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Abstract
Algorithm selection (AS) techniques – which in-
volve choosing from a set of algorithms the one
expected to solve a given problem instance most
efficiently – have substantially improved the state
of the art in solving many prominent AI prob-
lems, such as SAT, CSP, ASP, MAXSAT and QBF.
Although several AS procedures have been intro-
duced, not too surprisingly, none of them domi-
nates all others across all AS scenarios. Further-
more, these procedures have parameters whose op-
timal values vary across AS scenarios. In this ex-
tended abstract of our 2015 JAIR article of the same
title, we summarize AUTOFOLIO, which uses an
algorithm configuration procedure to automatically
select an AS approach and optimize its parameters
for a given AS scenario. AUTOFOLIO allows re-
searchers and practitioners across a broad range of
applications to exploit the combined power of many
different AS methods and to automatically con-
struct high-performance algorithm selectors. We
demonstrate that AUTOFOLIO was able to pro-
duce new state-of-the-art algorithm selectors for
7 well-studied AS scenarios and matches state-of-
the-art performance statistically on all other sce-
narios. Compared to the best single algorithm for
each AS scenario, AUTOFOLIO achieved average
speedup factors between 1.3 and 15.4.

1 Introduction
Over the last decade, tremendous progress in Boolean con-
straint solving technology has brought benefits to several ar-
eas within AI. In all these areas, multiple algorithms with
complementary solving strategies exist, and none dominates
all others on all kinds of problem instances. This fact can be
exploited by algorithm selection (AS) [Rice, 1976] methods,
which use characteristics of individual problem instances (so-
called instance features) to choose a promising algorithm for
each instance. Algorithm selectors have been shown empiri-
cally to improve the state of the art for solving heterogeneous

∗This paper is an invited extended abstract of our 2015 JAIR ar-
ticle [Lindauer et al., 2015].

Figure 1: Factors by which the selection approach re-
implemented in CLASPFOLIO 2 outperformed the single best
algorithm in the 13 ASLIB scenarios w.r.t. penalized average
running time (PAR10, which counts each timeout as 10 times
the given running time cutoff). These results are for 10-fold
cross-validation, ignoring test instances that were not solved
by any solver. The last row shows the geometric mean over
all 13 scenarios.

instance sets and, as a result, have won many prizes at com-
petitions.

Figure 1 illustrates the performance benefits these existing
selection strategies (as realized in CLASPFOLIO 2 [Hoos et
al., 2014]) yield across the wide range of AS benchmarks in
the Algorithm Selection Library [Bischl et al., 2016]. We
observe that each approach has strengths and weaknesses on
different scenarios. The SATZILLA’11-like approach [Xu et
al., 2011] performs best overall, but only achieves better per-
formance than the other approaches considered on 8 out of the
13 scenarios, with 3S [Kadioglu et al., 2011], ASPEED [Hoos
et al., 2015] or ISAC [Kadioglu et al., 2010] yielding better
performance in the remaining cases.

All these selection methods make use of machine learning
techniques, whose performance is known to depend on hyper-
parameter settings (e.g., in the case of an SVM, the kernel,
kernel hyper-parameter and soft margin; cf. [Bergstra et al.,
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Figure 2: General outline of algorithm selection

2011; Snoek et al., 2012; Thornton et al., 2013; Feurer et al.,
2015a]). We note that the hyper-parameters of the machine
learning methods used in Figure 1 were fixed manually, based
on limited experiments. Therefore, the performance of some
of these AS systems could likely be improved by using more
carefully chosen hyper-parameter settings.

Facing a new AS problem, we thus have to answer three
salient questions: (i) which selection approach to use; (ii)
how to effectively set the parameters of the selection approach
(and its underlying machine learning method); and (iii) how
to make best use of techniques augmenting pure AS, such
as pre-solving schedules [Xu et al., 2008; Kadioglu et al.,
2011]. Instead of the common, manual trial-and-error ap-
proach, we propose to automatically answer these questions
by using automated algorithm configuration methods [Hut-
ter et al., 2009] to configure flexible AS frameworks. While
the manual approach is error-prone, potentially biased and
requires substantial human expert time and knowledge, the
approach we introduce here is fully automatic, unbiased, and
leverages the full power of a broad range of AS methods. It
thus facilitates an easier and more effective use of algorithm
selection and makes AS techniques accessible to a broader
community.

