
1Scientific RepoRts | 7: 2693  | DOI:10.1038/s41598-017-02957-w

www.nature.com/scientificreports

Influences of glutamine 
administration on response 
selection and sequence learning: a 
randomized-controlled trial
Bryant J. Jongkees1, Maarten A. Immink2 & Lorenza S. Colzato1,3,4

Precursors of neurotransmitters are increasingly often investigated as potential, easily-accessible 
methods of neuromodulation. However, the amino-acid glutamine, precursor to the brain’s main 
excitatory and inhibitory neurotransmitters glutamate and GABA, remains notably little investigated. 
The current double-blind, randomized, placebo-controlled study provides first evidence 2.0 g glutamine 
administration in healthy adults affects response selection but not motor sequence learning in a serial 
reaction time task. Specifically, glutamine increased response selection errors when the current target 
response required a different hand than the directly preceding target response, which might indicate 
enhanced cortical excitability via a presumed increase in glutamate levels. These results suggest 
glutamine can alter cortical excitability but, despite the critical roles of glutamate and GABA in motor 
learning, at its current dose glutamine does not affect sequence learning.

There is growing research interest in evaluating the neuromodulatory effects of exogenous administration of 
neurotransmitter precursors on cognition. Upon administration, precursors are assumed to be converted into 
their end-products, thus increasing neurotransmitter levels and consequently, influencing cognitive function. 
For example, tyrosine and tryptophan are two amino-acid precursors of monoamine neurotransmitters that have 
been demonstrated to provide neuromodulatory effects. Tyrosine is a precursor of dopamine and norepinephrine, 
and its administration has been shown to modulate, amongst others, working memory1, 2 and Stroop perfor-
mance3 (for a review, see ref. 4). Tryptophan is a precursor of serotonin (5-HT) and its administration has been 
shown to affect social behaviour and mood (for reviews, see refs 5–7), as well as improve or impair cognitive func-
tion depending on the individual’s mood and stress level due to mild sedation5. While neuromodulatory effects of 
tyrosine and tryptophan have attracted substantial research attention, the amino-acid precursor glutamine (Gln) 
has not been well researched as a potential neuromodulator of cognitive function despite being the precursor of 
glutamate (Glu) and γ-aminobutyric acid (GABA)8, which are the main excitatory and inhibitory neurotransmit-
ters, respectively, within the brain9. After absorption into the circulatory system, Gln is able to pass through the 
blood-brain barrier10 upon which it then increases Glu and GABA levels in the brain11. Glu and GABA play criti-
cal roles in shaping cortical excitability and synaptic plasticity12–17. Because of their effects on cortical excitability, 
levels of Glu and GABA are implicated in, amongst others, response selection and inhibition18–20, impulsivity21, 
and error detection and response conflict monitoring22. Notably, cortical excitation facilitates the adjustment of 
synaptic strength via NMDA-receptor-driven long-term potentiation (LTP)23, thereby implicating Glu and GABA 
in learning as well. Given that Gln administration, via central changes in Glu and GABA levels, has the potential 
to alter cortical excitability and thus response selection and inhibition behaviour, it seems appropriate to consider 
the effects of Gln administration on sequence learning. Sequenced actions heavily rely on response selection 
processes24 and the acquisition of sequence patterns is associated with increases in cortical excitability25. Because 
sequenced actions are fundamental to most everyday tasks in humans26, it is important to investigate the potential 
neuromodulatory effects provided by Gln administration.
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Glutamate and GABA. As the primary excitatory and inhibitory neurotransmitters in the brain, higher lev-
els of Glu and GABA respectively increase and decrease cortical excitability. It is hypothesized18–20 that increased 
cortical inhibition due to high GABA levels can sharpen task-relevant representations in the cortex and inhibit 
competing responses, thereby facilitating response selection and inhibition processes. It could then be argued that 
increased cortical excitation due to high Glu levels might have the opposite effect by facilitating activation of com-
peting responses, thus increasing the time necessary to resolve response selection processes and impairing accu-
racy of these processes20. This model of the roles of Glu and GABA in response selection is supported by studies 
that directly assessed brain neurotransmitter levels using magnetic resonance spectroscopy (MRS), albeit with a 
particular focus on GABA. For example, individual differences in regionally-specific GABA concentration have 
been shown to predict motor decision speed in a saccade distractor task27, with higher levels predicting faster 
response initiation to a target in the face of distractors. Conversely, higher striatal GABA concentration has been 
associated with overall faster responses28 and higher accuracy29 in the Simon task. Furthermore, higher GABA 
concentration, in particular in airplane pilot trainees, has been associated with a more serial as opposed to paral-
lel action cascading strategy, which has been argued to indicate more efficient action control30. Lastly, one study 
using MRS to assess the balance between Glu and GABA, rather than their individual levels, indicated a higher 
Glu-to-GABA ratio is associated with increased selection costs and slower reaction times in language production 
tasks20. In sum, there is converging support for the idea that increased GABA facilitates response selection via 
reduced cortical excitability, whereas increased Glu impairs response selection via heightened cortical excitability.

