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Interspecies translation of pharmacological processes

needs to improve to reduce attrition in drug develop-

ment. Systems pharmacology integrates systems biol-

ogy and pharmacometrics to characterise and quantify

system-specific behaviour upon exposure to drugs in

different species. The zebrafish is a suitable vertebrate

model organism for systems pharmacology, combining

high-throughput potential with high genetic homology

to higher vertebrates. Zebrafish larvae have been in-

creasingly used for drug screens, but the influence of

internal drug and metabolite exposure is hardly stud-

ied. Quantifying this internal exposure is essential for

establishing both exposure-response and dose-expo-

sure relationships, needed for translation. The zebra-

fish may also serve as a suitable model species for

translational studies on the occurrence of hepatotox-

icity and the influence of hepatic dysfunction on drug

metabolism.
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Introduction
Drug development is a complex and costly process with high

attrition. Of the terminated drug candidates, the majority fails

because of lack of efficacy and safety [1,2]. Efficacy and safety

are tested in preclinical experiments, but to improve success

rates, interspecies translation needs to move from an empirical

to a mechanistic approach [3]. Systems pharmacology is such

an approach, combining the strengths of systems biology and

pharmacometrics [4]. Understanding the systems of species

and their differences helps improving interspecies translation

of efficacy and safety data. In this review, we will focus on

systems pharmacology of hepatic function and dysfunction,

and the importance of understanding the drug exposure over

time in a biological system. The unique position of zebrafish

larvae as vertebrate model organism for systems pharmacolo-

gy with high-throughput potential will be discussed.

Systems pharmacology: integrating pharmacometrics
and systems biology
Systems pharmacology is a method to contribute to transla-

tional medicine by integrating modelling and simulation
 in zebrafish larvae, Drug Discov Today: Dis Model (2017), http://dx.doi.org/10.1016/j.
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with data from both preclinical and clinical experiments in a

‘systems level’ mechanistic way, improving interspecies

translation of relevant biological processes [5]. Systems phar-

macology originates from two established fields, pharmaco-

metrics and systems biology, and aims to quantify the

pharmacological perturbations of the biological system of

an organism to improve our understanding of the interaction

between a drug and a particular biological system.

Pharmacometrics aims to predict drug effects using math-

ematical models to quantify interactions between organisms

and pharmaceutical compounds [6]. This results in pharma-

cokinetic-pharmacodynamic (PK-PD) models integrating

drug pharmacokinetics, which describes drug exposure as

concentration versus time, and drug pharmacodynamics,

which describes effects versus drug concentration. A sche-

matic of a PK-PD model can be seen in Fig. 1. Observed

outcome measures (i.e. concentrations and effects) are de-

scribed by mathematical equations, from which the underly-

ing primary model parameters are derived. After evaluation of

the predictive performance of a model, the model can be used

for predictions and to improve interspecies translation of

drug pharmacokinetics and pharmacodynamics and to de-

sign treatment regimens in both preclinical and clinical

studies [7].

Systems biology studies the structure and dynamics of

integrated biological systems to understand processes that

are too complex to intuitively comprehend by studying its

isolated elements only. Like pharmacometrics, this requires

quantitative data as well as advanced computational model-

ling [8]. Systems biology as holistic approach has the advan-

tage of placing part of a system in the biological context of a

complete organism. Characterising individual parts of the
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system, like gene or protein function, from in vitro experi-

ments is an important first step [8]. The next step is to

elucidate the interaction of these parts in the network of

the whole system. This is relevant in for example disease

models, as most diseases are not – as previously believed –

caused by a single target, for which a single drug can be

designed [9]. In contrast to in vitro experiments with human

cells only, an in vivo whole organism experiment can identify

compounds able to treat or cure such a disease [10]. Using

these complementary experimental data to inform the sys-

tems biology model, the understanding of the biological

processes in the organism improves, and with it the under-

standing of how systems differ between species. This may

improve interspecies translation.

