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Abstract

An analogy is pointed out between a polymer chain fluctuating in a
two-dimensional nematic background and a freely floating material line
buffeted by a two-dimensional turbulent fluid in the inertial (Kraichnan)
regime. Under certain conditions, the back-reaction of the line on the
turbulent flow may be neglected. The fractal exponent related to the
size-contour relation of the material line is connected to a “nematic” cor-
relation function in the bulk.

Theories of turbulence generally focus on the properties of correlation func-
tions rather than make an attempt to solve the Navier-Stokes equation as such
[1, 2, 3]. If we restrict ourselves to two dimensions [2D], it is the inertial regimes
that are important at asymptotically high Reynolds numbers, at scales larger
than the Kraichnan dissipation length λk [4, 5]. These regimes have been stud-
ied experimentally in soap films flowing under gravity in set-ups that allow for
continuous operations [6]. An interesting correlation function was measured a
decade ago [7]. A thin column of water was injected in a turbulent soap film:
this could be viewed as a material line being deformed by the 2D turbulence.
Amarouchene and Kellay succeeded in measuring the configurational statistics
of the evolving fluctuating line [7]. Here, I attempt to connect the line corre-
lation function to that of the bulk turbulence albeit under conditions without
symmetry breaking.

The problem is reminiscent of a polymer chain being deformed by a nematic
matrix in two dimensions [8, 9]. Let us recall the argumentation used to connect
the polymer correlation function with the underlying nematic correlations in
the limit of strong coupling. The latter are expressed in terms of the director
−→n (−→r ) ≡ exp[i θ(−→r )] where the angle θ(−→r ) is defined in the 2D complex plane
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as a function of −→r

〈−→n (−→r ) · −→n (−→r ′) 〉n = 〈 eiθ(
−→r )e−iθ(−→r ′) 〉n ∽ |−→r −−→r ′|

−η
(1)

Here, the average is that defined in thermodynamic equilibrium and the orien-
tational order decays algebraically [9], as is well known. The 2D wormlike chain
embedded in the nematic is defined by z(s) = x(s) + i y(s) where s is a point
on the contour from one end (0 ≤ s ≤ N). Because of the strong coupling, the
chain is slaved to the nematic. The effective Hamiltonian H is a functional of
z and −→n and consists of the bending energy of the chain, the free energy of the
fluctuating nematic and a term signifying the strong coupling of the chain to
the nematic as discussed by Nelson et al. [8, 9] (for a qualitative treatment of
the enslavement, see the Appendix). We have

dz

ds
= eiθ(s) (2)

where the right-hand-side is conveniently regarded as a functional of z(s). We
therefore obtain

〈 |z(s)− z(s′)|2 〉nc =

N
∫

0

ds

N
∫

0

ds′ 〈 |eiθ[z(s)]e−iθ[z(s′)]| 〉nc (3)

The index nc denotes that two averages have been employed within a canonical
ensemble, that is including a factor exp(−H/kBT ) where kB is Boltzmann’s
constant and T is the temperature. One average is a functional integration
over fluctuations in the nematic (n), the other is a functional integration over
chain configurations (c). Inserting eq (1) into eq (3), we end up with an integral
equation. Upon setting z(N) ∽ Nν , we conclude that [8, 9]

ν =
2

2 + η
(4)

It is remarkable that this expression is derived without having to use the prob-
ability exp(−H/kBT ) itself [8, 9]. The problem is whether an expression akin
to eq (4) is also valid for a material line in a 2D turbulent field.

A chain of length N and mass mc immersed in a 2D Navier-Stokes fluid
behaves like an unattached, one-dimensional flag acting on a fluid area of typical
size N2. One relevant dimensionless parameter R1 = mc/N

2ρf with ρf the fluid
density occurs in the theory of a singly attached flag flapping in an Euler fluid
[10]. A second parameter R2 may be viewed as a non-dimensionalized bending
energy. The bending energy Ub is of order BN/R2

c where Rc is the typical
radius of curvature Rc of the bent flag and B is the bending force constant.
The bending energy is at most B/N so that the elastic energy density scales
as B/N3. We have to compare this with the fluid Reynolds stress ρfU

2 where
U is a typical velocity of the flag with respect to some background at the far
field. We therefore have R2 = B/ρfU

2N3. We wish to consider the limit where
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the back reaction of the flag on the fluid is negligible. Von Karman vortices
arising at the two ends (when the flag is free) have little effect when R2 ≫ R1

[10, 11]. On the other hand, an energy criterion R2 ≪ 1 has been introduced by
de Gennes [12] to ascertain when passive advection is valid in three dimensions.
This criterion has also been applied to 2D turbulent flows [13]. A regime with
both R2 ≫ R1 and R2 ≪ 1 is easily realizable according to fig 3 of ref. [10].

Of course, a Navier-Stokes fluid is definitely not an Euler fluid even as the
kinematic viscosity goes to zero [14] but let us focus on the enstrophy cascade at
very high Reynolds numbers. The turbulence is stationary and homogeneous.
The rate of dissipation at scales smaller than the injection scale is χ = d〈ω2〉h/dt
where 〈〉h represents an average over an ensemble of realizations of the vorticity
ω(−→r , t) [5]. The inertial regime is here between λk and the injection scale; it is
scaleless. A material line swaying in the fluid has a viscous boundary layer of
size λk along its length. At a distance l from this line, the largest eddy must
be of order l (at least if the radius of curvature Rc is not too small). But the
typical time scale of all the eddies including those in the turbulent boundary
layer must be χ−1/3. If we suppose a power law for the material line holds
again: R ∼ Nνh , passive advection implies full enslavement of the material line
to the flow in the enstrophy cascade regime. I again stress that nowhere in the
above analysis of the nematic problem leading to eq (4) is explicit use made of
a probability function within a canonical ensemble. Hence, one may apply the
identical argumentation to a 2D turbulent stationary state with an unknown
probability function pertaining to that state. Thus, we simply follow the above
line of reasoning to write

νh =
2

2 + ηh
(5)

where the exponent is defined in terms of the hydrodynamic velocity −→v (−→r ) ≡
v(−→r )−→n (−→r ) which defines a “polar” director −→n (−→r )

〈−→n (−→r ) · −→n (−→r ′) 〉h ∽ |−→r −−→r ′|
−ηh (6)

The amplitude of the velocity vector is v(−→r ) and the index h denotes an average
over an ensemble of stationary states.