With respect to learning, studies have indirectly examined GABA and Glu by assessing the behavioural effects 
of a history of concussive injuries, which is thought to lead to accumulation of brain GABA and consequently 
stronger intracortical inhibition. This has important implications for learning, as excitation of the cortex facili-
tates LTP-driven learning via activation of NMDA receptors23. Consistent with reduced LTP due to higher GABA 
levels, previously-concussed athletes demonstrated reduced synaptic plasticity and less implicit motor sequence 
learning in a serial reaction time (SRT) task when compared to unconcussed teammates31. A follow-up study 
demonstrated that older concussed athletes had greater age-related decreases of Glu and that Glu concentra-
tion was positively related to motor sequence learning in the SRT task32. These findings are consistent with the 
important role of the primary motor cortex (M1) in sequence learning33 and the fact that M1 is sensitive to Glu 
and GABA34–36. In sum, they suggest sequence learning would benefit from increased excitation and suffer from 
increased inhibition of the cortex.

The present study. Despite the critical roles of Glu and GABA in response selection and cortical excitability, 
we are not aware of any studies with healthy adults that have focused on the effects of Gln administration on these 
processes. Because of this lack of previous studies and the fact that Gln is the precursor to both Glu and GABA, 
which are hypothesized to have opposite effects on response selection and learning, it is difficult to establish a 
priori the direction in which Gln administration modulates performance. This is further compounded by the 
aforementioned finding that not just individual Glu and GABA levels but also the relative balance between the 
two determines performance20 and it remains unclear in favour of which neurotransmitter Gln would modulate 
this balance, if at all. Nevertheless, the direction of our results can tentatively suggest how the Glu-to-GABA ratio 
is modulated. As indicated by the previously discussed findings, increased GABA facilitates response selection 
but impairs motor sequence learning. Thus, improved response selection and/or impaired learning performance 
following Gln administration could be indicative of an increase in GABA level (compare31). The opposite results, 
i.e. decrements in response selection and/or enhanced learning performance, would then be consistent with an 
increased Glu level (compare32).

To investigate the effect of low dose Gln (2.0 g) on sequence learning we utilized the SRT task37–39, perfor-
mance on which has been related to Glu and GABA levels (e.g. refs 31, 32). It represents a simple 4-choice reaction 
time task and thus involves response selection, inhibition and error detection processes that may be sensitive to a 
Gln-induced manipulation of Glu and/or GABA levels. The response sequence can be varied randomly, in which 
case participants can rely solely on the stimulus for selecting the appropriate response and have a 33% chance of 
guessing the correct response, given that there are no immediate response repetitions. As such, random blocks 
are particularly stimulus-oriented. However, the task also includes blocks with an embedded, second-order con-
ditional (SOC) sequence that allows (unconscious) anticipation of the correct response and potentially induces a 
shift from stimulus-based to plan-based control40. The implicit learning of the SOC sequence is typically reflected 
in a gradual decrease in response latency, and modulation of this decline in response latency would indicate 
a potential influence of Gln on motor sequence learning. Contrasting results from stimulus-oriented, random 
blocks with those from SOC blocks can shed light on a possible differential effect of Gln on stimulus-based versus 
plan-based action control.