Zebrafish larvae as vertebrate model organism in drug
development
Systems biology models have been developed in invertebrate

organisms, such as yeast (Saccharomyces cerevisiae), round-

worms (Caenorhabditis elegans) and fruit flies (Drosophila)

[11]. These small organisms are easily genetically modified

and allow for high-throughput measurements [11]. However

in pharmacological studies, a vertebrate species is believed to

have improved translational potential due to its increased

genetic homology to mammals. The zebrafish (Danio rerio) is

such a vertebrate model organism that is increasingly used as

a model for biomedical studies [12]. Most genes coding for

essential proteins such as those in xenobiotic metabolism are

evolutionary conserved. Of human and murine genes, 70%

and 71% respectively have a zebrafish orthologue [13]. For

comparison, 83% of human genes have a murine orthologue

[13]. When considering genes for which defects can cause
 in zebrafish larvae, Drug Discov Today: Dis Model (2017), http://dx.doi.org/10.1016/j.
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diseases, 82% of human genes have a zebrafish orthologue

[14]. Human disease models in zebrafish larvae have been

validated for hyperlipidaemia, liver steatosis, cancer, and

mycobacterium infections, among others [15–17].

The use of zebrafish larvae in drug development is increas-

ing because of its many advantages [12]. The four most

relevant advantages for drug development include high fe-

cundity, fast development, optical transparency, and easy

genetic modification.

Zebrafish have a high reproduction rate. One pair of adult

fish yields 100–200 fertilised eggs per mating, reaching up to

10,000 eggs per year. Adults are small (3–5 cm) and are

housed in groups of on average 5–13 fish per litre [18]. This

combination of fecundity and size results in large numbers of

larvae and fish at limited costs [19].

After external fertilisation, the embryo develops in its

chorion until hatching between 48–72 h post fertilisation

(hpf), reaching the larval stage. At that time, the development

of most organs is nearly complete, except for the organs in the

gastro-intestinal (GI) tract [20]. After 76 hpf, the liver, pan-

creas, and gut are fully developed, and at 96 hpf, the GI tract is

completely open [21]. Experiments are generally performed

in the larval phase when the fish are largely developed but

small enough (3–5 mm) to fit in multi well plates up to 384

well format.

Zebrafish are optically transparent during early embryonic

and larval stages, enabling non-invasive in vivo optical imag-

ing of anatomical and certain (patho)physiological develop-

ments. Because it is not required to sacrifice the fish, effects

can be observed by microscopy over time in a single subject.

An example is the phenotypic assay that has been developed

to screen for hepatotoxicity by imaging of liver size, yolk size,

and liver degeneration [22]. If automated, these assays have

the potential to reach throughput rates of 1000–10,000 assays

per day [19].

Forward and reverse genetic modification of the zebrafish is

especially easy because the external fertilisation allows injec-

tions of the single cell zygote. Genetic modification enables

studying gene mutations, as well as mechanisms of action of

compounds [11]. It is also possible to humanise zebrafish with

human enzymes [23]. Transgenic lines have been developed,

expressing fluorescent reporter proteins under control of a

wide variety of promoter sequences specific for particular cell

types [24]. Due to the transparency of the larvae, both gene

expression and function can be examined spatially and over

time using fluorescence microscopy [25].

In short, large numbers of fast developing subjects with

relevant genetic modifications can be achieved with the

potential of automated high-throughput screening in num-

bers suitable for meaningful statistical analysis [26,27]. More-

over, it is from an ethical perspective best to perform animal

experiments – if at all necessary – in the available model

organism that is least developed [21]. The zebrafish larvae
Please cite this article in press as: van RC, et al. Systems pharmacology of hepatic metabolism
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model organism thus combines ethical and practical advan-

tages with the increased homology to higher vertebrates,

compared to invertebrates.

Drug exposure drives effects
For translation of drug effects between species it is not just

systems biology and homology of drug targets that are im-

portant. The internal exposure of an organism to a drug and

its metabolites over time is what drives the drug effects.

Quantifying internal exposure is necessary to prevent false

positives and negatives [28]. Deriving exposure-response rela-

tionships for both desired effects and adverse effects is there-

fore absolutely essential for interspecies translation of drug

pharmacology and toxicology of the parent compound and

metabolites. Unfortunately, this is almost always overlooked

in pharmacological and toxicological screens with zebrafish

larvae. In addition to deriving exposure-response relation-

ships, information on the internal exposure over time in

these larvae provides valuable knowledge needed for transla-

tion of drug pharmacokinetics from this small vertebrate to

higher vertebrates like rodents, monkeys, and even humans,

with all their physiological differences. As drug pharmacoki-

netics drive the dose-exposure relationship, translating it can

significantly improve (pre)clinical experimental design by

informing dosing rationale.

