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Abstract
Torus-knot solitons have recently been formulated as solutions to the ideal incompressible
magnetohydrodynamics (MHD) equations.We investigate numerically how thesefields evolve in
resistive, compressible, and viscousMHD.We find that certain decaying plasma torus knots exhibit
magnetic surfaces that are topologically distinct from a torus. The evolution is predominantly
determined by a persistent zero line in the field present when the poloidal winding number ¹n 1p .
Dependence on the toroidal winding number nt is less pronounced as the zero line induced is
contractible and disappears. The persistent zero line intersects the newmagnetic surfaces such that,
through theHopf–Poincaré index theorem, the sumof zeroes on the new surfaces equals their (in
general non-zero)Euler characteristic. Furthermore we observe the formation ofmagnetic islands
between the surfaces. These novel persistentmagnetic structures are of interest for plasma
confinement, soliton dynamics and the study of dynamical systems in general.

It is remarkable how abstract topological concepts are directly relevant tomany branches of science. A prime
example is theHopfmap [1], a non-trivial topological structure that has found applications in liquid crystals [2],
molecular biology [3], superconductors [4], superfluids [5], Bose–Einstein condensates [6, 7], ferromagnets [8],
optics [9–11], and plasma physics [12, 13]. This article deals with topological aspects of novel persistent plasma
configurations that emerge fromdecaying plasma torus knots.

Due to the generally high electrical conductivity of plasma described bymagnetohydrodynamics (MHD),
large electrical currents can flow and plasmas are heavily influenced by the resultingmagnetic forces. The zero-
divergencemagnetic fields can lead to closedmagnetic field lines, field lines that ergodically fill amagnetic
surface, andfield lines that chaotically fill a region of space. In ideal (zero-resistance)MHD themagnetic flux
through a perfect conducting fluid element cannot change, leading to frozen inmagnetic fields in the plasma
[14]. This implies that in idealMHDmagnetic topology andmagnetic helicity is conserved [15–17].

In 1982Kamchatnov described an intrinsically stable plasma configuration [13]with amagnetic topology
based onfibers of theHopfmap [18]. This type ofMHDequilibrium,where the fluid velocity is parallel to the
field and equal to the local Alfvén speed, was shown byChandrasekhar to be stable [19], even in specific cases in
the presence of dissipative forces [20]. Quasi stable self-organizingmagnetic fields with similarmagnetic
topology toKamchatnov’s field (but differentflow) have recently been demonstrated to occur in full-MHD
simulations [12]. Here the final configuration is not a Taylor state, which is consistent with recent findings
in [21].

Recently the class of topologically non-trivial solutions toMaxwell’s equations has been extended by
including torus knotted fields [22]. Another way of obtaining such solutions, formassless fields of various spins,
is to use twistor theory [23]. Themagnetic fields of the t=0 solutions in [22], have been used to construct novel
plasma torus knots [24], solutions to the ideal incompressibleMHDequations.

To investigate the potential importance of plasma torus knots for realistic plasma the influence of dissipation
has to be investigated. Dissipation can lead to breaking and reconnection offield lines and thereby change the
magnetic topology. In this article we shownumerically that novel persistentmagnetic structures emerge that are
characterized by a non-zero Euler characteristic. Through the PoincareéHopf index theorem this leads to

OPEN ACCESS

RECEIVED

22 September 2016

REVISED

29December 2016

ACCEPTED FOR PUBLICATION

2 February 2017

PUBLISHED

23 February 2017

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2017 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/aa5de6
mailto:smiet@physics.leidenuniv.nl
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa5de6&domain=pdf&date_stamp=2017-02-23
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa5de6&domain=pdf&date_stamp=2017-02-23
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


precise statements about zeroes in themagnetic fields which further clarifies the plasma structures. Furthermore
magnetic islands are observed in between the newmagnetic surfaces.

1. Plasma torus knots

An idealMHD soliton, as defined in [13, 24], is a static configuration ofmagnetic field B,fluid velocity u, and
pressure p that satisfies the ideal, incompressibleMHDequations. Thefluid field and pressure that solve this can
be inferred from themomentum equation, which can bewritten as:

r r
¶
¶

+  -  +  + =· · ( )
⎛
⎝⎜

⎞
⎠⎟

u
u u B B

t
p

B1 1

2
0, 1

2

and the induction equation:

¶
¶

=  ´ ´( ) ( )B
u B

t
. 2

In the ideal and incompressible case the fluid field and pressure corresponding to the soliton are given by

r
=  = -¥ ( )u

B
p p

B
,

2
, 3

2

respectively. Already in 1956 in a paper titled ‘On the stability of the simplest solution of the equations of
hydromagnetics’, Chandrasekhar noted that this represents an exact stationary solution and proved it to be stable
against linear perturbations [19].

