
fits, respectively. The black solid and dashed lines trace the line of nodes of the
“Relative astrometry” and “Full model,” respectively.

Table 6
Orbital Elements of EC95

Model a P T0 e Ω i ω M1 M2 MT

(mas) (years) (°) (°) (°) (M) (M) (M)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Full 28.9±0.4 21.5±1.5 2008.85±2.0 0.397±0.001 124.8±2.1 31.6±0.9 477.5±1.8 2.0±0.2 2.3±0.1 4.3±0.2
Rel. astr. 30.7±1.4 23.1±1.4 2009.08±0.14 0.393±0.011 136.2±2.5 34.8±2.0 475.3±2.8 L L 4.5±0.2
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Table 7
Measured Source Positions

Julian Day α (J2000.0) sa δ (J2000.0) sd
SSTc2dJ182910.2+012560

2456537.71083 18 29 10.18111439 0.00000048 1 25 59.593986 0.000016
2456718.21396 18 29 10.18111515 0.00000048 1 25 59.593964 0.000016
2456938.61153 18 29 10.18111964 0.00000046 1 25 59.594012 0.000016
2457081.21921 18 29 10.18110324 0.00000063 1 25 59.594051 0.000020
2457300.62039 18 29 10.18110850 0.00000051 1 25 59.594058 0.000017

SSTc2dJ182918.2+011758

2456537.71083 18 29 18.23057894 0.00000623 1 17 57.783157 0.000237
2456718.21396 18 29 18.23057676 0.00000432 1 17 57.782977 0.000165
2456938.61153 18 29 18.23060031 0.00000827 1 17 57.783177 0.000266
2457081.21921 18 29 18.23056481 0.00000605 1 17 57.782967 0.000199
2457300.62039 18 29 18.23058354 0.00000919 1 17 57.783323 0.000305

GBS-VLAJ182903.06+012331.0

2456537.71083 18 29 03.06984956 0.00000319 1 23 31.087749 0.000103
2456718.21396 18 29 03.06986038 0.00000339 1 23 31.087530 0.000110
2456938.61153 18 29 03.06986699 0.00000383 1 23 31.087498 0.000101
2457081.21921 18 29 03.06987411 0.00000425 1 23 31.087780 0.000116
2457300.62039 18 29 03.06987273 0.00000382 1 23 31.087686 0.000132

SSTc2dJ182936.5+012317

2456537.71083 18 29 36.50110691 0.00000859 1 23 17.076353 0.000169
2456718.21396 18 29 36.50114312 0.00000627 1 23 17.075662 0.000226
2456938.61153 18 29 36.50113297 0.00000496 1 23 17.076045 0.000161
2457081.21921 18 29 36.50112373 0.00001097 1 23 17.075484 0.000410
2457300.62039 18 29 36.50110998 0.00000771 1 23 17.076210 0.000196

GBS-VLAJ182905.07+012309.0

2456537.71083 18 29 05.08095263 0.00000445 1 23 09.149373 0.000137
2456718.21396 18 29 05.08096153 0.00000384 1 23 09.149402 0.000155
2457081.21921 18 29 05.08094750 0.00000559 1 23 09.149718 0.000160
2457300.62039 18 29 05.08094627 0.00000762 1 23 09.150555 0.000146

SSTSL2J182926.72+012342.4

2456537.71083 18 29 26.71049982 0.00000918 1 23 42.131201 0.000268
2456718.21396 18 29 26.71050367 0.00001050 1 23 42.130807 0.000385

GBS-VLAJ182911.94+012119.4

2456537.71083 18 29 11.94832584 0.00000362 1 21 19.484862 0.000107
2456718.21396 18 29 11.94830530 0.00000283 1 21 19.485004 0.000112
2456938.61153 18 29 11.94832429 0.00000313 1 21 19.484997 0.000106
2457081.21921 18 29 11.94830236 0.00000478 1 21 19.485052 0.000132
2457300.62039 18 29 11.94833353 0.00000291 1 21 19.484955 0.000089

NVSS182944+011920

2456537.71083 18 29 44.07658313 0.00000075 1 19 21.164119 0.000025
2456718.21396 18 29 44.07657402 0.00000085 1 19 21.164280 0.000028
2456938.61153 18 29 44.07659031 0.00000068 1 19 21.164227 0.000023
2457081.21921 18 29 44.07657708 0.00000112 1 19 21.164286 0.000035
2457300.62039 18 29 44.07655805 0.00000085 1 19 21.164512 0.000029