Internal exposure is quantified by describing the pharma-

cokinetic processes absorption, distribution, metabolism,

and excretion (ADME) of drugs. Drug elimination by metab-

olism and excretion is quantified as clearance, which is the

most important determinant of drug exposure. Metabolism

of xenobiotics, including drugs, increases hydrophilicity to

improve renal excretion and mostly occurs in the liver. Phase

I metabolism is of catabolic nature. Xenobiotics are oxidised,

reduced, or hydrolysed. Cytochrome P450 (CYP) enzymes are

the most important enzymes in catalysing phase I reactions.

Phase II metabolism, also known as conjugation, is anabolic

and includes transfer of a hydrophilic moiety from a donor to

the xenobiotic. Examples of enzymes catalysing conjugating

reactions are sulphotransferases (SULTs) and UDP-glucuro-

nosyltransferases (UGTs), amongst others. Drug metabolism

can result in reactive metabolites, which may cause toxicity

in the metabolising organ [29].

Hepatic metabolism in the zebrafish
A mechanistic understanding of drug metabolism by a pre-

clinical species in relation to human metabolism requires

comparison of both amino acid sequence and function of the

responsible enzymes. Table 1 shows the relationship of a

selection of metabolising enzymes in zebrafish with their

corresponding enzymes in humans. These relationships are

orthologous, descending from a common ancestral sequence,

unless otherwise specified. Specific focus is on the enzymes

responsible for paracetamol (Box 1) metabolism.
 in zebrafish larvae, Drug Discov Today: Dis Model (2017), http://dx.doi.org/10.1016/j.

www.drugdiscoverytoday.com e3
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Table 1. A selection of metabolising enzymes of zebrafish and their human homologues. Enzymes involved in paracetamol
metabolism are printed in italics.

Enzyme family Zebrafish enzyme Human enzyme Ref.

CYP1 CYP1Aa CYP1A1/1A2 [30]
CYP1B1b CYP1B1 [30]
CYP1D1 CYP1D1Pc [30]
CYP1C1,2 – [30]

CYP2 CYP2AD2,3,6, CYP2N13, CYP2P1-6, CYP2V1 CYP2J2 [30]
CYP2K1-8 CYP2W1 [30]
CYP2R1 CYP2R1 [30]
CYP2U1 CYP2U1 [30]
CYP2Y3,4 CYP2A6,13/B6/F1/S1 [30]
CYP2Y3b, CYP2P6b CYP2E1 [52]
CYP2AA1-12 – [30]
CYP2AE1,2 – [30]
CYP2X1-10 – [30]

CYP3 CYP3A65 CYP3A4 [30,31]
CYP3C1d CYP3A4 [53]
CYP3C1-4 CYP3A-se1c, -se2c [30]

CYP4 CYP4F43 CYP4Vs [30]
CYP4T8 – [30]

SULT1 SULT1ST2d SULT1A1 [34]
SULT1ST5b SULT1B1 [54,55]
SULT1ST6b SULT1E1 [54,55]
SULT1ST9b, SULT3ST1d SULT1A3 [36,56]

SULT4 SULT4A1b SULT4A1 [57]
UGT1 UGT1e UGT1 [37,58]
UGT2 UGT2e UGT2 [37,58]

UGT5 – [37]
a Similar exon structure.
b Similar gene structure.
c Pseudogene.
d Based on function or substrate specificity.
e Paralogous relationship.
In humans, the most important CYP enzyme isoforms in

drug metabolism are CYP3A4 and CYP2E1. CYP3A4 has at

least one orthologue in zebrafish, namely CYP3A65 which is

54% identical in amino acid sequence as well as being iden-

tical in function [30,31]. Zebrafish CYP2Y3 and CYP2P6 are

both 43% identical to human CYP2E1 in amino acid se-

quence [32].