Kamchatnov analyzed this solution for the specific case where themagnetic field and velocityfield are given
by theHopfmap, every singlefield line is linkedwith every other. The staticmagnetic field of theKamchatnov–
Hopf soliton, whosemagnetic field is identical to the t=0magnetic field of an electromagnetic solution in free
space [9] can be obtained in variousways. Bateman’s construction [25] of describing a (null) electromagnetic
field via two Euler potentialsα andβ such that a b= + =  ´ F E Bi , is well suited to generate new
solutions toMaxwells equations with torus knotted field lines [22]. The class of torus knot solitons, of which the
Kamchatnov–Hopf soliton is an element, are the solutions to the idealMHDequations where the velocity and
fluid field are identical to themagnetic field of these EM solutions [24].

The torus knot solitons are constructed using the following complex-valued Euler potentials
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followed by a substitution r r r0 (where = + +r x y z2 2 2 2) to rescale the configuration. Taking
a b ´ [ ]Im gives themagnetic field of theKamchatnov–Hopf soliton. Generalizing this construction by

raisingα to a positive integer power nt whichwe call the toroidal integer, andβ to a positive integer power np
whichwe call the poloidal integer, themagnetic field of a ( )n n,t p plasma torus knot is obtained via:

a b
=

 ´ [ ] ( )B
c

a

Im
, 5

n nt p

where c is a scaling constantwith correct dimensions and ò a b=  ´ ( [ ])a xIm dn n 2 3t p , integrated over all
space, is a normalization factor that provides allmagnetic field configurations with the samemagnetic energy.

As noted, the plasma (1, 1) torus knot is theKamchatnov–Hopf soliton: everymagnetic field line is a circle
that is linkedwith every otherfield line. Otherwise thefield configuration is characterized by afinite set of core
field lines that each form an ( )n n,t p torus knot and aroundwhich other field lines span nestedmagnetic surfaces
[22, 24]. Figures 1(a) and (b) show an example of a plasma torus knotmagnetic field configurationwith toroidal
integer nt=3 and a poloidal integer np=2. Figure 1(a) shows that there are two core field lines that each form a
( )3, 2 torus knot, andfigure 1(b) shows twomagnetic surfaces spanned by field lines close to the two core field
lines.

Themagnetic helicity, defined as

ò= · ( )A Bh xd , 6m
3

(where A is defined through =  ´B A) is an invariant of idealMHD. The totalmagnetic helicity of the
plasma torus knots is found by integrating equation (6) over all space, and is given by
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+
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r
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wherewe have used b a= [ ]A c aIm . Themagnetic field of the torus knots goes to zero at infinity, such
that this helicity is gauge invariant. Themagnetic helicity is reduced in the plasma torus knots with higher values
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of np and nt. This reduction is qualitatively understood by noting that the corefield lines trace a path around the
toruswith a left-handedwrithewhile themagnetic surfaces have a right-handed twist around the core field lines.
Since bothwrithe and twist contribute to the helicity the opposite signs cancel each other [26, 27] and higher
values of toroidal and poloidal integers reduce the totalmagnetic helicity.

The conservation of energy, angularmomentum, andmagnetic helicity, can provide stability to certain
plasma configurations. As shown in [24] only the plasma torus knots with np=1 have non-zero angular
momentum and are able to form stable configurations in idealMHD.Wenow investigate the solutions
represented by equations (3) and (5) in the case of a non-ideal plasma by adding compressibility,magnetic
diffusivity, and viscosity.

2.New emerging surfaces

Wenumerically study the dynamics of plasma torus knots using the PENCIL code, a high-order finite difference
code for compressibleMHD [28, 29]. In resistiveMHD the l.h.s. of equation (1) gains a viscous term-Fvisc and
the r.h.s. of equation (2) gains a resistive term h- ´  ´( )B . In the compressible case the density ρ is
calculated by a continuity equation, and an isothermal equation of state is used such that r=p cs

2 . The
equations solved and the details of how the resistive terms are implemented are described in appendix A. The
characteristic length is set to =r l1 20 0 and the simulation box size is p( )l2 0

3 with 2563 grid points. The viscosity
andmagnetic diffusivity were set to n h= = ´ -2 10 4, giving a Prandtl number of unity.

