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We present a minimal bottom-up extension of the Chern-Simons bulk action for holographic
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stationary inhomogeneous black hole solutions in which both the U(1) symmetry and spatially
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novel solution provides a dual description of a superconducting phase intertwined with charge,
current and parity orders.
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Introduction. The explanation of states of matter
that break symmetry spontaneously in circumstances
where quantum effects are dominating has been a tra-
ditional mainstay of condensed matter physics. Famous
examples are the BCS theory of conventional supercon-
ductivity as well as the Peierls theory explaining charge
and spin density waves in terms of the nesting of the
Fermi surface. As an outcome of a long empirical devel-
opment it was discovered that the strongly interacting
systems realized in underdoped cuprate superconductors
seem to realize a remarkably complex form of “inter-
twined” orders [1, 2]. There are indications for exotic,
quantum physical forms of order that are not found else-
where. A first example is the pattern of spontaneous
electronic “orbital” currents encircling the plaquettes of
the copper oxide planes [3–5], while there is definitive
evidence for the breaking of parity [6]. Another exam-
ple is the pair density wave (PDW): a superconducting
state that does break translations in zero magnetic field,
for which experimental evidence was reported in spin-
striped 214 superconductors [7, 8] and very recently in
a charge ordered 2212 “BISCO” superconductor [9]. De-
parting from the established repertoire of condensed mat-
ter theories it appears to be quite difficult to explain the
origin for the observed patterns of symmetry breaking in
cuprates [10, 11]. The details of the conventional sym-
metry breaking (like the periodicity of the charge order)
are far from being understood [1], while a convincing ex-
planation of the mechanisms leading to spontaneous cur-
rents and PDW’s is still lacking. Last but not least, it
appears that these orders occur simultaneously in a spe-
cially orchestrated “intertwined” relationship, for reasons
that are largely mysterious [2].

Holographic duality has a track record as a useful the-
oretical laboratory to explore the rich structure of quan-
tum matter characterized by densely entangled degrees
of freedom [12, 13]. It maps the quantum problem in
the “boundary” onto classical gravitational physics in a
“bulk” space-time with one extra dimension. The rules
of effective field theory (EFT) based on symmetry and
locality are applied to the bulk, and this dualizes in a

set of robust and universal phenomenological theories de-
scribing the physics in the boundary. The application
of holography to condensed matter jump-started by the
discovery of holographic superconductivity [14] showing
that spontaneous symmetry breaking has a stunningly el-
egant gravitational dual [12]: the black holes carry a halo
of charged hair which spontaneously breaks a global U(1)
symmetry of the dual field theory. This shares similar-
ities with BCS superconductivity in the boundary [12],
but yet quite different [15] given that the normal state is
a holographic strange metal [12] instead of a Fermi-liquid.
We will demonstrate here that by further developing the
bulk theory using the EFT rule book, a pattern of inter-
twined order emerges in the boundary sharing intriguing
similarities with those realised in the cuprates. This sug-
gests that the peculiar intertwined nature of the low tem-
perature order may be rooted in the densely entangled
nature of the quantum critical metal. The next ingre-
dient is bulk topological terms – Chern-Simons (CS) [16]
and theta terms [17] in odd and even dimensions, re-
spectively. Intriguingly, these describe the emergence of
spontaneous current order intertwined with the crystalli-
sation of charge.