Results
To assess the effect of Gln on processes associated with response selection and inhibition, one group of partici-
pants was administered 2.0 g Gln (N = 48) and another group received a neutral placebo (N = 43). Groups were 
then compared on response error percentage (REP) and mean reaction time (MRT) in the SRT task.

Response error percentage. REP results are illustrated in Fig. 1 (top panel). In the first three 
stimulus-oriented blocks, repeated measures ANOVA indicated a non-significant effect of Group, (p = 0.21), but 
a significant effect of Block, F(2, 178) = 20.6, p < 0.001, partial η2 = 0.19 and a significant Group × Block inter-
action, F(2, 178) = 4.1, p = 0.02, partial η2 = 0.04. REP for the Gln group in stimulus-oriented block 1 (M = 1.96, 
SD = 1.53) and block 2 (M = 3.40, SD = 2.50) was not significantly different from REP for the placebo group 
in block 1 (M = 2.17, SD = 2.06) and block 2 (M = 3.10, SD = 2.02) (p = 0.58, 0.53). However, in block 3 REP 
was significantly higher (p = 0.012) in the Gln group (M = 4.15, SD = 2.37) than the placebo group (M = 2.97, 
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SD = 1.97). To further explore the effect of Gln on REP we divided error trials in the first three stimulus-oriented 
blocks according to whether current error trial and the preceding trial required the same or a switched hand to 
make the response. REP was then submitted to repeated measures ANOVA with the factors Group and Hand 
Switch (same vs. switched hand). This revealed no significant interaction between Group and Hand Switch nor a 
three-way interaction involving Block, both p > 0.490. An additional analysis with the factors Group and Switch 
Direction (left-to-right vs. right-to-left) revealed no significant interaction between Group and Switch Direction 
nor a three-way interaction involving Block, both p > 0.731.

For SOC sequence blocks 1–11, repeated measures ANOVA indicated a significant effect of Group, F(1, 
89) = 4.7, p = 0.03, partial η2 = 0.05, and Block, F(10, 890) = 2.3, p = 0.01, partial η2 = 0.03, while there was no 
significant Group × Block interaction, (p = 0.97). Across these blocks, the Gln group had significantly higher 
REP (M = 3.67, SD = 2.55) than the placebo group (M = 2.91, SD = 2.04). REP in blocks 4 and 5 was significantly 
higher than in block 1 while REP in block 11 was significantly lower than block 3–5 (all p < 0.05).

To further explore the effect of Gln on REP we divided error trials in SOC blocks 1–11 again according to 
whether the current error trial and the preceding trial required the same or a switched hand to make the response. 
The total number of errors per SOC block was then submitted to repeated measures ANOVA with the factors 
Group and Hand Switch. This revealed a significant effect of Group F(1, 89) = 4.34, p = 0.04, η2 = 0.046 and 
Hand Switch, F(1, 89) = 123.1, p < 0.001, η2 = 0.58, as well as a significant Group × Hand Switch interaction, 
F(1, 89) = 4.5, p = 0.037, η2 = 0.048. Post-hoc comparisons indicated a significantly higher total amount of errors 
on trials requiring a switch of hands in both the Gln (M = 43.9, SD = 22.5 vs. M = 18.9, SD = 10.0) and placebo 
(M = 34.0, SD = 17.4 vs. M = 17.0, SD = 11.2) groups, both ps < 0.001. Importantly, the Gln group demonstrated 
significantly more switch hand errors (p = 0.023) than the placebo group whereas the groups did not differ on 
same hand errors (p = 0.406). Exploring these results yet further by dividing switch trials in those requiring 
a left-to-right or right-to-left switch revealed significant effects of Group, F(1, 89) = 5.4, p = 0.023, η2 = 0.057 
and Switch Direction, F(1, 89) = 55.6, p < 0.001, η2 = 0.384, indicating significantly more errors on a left-to-right 
(M = 23.1, SD = 12.7) than right-to-left switch (M = 16.3, SD = 9.7), but this effect was not modulated by Gln as 
revealed by a nonsignificant Group × Switch Direction interaction, p = 0.658. In sum, Gln increased response 
errors when the hand required to carry out the target response on the current trial was not the hand used on the 
preceding trial and this effect was independent of the direction of the switch. To exclude the possibility this effect 
is driven by a group difference in amount of left-handed participants (see Table 1), we again analysed the effects 
of Group and Hand Switch on REP after excluding all left-handed participants. The Group × Hand Switch inter-
action remained significant and in the same direction, F(1, 80) = 4.4, p = 0.039, η2 = 0.052, thereby excluding a 
potential confounding of the effect by group differences in handedness.

