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The massless fermions of aWeyl semimetal come in two species of opposite chirality, in two cones of the
band structure. As a consequence, the current j induced in one Weyl cone by a magnetic field B [the chiral
magnetic effect (CME)] is canceled in equilibrium by an opposite current in the other cone. Here, we show
that superconductivity offers a way to avoid this cancellation, by means of a flux bias that gaps out a Weyl
cone jointly with its particle-hole conjugate. The remaining gapless Weyl cone and its particle-hole
conjugate represent a single fermionic species, with renormalized charge e� and a single chirality � set by
the sign of the flux bias. As a consequence, the CME is no longer canceled in equilibrium but appears as a
supercurrent response ∂j=∂B ¼ �ðe�e=h2Þμ along the magnetic field at chemical potential μ.
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Introduction.—Massless spin-1=2 particles, the so-called
Weyl fermions, remain unobserved as elementary particles,
but they have now been realized as quasiparticles in a
variety of crystals known as Weyl semimetals [1–5]. Weyl
fermions appear in pairs of left-handed and right-handed
chirality, occupying a pair of cones in the Brillouin zone.
The pairing is enforced by the chiral anomaly [6]: A
magnetic field induces a current of electrons in a Weyl
cone, flowing along the field lines in the chiral zeroth
Landau level. The current in the Weyl cone of one chirality
has to be canceled by a current in the Weyl cone of opposite
chirality to ensure zero net current in equilibrium. The
generation of an electrical current density j along an applied
magnetic field B, the so-called chiral magnetic effect
(CME) [7,8], has been observed as a dynamic, nonequili-
brium phenomenon [9–13]—but it cannot be realized in
equilibrium because of the fermion doubling [14–24].
Here, we present a method by which single-cone physics

may be accessed in a superconducting Weyl semimetal,
allowing for observation of the CME in equilibrium. The
geometry is shown in Fig. 1. Application of a flux bias gaps
out all but a single particle-hole conjugate pair of Weyl
cones, of a single chirality� set by the sign of the flux bias.
At nonzero chemical potential μ, one of the two Weyl
points sinks in the Cooper pair sea, the chiral anomaly is no
longer canceled, and we find an equilibrium response
∂j=∂B ¼ �ðe�e=h2Þμ, with e� the charge expectation
value at the Weyl point.
We stress that the CME in a superconductor is not in

violation of thermodynamics, which only demands a
vanishing heat current in equilibrium. Indeed, in previous
work on magnetically induced currents [25–27], it was
shown that the fundamental principles of Onsager sym-
metry and gauge invariance forbid a linear relation between
j and B in equilibrium. However, in a superconductor, the

gauge symmetry is broken at a fixed phase of the order
parameter, opening the door for the CME.
Pathway to single-cone physics.—First, we explain the

mechanism by which a superconductor provides access to
single-cone physics. A pair of Weyl cones at momenta�k0
of opposite chirality has the Hamiltonian [28]

H ¼ 1

2
vF

X
k

½ψ†
kðk − k0Þ · σψk − ϕ†

kðkþ k0Þ · σϕk�; ð1Þ

where k · σ ¼ kxσx þ kyσy þ kzσz is the sum over Pauli
matrices acting on the spinor operators ψ and ϕ of left-
handed and right-handedWeyl fermions. The Fermivelocity
is vF and we set ℏ≡ 1 (but keep h in the formula for
the CME).
If H would be the Bogoliubov–de Gennes (BDG)

Hamiltonian of a superconductor, particle-hole symmetry

FIG. 1. Left panel: Slab of a Weyl superconductor subject to a
magnetic field B in the plane of the slab (thicknessW less than the
London penetration depth). The equilibrium chiral magnetic effect
manifests itself as a current response ∂j=∂B ¼ �κðe=hÞ2μ along
the field lines, with κ a charge renormalization factor and μ the
equilibrium chemical potential. The right panel shows the flux-
biased measurement circuit and the charge-conjugate pair of Weyl
cones responsible for the effect, of a single chirality� determined
by the sign of the flux bias.
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would require that ϕk ¼ σyψ
†
−k. With the help of the matrix

identity σyσασy ¼ −σ�α and the anticommutator ψσ�αψ† ¼
−ψ†σαψ , we rewrite Eq. (1) as

H ¼ 1

2
vF

X
k

½ψ†
kðk − k0Þ · σψk − ψ†

−kðkþ k0Þ · σψ−k�

¼ vF
X
k

ψ†
kðk − k0Þ · σψk; ð2Þ

producing a single-cone Hamiltonian. Then, if we hypo-
thetically impose a magnetic field B ¼ ∇ × A via
k ↦ k − eA, the zeroth Landau level carries a current
density j ¼ ðe=hÞ2μB in an energy interval μ. This is the
chiral anomaly of an unpaired Weyl cone [6].
Model Hamiltonian of a Weyl superconductor.—As a

minimal model for single-cone physics, we consider the
BDG Hamiltonian [29]