We present here a minimal extension of the CS type
bulk theory to incorporate holographic superconductiv-
ity. The outcome is that the superconductivity generi-
cally turns into a pair density wave, automatically im-
plying the simultaneous spontaneous breaking of par-
ity [6]. Representative results are shown in Fig. 2 for a
uni-directional and a “tetragonal” crystallization in two
space dimensions. The rules governing these patterns
are most easily inferred from the uni-directional case
Fig. 2(a,b). The charge accumulates in “stripes” (bright
areas panel (b)) where the current densities are maximal.
The currents run in the perpendicular y direction and
these form a staggered pattern with the maxima being
coincident with the maximal charge density, vanishing in
the middle of the low density domains. The superfluid
density (panel (a)) exhibits the same periodicity as the
current order, but it is precisely out-of phase with the
latter: it has nodes where the current and charge density
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are maximal while it oscillates from maximal negative to
positive values in the low density domains. This is pre-
cisely what is meant with a pair density wave. These
rules repeats themselves in the tetragonally (“checker-
board”) ordered case. The charge order (panel (d)) is
now accompanied by spontaneous staggered current pat-
terns [18] similar to the “d-density wave” [19–22], having
quite a history in the condensed matter literature. This
is now accompanied with a 2D PDW having twice the
periodicity of the charge order, changing sign from one
“interstitial” region to the next where it acquires a max-
imum absolute value. Let’s now discuss in more detail
how we arrive at these results.

Gravity setup. Our starting point is a (3+1) di-
mensional gravity theory dual to the (2+1) dimensional
boundary theory containing a gauge field Aµ and two
scalar fields χ and θ, assuming the coordinate system
(t, x, y, z) in which the AdS boundary is located at z = 0:

S =

∫
d4x
√
−g
[
R+ 6− 1

2
∂µχ∂

µχ−F(χ)(∂µθ −Aµ)2

−Z(χ)

4
F 2 − V (χ)− ϑ(χ)εµνλσF

µνFλσ
]
. (1)

Ignoring the fourth term that involves θ this reveals the
canonical holographic mechanism for spontaneous trans-
lational symmetry breaking. One recognises the theta
term ∼ χF ∧ F (with εtxyz =

√
−g) as inspired on top-

down holography by consistent truncation of 11D super-
gravity [23], while fully back-reacted geometries can be
obtained [24–27]. Viewed from a bottom-up perspective,
such a topological term is generic and it can be added to
the bulk in order to respect general symmetry principles.
The topological term has the effect to shift the instability
(BF bound violation in the bulk) to a finite wave vector,
but for this to happen one needs simultaneous “inter-
twined” VEV’s of the currents and the charge density.
This is responsible for the intertwined charge-current or-
der in Fig. 2. We notice that in any other holographic
setup the breaking of translations involves meticulous
fine-tuning, e.g. [28] and in this sense the intertwinement
of charge and current orders follows naturally from holog-
raphy.

Our novelty is to include the θ field, that represents
an easy way to include the minimal coupling of χ to the
gauge field Aµ by a Stückelberg term (known as “Joseph-
son action” in the condensed matter literature). This
has the advantage of admitting less restrictive scalar cou-
plings: in this generalized class of theories the two real
degrees of freedom χ and θ are not necessarily associ-
ated with the magnitude and phase of a complex scalar,
respectively. Holographic superconductors in similar se-
tups have been studied for instance in Refs. [29–33]. The
bulk solution with non-trivial (χ, θ) corresponds to the
U(1) broken phase. Although there is no top-down jus-
tification present available, the structure of this action
suggests a minimal way to merge the superconductivity
and the flux phase. As θ can be absorbed by gauge fixing,

the condensation of the scalar operator dual to χ could
play the role of superconducting order parameter. The
bulk Stückelberg term implies the breaking of U(1) in
the boundary and the presence of the superconducting
condensate is revealed by the characteristic delta func-
tion at zero frequency in the optical conductivity (see
supplementary material [34]).

In this letter we focus on the particular model with

Z(χ) =
1

cosh(
√

3χ)
, V (χ) = 1− cosh(

√
2χ) ,

F(χ) = cosh(χ)− 1 , ϑ(χ) =
1

4
√

3
tanh(

√
3χ) .

