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HAUSDORFF DIMENSION OF UNIVOQUE SETS AND

DEVIL’S STAIRCASE

VILMOS KOMORNIK, DERONG KONG, AND WENXIA LI

Abstract. We fix a positive integer M , and we consider expan-
sions in arbitrary real bases q > 1 over the alphabet {0, 1, . . . ,M}.
We denote by Uq the set of real numbers having a unique expansion.
Completing many former investigations, we give a formula for the
Hausdorff dimension D(q) of Uq for each q ∈ (1,∞). Furthermore,
we prove that the dimension function D : (1,∞) → [0, 1] is continu-
ous, and has a bounded variation. Moreover, it has a Devil’s stair-
case behavior in (q′,∞), where q′ denotes the Komornik–Loreti
constant: although D(q) > D(q′) for all q > q′, we have D′ < 0
a.e. in (q′,∞). During the proofs we improve and generalize a
theorem of Erdős et al. on the existence of large blocks of zeros in
β-expansions, and we determine for all M the Lebesgue measure
and the Hausdorff dimension of the set U of bases in which x = 1
has a unique expansion.

1. Introduction

Fix a positive integer M and an alphabet {0, 1, . . . ,M}. By a se-
quence we mean an element c = (ci) of {0, 1, . . . ,M}∞.
Given a real base q > 1, by an expansion of a real number x we mean

a sequence c = (ci) satisfying the equality

πq(c) :=
∞∑

i=1

ci
qi

= x.

Expansions of this type in non-integer bases have been extensively
investigated since a pioneering paper of Rényi [29]. One of the striking
features of such bases is that generically a number has a continuum of
different expansions, a situation quite opposite to that of integer bases;
see, e.g., [13] and Sidorov [30]. However, surprising unique expansions
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have also been discovered by Erdős et al. [11], and they have stimulated
many works during the last 25 years.
We refer to the papers [23], [6], [7], [8], [9], [3] and surveys [32], [20]

and [10] for more information.
Let us denote by Uq the set of numbers x having a unique expansion

and by U ′
q the set of the corresponding expansions. The topological

and combinatorial structure of these sets have been described in [8].
The present paper is a natural continuation of this work, concerning
the measure-theoretical aspects.
Daróczy and Kátai [5] have determined the Hausdorff dimension of

Uq when M = 1 and q is a Parry number. Their results were extended
by Kallós and Kátai [17], [18], [19], Glendinning and Sidorov [15], Kong
et al. [25], [24], and in [9], [2].
We recall from [21] and [22] that there exists a smallest base 1 <

q′ < M + 1 (depending on M) in which x = 1 has a unique expansion:
the so-called Komornik–Loreti constant.
We also recall two theorems on the dimension function

D(q) := dimH Uq, 1 < q < ∞,

obtained respectively in [15], [25] and in [24]:

Theorem 1.1. The function D vanishes in (1, q′], and D > 0 in
(q′,∞). Its maximum D(q) = 1 is attained only in q = M + 1.

It follows from this theorem that Uq is a (Lebesgue) null set for all q 6=
M + 1, while UM+1 ⊆ [0, 1] has measure one because its complementer
set is countable in [0, 1]. Since Uq \ Uq is countable for each q (see [8]),
the same properties hold for Uq as well.

Theorem 1.2. For almost all q > 1, U ′
q is a subshift, and

(1.1) D(q) =
h(U ′

q)

log q
,

where h(U ′
q) denotes the topological entropy of U ′

q.
Furthermore, the function D is differentiable almost everywhere.

We recall from Lind and Marcus [26] that

(1.2) h(U ′
q) = lim

n→∞

log |Bn(U
′
q)|

n
= inf

n≥1

log |Bn(U
′
q)|

n

when U ′
q is a subshift, where Bn(U

′
q) denotes the set of different initial

words of length n occurring in the sequences (ci) ∈ U ′
q, and |Bn(U

′
q)|

means the cardinality of Bn(U
′
q). (Unless otherwise stated, in this paper

we use base two logarithms.)
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We will complete and improve Theorems 1.1 and 1.2 in Theorems
1.3, 1.4 and 1.7 below.

Theorem 1.3. The formula (1.1) is valid for all q > 1.

We recall from [8] that U ′
q is not always a subshift. Theorem 1.3

states in particular that the limit in (1.2) exists even if U ′
q is not a

subshift, and it is equal to the infimum in (1.2).

Theorem 1.4. The function D is continuous, and has a bounded
variation.

Theorem 1.4 implies again that D is differentiable almost every-
where. In order to describe its derivative first we establish some results
on general β-expansions and on univoque bases.
Following Rényi [29] we denote by β(q) = (βi(q)) the lexicographi-

cally largest expansion of x = 1 in base q. It is also called the greedy
or β-expansion of x = 1 in base q.

Theorem 1.5. Fix 1 < r ≤ M+1 arbitrarily. For almost all q ∈ (1, r)
there exist arbitrarily large integers m such that β1(q) · · ·βm(q) ends
with more than logr m consecutive zero digits.

This theorem improves and generalizes [13, Theorem 2] concerning
the case M = 1. In particular, our result implies that β(q) contains
arbitrarily large blocks of consecutive zeros for almost all q ∈ (1,M+1].
This was first established by Erdős and Joó [12] for M = 1, and their
result was extended by Schmeling [31] for all M .
Next we denote by U the set of bases q > 1 in which x = 1 has a

unique expansion, and by U its closure. The elements of U are usually
called univoque bases.

Theorem 1.6.

(i) U and U are (Lebesgue) null sets.
(ii) U and U have Hausdorff dimension one.

Parts (i) and (ii) were proved for U in case M = 1 by Erdős and Joó
[12] and by Daróczy and Kátai [4], respectively. The case of U hence
follows because the set U \ U is countable (see [23]). Our proof of (ii)
is shorter than the original one even for M = 1.
Finally, combining Theorems 1.1, 1.3, 1.4, 1.6 (i) and some topo-

logical results of [8] we prove that the dimension function is a natural
variant of Devil’s staircase:

Theorem 1.7.

(i) D is continuous in [q′,∞).
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(ii) D′ < 0 almost everywhere in (q′,∞).
(iii) D(q′) < D(q) for all q > q′.