We observe a dramatic change in themagnetic topology during a rapid first phase in the dynamics
characterized by field lines pinching off and reconnecting. During this reconfiguration newmagnetic surfaces
are formedwhich have in general a different topology. After this first phase the new configurations persist in
time and have an unchangingmagnetic topology and a decreasing field strength due to thefinite resistivity. For
example figures 1(c)–(e) give an angled view, a side view, and a top view of a newmagnetic surface in the (3, 2)
plasma torus knot.

Themagnetic fields close to the center of the initial plasma configuration have strong components in
opposite directions along the z axis. The dynamical principle of the formation of the new surfaces is that regions

Figure 1.Newmagnetic surfaces and their relation to the structure in the initial nt=3 and np=2 plasma torus knot. (a)The original
plasma torus knot structure consists of two corefield lines that form ( )3, 2 torus knots. (b)Other field lines formmagnetic surfaces
around one of the two core field lines,. The black lines indicate the zero lines in thefield. The newmagnetic surface forms between the
two core field lines, as shown from angled view (c), side view (d) and top view (e).Magnetic surfaces with thefield line topology of the
original field are shown in red and blue, the new surface in gray. The plane at z=0 shows the z-component of themagneticfield (scale
bar given in panel (e)). (f)Poincaré plot of themagnetic structure inside the non-toroidal surfaces, showing nested surfaces, as well as
magnetic islands. Thewhite square in panel (c) indicates the size of the region in panel (f).

3

New J. Phys. 19 (2017) 023046 CB Smiet et al



of largest counter propagating fields (here the center of the configuration)will have highest dissipationwhich
pinches off field lines. The remaining part of thefield lines willfind nearby pinched-off fields lines withwhom
they connect resulting in the newmagnetic surfaces.

An interesting interpretation of the emergence of the observed structures is given by themechanism of the
flowof helicity across scales as demonstrated by Scheeler et al in [30]. They show that the component offluid
helicity caused by the linking of vorticityfilaments influidswill, through localized reconnections translate to
larger scale writhe, and eventually to twist, present on the largest scale, approximately conserving total helicity.
The parallels betweenfluid andmagnetic helicity have been established since their conception [15]. In this
interpretation the effect of the localized reconnection at the center of the configuration can be seen as removing
thewrithing and linking of the initialmagnetic surfaces, resulting in a configurationwhere helicity is present as
twist in the antiparallel legs of the newmagnetic structure.

The topology of a surface is characterized by its genus g, which is equal to the number of holes in that surface.
A torus has only one hole, and therefore genus 1, but the new (gray) emerging surface is a surfacewith three
holes, a triple torus. The genus of a surface is related to the Euler characteristic by c = - g2 2 , which is an
important topological invariant. The Poincaré–Hopf index theorem relates the Euler characteristic to zero
points of a vector field on the surface aswe shall show in section 4 and is therefore an important quantity in
analyzing the newplasma structures.

The new surface drawn in gray is part of a set of nested surfaces with the same topology. This can be seen
from the Poincaré plot infigure 2(f). Note that there also appear, as expected from references [12, 31], magnetic
islands (see the section on islands).

Simulations have been performed for the nine combinationswith nt=1, 2, 3 and np=1, 2, 3. Figure 2
shows the results for ( )n n,t p equal to (2, 1), (1, 2) and (2, 3).

The configurations with np=1 all reconfigure in away such that a new set of toroidal nested surfaces
appear. The relation between this new set (shown in gray) and the original two sets can be seen for np=1,
nt=2 infigures 2(c)–(e), and is such that the new surfaces are tori lying in the x z, -plane. The original (red and
blue) surfaces havemerged into the purple surface, andwill eventually disappear from the simulation.Most
notably however, when n 1p we observemagnetic surfaces that are not topologically a torus, but a triple torus
as seen infigures 2(h)–(j), and a quintuple torus infigures 2(m)–(o). These new surfaces are shown at simulation
time t=200, to illustrate their relationship to the originalmagnetic surfaces. At later times in the simulation the
original surfaces will disappear , and only the surfaces with the newmagnetic topology persist.