(2)

The scalar operator O dual to χ has therefore dimension
2. The normal phase with χ = 0 is described by the AdS
Reissner-Nordström (AdS-RN) black brane [36],

ds2=
1

z2

[
−H(z)dt2 +

1

H(z)
dz2 + (dx2 + dy2)

]
, (3)

H(z)= (1− z)
(

1 + z + z2 − µ2z3

4

)
, At = µ(1− z) ,

where µ is the chemical potential, rescaling the coordi-
nates so that the horizon is at z = 1. The temperature
is given by T/µ = (12 − µ2)/16πµ. Departing from the
extremal RN AdS2 ×R2 background it follows from per-
turbative analysis that a homogeneous U(1) broken so-
lution is excluded for the model (2) [37]. The last term
plays a crucial role, imposing that the breaking of the
U(1) symmetry goes hand-in-hand with the breaking of
translational invariance. It follows immediately from this
bulk action that parity is broken as well in the simultane-
ous presence of the superconducting, charge and current
orders with a VEV proportional to the U(1) order pa-
rameter [34].
Intertwined Black holes. Let us now construct the

inhomogeneous intertwined black holes, focussing first
on the uni-directional “striped” solutions. The proce-
dure leading to the fully crystallised solutions is just a
straightforward generalisation involving two spatial di-
rections. We seek for uni-directional solutions within the
following ansatz,

ds2 =
1

z2

[
−H(z)U1dt

2 +
U2

H(z)
dz2 + U3(dx+ z2U5dz)

2

+U4(dy + (1− z)U6dt)
2
]
, (4)

A =At dt+Ay dy , χ = z ψ ,

with nine functions (ψ,At, Ay, Ui), i = 1, ..., 6, depending
on z and the spatial coordinate x involved in the symme-
try breaking, while H(z) is given in eq. (3). This results
in a system of equations of motion involving 9 PDE’s in
terms of the variables z and x. We employ the DeTurck
method [38] to solve the system. For the tetragonal case
we deal with 15 functions that all depend on the radial
coordinate z and two spatial coordinates (x, y). To solve
such a set of cohomogeneity-three PDE’s is challenging
due to a dramatic increase in computational complexity.
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Spontaneous symmetry breaking means that all
sources should be turned off, while fixing the boundary
metric to be asymptotically AdS at the UV boundary
z = 0,

U1(0, x) = U2(0, x) = U3(0, x) = U4(0, x) = 1 , (5)

ψ(0, x) = Ay(0, x) = U5(0, x) = U6(0, x) = 0, At(0, x) = µ .

We impose the regularity condition at the horizon z = 1
and therefore all the functions have an analytic expansion
in powers of (1−z). On the spatial boundary one imposes
a periodicity condition. With those boundary conditions,
the set of inhomogeneous solutions is parametrized in
terms of the temperature T/µ and wave-number k/µ,
determining the periodicity in the symmetry broken x
direction.

0.4 0.6 0.8 1.0 1.2 1.4

0.000

0.005

0.010

0.015

0.020

0.025

0.030

k�Μ

T

Μ

(a)

0.6 0.7 0.8 0.9 1.0
0.00

0.02

0.04

0.06

0.08

0.

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

T�Tc

XO\
Μ2

,
XJy\

Μ2

DΡ

Μ2

(b)

FIG. 1. (a) The stability “dome” (blue line) following from
linear stability analysis in the temperature (T/µ) – ordering
wave vector (k/µ) plane (µ is the chemical potential) for the
unidirectional order. The actual second order transition is as-
sociated with the maximal Tc and the red dotted line shows
the temperature dependence of the ordering wave vector of
the fully back-reacted “intertwined” order. (b) The tempera-
ture dependence of the charge modulation ∆ρ (dashed), cur-
rent 〈Jy〉 (dash-dotted) and pair density wave 〈O〉 (full line)
VEV’s of the uni-directional phase. The dominating current
and pair density wave VEV’s show a characteristic mean field
temperature evolution, while the “parasitic” charge density
modulation ∆ρ increases linearly. Non-trivial configurations
of 〈O〉 also imply a spontaneous breaking of parity, which was
very recently observed in the cuprates [6]. Similar results are
obtained for the full tetragonal order of Fig. 2.