Remark. Compared to the classical Cantor–Lebesgue function, we have
even D′ < 0 instead of D′ = 0 almost everywhere.

The paper is organized as follows. In Section 2 we investigate the
topological entropy of various subshifts that we need in the sequel. In
Section 3 we prove Theorem 1.3 and we prepare the proof of Theorem
1.4. Theorem 1.4 is proved in Section 4, Theorems 1.5–1.6 in Sections
5–6, and Theorem 1.7 in Section 7. Sections 5–6 are independent of
each other and of the other sections of the paper.

2. Topological entropies

We begin by proving that the topological entropy of U ′
q is well defined

even if U ′
q is not a subshift:

Lemma 2.1. The limit

h(U ′
q) := lim

n→∞

log |Bn(U
′
q)|

n

exists for each q > 1, and is equal to

inf
n≥1

log |Bn(U
′
q)|

n
.

Proof. It suffices to show that the function n 7→ |Bn(U
′
q)| is submulti-

plicative, i.e.,

|Bm+n(U
′
q)| ≤ |Bm(U

′
q)| · |Bn(U

′
q)|

for all m,n ≥ 1.
Denoting by Bk,ℓ(U

′
q) the set of words ck · · · cℓ where (ci) runs over

U ′
q, we have clearly

|Bm+n(U
′
q)| = |B1,m+n(U

′
q)| ≤ |B1,m(U

′
q)| · |Bm+1,m+n(U

′
q)|.

Notice that |Bm+1,m+n(U
′
q)| ≤ |Bn(U

′
q)| because (cm+i) ∈ U ′

q for every
(ci) ∈ U ′

q. This completes the proof. �

Lemma 2.2.

(i) If q ≥ M + 1, then h
(
U ′
q

)
= log(M + 1).

(ii) If 1 < q < q′, then h
(
U ′
q

)
= 0.

Proof. If q > M+1, then U ′
q = {0, . . . ,M}∞ is the full shift. Therefore

h
(
U ′
q

)
= lim

n→∞

log
∣∣Bn(U

′
q)
∣∣

n
= lim

n→∞

log(M + 1)n

n
= log(M + 1).
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If q = M+1, then the above equalities remain valid. Indeed, we still
have Bn(U

′
q) = {0, . . . ,M}n for all n ≥ 1 because c1 · · · cn(0M)∞ ∈ U ′

q

for every word c1 · · · cn ∈ {0, . . . ,M}n.
The case 1 < q < q′ follows from Theorem 1.2 because U ′

q is countable
by [15] (for M = 1) and [8], [25], [24] (for all M ≥ 1) and therefore
D(q) = 0. �

Henceforth we assume that q′ ≤ q ≤ M + 1. Then x = 1 has an
expansion.
We start by recalling some properties of the greedy and quasi-greedy

expansions. We denote by β(q) = (βi(q)) the greedy, i.e., the lexico-
graphically largest expansion of x = 1 in base q. Furthermore, we
denote by α(q) = (αi(q)) the quasi-greedy, i.e., the lexicographically
largest infinite expansion of x = 1 in base q. Here and in the sequel
an expansion is called infinite if it contains infinitely many non-zero
digits.
Greedy expansions were introduced by Rényi [29], and they were

characterized by Parry [28]. Quasi-greedy expansions were introduced
by Daróczy and Kátai [4], [5], in order to give an elegant Parry type
characterization of unique expansions:

Lemma 2.3. A sequence (ci) belongs to U ′
q if and only if the following

two conditions are satisfied:

(cn+i) < α(q) whenever c1 . . . cn 6= Mn,

(cn+i) < α(q) whenever c1 . . . cn 6= 0n.

Here for a sequence c = (ci) we denote by c = (M − ci), and for a
word c1 · · · ck we write c1 · · · ck = (M − c1) · · · (M − ck).
We also recall some results on the relationship between greedy and

quasi-greedy expansions, and on their continuity properties:

Lemma 2.4.

(i) If β(q) is infinite, then α(q) = β(q). Otherwise, β(q) has a
last non-zero digit βm(q), and α(q) is periodic with the period
β1(q) · · ·βm−1(q)(βm(q)− 1).

(ii) If qn ր q, then α(qn) → α(q) component-wise.
(iii) If qn ց q, then β(qn) → β(q) component-wise.

See, e.g., [1], [8] and [9] for proofs.
Instead of U ′

q and Uq it will be easier to consider the slightly modified
sets

Ũ ′
q :=

{
(ci) : α(q) < (cm+i) < α(q) for all m = 0, 1, . . .

}



6 V. KOMORNIK, D. KONG, AND W. LI

and

Ũq := πq(Ũ
′
q) =

{
∞∑

i=1

ci
qi

: (ci) ∈ Ũ ′
q

}
.

Lemma 2.5.

(i) Uq is the union of 0, M/(q−1), and of countably many sets, each

similar to Ũq.

(ii) U ′
q and Ũ ′

q have the same topological entropy.

Proof. (i) Let (ci) ∈ U ′
q be different from 0∞ and M∞. If 0 < c1 < M ,

then (c1+i) ∈ Ũ ′
q by Lemma 2.3.

If c1 = 0, then there exists a smallest m > 1 such that cm > 0, and

(cm+i) ∈ Ũ ′
q by Lemma 2.3.

If c1 = M , then there exists a smallest m > 1 such that cm < M ,

and (cm+i) ∈ Ũ ′
q by Lemma 2.3.

It follows that Uq is the union of 0, M/(q − 1), and of the sets

c1
q
+

1

q
Ũq, c1 = 1, . . . ,M − 1,

cm
qm

+
1

qm
Ũq, m = 2, 3, . . . , cm = 1, . . . ,M,

(
m−1∑

i=1

M

qi

)
+

cm
qm

+
1

qm
Ũq, m = 2, 3, . . . , cm = 0, . . . ,M − 1.

We conclude by observing that all these sets are similar to Ũq.