H ¼
X
k

Ψ†
kHðkÞΨk; Ψk ¼ ðψk; σyψ

†
−kÞ; ð3aÞ

HðkÞ ¼
�
H0ðk − eAÞ Δ0

Δ�
0 −σyH�

0ð−k − eAÞσy

�
; ð3bÞ

H0ðkÞ ¼
X
α

τzσα sin kα þ τ0ðβσz − μσ0Þ þmkτxσ0;

mk ¼ m0 þ
X
α

ð1 − cos kαÞ: ð3cÞ

This is a tight-binding model on a simple cubic lattice
(lattice constant a0 ≡ 1, nearest-neighbor hopping energy
t0 ≡ 1, electron charge þe). The Pauli matrices τα and σα,
with α ∈ fx; y; zg, act, respectively, on the orbital and spin
degree of freedom. (The corresponding unit matrices are τ0
and σ0.) Time-reversal symmetry is broken by a magneti-
zation β in the z direction, μ is the chemical potential, A the
vector potential, and Δ0 is the s-wave pair potential.
The single-electron Hamiltonian H0 in the upper-left

block of H is the four-band model [14,30] of a Weyl
semimetal formed from a topological insulator in the
Bi2Se3 family, layered in the x − y plane. For a small
mass term m0 < β, it has a pair of Weyl cones centered at
ð0; 0;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 −m2

0

p
Þ, displaced in the kz direction by the

magnetization. (We retain inversion symmetry, so the Weyl
points line up at the same energy.) A coupling of this pair of
electron Weyl cones to the pair of particle-hole conjugate
Weyl cones in the lower-right block of H is introduced by
the pair potential, which may be realized by alternating the
layers of the topological insulator with a conventional
BCS superconductor [31,32]. (Intrinsic superconducting
order in a doped Weyl semimetal, with more unconven-
tional pair potentials, is an alternative possibility [33–42].)
The superconductor does not gap out the Weyl cones
if Δ0 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 −m2

0

p
.

Flux bias into the single-cone regime.—As explained by
Meng and Balents [31], a Weyl superconductor has
topologically distinct phases characterized by the number
N ∈ f2; 1; 0g of ungapped particle-hole conjugate pairs of
Weyl cones. We propose to tune through the phase
transitions in an externally controllable way by means of
a flux bias, as shown in the circuit of Fig. 1. For a real
Δ0 > 0, the flux biasΦbias enters in the Hamiltonian via the
vector potential component Az ¼ Φbias=L≡ Λ=e. The
Φbias-dependent band structure is shown in Fig. 2, calcu-
lated [43] in a slab geometry with hard-wall boundaries
at x ¼ �W=2 and periodic boundary conditions at
y ¼ �W0=2 (sending W0 → ∞).
The two pairs of particle-hole conjugate Weyl cones are

centered at ð0; 0; K�Þ and ð0; 0;−K�Þ, with

K2
� ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 −m2

0

q
� Λ

�
2

− Δ2
0: ð4Þ

We have assumed Λ, K� ≪ 1, so the Weyl cones are near
the center of the Brillouin zone. A cone is gapped when K�
becomes imaginary; hence, the N ¼ 1 phase is entered
with increasing Λ > 0 whenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2 −m2
0

q
þ Λ > Δ0 >

���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 −m2

0

q
− Λ

���: ð5Þ
This is the regime in which we can observe the CME of an
unpaired Weyl cone, as we will show in the following.
Magnetic response of a unpaired Weyl cone.—We

assume that the slab is thinner than the London penetration
depth so that we can impose an unscreened magnetic field
Bz in the z direction [44,45]. The vector potential, including
the flux bias, is A ¼ ð0; xBz;Λ=eÞ. To explain in the

(a) (b) (c)