To assess sequence dependent learning we compared REP in the 12th SOC block to the 13th random block 
and the 14th SOC block. Repeated measures ANOVA indicated a significant effect of Block, F(2, 178) = 128.1, 
p < 0.001, partial η2 = 0.59, while the Group main effect (p = 0.21) and the Group × Block interaction, (p = 0.16) 
were not significant. REP in block 13 (M = 6.25, SD = 3.02) was significantly higher than block 12 (M = 2.82, 
SD = 1.74, p < 0.0001) and block 14 (M = 2.11, SD = 1.90, p < 0.0001). REP in block 12 was also significantly 
higher (p < 0.01) than in block 14. Additional analyses revealed no significant interaction between Group and 
Hand Switch, F(1, 89) = 0.22, p = 0.642, or between Group and Switch Direction (left-to-right vs. right-to-left), 
F(1, 89) = 0.13, p = 0.722.

Mean reaction time. MRT results are presented in Fig. 1 (bottom panel). In each of three analyses, there was 
only a significant effect of Block in the three stimulus-oriented blocks, F(2, 178) = 89.2, p < 0.001, partial η2 = 0.50, 
in SOC blocks 1–11, F(10, 890) = 104.4, p < 0.001, partial η2 = 0.54, and when comparing SOC block 12 to ran-
dom block 13 and SOC block 14, F(2, 178) = 321.4, p < 0.001, partial η2 = 0.78. In contrast, no significant main 
effects of Group or Group × Block interactions were obtained (all p > 0.53). In the stimulus-oriented blocks, MRT 
was significantly higher in block 1 (M = 454.51, SD = 59.02) than block 2 (M = 413.86, SD = 50.19, p < 0.0001) 
and block 3 (M = 413.99, SD = 51.82, p < 0.0001) while MRT did not significantly differ between blocks 2 and 3 
(p = 0.99). For SOC sequence learning blocks, MRT was significantly lower as learning progressed across blocks 
1 to 11. For sequence-dependent learning assessment blocks, MRT in block 13 (M = 396.18, SD = 34.41) was 
significantly higher than block 12 (M = 299.69, SD = 56.10, p < 0.0001) and block 14 (M = 302.16, SD = 49.80, 
p < 0.0001). MRT in block 12 was not significantly different (p = 0.37) than MRT in block 14. None of the 
stimulus-oriented blocks, SOC sequence learning blocks or sequence-dependent learning blocks involved a sig-
nificant Group × Hand Switch interaction, all p > 0.31, or a significant Group × Switch Direction interaction, all 
p > 0.63. In sum, Gln did not affect MRT in any of the SRT blocks.

Gln Placebo p

N, Total 48 43

N, Male:Female 14:34 13:30 0.912

N, Right:Lefthanded 40:8 42:1 0.022

Age, years M (SD) 20.5 (2.5) 20.6 (2.5) 0.904

Weight, kg M (SD) 66.1 (7.7) 65.1 (7.6) 0.531

BMI, kg/m2 M (SD) 21.6 (2.5) 21.9 (2.2) 0.632

Sleep, hours M (SD) 7.3 (1.3) 6.8 (1.2) 0.086

Table 1. Group characteristics.
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Sequence recall. The frequency of participants reporting explicit awareness of a sequence pattern was 
not significantly different between Gln (“Yes” = 36, “No” = 12) and placebo (“Yes” = 34, “No” = 9) groups 
X2(91) = 0.21, p = 0.65. The number of sequence chunks recalled did not significantly differ between Gln 
(M = 1.04, SD = 0.54) and placebo groups (M = 1.00, SD = 0.56, p = 0.72). Similarly, the average length of 
sequence chunks recalled did not significantly differ between Gln (M = 4.65, SD = 2.70) and placebo groups 
(M = 4.91, SD = 2.87, p = 0.66). In sum, Gln did not seem to affect measures of sequence recall.