(ii) The above reasoning shows also that each word of Bn(U
′
q) has

the form 0kMm−kw or Mk0m−kw with some word w ∈ Bn−m(Ũ
′
q) and

some integers k,m satisfying 0 ≤ k ≤ m ≤ n. Hence

∣∣Bn(U
′
q)
∣∣ ≤

n∑

m=0

2(m+ 1)
∣∣∣Bn−m(Ũ

′
q)
∣∣∣ ≤ (n+ 1)(2n+ 2)

∣∣∣Bn(Ũ
′
q)
∣∣∣ .
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Since Ũ ′
q ⊆ U ′

q, it follows that

lim
n→∞

log
∣∣∣Bn(Ũ

′
q)
∣∣∣

n
≤ lim

n→∞

log
∣∣Bn(U

′
q)
∣∣

n

≤ lim
n→∞

log(2n+ 2)2
∣∣∣Bn(Ũ

′
q)
∣∣∣

n

= lim
n→∞

log
∣∣∣Bn(Ũ

′
q)
∣∣∣

n
+ lim

n→∞

2 log(2n+ 2)

n

= lim
n→∞

log
∣∣∣Bn(Ũ

′
q)
∣∣∣

n
,

whence h(Ũ ′
q) = h(U ′

q). �

Since Ũ ′
q is not always a subshift, we introduce also the related sets

Ṽ ′
q :=

{
(ci) : α(q) ≤ (cm+i) ≤ α(q) for all m = 0, 1, . . .

}

and

Ṽq := πq(Ṽ
′
q) =

{
∞∑

i=1

ci
qi

: (ci) ∈ Ṽ ′
q

}
.

Lemma 2.6. Ṽ ′
q is a subshift, and Ũ ′

q ⊆ Ṽ ′
q.

Proof. If q = M + 1, then α(q) = M∞, so that Ṽ ′
q = {0, 1, · · · ,M}∞ is

the full shift.
Henceforth assume that q < M + 1, and consider the set F of all

finite blocks d1 · · · dn ∈ {0, . . . ,M}n (of arbitrary length), satisfying
one of the lexicographic inequalities

d1 · · · dn < α1(q) · · ·αn(q) and d1 · · · dn > α1(q) · · ·αn(q).

By definition, none of these blocks appear in any (ci) ∈ Ṽ ′
q.

Conversely, if (ci) ∈ {0, 1, · · · ,M}∞ \ Ṽ ′
q, then there is a positive

integer m such that either

cmcm+1 · · · < α(q)

or
cmcm+1 · · · > α(q),

and hence there is another positive integer n such that either

cm · · · cm+n < α1(q) · · ·αn(q)



8 V. KOMORNIK, D. KONG, AND W. LI

or

cm · · · cm+n > α1(q) · · ·αn(q).

Hence (ci) contains at least one block from F .

The inclusion Ũ ′
q ⊆ Ṽ ′

q is obvious from the definition. �

Since Ũ ′
q is not always a subshift of finite type, we introduce for

each positive integer n the set Ũ ′
q,n of sequence (ci) satisfying for all

m = 0, 1, . . . the inequalities

α1(q) · · ·αn(q) < cm+1 · · · cm+n < α1(q) · · ·αn(q).

Similarly, we define the sets Ṽ ′
q,n and W̃ ′

q,n by replacing the above in-
equalities by

α1(q) · · ·αn(q) ≤ cm+1 · · · cm+n ≤ α1(q) · · ·αn(q)

and

β1(q) · · ·βn(q) ≤ cm+1 · · · cm+n ≤ β1(q) · · ·βn(q),

respectively.

Lemma 2.7. Ũ ′
q,n, Ṽ

′
q,n and W̃ ′

q,n are subshifts of finite type, and

(2.1) Ũ ′
q,n ⊆ Ũ ′

q ⊆ Ṽ ′
q ⊆ Ṽ ′

q,n ⊆ W̃ ′
q,n

for all n.

Furthermore, the sets Ũ ′
q,n are increasing, while Ṽ ′

q,n and W̃ ′
q,n are

decreasing when n is increasing.

Proof. It is clear that Ũ ′
q,n is characterized by the finite set of forbidden

blocks d1 · · · dn ∈ {0, . . . ,M}n satisfying the lexicographic inequalities

d1 · · · dn ≤ α1(q) · · ·αn(q) or d1 · · · dn ≥ α1(q) · · ·αn(q).

Hence it is a subshift of finite type.

The proof for Ṽ ′
q,n and W̃ ′

q,n is analogous.
The remaining assertions follow from the definition of lexicographic

inequalities. �

We are going to show that these sets well approximate Ũ ′
q:

Proposition 2.8. For q ∈ [q′,M + 1] we have

lim
n→∞

h(Ũ ′
q,n) = lim

n→∞
h(Ṽ ′

q,n) = lim
n→∞

h(W̃ ′
q,n) = h(Ũ ′

q) = h(Ṽ ′
q).

The proof of the proposition is divided into a series of lemmas.
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Lemma 2.9. Let q′ ≤ q < p ≤ M + 1. Then

W̃ ′
q,n ⊆ Ũ ′

p,n

for all sufficiently large n.

Proof. Since there are only countably many finite greedy expansions,
the set

{r ∈ (1,M + 1] : β(r) 6= α(r)}

is countable. There exists therefore r ∈ (q, p) such that β(r) = α(r),
and then

β(q) < β(r) = α(r) < α(p)

because the maps r 7→ β(r) and r 7→ α(r) are strictly increasing by the
definition of the greedy and quasi-greedy algorithms.
Fix a sufficiently large n such that

α1(p) · · ·αn(p) > β1(q) · · ·βn(q).

If d = (di) ∈ W̃ ′
q,n, then

dm+1 · · ·dm+n ≤ β1(q) · · ·βn(q) < α1(p) · · ·αn(p)

and symmetrically

dm+1 · · ·dm+n ≥ β1(q) · · ·βn(q) > α1(p) · · ·αn(p)

for all m ≥ 0, i.e., d ∈ Ũ ′
p,n. �

We recall U is the set of bases q > 1 in which x = 1 has a unique
expansion, and U is its closure. Furthermore, we recall from [23] that
q ∈ U if and only if

(2.2) α1(q)α2(q) · · · < αk+1(q)αk+2(q) · · · ≤ α1(q)α2(q) · · ·

for all k ≥ 0. Moreover, there exists infinitely many indices n such that

(2.3) α1(q) · · ·αn−k(q) < αk+1(q) · · ·αn(q) ≤ α1(q) · · ·αn−k(q)

for all 0 ≤ k ≤ n− 1. In particular, αn(q) > 0 for these indices.