The created surface depends on np directly.When np=1 the new surface is a torus, when np=2 a triple
torus (g= 3), andwhen np=3 a surfacewhich has genus g=5. Thesemagnetic surfaces consist of 2np twisted

Figure 2. Initial and emergingmagnetic surfaces. First column: side view (along x-axis) ofmagnetic surfaces at t=0. Second column:
top view at t=0. Third column: side view at t=200, where both newmagnetic surfaces (gray) and the remains of the original
magnetic surfaces can be seen. Fourth column: top view at t=200. Fifth column: only the newmagnetic surfaces. The initialmagnetic
surfaces are colored in red and blue, whilemagnetic surfaces that were not initially present are colored gray. Themagnetic surfaces in
figures (a) and (b) can be seen to recombine into the singlemagnetic surface shown infigures (d) and (e) (purple).

4
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‘legs’ that run parallel to the z-axis. These legsmeet on the z-axis above and below the z=0 plane. In half the legs
themagneticfield is oriented in the positive z-direction, in the other half in the negative z-direction.Where the
legsmeet thefield exhibits amagnetic cusp geometry and thefield lines switch over fromone leg to the other.

3.Magnetic decay

If we look at the time evolution of themeanmagnetic energy á ñ á ñB B2
0
2 , shown infigure 3, we see that the

configurationswith np=1 (red curves) show the lowest energy loss, and thus the highest stability, followed by
thefields with np=2, andfinally thefields with np=3. The lowest loss of energy for fields where np=1 is
consistent with the analytical stability analysis in [24] that predicts plasma torus knots with np=1 to be stable.
Figure 3(b) shows the evolution of normalizedmagnetic helicity (magnetic helicity divided bymagnetic energy).
Because thefields start out normalized by energy, their initial value corresponds with the result of equation (7).
The increase in normalizedmagnetic helicity can be seen as the result of themagnetic energy decaying faster than
the helicity.

We observe that during the entire simulation the fluid velocity u remains to a high degree parallel and equal
in (dimensionless)magnitude to themagneticfield B, even as themagnetic topology changes. The stability of
the configuration is predicated on this condition beingmaintained. Balancing themomentum equation in this
way is fundamentally different from the stability exhibited by a solution to theGrad Shafranov equation [32] or a
force-free field [14].

4. Zero lines

The initialfields of the plasma torus knots contain nonsingular points where themagnetic field strength vanishes
if either np or nt is not unity. This can easily be seen by expanding equation (5) into:

Figure 3.Decay ofmagnetic energy for all plasma torus knots with nt and np ranging from1 to 3. (a)Magnetic field strength as a
function of time. It is clear that the higher values of np decay faster. Initially higher values of nt decay faster aswell, but this trend
reverses with sufficient time. (b)Normalizedmagnetic helicity as a function of time.
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which goes to zero at any point where a = 0 if nt is not 1, or where b = 0 if np is not 1. This gives rise to vortex
nulls in thefield via themethod described [33]. For ¹n 1t thefield vanishes on the circle in the z= 0 plane

= + ={( )∣ }x y z z x y r, , 0, 2 2
0 , and for ¹n 1p thefield vanishes along the entire z-axis. Thefield only

approaches zero linearly around the circular null if nt is two, and similarly for the straight null if np=2,
otherwise the null is higher-order.

Null points have been described extensively in the literature [34, 35] because of their role in reconnection
[36].We analyze the null lines in thefield using themethod presented in [35], by constructing the linearization
matrix M whose indices are given by = ¶M Bij j i, (see appendix B). Thefield around a null can be characterized
by the three eigenvectors of thismatrix [35] that represent the directions fromwhich field lines approach and
leave the null. Around the null lines, these three vectors are orthogonal, with the zero-eigenvalue eigenvector in
the direction of the null line. The other two vectors determine two orthogonal directions, one fromwhich the
magnetic field lines approach the null, and the other determines the direction inwhich field lines leave the null.
These two vectors rotate around the zero line as onemoves along the zero line. The number of rotations of these
vectors around the straight null is nt, and the number of rotations around the circular null is np (see appendix B).

The zero circle disappears by contracting to a point on the origin. This process is shown infigure 4, and it
explains why the final configuration depends predominantly on the poloidal index np, which determines the
topology of the newmagnetic surfaces.