Discussion
The present paper is one of the first to report proof-of-principle that the amino-acid Gln, the precursor of the 
brain’s main excitatory neurotransmitter Glu and inhibitory neurotransmitter GABA8, 9, modulates cogni-
tive function related to response selection but not sequence learning. Specifically, Gln administration led to an 
overall increase in response selection errors in both stimulus-oriented and SOC sequence-learning blocks of an 
SRT task without affecting sequence-dependent learning or sequence recall, suggesting Gln affected primarily 
stimulus-based rather than plan-based control40. More specifically, Gln impaired performance when the hand 
required to carry out the target response differed on the current and preceding trial, indicating Gln primarily 
affected the laterality of response selection processes. This raises the possibility that Gln, via a presumed increase 
in Glu, enhanced the lateral motor activation associated with the most recent target response, which presented 
conflict when the next trial required the other hand to press the correct key. This notion is indirectly supported 
by findings on GABA and the Simon task28, 29 that suggest increased cortical inhibition benefits processing of 
laterality of responses. The opposite, that is an impairment in processing the laterality of responses, might then 
be expected when cortical inhibition is reduced by Glu. Consistent with this idea, heightened cortical excita-
bility has been hypothesized to account for impaired response selection by facilitating activation of competing 
responses20. Furthermore, it is interesting to note the increase in response selection errors emerged only after 
the first two (stimulus-oriented) blocks, indicating Gln might have affected performance only after initial task 
familiarization when participants might start responding with less deliberation and instead perform more auto-
matically. On the other hand, the Gln effect seems to have worn off near the end of the task, suggesting that at 
this point Gln may have been metabolized down to levels that no longer influenced behaviour or participants in 
the Gln condition could overcome the effect on response selection with sufficient training. It is also important to 
note the Gln-induced increase in response errors was not due to a speed-accuracy trade-off, as response latencies 

Figure 1. Mean REP (top panel) and MRT (bottom panel) as a function of block and group (Gln vs. placebo). 
‘SOC’ refers to an SOC sequence block and ‘R’ refers to a random sequence block. Bars represent standard error 
of the means.
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were unaffected. In sum, the present study provides first evidence indicating Gln administration can modulate 
cognitive-behavioural performance by enhancing cortical excitability.

Whereas Gln seems to have affected response selection processes in both stimulus-oriented (random) and 
SOC blocks, its effects did not seem to extend to sequence-dependent learning. This might tentatively indicate 
that LTP-driven plasticity was not altered despite the presumed increase in cortical excitation. For now we can 
only speculate on the reason for this selectivity. First, it might be our Gln dose of 2.0 g was too low to induce 
changes in synaptic plasticity. Previous studies that mainly focused on Gln’s positive effects on gastrointestinal 
function administered daily doses of 10 g or more41–43, which exceeds the average daily intake of 3–6 g Gln44 and is 
5 or more times our dose of 2.0 g. It remains unclear whether a higher dose could lead to a more pronounced and 
longer-lasting cognitive response, hence future studies might systematically vary Gln dose to clarify this issue. 
Second, Gln might have affected response selection but not sequence-dependent learning because of regional 
specificity, in line with reports of regionally-specific effects of GABA12, 21, 27. Although this remains speculative, 
perhaps Gln at a dose of 2.0 g primarily affected response conflict and impulsivity in the prefrontal cortex without 
affecting sequence-dependent learning mediated by motor area M133. Future studies could employ MRS to assess 
whether Gln has dissociable effects on Glu and GABA levels in different regions. Third, in the present study three 
random, stimulus-oriented blocks were always presented before twelve SOC blocks. This order of presentation 
might have predisposed participants to stimulus-based rather than plan-based control and discouraged sequence 
learning in SOC blocks, limiting the possibility of finding an effect of Gln on plan-based control. Hence, whereas 
this study presented the random blocks after Gln administration and immediately before starting the SOC blocks, 
future studies may wish to present the first random blocks before Gln administration to render them more as task 
familiarization, or systematically vary the order in which the blocks are presented.