Lemma 2.10. Let q ∈ U and (αi) = α(q).

(i) For each n ≥ 1, Bn(Ṽ
′
q) = Bn(Ṽ

′
q,n) is the set of words d1 · · · dn

satisfying

(2.4) α1 · · ·αn−k ≤ dk+1 · · · dn ≤ α1 · · ·αn−k

for all 0 ≤ k ≤ n− 1.
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(ii) For each n ≥ 1 satisfies (2.3), Bn(Ũ
′
q,n) is the set of words d1 · · · dn

satisfying

(2.5) α1 · · ·αn < d1 · · ·dn < α1 · · ·αn,

and relations (2.4) for all 1 ≤ k ≤ n− 1.
(iii) If n ≥ 1 satisfying (2.3), then

Bn(Ṽ
′
q,n) \Bn(Ũ

′
q,n) =

{
α1(q) . . . αn(q), α1(q) . . . αn(q)

}
.

Proof. (i) Note that Bn(Ṽ
′
q) ⊆ Bn(Ṽ

′
q,n), and that each word of Bn(Ṽ

′
q,n)

satisfies the relations (2.4). It remains to prove that if a word d1 · · · dn
satisfies the relations (2.4) for all 0 ≤ k ≤ n − 1, then it belongs to

Bn(Ṽ
′
q).

Let 0 ≤ k1 ≤ n be the first integer such that either

dk1+1 · · ·dn = α1 · · ·αn−k1

or
dk1+1 · · · dn = α1 · · ·αn−k1.

Assume by symmetry that

(2.6) dk1+1 · · ·dn = α1 · · ·αn−k1

The minimality of k1 implies that

α1 · · ·αn−k < dk+1 · · · dn < α1 · · ·αn−k for any 0 ≤ k < k1.

Combining this with (2.2) we conclude that

d1 · · · dnαn−k1+1αn−k1+2 · · · = d1 · · · dk1α1α2 · · · ∈ Ṽ ′
q;

hence d1 · · · dn ∈ Bn(Ṽ
′
q).

(ii) Take n satisfying (2.3), and note that each word of Bn(Ũ
′
q,n)

satisfies the above mentioned relations. It remains to prove that if a
word d1 · · · dn satisfying (2.5), and relations (2.4) for all 1 ≤ k ≤ n−1,

then it belongs to Bn(Ũ
′
q,n).

Choosing k1 as in (i), now we have k1 ≥ 1. We may assume (2.6)
again. Using (2.3) it follows that αn > 0 and

αk+1 · · ·αn−1α
−
n ≥ α1 · · ·αn−k and α1 · · ·αk > αn−k+1 · · ·αn

for all 0 ≤ k < n, where we write α−
n := αn − 1. Hence,

d1 · · · dn(αn−k1+1 · · ·αn−1α
−
nα1 · · ·αn−k1)

∞

= d1 · · · dk1(α1 · · ·αn−1α
−
n )

∞ ∈ Ũ ′
q,n,

and therefore d1 · · · dn ∈ Bn(Ũ
′
q,n).
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(iii) This follows from (i), (ii) and (2.2). �

We also need the following lemma, where we use the set U defined
in the introduction.

Lemma 2.11. If p and q belong to the same connected component of

(1,∞) \ U , then h(U ′
p) = h(U ′

q) and h(Ũ ′
p) = h(Ũ ′

q).

Proof. By Lemma 2.5 (ii) it suffices to prove the equalities h(U ′
p) =

h(U ′
q).

Consider an arbitrary connected component I = (q0, q
∗
0). We recall

from [8, Theorem 1.7] that there exists a sequence (qn) satisfying q0 <
q1 < · · · and converging to q∗0, and such that

U ′
q = U ′

qn for all q ∈ (qn−1, qn), n = 1, 2, . . . .

The remaining equalities h
(
U ′
qn

)
= h

(
U ′
qn+1

)
were shown during the

proof of [24, Theorem 2.6]. �

Finally we recall the Perron–Frobenius Theorem (see [26, Theorem
4.4.4]):

Lemma 2.12. Let G(n) be an edge graph representation of Ũ ′
q,n, and

λn its spectral radius. Then there exist positive constants c1, c2 such
that

c1λ
k
n ≤ |Bk(Ũ

′
q,n)| ≤ c2k

sλk
n

for all k ≥ 1, where s denotes the number of strongly connected com-
ponents of G(n).
If G(n) is strongly connected, then the factor ks may be omitted in

the second inequality.

Proof of Proposition 2.8. All indicated topological entropies are well
defined by Lemmas 2.6 and 2.7. Furthermore, the monotonicity of

the set sequences (Ũ ′
q,n), (Ṽ

′
q,n) and (W̃ ′

q,n) implies the existence of the
indicated limits as n → ∞.
If q ∈ [q′,M + 1] \ U , then q ∈ (q′,M + 1) (because q′,M + 1 ∈ U).

Applying Lemma 2.11 we may choose a neighbourhood (q1, q2) of q

such that h(Ũ ′
p) = h(Ũ ′

q) for all p ∈ [q1, q2]. Using Lemmas 2.7 and 2.9
we obtain that

Ũ ′
q1
⊆ Ũ ′

q,n ⊆ W̃ ′
q,n ⊆ Ũ ′

q2

for all sufficiently large indices n, and therefore

lim
n→∞

h(Ũ ′
q,n) = lim

n→∞
h(W̃ ′

q,n) = h(Ũ ′
q).
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Henceforth we assume that q ∈ U . In view of the inclusions (2.1) it
is sufficient to prove that

(2.7) lim
n→∞

h(W̃ ′
q,n) ≤ h(Ṽ ′

q)

and

(2.8) lim
n→∞

h(Ṽ ′
q,n) ≤ lim

n→∞
h(Ũ ′

q,n).