Specifically, we present AUTOFOLIO, a general approach
for automatically determining a strong AS method for a par-
ticular dataset. The last column of Figure 1 previews the re-
sults obtained with AUTOFOLIO and clearly shows signifi-
cant improvements over CLASPFOLIO 2 on 10 of the 13 sce-
narios in ASLIB.

2 Preliminaries on AS and AC
Algorithm Selection. Figure 2 shows the general outline
of algorithm selection [Rice, 1976; Smith-Miles, 2008; Kot-
thoff, 2014]. For a given problem instance, we first com-
pute cheap instance features [Nudelman et al., 2004]; these
are numerical characteristics, including simple ones (such
as the number of variables or clauses in a SAT instance)
and more complex ones (such as statistics gathered from
short probing runs of an actual SAT solver on the given in-
stance). Based on these features, a machine learning model
is used to select an appropriate algorithm from a set of al-
gorithms to solve the given instance [Huberman et al., 1997;
Gomes and Selman, 2001].

Algorithm Configuration. Figure 3 shows a general out-
line for algorithm configuration methods [Hutter et al., 2009].
Given a parameterized algorithm A with possible parameter

Configuration Task

Instances I
Algorithm A

and its Configu-
ration Space C

Select c ∈ C
Assess A(c) on
some I ′ ⊂ I

Return Best Found
Configuration ĉ
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Figure 3: General outline of algorithm configuration

settings C, a set of training problem instances I , and a per-
formance metric m : C × I → R, the objective in the al-
gorithm configuration problem is to find a parameter config-
uration c ∈ C that optimize m across the instances in I . In
the following, we assume w.o.l.g. that performance metric m
is to be minimized, as is the case for running time or clas-
sification error. The configuration procedure (or short con-
figurator) iteratively evaluates the performance of parameter
configurations c ∈ C (by running A with them on one or
more instances in I) and uses the result to decide about the
next configurations to evaluate. After a given budget for the
configuration process has been exhausted, the configurator re-
turns the best known parameter configuration it found until
then.

3 Configuration of Algorithm Selectors
We now present our AUTOFOLIO approach of using algo-
rithm configurators to automatically customize flexible AS
frameworks to specific AS scenarios. To apply algorithm
configuration in this context, we need to specify a param-
eterized selector and its configuration space, as well as the
performance metric by which we judge its performance.

3.1 Formal Problem Statement
An AS scenario includes algorithms A, problem instances I ,
performance and feature data D, and a performance metric
m : A × I → R to be minimized, with the data split into
disjoint sets Dtrain and Dtest. Let S(Dtrain) : I → A
denote the selector learned by the AS system S when trained
on the data Dtrain. Then, the performance of S, P (S) is
the average performance of the algorithms it selects on the
instances in the test data set Dtest:

P (S) =
1

|Dtest|
∑

i∈Dtest

m(S(Dtrain), i). (1)

Likewise, we can evaluate the performance of an AS sys-
tem Sc parameterized by a configuration c as P (Sc). In order
to obtain an unbiased estimate of the configured selector’s
performance, we need to hold back a test set of instances that
is not touched during the configuration process. In order to
still be able to optimize parameters without access to that test
set, the standard solution in machine learning is to partition
the training set further, into k cross-validation folds. Overall,
we use the following approach for each selection scenario: (i)
we split the full set of instances into a training and a test set
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Figure 4: General outline of AUTOFOLIO

and (ii) we partition the training data further into k folds (in
our experiments, we use k = 10), which are used as follows.