FIG. 2. Effect of a flux bias on the band structure of a Weyl
superconductor. The plots are calculated from the Hamiltonian
(3) in the slab geometry of Fig. 1 (parameters:m0 ¼ 0, Δ0 ¼ 0.2,
β ¼ 0.5, μ ¼ −0.05, ky ¼ 0, W ¼ 100, Bz ¼ 0). The color scale
indicates the charge expectation value, to distinguish electronlike
and holelike cones. As the flux bias is increased from Λ ¼ 0 in
panel (a), to Λ ¼ 0.1 and 0.4 in panels (b) and (c), one electron-
hole pair of Weyl cones merges and is gapped by the pair
potential. What remains in panel (c) is a single pair of charge-
conjugate Weyl cones, connected by a surface Fermi arc. This is
the phase that supports a chiral magnetic effect in equilibrium.
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simplest terms how single-cone physics emerges, we
linearize in k and A and set m0 ¼ 0, so the mass term
mk can be ignored. (All nonlinearities will be fully included
later on [46]).
The Hamiltonian (3) is approximately block diagonal-

ized by the Bogoliubov transformation

~ψk ¼ cosðθk=2Þψk þ i sinðθk=2Þτzσxψ†
−k;

~H ¼ U†HU; U ¼ exp

�
1

2
iθkνyτzσz

�
; ð6Þ

where the Pauli matrix να acts on the particle-hole degree of
freedom. If we choose the kz-dependent angle θk such that

cos θk ¼ − sin kz=Δk; sin θk ¼ Δ0=Δk;

Δk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

0 þ sin2kz

q
; ð7Þ

the gapless particle-hole conjugate Weyl points at k2z ¼
K2þ ≈ 2Δ0ðβ þ Λ − Δ0Þ ≪ 1 are predominantly contained
in the ðν; τÞ ¼ ð−;−Þ block of ~H. Projection onto this block
gives the low-energy Hamiltonian

~H ¼
X
k

~ψ†
k

hX
α

vαðδkα − qαAαÞσα − q0μσ0
i
~ψk; ð8Þ

where k ¼ ð0; 0; KþÞ þ δk, v ¼ ð1; 1;−κÞ, q0 ¼ κ,
q ¼ ðκe; κe; e=κÞ, and

κ ≈ Kþ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

0 þ K2þ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ2

0=ðβ þ ΛÞ2
q

: ð9Þ

Equation (8) represents a single-cone Hamiltonian of the
form (2), with a renormalized velocity vα and charge qα. As
a consequence, the CME formula for the equilibrium
current density jz is renormalized into [47]

∂jz
∂Bz

¼ qyqz
h2

q0μ ¼ e�e
h2

μ; e� ¼ κe: ð10Þ

The renormalization of v does not enter because the CME is
independent of the Fermi velocity. One can understand why
the product e�e appears rather than the more intuitive ðe�Þ2,
by noticing that ∂jz=∂Bz changes sign upon inversion of
the momentum—hence, only odd powers of κ ∝ Kþ are
permitted.
Consistency of a nonzero equilibrium electrical current

and vanishing particle current.—For thermodynamic con-
sistency, to avoid heat transport at zero temperature, the
CME should not produce a particle current in the super-
conductor. The flow of charge e� particles in the z direction
should, therefore, be canceled by a charge-neutral counter-
flow. This counterflow is provided by the surface Fermi arc,
as illustrated in Fig. 3. The Fermi arc is the band of surface
states connecting the Weyl cones [48,50], to ensure that the
chirality of the zeroth Landau level does not produce an
excess number of left movers over right movers. In a Weyl
superconductor, one can distinguish a trivial or nontrivial
connectivity, depending on whether the Fermi arc connects
cones of the same or of opposite charge [29,51]. Here, the
connectivity is necessarily nontrivial because there is only a
single pair of charge-conjugate Weyl cones. As a conse-
quence, the Fermi arc is approximately charge neutral near
the Fermi level (near E ¼ 0), so it can cancel the particle
current without canceling the charge current [52].
We stress the essential role played by superconductivity,

which separates the electronic transport of heat from the
transport of charge: A cancellation of a particle current in
the bulk by a particle current at the surface is possible
without superconductivity, but then, the charge current is
also canceled. (For such a spatial separation of counter-
propagating particle currents in the normal state, see
Refs. [53–55]).

(a) (b) (c)

FIG. 3. Chirality switch of a pair of charge-conjugate Weyl cones, induced by a sign change of the flux bias Λ ¼ −0.45, 0.15, and 0.45
in panels (a), (b), and (c), respectively. All other parameters are the same in each panel: m0 ¼ 0, Δ0 ¼ 0.6, β ¼ 0.5, W ¼ 100, ky ¼ 0,
μ ¼ −0.05, and Bz ¼ 0.001a−20 h=e. The charge color scale of the band structure is as in Fig. 2. Particles in the zeroth Landau level
propagate through the bulk in the same direction both in the electronlike cone and in the holelike cone, as determined by the chirality
χ ¼ −signΛ [49]. A net charge current appears in equilibrium because μ < 0, so there is an excess of electronlike states at E > 0. [States
at E < 0 do not contribute to the equilibrium current (11).] The particle current is canceled by the Fermi arc that connects the charge-
conjugate Weyl cones. The Fermi arc carries an approximately neutral current; hence, the charge current in the chiral Landau level is not
much affected by the counterflow of particles in the Fermi arc.
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Numerical simulation.—We have tested these analytical
considerations in a numerical simulation of the model
Hamiltonian (3), in the slab geometry of Fig. 1. At
temperature T, the equilibrium current is given by [56]