First we show that

|Bn(W̃
′
q,n)| ≤ 2(n+ 1)2|Bn(Ṽ

′
q)|

for all n ≥ 1. If α(q) = β(q), then W̃ ′
q,n = Ṽ ′

q,n and therefore by Lemma

2.10 we have Bn(W̃
′
q,n) = Bn(Ṽ

′
q) for all n.

If α(q) 6= β(q), then β(q) has a last nonzero digit βm, and by Lemma
2.4 α(q) is periodic with the period β1(q) · · ·βm−1(q)β

−
m(q). In this case,

if d1 · · · dn ∈ Bn(W̃
′
q,n) \Bn(Ṽ

′
q), then for any 0 ≤ k ≤ n− 1

β1(q) · · ·βn−k(q) ≤ dk+1 · · · dn ≤ β1(q) · · ·βn−k(q),

and by Lemma 2.10 it follows that there exists a least integer 0 ≤ k ≤
n− 1 such that either

dk+1 · · · dn < α1(q) · · ·αn−k(q)

or

dk+1 · · · dn > α1(q) · · ·αn−k(q).

This implies that dk+1 · · · dn or dk+1 · · · dn must be of the form

(α1(q) · · ·αm(q))
jβ1(q) · · ·βn−k−mj(q), j = 0, 1, · · · , [(n− k)/m].

The number of these words can not exceed 2(n+ 1). Moreover, by the
minimality of k and Lemmas 2.7, 2.10 it follows that

d1 · · · dk ∈ Bk(Ṽ
′
q,k) = Bk(Ṽ

′
q) = Bk(Ṽ

′
q,n).

Hence

|Bn(W̃
′
q,n)| − |Bn(Ṽ

′
q,n)| = |Bn(W̃

′
q,n) \Bn(Ṽ

′
q,n)|

≤ 2(n+ 1)
n−1∑

k=0

|Bk(Ṽ
′
q,n)| ≤ 2n(n + 1)|Bn(Ṽ

′
q,n)|,

and the required estimate follows.
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Using this estimate we have

h(W̃ ′
q,n) = inf

k≥1

log |Bk(W̃
′
q,n)|

k
≤

log |Bn(W̃
′
q,n)|

n

≤
log |Bn(Ṽ

′
q)|+ log 2 + 2 log(n + 1)

n
.

Letting n → ∞ the relation (2.7) follows.
Turning to the proof of the relation (2.8), first we consider the case

q = q′. Using (2.1) and (2.7) it follows that

lim
n→∞

h(Ṽ ′
q,n) = h(Ṽ ′

q).

Furthermore, we also deduce from (2.1) and Lemma 2.10 that

|Bnk
(Ṽ ′

q) \Bnk
(Ũ ′

q)| ≤ |Bnk
(Ṽq,nk

) \Bnk
(Ũ ′

q,nk
)| = 2,

where (nk) is a sequence of indices satisfying (2.3). Hence

h(Ṽ ′
q) = lim

n→∞

log |Bn(Ṽ
′
q)|

n
= lim

k→∞

log |Bnk
(Ṽ ′

q)|

nk

≤ lim
k→∞

log
(
|Bnk

(Ũ ′
q)|+ 2

)

nk
= h(Ũ ′

q).

The existence of the last limit and the last equality follows from Lemma
2.1.
Since h(Ũ ′

q) = 0 for q = q′ by Theorem 1.1, we conclude that

lim
n→∞

h(Ṽ ′
q,n) = 0.

Assume henceforth that q > q′, so that h(Ũ ′
q) > 0. This was proved

in [15] for M = 1, and the proof remains valid for all odd values of M ,
and in [25, Lemma 4.10] for M = 2, 4, . . . . For each n ≥ N we have

h(Ũ ′
q,n) = log λn with the notations of Lemma 2.12, and

λn ≥ λN > 1

by the increasingness of the set sequence (Ũ ′
q,n). We are going to es-

timate the size of Bk(Ṽ
′
q,n) \ Bk(Ũ

′
q,n) for each fixed n ≥ N satisfying

(2.3) and k ≥ n.

Let us denote by G′(n) the edge graph representing Ṽ ′
q,n, and set

u = α1(q) · · ·αn(q). Then G(n) is a subgraph of G′(n), and the words

u and u are forbidden in G(n). We seek an upper bound for |Bk(Ṽ
′
q,n)\

Bk(Ũ
′
q,n)|.
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Suppose that d1 · · · dk ∈ Bk(Ṽ
′
q,n) \ Bk(Ũ

′
q,n). Then by Lemma 2.10

it follows that the word d1 · · · dk must contain at least once u or u. If
it contains exactly r ≥ 1 times u or u, then it has the form

d1 · · · dk = ω0τ1ω1 · · · τrωr

where each τj is equal to u or u, and k0 + · · · + kr = k − rn, where
kj ≥ 0 denotes the length of ωj.
Assuming first that the graph G(n) is strongly connected, we may

apply Lemma 2.12 without the factor ks. Assuming without loss of
generality that c1 ≤ 1 ≤ c2, we obtain the following estimate:

|Bk(Ṽ
′
q,n)| ≤ |Bk(Ũ

′
q,n)|+

[k/n]∑

r=1

∑

k0+···+kr=k−nr

2r
r∏

j=0

(c2λ
kj
n )

= |Bk(Ũ
′
q,n)|+ c2λ

k
n

[k/n]∑

r=1

∑

k0+···+kr=k−nr

(2c2λ
−n
n )r

= |Bk(Ũ
′
q,n)|+ c2λ

k
n

[k/n]∑

r=1

(
k − r(n− 1)

r

)
(2c2λ

−n
n )r

≤ |Bk(Ũ
′
q,n)|+ c2λ

k
n

k∑

r=1

(
k

r

)
(2c2λ

−n
n )r

≤ |Bk(Ũ
′
q,n)|

c2
c1

k∑

r=0

(
k

r

)
(2c2λ

−n
n )r

= |Bk(Ũ
′
q,n)|

c2
c1
(1 + 2c2λ

−n
n )k

≤ |Bk(Ũ
′
q,n)|

c2
c1
(1 + 2c2λ

−n
N )k.