PMN1829+0101

2456538.70634 18 29 30.72388371 0.00000033 1 0 48.005138 0.000010
2456720.20849 18 29 30.72391467 0.00000085 1 0 48.005243 0.000022
2456943.59865 18 29 30.72388420 0.00000045 1 0 48.004833 0.000016

DCE08-2105

2456538.70634 18 29 35.02394353 0.00001739 1 15 03.254608 0.000371
2456720.20849 18 29 35.02397943 0.00001364 1 15 03.252858 0.000403
2457507.02912 18 29 35.02401622 0.00000701 1 15 03.253580 0.000198
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Table 7
(Continued)

Julian Day α (J2000.0) sa δ (J2000.0) sd
GFM65

2456720.20849 18 30 00.65283020 0.00000429 1 13 40.065067 0.000136
2456943.59865 18 30 00.65256389 0.00000712 1 13 40.061403 0.000205
2457302.61352 18 30 00.65266340 0.00000277 1 13 40.054815 0.000088
second source:
2456720.20849 18 30 00.65296360 0.00002331 1 13 40.066599 0.000638
2456943.59865 18 30 00.65289182 0.00000696 1 13 40.061476 0.000276

ETC8

2456720.20849 18 29 51.04143717 0.00000565 1 15 33.871396 0.000160
2456943.59865 18 29 51.04141126 0.00000725 1 15 33.870733 0.000178
2457084.21205 18 29 51.04142997 0.00000353 1 15 33.870437 0.000131
2457302.61352 18 29 51.04141829 0.00000270 1 15 33.870371 0.000080
2457507.02912 18 29 51.04142929 0.00000406 1 15 33.870259 0.000106

KGF122

2456539.70380 18 31 26.01996029 0.00000276 −2 5 17.086151 0.000086
2457102.16179 18 31 26.02073064 0.00000306 −2 5 17.098461 0.000137
2457285.66188 18 31 26.02057197 0.00001863 −2 5 17.102963 0.000368
2457448.21552 18 31 26.02087306 0.00001310 −2 5 17.105731 0.000405

2M18304408–0201458

2456539.70380 18 30 44.11485642 0.00000199 −2 1 45.688322 0.000051
2456721.20565 18 30 44.11487547 0.00000271 −2 1 45.689938 0.000071
2456946.58954 18 30 44.11484733 0.00000336 −2 1 45.688604 0.000087
2457102.16179 18 30 44.11486486 0.00000140 −2 1 45.688221 0.000038
2457285.66188 18 30 44.11485685 0.00000236 −2 1 45.688281 0.000057

KGF138

2457102.16179 18 31 27.65620135 0.00000709 −2 5 09.799495 0.000178

KGF97

2456721.20565 18 31 23.62227407 0.00000250 −2 5 35.868544 0.000074
2456946.58954 18 31 23.62203557 0.00002812 −2 5 35.873472 0.000761
2457102.16179 18 31 23.62227217 0.00001073 −2 5 35.876576 0.000314
2457285.66188 18 31 23.62197113 0.00000699 −2 5 35.880042 0.000161
2457448.21552 18 31 23.62223545 0.00000309 −2 5 35.883516 0.000086

KGF36

2456543.60141 18 31 14.82263201 0.00000386 −2 3 50.149196 0.000131
2456726.05521 18 31 14.82293762 0.00000369 −2 3 50.152750 0.000106
2457306.96324 18 31 14.82267359 0.00000980 −2 3 50.163179 0.000371
2457448.21552 18 31 14.82293818 0.00000571 −2 3 50.166392 0.000155

GBS-VLAJ182952.73-015159.9

2456541.69591 18 29 52.73464125 0.00001627 −1 51 59.925315 0.000561
2456723.19777 18 29 52.73465607 0.00002462 −1 51 59.926572 0.000665
2457309.09678 18 29 52.73469573 0.00001149 −1 51 59.925989 0.000363

KGF82

2456543.60141 18 31 22.32975638 0.00000485 −2 6 19.633463 0.000140
2457306.96324 18 31 22.32894475 0.00000404 −2 6 19.660373 0.000166