We show the critical temperature as a function of wave-
number in Fig. 1(a) derived from linear stability analysis
of the normal state. This curve is peaked at a non-zero
value kc ≈ 0.75µ with a Tc ≈ 0.03µ: this is where the
continuous thermal phase transition occurs from the nor-

mal system to a uni-directional striped phase with peri-
odicity kc. At temperatures below Tc non-linearities be-
come important and the full set of 9 (or 15 for tetragonal
case) coupled PDE’s has to be solved. We have numeri-
cally constructed the solutions parameterized in terms of
T/µ and k/µ, finding that the free energy is minimized
at a weakly temperature dependent ordering wave vec-
tor [24, 25] indicated by the red dotted line in Fig. 1(a)
for the uni-directional case, with similar results for the
tetragonal case [37].

In Fig. 1(b) we show the temperature dependence of
the various order parameters as a function of temper-
ature. The current and PDW order parameters have
a similar temperature dependence indicative of a Lan-
dau mean-field second order transition ∼

√
Tc − T . The

charge order grows more slowly ∼ (Tc − T ); this is in-
dicative of the current order/PDW being the dominant
order parameter while the charge modulation is induced
parasitically. This is a generic affair which is well under-
stood in terms of Landau theory as of relevance also to
the ordering of spin-stripes [39]. The lowest order invari-
ant coupling the order parameters is ρ|〈O〉|2 (ρ|〈Jy〉|2).
When the order occurs at finite wave-number this im-
mediately implies that the period of the charge order is
twice that of the current/PDW order. However, it also
implies that when the dominant (mean-field) instability
is associated with the currents and the PDW the charge
density modulation will grow linearly with temperature
below Tc. Interestingly, this is accomplished in the bulk
by the leading non-linear correction near Tc. The current
and condensate modes are in combination violating the
BF bound, and drive the instability. In linear order the
charge density is decoupled but in next-to-leading order
the modulated Ay and χ fields induce a charge density
modulation growing linearly with temperature. Eventu-
ally, at low temperatures non-linearities encapsulated by
the fully back-reacted bulk solutions become quite im-
portant giving rise to the intertwined ordering pattern
shown in Fig. 2 which we already discussed.

Discussion. There is obviously still a long way to
go in order to address the ordering patterns realized in
underdoped cuprates in any detail. At the present stage
the outcomes of the holographic exercise presented in the
above offer no more than a rough cartoon. However, the
cartoon is suggestive with regard to generalities. Depart-
ing from a strange metal normal state, holographic “nat-
uralness” seems to insist that the spontaneous symmetry
breaking at low temperature should necessarily give rise
to intertwined order involving besides charge order also
spontaneous currents, parity breaking and the pair den-
sity waves. This rests on applying the rules of EFT to the
gravitation dual: the simplest way to break translations
is by invoking the topological (theta and CS) terms that
automatically intertwine charge and current orders. We
have presented here the most minimal gravitational the-
ory that resurrects the superconductivity, turning it au-
tomatically in a pair density wave, remarkably at the “ex-
pense” of an unavoidable spontaneous breaking of parity.
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FIG. 2. The density plots of (a) condensate and (b) charge
density distribution for uni-directional phase at T/Tc ≈ 0.64,
and that of (c) condensate and (d) charge density distribution
for the square checkerboard at T/Tc ≈ 0.94. The arrows
denote integral curves of the currents (〈Jx〉 , 〈Jy〉). The bright
parts correspond to large positive values while the dark region
to the negative values. In the uni-directional phase the charge
density oscillates at twice the frequency of the currents and
condensate. The latter two orders are precisely out-of phase.
The checkerboard is a tetragonal charge crystal going hand
in hand with a staggered pattern of current fluxes circling
around the plaquettes, which is similar to the d-density waves
of condensed matter physics.