The lack of previous studies with Gln and cognitive-behavioural performance made it difficult to predict a 
priori the direction in which Gln would enhance performance. However, the present results may form a basis for 
novel hypotheses that can be tested in the future and thereby provide converging evidence that Gln modulates 
performance via increased cortical excitability. For example response inhibition, i.e. the ability to withhold pre-
potent responses, seems to benefit from increased cortical inhibition due to increased GABA levels45, 46. Similarly, 
higher GABA levels have been associated with less impulsivity21. This suggests the opposite, that is an impairment 
in response inhibition and increase in impulsivity, might occur when cortical excitability is enhanced due to 
Gln-induced increases in Glu levels. Hence a study showing Gln reduces response inhibition efficiency and/or 
increases impulsivity would converge on the idea Gln enhances cortical excitability.

The present study employed a between-subjects design because asking participants whether they noticed a 
response sequence in the SRT task is likely to affect subsequent task performance. Because of the between-subjects 
design, one might argue our results are simply due to baseline group differences in response selection efficiency 
rather than due to the Gln administration. Although we argue this is unlikely with our sample size that is larger 
than in most amino-acid precursor studies, this is not to say such alternative explanations of our data are impos-
sible. Therefore, future studies may wish to exclude the possibility of pre-existing group differences by i) using 
tasks that allow for a within-subjects design, ii) assessing baseline response selection performance and iii) taking 
pre and post-administration measurements of cortical excitability, for example by using motor-evoked potentials 
(MEP) to assess both pre-existing differences and Gln-induced changes in cortical excitability. If MEP measure-
ments confirm enhanced excitability of the cortex after Gln administration and if this change would correlate 
with the individual frequency of response selection errors, that would provide strong support for the mechanism 
of action hypothesized in the present study.

It may also be interesting for future studies to consider the role of individual differences in the balance between 
cortical Glu and GABA levels, as variability in this balance rather than the individual neurotransmitter levels has 
previously been shown to predict individual differences in response selection efficiency20. Although the present 
study suggests Gln administration at a group level enhanced this balance in favour of Glu, it seems plausible indi-
vidual response to Gln might be predicted by the pre-existing Glu/GABA balance, with Gln perhaps having more 
pronounced or even opposite effects in individuals with a balance highly in favour of Glu or GABA.

Lastly, it is important to consider that the effect of Gln reported here seems to apply to sequential motor con-
trol but not sequence learning, as Gln affected performance similarly in the stimulus-oriented and SOC blocks 
of the SRT task. However, the present version of the SRT task includes relatively few stimulus-oriented blocks, 
which limits the assessment of sequential motor control separately from sequence learning. To disentangle and 
separately investigate these processes, future research should aim to balance the amount of stimulus-oriented and 
SOC blocks47.

To conclude, the present study is the first to investigate Gln administration in healthy adults in relation to 
response selection and sequence learning performance. Results show Gln impairs response selection but does 
not alter sequence learning, suggesting an increase in cortical excitability without affecting synaptic plasticity. As 
such, despite the critical roles of Glu and GABA in motor learning, this study finds no evidence for an effect of 
their precursor on sequence learning performance, but does present first evidence that Gln modulates sequential 
motor control processes.

Methods
Participants. A total of 91 students from Leiden University were recruited to participate for money or course 
credit. Using a double blind, placebo-controlled design, participants were randomly assigned to receive either Gln 
(N = 48) or a neutral placebo (N = 43). See Table 1 for group characteristics. The groups did not differ in terms of 
gender distribution, age, weight, BMI, or hours of sleep the night before the study, but the Gln group did contain 
significantly more left-handed individuals.