The Poincaré–Hopf index theorem states that the sumof the indices of the zeroes of a vector field on a
compact, orientedmanifold is equal to the Euler characteristicχ of thatmanifold. Amagnetic surface is such a
manifold, and themagnetic field necessarily is a vector field in that surface. A toroidal surface (c = 0) allows a
smooth vector fieldwithout any zero points. Amagnetic surface can only form the observed triple torus
(c = -4), or quintuple torus c = -( 8) if there are points where themagnetic field is zero, and the indices of
these zeroes thenmust sum to−4 or−8, respectively. These zeroes are provided by the zero line on the z-axis,
that intersects the surfaces exactly four times and carries index−1 or−2 (where the index is defined by thefield
restricted to the two-dimensional surface perpendicular to the zero line) if np=2 or np=3, respectively.
Therefore these surfaces can exist by grace of the zero line, and they can only persist if the zero line persists.

Figure 4.Cut through the x–z plane showing the disappearance of the circular null line. (a) Initialfield, (b)field at time t=120, and
(c) disappearance of the null line bymergingwith the straight null on the z-axis at t=240.
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It is generally assumed that extended zeroes areunstable [17, 35, 37]. In our simulations howeverwe observe
that if themagnetic field starts at zero on the straight null, this zero line persists during entire simulation. This is
in contrast to the zero line on thecircle in the z=0 plane, which disappears quickly, and is not present in the
final configuration, as is shown infigure 4.

The Poincaré–Hopf index of a nonsingular zero point can be defined, as for example in [38]. Here it is shown
that the vector field on the boundary of a neighborhood of the nonsingular null can be extended to afield in the
interior of that neighborhoodwithfinitelymany singular nulls, and the sumof these indices is defined as the
total index of the null. The total sumof the indices of nonsingular nulls is equal to the Euler characteristic of the
manifold inwhich these nulls reside. The Euler characteristic of 3 is 0, and therefore the indices of the null lines
sum to zero. This explains how the zero on thecircle can contract to a point, and disappear, leaving no zero point
behind, ormergewith the null line on the z-axis.

The null on the z-axis does notmove, and persists in time. This does not necessarily imply that the zero line is
stable, as any external perturbation of the form Bz willmake the null disappear, but the internal plasma
dynamics do notmake the null disappear. This persistence can be understood as a consequence of the symmetry
of the field around the z-axis. The symmetry of thematrix M entails that the eigenvectors of M are orthogonal
around the zero line, such that the field approaches the null from two orthogonal directions, in a plane
perpendicular to the null line. The restriction of the vector field to this two-dimensional plane has a topological
singularity (anX-point), andwe observe that nofield in the z-direction is created, allowing the zero line to
persist, and the non-toroidal surfaces to exist.

5.Magnetic islands

The newmagnetic surfaces are part of a set of nested surfaces with the same topology. There are, similar as what
is observed frombreaking up of toroidalmagnetic surfaces [12, 31], alsomagnetic islands between these
surfaces. Between the non-toroidalmagnetic surfaces these islands can take very different, and complicated
forms, tracing out intricate knots and links in the space between the intact non-toroidal surfaces (see figure 5).

Magnetic islands are generally described by castingmagnetic field lineflow in terms of aHamiltonian
dynamical system, and themagnetic surfaces are invariant tori in this system. In the unperturbed system, the
fieldwill consist only of nested toroidal surfaces characterized by a rotational transform. Aperturbationwill
cause some tori to break up into island chains. Close to rational surfaces, (surfaces where the rotational
transform is rational, i.e. field lines form closed curves)field lines will form surfaces that lie around one of the
closed field lines of the original rational surface.

The islands in these non-toroidal surfaces also originate from an intact surface, as can be seen infigure 5(a).
Thefield in the cross section of one upwards oriented ‘leg’ of the branched surface rotates, and then is split over
the two downwards oriented legs, to be split and combined again. Because of this a rotational transformof the
surface cannot be defined. Even though every point of the cross sectionwill eventuallymap back to the cross
section, thismapping is not necessarily continuous, and not in general a rotation.We do observe field structures
that strongly resemblemagnetic islands, but these island chains need not be symmetrically distributed across the
surface, as is the case for the structure infigure 5(b). Because these islands form around a field line lying on a
non-toroidal surface, their path need not be a torus knot, but can follow a differently knotted path.