Is there room to make this more realistic? There
are some intrinsic limitations. The temperature depen-

dence of order parameters (Fig. 1) should be taken with
a grain of salt. Because of the matrix large N limit as-
sociated with holography thermal fluctuations are com-
pletely suppressed, while it is well established that these
are important both for the PDW [7, 8] and the current
order [40, 41]. A crucial missing ingredient is the pe-
riodic background potential. The present construction
lives in the Galilean continuum while in experiment the
ionic background potential is playing an important role.
This complicates the bulk physics further and only very
recently first results became available showing commen-
surate lock-in between spontaneous translational order
and a background periodic potential [42]. There is a
wealth of phenomena to explore. Is it possible to con-
struct holographically the current-loop order living inside
the CuO2 unit cells by applying an appropriate back-
ground potential? It has been all along clear that the
cuprate stripes/CDW are eventually rooted in discom-
mensuration effects associated with the competition be-
tween the periodicity of the background and spontaneous
“lattices” [43, 44].

Another major limitation of state of the art holography
is related to the truly relativistic nature of the bound-
ary field theory. The matter described in the bound-
ary is formed from massless degrees of freedom with the
ramification that spin and orbital motions are locked to-
gether in helical or chiral degrees of freedom as for Dirac
fermions in 2 or 3 dimensions. There are no “separate”
spin degrees of freedom that can be used to construct
Heisenberg antiferromagnets and the spin systems re-
quired for the spin stripes. The way to go is to further
enumerate non-relativistic holographic setups, so that
one can contemplate holographic constructions involving
spin order of the kind that is ubiquitous in condensed
matter systems. This theme of intertwined order illus-
trates in an effective manner that there is still much
realistic quantum matter physics to be explored in the
holography laboratory.
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Supplemental Material: Optical conductivity in the homogeneous case and breaking
of parity

We show here that the holographic theory of the main text yields indeed a dual description of a superconductor by
calculating the optical conductivity. A good starting point is to consider the homogeneous case where all background
fields only depend on the radial direction z. We take the probe limit where the back-reaction of the matter sources
to the background can be ignored. It has the advantage of avoiding the undesired infinite DC conductivity typical
of translationally invariant charged media, due to the fact that the conserved momentum overlaps with the current
operator leading to delta functions in the conductivity. In the probe limit there is no overlap between the momentum
and the current. Therefore, the observation of the delta function at zero frequency is an unambiguous signature of
the U(1) symmetry breaking.

The background is taken to be the AdS Schwarzschild black hole:

ds2 =
1

z2

[
−f(z)dt2 +

1

f(z)
dz2 + (dx2 + dy2)

]
, f(z) = 1− z3 . (S1)

To illustrate matters, let us consider the model with

Z = 1 , F =
1

2
χ2 , V = −χ2 , ϑ =

n

2
χ , (S2)

which is fully representative for the physics of interest. In general, we consider a theory in which ϑ is an odd function
of χ while others are even functions, so that the theory preserves parity and time-reversal invariance. We seek for
solutions of the Ansatz

χ = χ(z) , A = φ(z) dt , (S3)

while the other fields are trivial. The equations of motion become

φ′′ − χ2

z2f
φ = 0 , (S4)

χ′′ +

(
f ′

f
− 2

z

)
χ′ +

1

f

(
φ2

f
+

2

z2

)
χ = 0 . (S5)

In the normal phase χ = 0 and φ is then solved by φ = µ(1 − z) with µ being the chemical potential. The
symmetry-broken phase in the boundary characterized by non-trivial scalar hair in the bulk is obtained by numerically
solving the system with source free boundary condition in the UV. We adopt the standard choice by identifying the
leading asymptotic term as the source term and the subleading term the response 〈O〉 [S1]. A broken phase develops
spontaneously below Tc ≈ 0.059µ, being thermodynamically favored over the normal phase.