If the graph G(n) is not strongly connected, then we distinguish two
cases:

• If u and u belong to the same strongly connected component

of G′(n), then we have to change c2λ
kj
n to c2k

s
jλ

kj
n in the above

estimate for j = 0 and j = r.
• If u and u belong to different strongly connected components of
G′(n), then for each d1 · · · dk there is an index 0 ≤ r′ ≤ r such
that either τj = u ⇐⇒ j ≤ r′ or τj = u ⇐⇒ j > r′. Then we
may change the above factor 2r to r+1, and we have to change

c2λ
kj
n to c2k

s
jλ

kj
n for j = 0, j = r′ and j = r.
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Summarizing, we obtain in all cases the following estimate:

|Bk(Ṽ
′
q,n)| ≤ |Bk(Ũ

′
q,n)|

c2
c1
k3s(1 + 2c2λ

−n
N )k.

It follows that

log |Bk(Ṽ
′
q,n)|

k
≤

log |Bk(Ũ
′
q,n)|

k

+
log(c2/c1)

k
+ 3s

log k

k
+ log(1 + 2c2λ

−n
N )

for all k ≥ n. Letting k → ∞ we conclude that

h(Ṽ ′
q,n) ≤ h(Ũ ′

q,n) + log(1 + 2c2λ
−n
N )

for all n ≥ N satisfying (2.3). Since λN > 1, taking n satisfying (2.3)
and letting n → ∞ we get (2.8). �

3. Proof of Theorem 1.3

First we consider the cases 1 < q < q′ and q ≥ M + 1.

Lemma 3.1.

(i) The formula (1.1) holds for 1 < q < q′ with D(q) = h(U ′
q) = 0.

(ii) The formula (1.1) holds for all q ≥ M+1 with h(U ′
q) = log(M+1).

Proof. (i) We have shown in Lemma 2.2 that h(U ′
q) = 0. Since Uq is

countable (see the proof of Lemma 2.2), we have also D(q) = 0.

(ii) We have shown in Lemma 2.2 that h(U ′
q) = log(M + 1).

Since [0, 1] \ UM+1 and {0, . . . ,M}∞ \ U ′
M+1 are countable, we have

D(M + 1) = 1 and h
(
U ′
M+1

)
= log(M + 1).

If q > M + 1, then U ′
q = {0, . . . ,M}∞, so that h

(
U ′
q

)
= log(M + 1),

and Uq is a self-similar set satisfying the relation

Uq =
M⋃

j=0

(
j

q
+

1

q
Uq

)
.

The union is disjoint because each x ∈ Uq has a unique expansion.
Observe that Uq is a non-empty compact set. Indeed, it is bounded

because Uq ⊆ [0,M/(q− 1)]. It remains to show that it is closed, i.e, if
(xk) ⊂ Uq converges to some real number x, then x ∈ Uq.
If two expansions (ai) and (bi) first differ at the mth position, then

∣∣∣∣∣

∞∑

i=1

ai
qi

−
∞∑

i=1

bi
qi

∣∣∣∣∣ ≥
1

qm
−

∞∑

i=m+1

M

qi
=

q −M − 1

qm(q − 1)
> 0.
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Using this estimate we obtain that the expansion of xk converges com-
ponent-wise to some sequence (ci), and that (ci) is the (necessarily
unique) expansion of x.
Applying [16] (see also [14, Proposition 9.7]) we conclude that r :=

D(q) is the solution of the equation (M + 1)q−r = 1, yielding

D(q) =
log(M + 1)

log q
. �

In view of Theorem 1.1 and Lemma 3.1 it remains to investigate the
dimension function

D(q) = dimH Uq = dimH Ũq

for q′ ≤ q ≤ M + 1.

Lemma 3.2. Let q ∈ [q′,M + 1). There exists a positive integer n(q)
and a real number ε(q) > 0 such that

dimH πp(Ũ
′
q,n) =

h(Ũ ′
q,n)

log p
and dimH πp(Ṽ

′
q,n) =

h(Ṽ ′
q,n)

log p

for all n ≥ n(q) and p ∈ (q − ε(q), q].

Proof. The two cases being similar, we consider only that of Ṽ ′
q,n.

Let N be the smallest index satisfying αN(q) < M , and fix n > N
such that qn−N(q − 1) > M . Let p ∈ (q′, q] be sufficiently close to q
such that

pn−N(p− 1) > M and αi(p) = αi(q), i = 1, . . . , n.

We know already that Ṽ ′
q,n is a subshift of finite type corresponding to

the finite set Fn of forbidden blocks d1 · · · dn ∈ {0, . . . ,M}n satisfying
one of the lexicographic inequalities

d1 · · · dn < α1(q) · · ·αn(q) and d1 · · · dn > α1(q) · · ·αn(q).

We finish the proof by showing that πp(Ṽ
′
q,n) is a graph-directed set

satisfying the strong separation condition: then we may conclude by
using the results of Mauldin and Williams [27]. We argue similarly to
[24, Lemma 6.4].
Let us denote by G = (G, V, E) the edge graph with the vertex set

V := Bn−1(Ṽ
′
q,n) =

{
d1 · · ·dn−1 ∈ {0, . . . ,M}n−1 : d ∈ Ṽ ′

q,n

}
.

For two vertices u = u1 · · ·un−1 and v = v1 · · · vn−1 we draw an edge
uv ∈ E from u to v and label it ℓuv = u1 if

u2 · · ·un−1 = v1 · · · vn−2 and u1 · · ·un−1vn−1 /∈ Fn.
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Then the edge graph G = (G, V, E) is a representation of Ṽ ′
q,n (see

[26]).
For u = u1 · · ·un−1 ∈ V we set

Ku :=
{ ∞∑

i=1

di
pi

: di = ui for i = 1, . . . , n− 1,

and dm+1 · · · dm+n /∈ Fn for all m ≥ 0
}
.

For each edge uv ∈ E with vertices

u = u1 · · ·un−1, v = v1 · · · vn−1

we define

fuv(x) :=
x+ ℓuv

p
=

x+ u1

p
.

Then one can verify that

πp(Ṽ
′
q,n) =

⋃

u∈V

Ku =
⋃

u∈V

⋃

uv∈E

fuv(Kv),

so that πp(Ṽ
′
q,n) is a graph-directed set (see [27]).