Several human SULTs have orthologues in zebrafish, main-

ly from the SULT1 family [33]. Zebrafish SULT1ST2 shows

similar xenobiotic sulphation as human SULT1A1, although

no gene orthology has been established [34]. Human

SULT1A3 is 49% identical in amino acid sequence to zebrafish

SULT1ST9 [35]. Although no clear homology has been found

between zebrafish SULT3ST1 and human SULT1A3, this en-

zyme is responsible for xenobiotic sulphation similar to

SULT1A3 [36].

For human and zebrafish UGT enzymes, no orthologous

relationships have been found. Instead, these enzymes are so

called paralogues, of which the common ancestral gene has

been duplicated with different genes in zebrafish and mam-

mals as a result [37]. Despite less genetic overlap than ortho-

logues, paralogues can still have comparable metabolic
Please cite this article in press as: van RC, et al. Systems pharmacology of hepatic metabolism
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function. For paracetamol (Box 1) the glucuronide-metabo-

lite that is abundantly formed in humans, has been observed

in zebrafish larvae as well [38].

Quantifying metabolising function of the liver
To quantify the metabolising function of hepatic enzymes,

pharmacometrics uses for instance non-linear mixed effects

modelling to develop empirical compartmental models that

quantify pharmacokinetics of drugs in blood, based on con-

centration-time data. This is the biggest challenge of the

zebrafish larvae as model organism for systems pharmacolo-

gy-based translation of drug pharmacology, as quantifying

internal drug and metabolite exposure over time in such

small organisms is difficult [12,39]. Currently the external

drug concentration in the medium surrounding the larvae is

most often used as predictor of the internal drug concentra-

tion. It has been tried to predict internal exposure or toxicity

based on physicochemical properties of compounds such as

hydrophilicity, but without success [40–42]. Only recently,

our group developed a sensitive liquid chromatography-mass

spectrometry (LC/MS) method to quantify internal exposure

of paracetamol (Box 1) as a model compound, which resulted
 in zebrafish larvae, Drug Discov Today: Dis Model (2017), http://dx.doi.org/10.1016/j.
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Box 1. Model drug paracetamol

Paracetamol (Fig. 2), also known as acetaminophen, is a widely used analgesic [59]. Paracetamol is metabolised in the liver by both phase I and phase II enzymes,
and to a limited amount excreted unchanged (<5%). Sulphation by sulphotransferases SULT1A1 and SULT1A3 and glucuronidation by urine 5’-diphospho-
glucuronosyltransferase UGT1A6 are responsible for 85% of its metabolism in human adults. The remaining parent compound is oxidised, mainly by
cytochrome P450 CYP2E1 to N-acetyl-p-benzoquinone imine (NAPQI), and to a lesser extent by CYP2A6 to methoxy-paracetamol. NAPQI is a toxic
metabolite, which reacts with antioxidant glutathione (GSH) to form the nontoxic metabolites cysteine- and mercapturate-paracetamol, among others. At
supratherapeutic doses, GSH reserves are depleted and oxidative stress results in hepatotoxicity [60].
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Figure 2. Chemical structure of paracetamol and its major metabolites.
in the first pharmacokinetic model in zebrafish larvae [38].

This model quantified exposure over time of the parent

compound, which can be linked to efficacy data. The esti-

mated parameter clearance was scaled between the zebrafish

larvae and 12 higher vertebrate species, including rodents,

monkeys, and humans, showing reasonable comparability.

The model can be extended to include paracetamol major
Please cite this article in press as: van RC, et al. Systems pharmacology of hepatic metabolism
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metabolites and their formation rates catalysed by phase I

and II enzymes.

Empirical interspecies scaling of paracetamol clearance to

higher vertebrates, including humans, was found to be rea-

sonable [38]. When developing new drugs, the clearance in

zebrafish might therefore also be used to scale to higher

vertebrates and optimise preclinical experimental designs.
 in zebrafish larvae, Drug Discov Today: Dis Model (2017), http://dx.doi.org/10.1016/j.

www.drugdiscoverytoday.com e5
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An improvement over this empirical interspecies pharmaco-

kinetic translation, is the systems approach, where mecha-

nistic details on the metabolism can be included into the

model, such as the type of enzymes involved in metabolism

of a compound of interest. When the differences between the

enzymes of the species of interest are known, the mechanistic

model can inform the translation of the pharmacokinetics, in

a systems pharmacology approach. Additionally, pharmaco-

logically active metabolites can cause off-target (adverse)

effects. It is therefore important to establish if the same

metabolite species are formed in different vertebrates. If that

is the case, it is essential to quantify their exposure over time

to translate the exposure-response relationship of these ad-

verse effects.