Figure 5.Magnetic surfaces and islands in the regionwith the newmagnetic surfaces. (a)The Poincarémap of the region, indicating
where themagnetic islands in (b) (red), (c) (green), and an inner surfacewith the same topology as the set of islands (d) (purple) are
located in the nested set of surfaces.

7

New J. Phys. 19 (2017) 023046 CB Smiet et al



6. Conclusions and discussion

Wehave studied a class of plasma torus knots in resistive plasma, which consist of linked and knotted corefield
lines surrounded by nested toroidal surfaces. np has strongest influence on the time evolution of these structures.
Large values for nt slow down the decrease of á ñB2 only at high t. These dynamics can be understood by the
dynamics of the zero lines, where the circular null, caused by >n 1t is able to contract to a point and disappear,
but the straight null caused by >n 1p persists, and allows for newmagnetic orderingwith low energy loss.

In the resistive simulations themagnetic topology is not conserved, and new and interestingmagnetic
topologies are created. Structures with genus 3 and 5 are observed, and persist in the simulations. These
structures also exhibitmagnetic island formation, which has a different character to islands that emerge from
toroidalmagnetic surfaces.

Given the crucial role played by the extended zero in the plasma configuration resulting from initial
symmetry, it seems unlikely thatmagnetic surfaces with non-zero Euler characteristic occur in the turbulent
plasmas encountered in an astrophysical context. It is however possible to engineer this symmetry. A zero line
can occurwhere sets of opposingfieldsmeet, and can be created by sets of opposing coils, as is done in the cusp
geometry [39]. These non-toroidal surfaces suggest new topologies formagnetic confinement fusion devices,
essentially amarriage of the cusp fusion concept [39] or polywell fusion concept [40] and the stellarator
concept [41].
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AppendixA. Equations solved

The expressions for the initial conditions in the simulationswere generated from equation (5) using
Mathematica. The source for the PENCIL-CODE is freely available on http://pencil-code.nordita.org/.

To simulate the plasma dynamics we assume an isothermal plasma, we take the background pressure to be
the pressure for an isothermal gas r=p cs

2, where ρ is the density and c2s is the speed of sound squared.We solve
the coupled equations in terms of u, ρ, and A, fromwhich themagnetic field is calculated by =  ´B A. The
vector potential of the initial condition is calculated by =  ´j B and transforming that to the vector potential
using the inverse Laplace transform.

The equation ofmotion for an isothermal plasma is

r r= -  + ´ + ( )u
j B F

D

Dt
c ln , A.1s

2
visc

where u is the fluid velocity, º + ¶
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is the convective derivative, and =  ´j B. The viscous force is
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continuity equation in terms of the logarithmic density has the form
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The induction equationcan bewritten terms of the vector potential as

h
¶
¶

= ´ +  ( )A
u B A

t
, A.42

where η is themagnetic diffusivity.
The PENCIL-code solves equations (A.1), (A.3), and (A.4) usingfinite-differencemethods to sixth-order in

space and third-order in time. The simulation domain is a square box of size p( )l2 0
3 with 2563mesh points and

open boundary conditions. Simulationswith periodic boundary conditionswere also performed, and seen to
behave identically. The open boundary conditions are enforced by imposing vertical fields (u, B) at the
boundary, allowing field to escape the simulation volume, and a constantfirst derivative of the density across the
boundary.
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All quantities are calculated using dimensionless units. The isothermal sound speed cs, set is set to 1. The
fluid velocity is set parallel to themagnetic field vector to satisfy equation (1), and the density is calculated from
r = p cs

2 using the pressure from equation (3)with =¥p 1. Themagnetic field is calculated from equation (5),
with the constant c generally set to 0.25, but changed to a lower value if the simulation became unstable for the
fields at higher values of nt and np. It was verified that time evolution is independent of this scaling. Thefields
were scaled to a characteristic length =r l1 20 0. The viscosity ν andmagnetic diffusivity ηwere set to ´ -2 10 4.