It remains to show that

fuv(Kv) ∩ fuv′(Kv
′) = ∅

for all uv,uv′ ∈ E with v 6= v′.
Let uv,uv′ be two such edges in E with

u = u1 · · ·un−1, v = v1 · · · vn−1 and v′ = v′1 · · · v
′
n−1.

Then

v1 · · · vn−2 = u2 · · ·un−1 = v′1 · · · v
′
n−2.

Assume that vn−1 < v′n−1. Then it suffices to show that for any

x = πp(v1 · · · vn−1c1c2 · · · ) ∈ Kv, y = πp(v
′
1 · · · v

′
n−1d1d2 · · · ) ∈ Kv

′

we have fuv(x) < fuv′(y), i.e.,

n−1∑

i=1

ui

pi
+

vn−1

pn
+

1

pn

∞∑

i=1

ci
pi

<

n−1∑

i=1

ui

pi
+

v′n−1

pn
+

1

pn

∞∑

i=1

di
pi
.

This is equivalent to the inequality

πp(c) < v′n−1 − vn−1 + πp(d).

This follows from our choice of N and p at the beginning of the proof.
Indeed, using the relations

αk+1(q) · · ·αk+N(q) ≤ MN−1(M − 1) k = 0, 1, 2, . . .
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we have

πp(c) ≤ πp

(
(MN−1(M − 1))∞

)
=

M

p− 1
−

1

pN − 1

<
M

p− 1
−

M

pn(p− 1)
= πp(M

n0∞)

= πp(α1(q) · · ·αn(q) 0
∞) + πp(α1(q) · · ·αn(q) 0

∞)

< πp(α(p)) + πp(d) = 1 + πp(d). �

Lemma 3.3. Let q ∈ [q′,M + 1). There exists a positive integer n(q)
and a real number ε(q) > 0 such that

dimH πp(Ũ
′
q,n) =

h(Ũ ′
q,n)

log p
and dimH πp(W̃

′
q,n) =

h(W̃ ′
q,n)

log p

for all n ≥ n(q) and p ∈ [q, q + ε(q)).

Proof. We only give the proof for W̃ ′
q,n.

Let N be the smallest index satisfying βN(q) < M , and fix n > N
such that qn−N(q − 1) > M . Let p ∈ [q,M + 1) be sufficiently close to
q such that

βi(p) = βi(q), i = 1, . . . , n.

Since p ≥ q, we have also pn−N(p− 1) > M .
Similarly to the proof of Lemma 3.2 we construct an edge graph

representing W̃ ′
q,n, and hence πp(W̃

′
q,n) is a graph-directed set. Then

it suffices to prove that the corresponding iterated function system
satisfies the open set condition, i.e.,

πp(c) < 1 + πp(d)

for all c, d ∈ W̃ ′
q,n.

This follows again from our choice of N and p at the beginning of
the proof. Indeed, using the relations

βk+1(q) · · ·βk+N(q) ≤ MN−1(M − 1) k = 0, 1, 2, . . .

we have

πp(c) ≤ πp

(
(MN−1(M − 1))∞

)
=

M

p− 1
−

1

pN − 1

<
M

p− 1
−

M

pn(p− 1)
= πp(M

n0∞)

= πp(β1(q) · · ·βn(q) 0
∞) + πp(β1(q) · · ·βn(q) 0

∞)

< πp(β(p)) + πp(d) = 1 + πp(d). �

We are ready to prove Theorem 1.3.
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Proof of Theorem 1.3. In view of Lemma 3.1 we may assume that q ∈
[q′,M + 1).
We apply the first relation of the preceding lemma with p = q.

Letting n → ∞ and using Lemma 2.7 and Proposition 2.8 we obtain
that

dimH Ũq =
h(Ũ ′

q)

log q
.

Since dimH Ũq = dimH Uq and h(Ũ ′
q) = h(U ′

q) by Lemma 2.5, the equal-
ity (1.1) follows. �

4. Proof of Theorem 1.4

In view of Lemma 3.1 it suffices to prove the theorem for q ∈ [q′,M+
1].

Lemma 4.1. The function D is left continuous in every q ∈ [q′,M+1].

Proof. Fix q ∈ [q′,M + 1] and ε > 0 arbitrarily. We have to show that
if p ∈ (1, q) is sufficiently close to q, then |D(p)−D(q)| < ε. The proof
will be split into the following two cases.
Case I: q ∈ [q′,M + 1). Using Proposition 2.8 we fix a sufficiently

large index n such that

h(Ṽ ′
q,n)− h(Ũ ′

q,n) <
ε log q

2
.

Next we fix pn ∈ (1, q) sufficiently close to q, such that

αi(pn) = αi(q) for i = 1, . . . , n.

If p ∈ (pn, q), then using the inclusions

Ũ ′
q,n ⊆ Ũ ′

p ⊆ Ũ ′
q ⊆ Ṽ ′

q,n

and applying Lemma 3.2 we obtain

h(Ũ ′
q,n)

log p
= dimH πp(Ũ

′
q,n) ≤ dimH Ũp ≤ dimH πp(Ṽ

′
q,n) =

h(Ṽ ′
q,n)

log p

and

h(Ũ ′
q,n)

log q
= dimH πq(Ũ

′
q,n) ≤ dimH Ũq ≤ dimH πq(Ṽ

′
q,n) =

h(Ṽ ′
q,n)

log q
.
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It follows that

|D(p)−D(q)| ≤
h(Ṽ ′

q,n)

log p
−

h(Ũ ′
q,n)

log q

=
h(Ṽ ′

q,n)− h(Ũ ′
q,n)

log p
+ h(Ũ ′

q,n)

(
1

log p
−

1

log q

)

<
ε log q

2 log p
+ h(Ũ ′

q,n)

(
1

log p
−

1

log q

)
.

If p ∈ (pn, q) is close enough to q, then the right side is < ε.

Case II: q = M +1. Since D(q) = 1 and 0 ≤ D(p) ≤ 1 for all p, it is
suffient to show that D(p) > 1− ε for all p ∈ (1, q), close enough to q.

Since h(Ũ ′
q) = log q = log(M + 1) > 0 by Lemma 3.1, applying

Proposition 2.8 we may fix a large integer n such that

h(Ũ ′
q,n) >

(
1−

ε

2

)
log q.