Quantifying liver dysfunction
Hepatotoxicity is an important adverse effect of drugs. One

aim of drug screens in zebrafish larvae is to detect potential

toxicity issues. Hepatotoxicity assays in zebrafish have been

widely published [22,31,43]. This includes assessment of

histopathology and transcriptome profiling in zebrafish lar-

vae [44]. Internal drug and metabolite exposure causing this

toxicity needs to be quantified for proper interpretation and

translation. Moreover, hepatic dysfunction resulting from

this toxicity may impact drug clearance. This impact, and

its effect on the exposure-time profile, can be quantified using

a similar approach as described in Quantifying metabolising

function of the liver. The observed adverse effect is then linked

to the toxic compound or metabolite (Fig. 1). This provides

mechanistic insight in the influence of hepatic dysfunction

on the metabolism of both endogenous and exogenous

compounds, including drugs. Informed by the relevant sys-

tem-specific properties, a systems pharmacology model can

translate these findings to mammalian model organisms, and

humans.

The validity of a pharmaco- or toxicodynamic model

increases with the use of mechanistic biomarkers that de-

scribe the disease state, in this case hepatic dysfunction [7].

Mechanistic models describe (patho)physiological processes

that are important between drug administration and its

intended or adverse effect. Biomarkers can be used to charac-

terise and quantify these processes [45]. Alanine aminotrans-

ferase (ALT) and aspartate aminotransferase (AST) are for

example widely used hepatotoxicity markers in the clinic.

A useful biomarker is both specific and sensitive. ALT is

however not liver specific, being expressed in cardiac, renal,

and muscle tissue in addition to hepatic tissue [46]. Moreover,

it has a delayed response to liver injury, and may not always

correlate with clinical symptoms [47,48]. The novel biomark-

er miRNA-122 has been shown to be a more accurate and

time-sensitive alternative to indicate hepatotoxicity in both

preclinical and clinical settings [49]. This biomarker has also

been studied in zebrafish [50].
Please cite this article in press as: van RC, et al. Systems pharmacology of hepatic metabolism
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Finally, there lies an opportunity for the objective quanti-

fication of organ size in zebrafish larvae. Transgenic zebrafish

lines with fluorescent organs are available, enabling studying

many organs and their development. A reproducible and

automated method is the Vertebrate Automated Screening

Technology (VAST). In short, complete larvae are withdrawn

from a well plate or tube and flow through a capillary linked

to a microscope, which captures images of the larvae from

different angles in an automated manner. These images can

then be processed using 3D silhouette modelling to calculate

the volume of the larva [51]. Using this method, we have not

only determined the volume of the zebrafish larva at different

hpf, but also the volume of its liver [unpublished results]. This

combination of techniques can be used to observe toxic

effects on organ size. Reversely, it can be used to create a

database of organ properties and their development. These

system specific properties can then be linked to pharmacoki-

netic parameters to inform systems pharmacology or physi-

ology-based pharmacokinetic (PBPK) models.

Conclusions
Systems pharmacology, integrating pharmacometrics with

systems biology, has the potential to improve interspecies

translation of pharmacological findings, and thereby drug

development. The zebrafish larva is a promising pre-clinical

model organism in systems pharmacology, combining high-

throughput potential within a vertebrate species. Drug meta-

bolising enzymes are comparable and metabolic rates can be

derived by combining sensitive LC/MS methods and mathe-

matical modelling. Comparable to quantifying liver func-

tion, other (patho)physiological processes, for example

liver dysfunction, can also be quantified. Pivotal for proper

interpretation of these experimental pharmacological find-

ings is characterising the internal drug exposure, which can

then be linked to the observed response in an exposure-

response relationship needed for interspecies scaling. More

emphasis on the pharmacokinetics is therefore required for

this species to change the course of drug development in the

future.
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