The orientational correlation function given by eq (6) appears to have never
been computed; in principle, it may hold on general grounds in two dimensions
since the Kraichnan regime is scaleless. In the experiments by Amarouchene and
Kelly [7], the soap film flows on average in the y direction under gravity. The
fluctuation h(y) of the injected material line consisting of pure water is measured
in the direction perpendicular to the y axis. Thus, it is expedient to focus on
the correlation or structure functions 〈|δh(r)|n〉h with δh(r) ≡ h(y + r) − h(y).
For n = 2, this function scales empirically as rξn where the exponent ξn is
close to 2 at low rates of flow where the coherent vortices appearing in the
2D fluid are ordered. At higher rates of flow, the 2D film becomes turbulent
and the coherent vortices are scattered throughout the turbulent background
in a disordered manner. The exponent ξ2 ultimately reaches a value of about
1.5 continuously until anomalies start to occur related to the integrity of the
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material line. In fig 1 of ref. [7], the line seems to be attracted to coherent
vortices here and there.

Although this issue was not investigated, it is probably safe to posit that the
line fluctuations are isotropic implying ξ2 ≡ 2νh. Accordingly, νh would range
from unity at low rates of flow to about 3/4 at high rates. The relation between
the exponent νh and ηh given by eq (5) can be tested purely empirically as
suggested by Hamid Kellay (private communication). In ref. [7], the exponent
ξ2 is a function of the Reynolds number but this may not mean much; the
turbulence in the inertial Kraichnan regime could be fully developed whereas the
coherent vortices and their distribution could well still depend on the viscosity
of the soap film. Another potential problem in the scaling analysis is that the
dimensionless coefficients R1 and R2 may need to be renormalized if a power
law for the chain size R(N) is posited. Nevertheless, the interaction between the
material line and the Kraichnan fluid is strongly non-local. The renormalization
may be surmised to be less than in the nematic case where the chain fluctuates
in a heat bath and the stochastic forces on it are essentially point-like.
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Appendix

A qualitative analysis of a wormlike chain fluctuating within an inhomogeneous
nematic in three dimensions (3D) was presented a long time ago [15, 16]. If
the director varies slowly, the chain is basically aligned along it except for small
undulations on the scale of the so-called deflection length λ3 [15]. Let us first
focus, in 2D, on a small region where the director is effectively a constant vector.
The chain of length N is slaved to the director except for fluctuations given by
a Gaussian

H ∽ exp(− 1
2 β φ

2) (A1)

where β≫ 1 and φ is the angle between a small segment of the chain and the
director. In that case λ2 = P/β where P is the 2D persistence length of the
chain (N≫P ).

On the other hand, there is another coupling of the molecules of the pure
nematic given by

G ∽ exp(− 1
2 αψ

2) (A2)

where α≫1 and ψ is the angle between a molecule of length a and the director.
The scale a is viewed as a short-distance cut-off. Within a continuum approxi-
mation we require λ2≫a. Hence, the 2D suspension is bidisperse and consists
of deflection segments of length λ2 interacting with rods of length a. In the 3D
case, one may show that α≫β [17] which is readily extended to the 2D case.
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Next, we consider a much larger 2D space in which the director varies. Both
splay and bend Frank elastic moduli are set equal toK (which is scaled by kBT ).
At large wavelengths, the dimensionless free energy is equivalent to that of the

XY model [18] and is given by 1
2K

∫

d~r |
−→
∇θ|2. The orientational fluctuations

are Gaussian so that eq (1) becomes

〈−→n (−→r ) · −→n (−→r ′) 〉n = exp
(

− 1
2 〈 (Θ(−→r )−Θ(−→r ′))2 〉n

)

(A3)

The second moment is computed via the equipartition theorem

〈 (Θ(−→r )−Θ(−→r ′))2 〉n ≃
1

πK
ln

(

|−→r −−→r ′|

a

)

(A4)

Eqs (1), (A3) and (A4) lead to

η =
1

2πK
(A5)

However, the algebraic decay displayed in eq (1) is only valid when the tem-
perature is below a certain critical temperature as argued by Kosterlitz and
Thouless [18]. At higher temperatures the decay turns out to be exponential.
The exponent η has an upper bound equal to 1/4 in the regime of algebraic
decay.

I next derive scaling relations noting that α is irrelevant as shown above. At
short enough distances (∽ ℓ), the chain must remain enclosed within a triangular
region given by eq (A4). We have

ℓ ≃ exp

(

1

ηβ

)

(A6)

At large distances, the typical degree of inhomogeniety of the nematic ∂θ/∂r is
always smaller than η β1/2/ℓ via eq (A4). Therefore, the worm is slaved to the
director except for undulations on a scale λ2. Eq (A1) then implies

P <
ℓ

η
(A7)

This requirement is easily met at small η. It is noted that the orientational
fluctuations ultimately lead to vortices in view of eq (A4) [18].
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