KGF133

2456543.60141 18 31 27.45984260 0.00000137 −2 5 12.036684 0.000039
2457306.96324 18 31 27.45978832 0.00000657 −2 5 12.052156 0.000273
2457448.21552 18 31 27.46007650 0.00000568 −2 5 12.056771 0.000139

GBS-VLAJ183118.68-015455.9

2456706.16961 18 31 18.68250486 0.00001724 −1 54 56.073788 0.000262
2457084.21205 18 31 18.68250948 0.00001509 −1 54 56.073322 0.000371
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Newton Survey Science Centre 2013) and in the IRAC 3.6 μm
band (Evans et al. 2003) at~ 1. 7 from the radio peak. The fit to
the data yields v = 0.248 0.044 mas, corresponding to a
distance of = -

+d 4025 600
854 pc. Using this distance we derive the

location ( )x y z, , of the source in the Milky Way. This position
is expressed in the rectangular frame centered on the location of
the Sun, with the (Ox) axis pointing toward the Galactic Center,
the (Oy) axis perpendicular to (Ox) and pointing in the direction
of the Galactic rotation, and (Oz) pointing toward the Galactic
North Pole. The source coordinates in this system are
( ) ( )=x y z, , 3443, 2096, 377 pc: it is located in the direction
of the Scutum arm, which hosts newly formed OB-type stars,
but at 377 pc above the Galactic mid-plane.

4. DISCUSSION

We have derived the distance to seven objects in the
Serpens/Aquila complex. The parallaxes for these objects are
shown graphically in Figure 8, where we clearly see that
sources in Serpens and Aquila share similar values. Proper
motions, on the other hand, show a large spread, but this is
expected as Serpens and W40 are different clusters. The
weighted mean value of the seven parallaxes is v = 2.32 mas,

with a weighted standard deviation of s =v 0.10 mas. Only the
source GMF65, for which we derive 379.1±17.0 pc, differs
from the rest by more than 1σ. As discussed in Section 3.2.1,
this source seems to be a binary system, whose orbital motion
remains unmodeled because of the low number of detections.
Ignoring this source yields a mean weighted parallax of
v = 2.29 0.05 mas. This corresponds to a weighted mean
distance of d=436.0 pc, with a standard deviation of
s = 9.2d pc. The standard deviation on the mean reflects only
the uncertainties in the distance measurements because typical
errors on individual distances are larger than 10 pc.
Note that Straižys et al. (2003) determined the near edge of

the Aquila/Serpens cloud complex to be at 225±55 pc, with a
depth of 80 pc. Therefore, according to their estimates, the far
edge of the complex lies at a distance (assuming a s+1
deviation) of + + =225 55 80 360 pc (Winston et al. 2010).
Assuming a s+3 deviation, we place the far edge of the cloud
at a maximum distance of 470 pc, which is consistent with the
mean distance to the cloud obtained here from parallax
measurements.
Our measurements not only confirm the early estimation by

Dzib et al. (2010) of a larger distance to Serpens than
previously thought, but also show that Serpens and W40 are

Table 7
(Continued)

Julian Day α (J2000.0) sa δ (J2000.0) sd
2457302.61352 18 31 18.68249661 0.00000858 −1 54 56.072971 0.000207

GBS-VLAJ182949.50+011955.8

2456541.69877 18 29 49.50633251 0.00000273 1 19 55.885107 0.000090
2456723.20062 18 29 49.50632851 0.00000189 1 19 55.885721 0.000123
2457309.09678 18 29 49.50633154 0.00000120 1 19 55.885384 0.000068

GFM70

2456723.20062 18 30 04.62941667 0.00000502 1 22 34.131415 0.000132
2457309.09678 18 30 04.62940928 0.00000397 1 22 34.131168 0.000121

GFM11

2456543.69416 18 29 33.07249309 0.00000229 1 17 16.360959 0.000098
2456726.19504 18 29 33.07290417 0.00000527 1 17 16.356120 0.000275
2457507.02912 18 29 33.07340833 0.00000593 1 17 16.337928 0.000238

SSTSL2J182916.10+010438.6

2456543.69416 18 29 16.11947301 0.00000517 1 4 37.589379 0.000201
2456726.19504 18 29 16.11946492 0.00000667 1 4 37.589438 0.000220
2457307.60223 18 29 16.11947017 0.00000623 1 4 37.589495 0.000238