Iz ¼
1

2

X
n;m

Z
dkz
2π

tanh

�
Enm

2kBT

�
ΘðEnmÞ

∂Enm

∂Az
; ð11Þ

where ΘðEÞ is the unit step function and the prefactor of
1=2 takes care of a double counting in the BDG
Hamiltonian H. The eigenvalues EnmðkzÞ of H are labeled
by a pair of mode indices n, m for motion in the x-y plane
transverse to the current. In Fig. 4, we show results for the
current density jz ¼ Iz=WW0 in the T ¼ 0 limit, including
a small thermal broadening in the numerics to improve the
stability of the calculation.
We see that the numerical data are well described by the

analytical result (10), with the charge renormalization
factor κ ¼ 0.775 from Eq. (9). That analytical formula
was derived upon linearization in k and A. A more accurate
calculation [46], that includes the nonlinear terms in the
BDG Hamiltonian, gives κ ¼ 0.750, so the simple for-
mula (9) is quite accurate.
Extensions.—We mention extension of our findings

that may help in observing the equilibrium CME in an
experiment. A first extension is to smaller flux biases in the
N ¼ 2 regime, when two pairs of charge-conjugate cones
remain gapless. The supercurrent is then given by

∂jz
∂Bz

¼ ðκþ − κ−Þ
e2

h2
μ; κ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ2

0=ðβ � ΛÞ2
q

;

ð12Þ

so the CME can be observed without fully gapping out one
pair of cones.
A second extension is to a current-biased, rather than

flux-biased circuit, with the applied magnetic field By
perpendicular to the current bias j0 in the z direction.
The current bias then drives the Weyl superconductor into
the N ¼ 1 phase via the vector potential component
Az ¼ μ0λ

2j0 ≡ Λ=e, with λ the London penetration depth
[56]. The analytical theory for this alternative configuration
is more complicated, and not given here, but numerical
results are shown in Fig. 5. While the effect is smaller than
in the flux-biased configuration, it is not superimposed on a
large background supercurrent so it might be more easily
observed.
A third extension concerns the inclusion of disorder. Our

analysis is simplified by the assumption of a clean slab,
without disorder. We expect that the chirality of the zeroth
Landau level will protect the equilibrium CME from
degradation by impurity scattering, in much the same
way as the nonequilibrium CME is protected.
Conclusion.—We have shown how the chiral anomaly of

an unpaired Weyl cone can be accessed in equilibrium in a
superconducting Weyl semimetal. A flux bias drives the
system to a state with a single charge-conjugate pair of
Weyl cones, that responds to an applied magnetic field as a
single species of Weyl fermions. The cancellation of the
CME for left-handed and right-handed Weyl fermions is
removed, resulting in an equilibrium current along the field
lines. The predicted size of the induced current is the same
as that of the nonequilibrium CME, up to a charge
renormalization of order unity, and since that dynamical
effect has been observed [9–13], the static counterpart
should be observable as well—perhaps even more easily
because decoherence and relaxation play no role.

FIG. 4. Data points: numerical calculation of the equilibrium
supercurrent in the flux-biased circuit of Fig. 1. The parameters
are m0 ¼ 0, Δ0 ¼ 0.6, β ¼ 0.5, Λ ¼ 0.45, W ¼ 100, and
kBT ¼ 0.01; the green data points are for a fixed μ with a
variation of Bz and the blue points are for a fixed Bz with a
variation of μ. The data are antisymmetrized, as indicated, to
eliminate the background supercurrent from the flux bias. The
solid curves are the analytical prediction (10), with κ ¼ 0.775
following directly from Eq. (9) (no fit parameters). The Bz-
dependent data is also shown with a zoom in to very small
magnetic fields, down to 10−7a−20 h=e, to demonstrate that the
linear Bz dependence continues when lm > W.

FIG. 5. Same as Fig. 4 but using the current-biased circuit
shown in the inset. No antisymmetrization of the data is needed
because the measured current is perpendicular to the current bias.
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In closing, we note that the chiral anomaly in a crystal
was originally proposed [6] as a condensed matter reali-
zation of an effect from relativistic quantum mechanics and
has since been an inspiration in particle physics and
cosmology [57–60]. The doorway to single-cone physics
that we have opened here might well play a similar role.
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