Appendix B. Analysis of the zero lines

Herewe analyze the null lines in themagnetic field of the initial plasma torus knots following [34, 35].
From thefield around the position of the null line we construct thematrix M with elements = ¶M Bij j i so

that themagnetic field can be expressed to lowest order as

= · ( )B rM , B.1

where = ( )r x y z, , T is the position vector. The properties of thefield around the zero points are now encoded in
thismatrix [35]. For example, the sumof the diagonal elements ¶ Bj j is equal to the divergence of B, thus the
trace of thematrix is zero. The eigenvectors of thismatrix determine three important directions in space. Since
we are investigating the field on a zero line there is at least one directionwhere =· rM 0, where the field
remains zero. This is the eigenvector of thematrix M with eigenvalue zero. The other two eigenvectors have
opposite eigenvalues, and (when the eigenvalues are real) determine the direction in space fromwhich the field
lines approach the null and inwhich direction the field lines leave the null, so that thefield exhibits an x-point
configuration.

We are interested in analyzing the null points of the plasma torus knots.We start with the expression for an
( )n n,t p plasma torus knot given by equation (3) in themain paper.Without loss of generality we can ignore the
rescaling and drop the numerical pre-factors a and c so that the expression forBi in index notation is given by:

a b a b= ¶ ¶- -[( ) ( )( )] ( )B n nIm , B.2i
n n

ijk j kt
1

p
1t p

wherewe use the two complex-valued Euler potentials given in equation (4).
In the paperwe describe how themagnetic field vanishes at points whereα becomes zero if ¹n 1t andwhere

β becomes zero if ¹n 1p . These zeroes take the formof lines, with a zero line on the unit circle in the x y, -plane
caused by the zero inα, and a straight zero line along the entire z-axis whereβ vanishes.

The elementMij of the linearizationmatrix can bewritten using index notation as

a b a b
a b a b

= ¶ = ¶ ¶ ¶
+ ¶ ¶ ¶

- -[ {( [ ])( ( )( ))
( ( ( )( ))}] ( )





M B n nIm

. B.3

ij j i j
n n

ikl k l

n n
j ikl k l

t p
1 1t p

t p

Becausewe are evaluating this field at a point whereα respectivelyβ vanish, the second term in
equation (B.3) is always zero. For the zero line on the unit circle (where a = 0) thefirst term is only non-zero if
the derivative of a -n 1t is non-zero, and the same holds forβ if we look at the zero line on the z-axis. Thus if
n 3t there are no non-zero elements in M around the unit circle, and if n 3p this holds for M evaluated on

the z-axis. All thematrix elements are zero because the field does not approach zero linearly.

B.1. Eigenvectors of the straight null
If we focus on the on the z-axis where b = 0, in the case that np=2, thematrix elements become:

a b= ¶b=
-∣ [ ] ( )( )BM n nIm , B.4ij

n
j

i
0 t p

1
1,1 ,compl

t

where a b=  ´ ( )B 1,1 ,compl , is the complex-valued vector field of the ( )1, 1 plasma torus knot before taking
the imaginary part. The linearizationmatrix on the z-axis becomes:

g d
d g= - ( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟n nM

0
0

0 0 0

, B.5t p

where γ is given by:

g =
+ - + - + -

+

( ( (( ) )( )) ( ) ( (( ) )( )))
( )

( )
z z n z z n n n

z

8 2 cos arg i 1 1 sin arg i 1

1
B.6

2
t

2 2
t p t

2 4
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and δ is given by:

d = -
- + - - + -

+

(( ) ( (( ) )( )) ( (( ) )( )))
( )

( )
z z n z z n n n

z

8 1 cos arg i 1 2 sin arg i 1

1
. B.7

2 2
t

2
t p t

2 4

Thematrix M is symmetric, so the field around the null is characterized by three orthogonal eigenvectors,
given by:

= ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟v

0
0
1

, B.81

=

g g d
d

- +

( )

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟v

1
0

, B.92

2 2

=

g g d
d

+ +

( )

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟v

1
0

. B.103

2 2

The respective eigenvalues are:

= ( )e 0, B.111

= -
+( )

( )e
n n

z

8

1
, B.122

p t

2 3

=
+( )

( )e
n n

z

8

1
. B.133

p t

2 3

Herewe have filled in the values of γ and δ.
Thefield around the z-axis is characterized by the null eigenvector in the z-direction indicating the direction

of the null. The other two eigenvectors lie in the x y, -plane, with v2 determining the direction fromwhich field
lines approach the null line and v3 the direction inwhich field lines leave.