Study participation eligibility criteria were based on previous studies on neuromodulation from our lab1, 48–50. 
Specifically, interested individuals were screened for cardiac, hepatic, renal, neurologic or psychiatric disorders, 
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and medication (except oral or implanted contraceptives) or recreational drug use, and those who reported any 
of these conditions were not eligible to participate. Females were only eligible to participate if they used either 
oral or implanted hormonal contraception, to reduce the impact of fluctuating estrogen-dopamine interactions 
on our results51–53.

Prior to participation informed consent was obtained from all participants. The study conformed to the ethical 
standards of the Declaration of Helsinki and the protocol was approved by the local ethical committee (Leiden 
University, Institute for Psychological Research).

Glutamine administration. All doses were prepared and coded by a researcher not involved in running 
the study, to blind the experiment leader to the administered dose. Participants received either 2.0 g Gln or 2.0 g 
microcrystalline cellulose, a neutral placebo, dissolved in 400 mL of orange juice. Given the lack of prior stud-
ies on Gln administration and cognition, this dose was based on previous studies with tyrosine in our lab that 
showed reliable effects1, 54, 55. The dose of 2.0 g is safe and less than the normal daily intake of approximately 3–6 g 
Gln from protein44 and far less than in studies on Gln and gastrointestinal function that administered 10 g or 
more daily41–43.

Serial reaction time task. To assess response selection and sequence learning participants performed a 
standard SRT task37–39 presented using E-Prime 2.0 software (Psychology Software Tools, Inc., Pittsburgh, PA, 
USA). In this task four horizontally-aligned empty squares were presented in the centre of the screen. On each 
trial one of the squares turns red and the participant must press a corresponding button on the QWERTY key-
board (from left to right: V, B, N, M) using the index and middle fingers of the left (V, B) and right (N, M) 
hand. An error sound is presented if the wrong button is pressed, along with the Dutch words “Verkeerde toets!” 
(“Wrong button!”). Reaction time (RT) is measured in milliseconds as the latency in the key press to the stimulus 
and if RT exceeds 3,000 ms, the Dutch words “Te langzaam!” (“Too slow!”) are presented. Following the response, 
the four empty squares appear for a 50 ms response-stimulus interval before the next stimulus is presented. 
Participants were instructed that accuracy and response speed were equally important in the task. Participants 
first completed three random sequence blocks, then twelve SOC sequence learning blocks in which responses 
followed a 12-item SOC sequence (VBVNMBNVMNBM56), which was cycled through ten times in each block. 
To determine sequence dependence or the serial effect as opposed to general practice effects, a random-ordered 
block was inserted followed by a final block that re-introduced the SOC sequence. The sudden introduction of a 
random response sequence likely interferes with the anticipation of responses in a plan-based action control style, 
requiring an abrupt shift to stimulus-oriented control. Hence RT and response errors are expected to sharply 
increase in the random block57 but performance is expected to recover when the sequence is reintroduced in 
the final SOC block. All blocks contained 120 trials and after completion of each block performance feedback 
indicating number of errors and mean RT was presented followed by a 30 s rest interval. Following completion of 
the final block, participants were asked to respond “Yes” or “No” to a question that asked if they noticed a pattern 
in the responses at any point of the task to determine explicit awareness of the serial sequence. When answering 
“Yes”, participants were then asked to use the response keys to produce one cycle of the 12-item sequence as a 
recall test.

Procedure. Participants entered the lab between 9:00 and 10:00 to be tested individually, having fasted over-
night (compare1, 48). Informed consent was obtained, after which they consumed 2.0 g of either Gln or placebo 
dissolved in 400 mL orange juice. Afterwards, apples and oranges were offered to prevent strong hunger. Although 
Gln has been shown to increase in vitro rat brain Glu and GABA levels as soon as 15 minutes11, in line with pre-
vious studies on precursors of neurotransmitters, testing commenced precisely one hour after Gln or placebo 
administration to allow time for plasma and brain Gln levels to increase (compare1, 48, 55). Participants then per-
formed the SRT task, which took approximately 30 minutes. Lastly, participants were debriefed on the nature and 
hypotheses of the study and were compensated and thanked for their participation.