Now we turn to study the optical conductivity in this symmetry broken phase, by turning on U(1) gauge field
perturbations ax and ay with harmonic time dependent e−iωt. This results in two coupled equations of motion:

a′′x +
f ′

f
a′x −

(
χ2

z2f
− ω2

f2

)
ax +

4 i n ω χ′

f
ay = 0 , (S6)

a′′y +
f ′

f
a′y −

(
χ2

z2f
− ω2

f2

)
ay −

4 i n ω χ′

f
ax = 0 . (S7)

Notice that the CS terms enter into the perturbation equations. As the causal behavior is related to the retarded
two-point function of the current, we impose ingoing boundary conditions at the horizon. The asymptotic behavior
of the U(1) field near the UV boundary z → 0 is seen to be

ax = asx + avx z + · · · , ay = asy + avy z + · · · . (S8)

According to the holographic dictionary, the leading- and the subleading terms are the dual source and expectation
value of the current, respectively. The conductivity using the boundary data can subsequently be obtained via(

avx
avy

)
=

(
σxx σxy
σyx σyy

)(
i ω asx
i ω asy

)
. (S9)

The rotational invariance of the present setup implies that σxx = σyy and σxy = −σyx.
We have calculated the electrical conductivity for different values of CS coupling constant n and for different

temperatures for the black holes encoding for the ordered phase. In Fig. S1 the conductivity is shown as function
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of frequency ω. The real part of the conductivity contains a delta function at zero frequency ω = 0 as follows from
the behavior of the imaginary part Im[σxx(ω)] exhibiting the characteristic 1/ω dependence. On the other hand, the
conductivity for the unbroken phase is finite. In our present setup σxx = 1 as a consequence of the electric-magnetic
duality [S2]. It follows that the delta function at zero frequency is uniquely associated with the spontaneously U(1)
symmetry breaking. It will be interesting to compute the optical conductivity in the uni-directional and the fully
crystallised phases. This is a quite involved numerical affair and we hope to report results in a near future. However,
the simplified procedure outlined in the above demonstrates unambiguously that our “holographic pair density wave”
is a genuine superconductor.
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FIG. S1. Panel (a) shows the real part of the longitudinal conductivity for the broken phase at T/Tc ≈ 0.52 for different
choice of CS coupling constant n. Panel (b) gives the corresponding imaginary part of σxx. The red curve is the case without
CS term, while others have non-trivial contribution from CS coupling. There is a pole in the imaginary part at ω = 0, therefore
the real part should have a delta function there.

Finally, it should be pointed out that in the broken phase with non-trivial χ there is a spontaneously breaking
of parity. This can be easily understood from the perturbation equations (S6) and (S7). The parity operation in
the dual boundary field theory can be defined as the reversal of one of the spatial directions [S3], say x, which
transforms ax → −ax while keeping ay unchanged. On the other hand, the frequency ω changes its sign under the
time reversal. From the last terms originating from the CS coupling ϑ(χ)F ∧ F in (S6) and (S7), one finds that
non-trivial configurations of χ break parity and time-reversal invariance of the boundary field theory. In contrast,
there is no parity violation for the normal phase with vanishing χ. In some sense the VEV of the operator dual to χ
plays the role of order parameter for parity breaking. For the the uni-directional and the fully crystallised phases of
the main text, there are spontaneous currents as a consequence of spontaneous parity symmetry breaking. Therefore,
the theory of the main text provides a dual description of an inhomogeneous superconducting phase intertwined with
charge, current and parity orders. Although there are some other ways to spontaneously break translational symmetry
in holography, e.g. [S4], they preserve the parity and usually need to fine tune the model parameters. To incorporate
parity breaking effect that has been sharply observed in the cuprates, a natural and much easier way is to invoke the
topological (theta and CS) terms.
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