GBS-VLAJ182854.46+011823.7

2456749.07794 18 28 54.46499411 0.00000049 1 18 23.813820 0.000015
2457281.61856 18 28 54.46500889 0.00000023 1 18 23.813619 0.000008

GBS-VLAJ182854.44+011859.7

2457281.61856 18 28 54.44344643 0.00000226 1 18 59.737811 0.000112

GBS-VLAJ182854.87+011753.0

2456749.07794 18 28 54.87254346 0.00000603 1 17 53.051049 0.000192
2457281.61856 18 28 54.87253760 0.00000534 1 17 53.051239 0.000208

SSTc2dJ182948.8+010648

2456749.09635 18 29 48.82981795 0.00000628 1 6 47.450268 0.000181
2457281.61856 18 29 48.82980672 0.00000240 1 6 47.450032 0.000084
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part of the same complex, lying at the same distance along the
line of sight. Earlier estimates based on indirect methods, e.g.,
by Kuhn et al. (2010) and Shuping et al. (2012), suggested a
mean distance to W40 of ~ 500 50 pc. Based on these
measurements, W40 and the Serpens region have been treated
in the literature as separate objects, as such works used the
value obtained by Straižys et al. (1996) of ∼260 pc for the
Serpens/Aquila Rift (see, e.g., Straižys et al. 2003; Gutermuth
et al. 2008). When it was first discovered, Serpens South was
associated with Serpens Main because both regions share
similar local standard of rest (LSR) velocities (∼6–11 km s−1;
White et al. 1995; Gutermuth et al. 2008; Bontemps
et al. 2010), indicating that they are comoving. Until recently,
it has become more common to consider that Serpens South
and W40 form a single cloud structure. This is because the LSR
velocities measured by molecular line observations in the entire
W40/Serpens South region are 4–10 km s−1 (Zeilik &
Lada 1978; Maury et al. 2011), which are in the range of the
LSR velocities measured in Serpens Main. We do not have any
astrometric measurement to sources in Serpens South (because
known YSOs in the cluster are intrinsically radio weak; Ortiz-
León et al. 2015; Kern et al. 2016), but given its proximity and
similarity in LSR velocities to W40, we speculate that these
two clusters are physically associated. If this last statement is
confirmed, it would represent meaningful evidence for
association among Serpens Main, W40, and Serpens South.

Proper motions are plotted in Figure 8 after the correction for
the solar peculiar motion is applied. Mean values are
(m d = a

-cos 8.0 2.2 mas yr ,1 )m = - d
-11.6 2.9 mas yr 1

for Serpens sources and (m d = a
-cos 3.8 4.1 mas yr ,1

)m = - d
-10.2 0.9 mas yr 1 for W40 sources. Uncertainties

in the mean values correspond to the standard deviation of
individual measurements in each cluster. It appears that the
clusters are moving in similar directions, which is an additional

support for our interpretation of Serpens Main and W40 being
part of the same cloud complex.
Finally, we note that a larger distance to the Serpens and

Aquila regions imply luminosities and dust masses larger by a
factor of ∼2.8 relative to those derived assuming 260 pc, and
makes YSOs younger with respect to evolutionary tracks. This
implies that the physical interpretation of the stellar and core
population in the regions needs to be revised.

5. SUMMARY

We have analyzed multi-epoch VLBA observations taken as
part of the GOBELINS project toward young stars in the
Serpens and W40 regions in the Aquila complex. The
astrometric fits to seven sources, including one confirmed
binary (posible triple) system, provide us with parallaxes and
proper motions for single sources, as well as with the orbital
parameters for the multiple system. Since individual parallaxes
of sources in Serpens are consistent with those of W40 sources,
we conclude that both Serpens and W40 are located at the same
distance. The mean parallax value yields 436.0±9.2 pc,
confirming the early distance estimation obtained solely for
the source EC95 in the Serpens Core, which was also derived
from a parallax measurement with the VLBA. The other 20
sources detected during the survey turned out to be background
sources, and not associated with the Aquila Rift.
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Figure 7. Left: NIR image of EC92 and EC95 taken with the VLT. Right: radio image of the system EC95 corresponding to one of the two epochs when the three
sources are detected simultaneously with the VLBA.
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