Let D(1)
train, . . . ,D

(k)
train be a random partition of the train-

ing set Dtrain. The cross-validation performance CV (Sc) of
Sc on the training set, which is optimized during configura-
tion, is then:

CV (Sc) =
1

k

k∑
j=1

1

|D(j)
train|

∑
i∈D

(j)
train

m(Sc(Dtrain\D(j)
train), i)

We minimize CV (Sc) with an algorithm configuration
procedure to yield

ĉ ∈ argmin
c∈C

CV (Sc).

We then evaluate the generalization performance of ĉ by
training a selector Sĉ with it on the entire training data and
evaluating P (Sĉ) on Dtest, as defined in Equation 1.

Following Thornton et al. (2013), we use each of the
k folds D

(j)
train as one meta-instance within the configura-

tion process. We note that many configurators, such as Fo-
cusedILS [Hutter et al., 2009], irace [López-Ibáñez et al.,
2016] and SMAC [Hutter et al., 2011], can discard configura-
tions when they perform poorly on a subset of meta-instances
and therefore do not have to evaluate all k cross-validation
folds for every configuration. This saves time and lets us
evaluate more configurations within the same configuration
budget. Based on these considerations, Figure 4 outlines the
process to configure an algorithm selector with AUTOFOLIO.

3.2 Configuration Space of Selectors
Most existing algorithm selectors implement one specific AS
approach, using one specific machine learning technique.
However, most selection approaches, at least implicitly, ad-
mit more flexibility, and in particular could be used with a
range of machine learning techniques. Based on this obser-
vation, we consider a hierarchically structured configuration
space with a top-level parameter that determines the over-
all AS approach. For most selection approaches, we can
then choose between different regression techniques. Each
of these machine learning techniques can be configured by
its own (hyper-)parameters. Additionally, further techniques

can be used for preprocessing the training data and for pre-
solving schedules, which can be configured independently
from the selection approach, and are therefore also handled
by top-level parameters.

We implemented these choices in the CLASPFOLIO 2 sys-
tem. Figure 5 illustrates the complete configuration space
thus obtained. Our current version, which we use for the con-
crete implementation of our AUTOFOLIO approach, covers
six different AS approaches:

(hierarchical) regression (inspired by SATZILLA’09; [Xu
et al., 2008]) learns a regression model for each algo-
rithm; for a new instance, it then selects the algorithm
with best predicted performance;

multiclass classification (inspired by LLAMA; [Kotthoff,
2013]) learns a classification model that directly selects
an algorithm based on the features of a new instance;

pairwise classification (inspired by SATZILLA’11; [Xu et
al., 2011]) learns a (cost-sensitive) classification model
for all pairs of algorithms; for a new instance, it evalu-
ates all models and selects the algorithm with the most
votes;

clustering (inspired by ISAC; [Kadioglu et al., 2010]) de-
termines subsets of similar training instances in the fea-
ture space and the best algorithm on these subsets; for
a new instance, it determines the nearest cluster center
and selects the associated algorithm;

k-NN (inspired by 3S; [Kadioglu et al., 2011], and ME-
ASP; [Maratea et al., 2014]) determines a set of similar
training instances in the feature space for a given new
instance and selects the algorithm with the best perfor-
mance on this instance set;

SNNAP (inspired by [Collautti et al., 2013]) predicts the per-
formance of each algorithm with regression models and
uses this information for a k-NN approach in the pre-
dicted performance space.

For each of these approaches, CLASPFOLIO 2 covers at
least three different machine learning techniques (where ap-
propriate). For preprocessing strategies, it supports several
feature and performance preprocessing strategies.

The current version of AUTOFOLIO employs the algorithm
configurator SMAC [Hutter et al., 2011] to search for the best
AS approach in this combined space. We chose SMAC, be-
cause it performed best across the algorithm configuration
problems we studied so far.