Analysis. For each participant, REP was determined based on the number of error trials (incorrect key press) 
as a percentage of the total number of trials in each block. MRT was then calculated for each participant and each 
block, after removing error trials as well as trials with outlier RT (1.2%) based on RT that was more than 3 stand-
ard deviations above the individual’s overall mean for correct trials. Participant REP and MRT were then sub-
mitted to separate repeated measures ANOVA that i) compared performance between Gln and placebo Groups 
in the first three stimulus-oriented Blocks, ii) compared sequence learning between Gln and placebo Groups in 
SOC Blocks 1–11, and iii) compared sequence-dependent learning in Gln and placebo Groups across Blocks 12 
(SOC), 13 (random) and 14 (SOC). Although others39, 57 proposed averaging performance over SOC Blocks 12 
and 14 before comparison with random Block 13, performance in Block 14 might still suffer from interference 
by the previous random block. As such, we argue that comparing all three blocks can provide a clearer picture of 
how performance is affected by the introduction of the random block. Explicit sequence awareness frequency was 
compared between Gln and placebo groups using Χ2 analysis. Sequence recall was analysed based on a response 
chunking approach58–60. The presence of chunks of the training SOC sequence was determined for each partic-
ipant with chunk lengths ranging between 4 to 12 items. The probability of entering the smallest chunk length, 
a 4-item chunk, by chance was calculated as 11% (0.33 × 0.33) given that there are no consecutive repetitions in 
the SOC sequence structure61. To identify any matches between the participant’s recalled sequence and the target 
sequence, the participant’s sequence was divided into chunks made up of between 4 and 12 items. These chunks 
could commence with any sequence item, with the condition that the end of the sequence could not be extended 
to the initial sequence items since the participant’s chunk needed to be contiguous. The target sequence was also 
divided into chunk lengths of between 4 and 12 items, however, here these chunks could start with any item in the 
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sequence and continue on to include items at the beginning of the sequence. Continuing the chunks past the end 
of the SOC sequence reflects the repeating nature of the sequence, meaning the participant could have treated the 
commencement of a chunk at any point of the repeated sequence. Performance on chunk recall of the sequence 
was based on the number of matched chunks and mean length of the matched chunks for each participant. Only 
the longest chunk was recorded as a match and matched chunks were only recorded once in the event the partic-
ipant repeated the same chunk. As the 12-item sequence recall allows for 9 possible 4-item chunks, a participant 
would be expected to recall approximately 1 valid 4-item chunk by chance (9 × 0.11). Participant’s recalled chunk 
count and mean chunk length were separately submitted to ANOVA for Group comparisons. All repeated meas-
ures analyses use Greenhouse-Geisser correction when the sphericity assumption was violated and all post-hoc 
comparisons use Fisher’s LSD adjustment. For all tests a significance threshold of 0.05 was adopted.

Random ordering of responses in the first three stimulus-oriented blocks and random Block 13 could have 
introduced group differences in the number of reversal trials resulting in MRT performance artefacts47, 56. A 
reversal trial occurs when the third trial of any three consecutive trails involves the same target response as the 
first trial (e.g., VBV47). With respect to the number of reversal trials in the first three stimulus-oriented blocks, 
there was a non-significant effect of Group (p = 0.21) and a non-significant Group × Block interaction (p = 0.13). 
In addition, the number of reversal trials in Block 13 did not significantly differ between Groups (p = 0.12). 
In stimulus-oriented blocks, MRT was significantly longer in reversal trials than in non-reversal trials, F(1, 
89) = 145.8, p < 0.0001, partial η2 = 0.62, however, there was a non-significant Group × Reversal Trial interaction 
(p = 0.68) and a non-significant Group × Reversal Trial × Block interaction (p = 0.61). In SOC blocks, MRT 
was significantly longer in reversal trials than in non-reversal trials, F(1, 89) = 24.5, p < 0.0001, partial η2 = 0.22, 
however, there was again a non-significant Group × Reversal Trial interaction (p = 0.56) and a non-significant 
Group × Reversal Trial × Block interaction (p = 0.89). This indicates any group differences in these blocks are not 
confounded by differences in the number of reversal trials.
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