v1 and v2 are orthogonal in the x y, plane, and their direction depends on z. In order to determine the angle
of these vectors in this plane as a function of z, wewrite the vector v2 as the complex number x = +v vix y

2 2 ,
where the superscripts denote the x- respectively the y-component of the vector. After somemanipulationwe
get:

x =
+

+
+

( )( )
2

e i
2i. B.14

z n2i arg i t

The only z-dependence is given by the term +( )zarg i in the exponent in the denominator. As zpasses from
-¥ to¥ the value of +( )zarg i varies smoothly fromπ to 0. Thismeans that the value in exponent in the
denominator varies from0 to pn2 t. Each time that p+ =( )z n n2i arg i 3 4t , the denominator becomes zero,
and the real part of ξ goes from¥ to-¥. This happens exactly nt times, and the imaginary part of ξ remains
constant. Thus, the argument of ξ, and therefore the angle of the vector v2 with the x-axis then rotates an angle of
pnt as z goes from-¥ to¥.

Since by virtue of the symmetry of thematrix M the vector v3 is orthogonal to v2, the two vectors rotate
around the z-axis (and lie in the x y, -plane) in the same direction,making exactly n 2p full rotations as z goes
from-¥ to¥. These two vectors determine the direction fromwhich the field approaches and leaves the null,
so the zero line is not a straightforward x-line, the directions fromwhich field approach rotate, and the x-line
null exhibits a twist over exactly pnt degrees.

B.2. Eigenvectors of the circular null
Wenow focus on the zero line on the unit circle in the x y, -plane that is present in the plasma torus knots when

¹n 1t . This zero is characterized by the points where a = 0.We choose the casewhere nt=2 so the expression
for the linearizationmatrix becomes:

b a= ¶a=
-∣ [ ( ) ] ( )( )BM n nIm . B.15ij

n
j

i
0 t p

1
1,1 ,compl

p

For this calculationwe use cylindrical coordinates, as we know that the null line, and thus one of the
eigenvectors of M is oriented along the unit circle in the x y, plane, in thef-direction. Thematrix M in this
basis f( )r z, , then becomes:
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f f

f f
=

- - - - -

- - - - - -

f f

f f

- -

- -

( ( )( )) ( ( )( ))

( ( )( )) ( ( )( ))
( )

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟n n

n n

n n

M
sin arg e 1 0 cos arg e 1

0 0 0
cos arg e 1 0 sin arg e 1

. B.16p t

i
p

i
p

i
p

i
p

The three eigenvalues (in the f( )r z, , -basis) are:

f f
=

- - - - -f f- -( ( )( )) ( ( )( ))
( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟w

n nsec arg e 1 tan arg e 1

0
1

, B.171

i
p

i
p

f f
=

+ - - - - -f f- -( ( ( )( )))( ( ( )( )))
( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟w

n n1 sin arg e 1 sec arg e 1

0
1

, B.182

i
p

i
p

= ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟w

0
1
0

, B.193

where w( )arg denotes the argument of the complex numberω. The respective eigenvalues of these eigenvectors
are

= - ( )e n n , B.20c1 p t

= ( )e n n , B.21c2 p t

= ( )e 0. B.22c3

The vector w3, with zero eigenvalue points in thef-direction, the direction of the null line. The other two
eigenvectors are perpendicular to that and orthogonal.We are again interested in the direction of these two
vectors, as they determine the direction thatfield lines approach and leave the null.

We construct the complex number z = +w wir z
1 1 from the vector w1. After somemanipulationwefind:

z =
+

+
f

( )2

e i
2i. B.23

ni p

Now the argument of the complex number ζ is equal to the angle that the vector w1makeswith the r-vector,
and it varies as a function of the angular coordinatef in our cylindrical coordinate system. In a full rotation
around the circular null,f goes from0 to p2 . The denominator of

+f
2

e ini p
passes zero every time f p=ni 3 4p ,

which is exactly np times. This takes the real part of ζ from¥ to-¥ np times, whilst the imaginary part remains
constant. Thus, the argument of ζ, and therefore the angle that the vector w1makeswith the r-vector in the
r z, -planemakes a rotation of an angle of exactly pnp in a full pass around the circular null.

The vector w2 is orthogonal to w1, and they signify the direction that field lines approach and leave the null.
Also the circular null exhibits a twisted x-point geometry, with the direction offield line approach and the
direction offield line departure rotating an angle of pnp over the length of the null line.
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