4 Empirical Performance Analysis
We studied the performance of AUTOFOLIO across a wide va-
riety of hard combinatorial problems from the algorithm se-
lection library (ASlib [Bischl et al., 2016]).1 Figure 1 shows
the performance of AUTOFOLIO (last column) compared to
its components with fixed parameter settings. AUTOFOLIO
found well-performing configurations of CLASPFOLIO 2 and
performed better than all other approaches on 11 out of the

1www.aslib.net
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Figure 5: Configuration space of CLASPFOLIO 2. Parameters in double boxes are top-level parameters; single boxes represent
AS approaches based on classes of machine learning techniques, dashed boxes machine learning techniques, and dotted boxes
the number of low-level parameters. Parameter boxes used in the default configuration are filled in grey.

Figure 6: Scatter plots comparing the per-instance perfor-
mance of default CLASPFOLIO 2 (SATZILLA’11-like) and
AUTOFOLIO on SAT12-ALL. AUTOFOLIO improved per-
formance on most instances and also reduced the number of
timeouts.

13 ASlib scenarios. Figure 6 shows the performance differ-
ence between the default of CLASPFOLIO 2 and AUTOFOLIO
on an per-instance basis on the ASlib scenario SAT12-ALL
indicating much better performance of AUTOFOLIO.

Additionally, in our journal article [Lindauer et al., 2015b],
we investigated several aspects of AUTOFOLIO’s behaviour
in more detail:

1. We characterized the performance of AUTOFOLIO with
different configuration spaces, showing advantages of a
small space if only few performance evaluations are fea-
sible in the configuration budget;

2. We demonstrated that AUTOFOLIO performs more ro-
bustly than other state-of-the-art selectors, establishing
new state-of-the-art performance on 7 ASlib scenarios;

3. We applied parameter importance analysis [Hutter et
al., 2014; Fawcett and Hoos, 2016] to identify that the
following choices were crucial to obtain strong perfor-
mance for a given ASlib scenario: feature computation
time, the set of instance features and the AS approach.

5 Conclusions and Future Work
In this extended abstract of our JAIR article [Lindauer et
al., 2015b], we summarized AUTOFOLIO—to the best of
our knowledge, the first approach to automatically config-
ure algorithm selectors. Using a concrete realization of this
approach based on the highly parameterized AS framework
CLASPFOLIO 2, we showed that by using state-of-the-art al-
gorithm configurators, algorithm selectors can be customized
to robustly achieve peak performance across a range of AS
scenarios. The resulting approach performs significantly (and
sometimes substantially) better than manually configured se-
lectors and can be applied out-of-the-box to previously un-
seen AS scenarios.

In future work, we plan to investigate how the potential
gains of larger configuration spaces (including feature and al-
gorithm subset selection) can be used more effectively. To
this end, we would like to (i) extend AUTOFOLIO’s configu-
ration space by implementing more algorithm selection ap-
proaches (e.g., CSHC [Malitsky et al., 2013]); (ii) shrink
large configuration spaces based on the analysis of param-
eter importance through fANOVA [Hutter et al., 2014] and
ablation [Fawcett and Hoos, 2016], allowing the configura-
tor to focus on the most important parameters; and (iii) auto-
matically select between pre-configured algorithm selectors,
based on features of a given AS scenario, and further improve
performance by warmstarting automatic configuration from
the configurations thus selected [Feurer et al., 2015b]. An-
other promising avenue for reducing the computational cost
of our approach would be to pre-select algorithms, features,
and problem instances based on the techniques proposed by
Hoos et al. (2013). Finally, we plan to investigate to which
extent AUTOFOLIO can configure AS systems for selecting
parallel portfolios [Lindauer et al., 2015a] to exploit the in-
creasing availability of parallel computing resources.

Overall, our results for AUTOFOLIO strongly suggest that
the automated configuration of AS systems can improve the
performance and versatility of those systems across a broad
range of application domains. Our AUTOFOLIO approach
also facilitates future improvements, by making it easier to
realize and assess the performance potential inherent in new
design choices for the various components of an AS system.
Our open-source implementation of AUTOFOLIO is available
at www.ml4aad.org/autofolio/.
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