If p ∈ (1, q) is close enough to q, then

αi(p) = αi(q) for i = 1, . . . , n,

whence Ũ ′
q,n ⊆ Ũ ′

p by (2.1). It follows that

h(Ũ ′
p) >

(
1−

ε

2

)
log q.

Dividing by log p and applying Lemma 3.2 we infer that

D(p) >
(
1−

ε

2

) log q

log p
.

We conclude by observing that the right side is > 1 − ε if p is close
enough to q. �

We remark that for M = 1 a simple direct proof was given for the
left continuity in q = 2 in [9, Proposition 4.1 (i)].

Lemma 4.2. The function D is right continuous in [q′,M + 1).

Proof. Fix q ∈ [q′,M + 1) and ε > 0 arbitrarily. We have to show that
if p ∈ (q,M + 1) is sufficiently close to q, then |D(p)−D(q)| < ε.
Using Proposition 2.8 we fix a sufficiently large index n such that

h(W̃ ′
q,n)− h(Ũ ′

q,n) <
ε log q

2
.

Next we fix pn ∈ (q,M + 1) sufficiently close to q, such that

βi(pn) = βi(q) for i = 1, . . . , n.
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If p ∈ (q, pn), then using the inclusions

Ũ ′
q,n ⊆ Ũ ′

q ⊆ Ũ ′
p ⊆ W̃ ′

q,n

and applying Lemma 3.3 we obtain that

dimH πp(Ũ
′
q,n) =

h(Ũ ′
q,n)

log p
and dimH πp(W̃

′
q,n) =

h(W̃ ′
q,n)

log p
.

Repeating the proof of Lemma 4.1 with Ṽ ′
q,n changed to W̃ ′

q,n, now
we obtain the estimate

|D(p)−D(q)| ≤
h(W̃ ′

q,n)

log q
−

h(Ũ ′
q,n)

log p
,

and we may conclude as before. �

In the next result we take any q ∈ (1,∞).

Lemma 4.3. D has a bounded variation in [q′,M + 1].

Proof. We prove that for every finite subdivision

q0 := q′ < q1 < · · · < qn = M + 1

the following inequality holds:

n∑

i=1

|D(qi)−D(qi−1)| ≤
2 log(M + 1)

log q′
− 1.

Writing h(q) instead of h(U ′
q) for brevity, we know that h is non-

decreasing in [q0,M + 1] with h(q0) = 0 and h(M + 1) = log(M + 1).
Therefore we have the following elementary inequalities:

D(qi)−D(qi−1) =
h(qi)

log qi
−

h(qi−1)

log qi−1
≤

h(qi)− h(qi−1)

log qi
≤

h(qi)− h(qi−1)

log q0

and

D(qi)−D(qi−1) ≥
h(qi−1)

log qi
−

h(qi−1)

log qi−1
≥

log(M + 1)

log qi
−

log(M + 1)

log qi−1

It follows that

|D(qi)−D(qi−1)| ≤
h(qi)− h(qi−1)

log q0
+

(
log(M + 1)

log qi−1
−

log(M + 1)

log qi

)
,
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and hence
n∑

i=1

|D(qi)−D(qi−1)|

≤
h(M + 1)− h(q0)

log q0
+

log(M + 1)

log q0
−

log(M + 1)

log(M + 1)

=
2 log(M + 1)

log q0
− 1,

as stated. �

5. The Hausdorff dimension of U

As usual, we denote by U the set of bases q > 1 in which x = 1 has a
unique expansion, and by U ′ the set of corresponding expansions. We
recall from [13] and [22] that a sequence c = (ci) belongs to U ′ if and
only if the lexicographic inequalities

(5.1) c1c2 · · · < ck+1ck+2 · · · < c1c2 · · ·

for all k ≥ 1.
Fix an integer N ≥ 2 and, inspired by the proof of [9, Proposition 4.1

(i)], consider the set Û ′
N of sequences c = (ci) ∈ {0, . . . ,M}∞ satisfying

the equality

c1 · · · c2N = M2N−10,

and the lexicographic inequalities

0N < ckN+1 · · · ckN+N < MN

for k = 2, 3, . . . . All these sequences satisfy (5.1), so that Û ′
N ⊆ U ′ and

ÛN ⊆ U , where we use the natural notation

ÛN :=
{
q ∈ (1,M + 1] : β(q) ∈ Û ′

N

}
.

(Here β(q) denotes the unique and hence also greedy expansion of x = 1
in base q.)

It follows from the definition of Û ′
N that

(5.2)
∣∣∣BnN(Û

′
N )
∣∣∣ =

(
(M + 1)N − 2

)n−2
for all n ≥ 2

and

(5.3)
∣∣∣BkN+1,nN(Û

′
N)
∣∣∣ =

(
(M + 1)N − 2

)n−k
for all n ≥ k ≥ 2.
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Consider two elements p < q of ÛN , and letm be the smallest positive
integer such that βm(p) 6= βm(q). Then βm(p) < βm(q), and we deduce

from the definition of ÛN that
(

m∑

i=1

βi(q)

qi

)
+

1

qm+2N
< 1 <

(
m∑

i=1

βi(p)

pi

)
+

1

pm
≤

m∑

i=1

βi(q)

pi
.

Hence

1

qm+2N
<

m∑

i=1

βi(q)
(
p−i − q−i

)
< M

∞∑

i=1

(
p−i − q−i

)
=

M(q − p)

(p− 1)(q − 1)

and therefore
1

(M + 1)m+2N
<

M(q − p)

(q′ − 1)2
,

where q′ denotes the Komornik–Loreti constant as usual.
Setting

c :=
(q′ − 1)2

M(M + 1)2N

we conclude the following

Lemma 5.1. If p, q ∈ ÛN and 0 < q − p ≤ c(M + 1)−m for some
positive integer m, then βi(p) = βi(q) for all i = 1, . . . , m.

Now we are ready to compute the Hausdorff dimension of U .

Proof of Theorem 1.6 (ii). Consider a finite cover ∪Ij of ÛN by inter-
vals Ij of length |Ij| ≤ c(M + 1)−N . For each positive integer k we
denote by Jk the set of indices j satisfying the inequalities

c(M + 1)−(k+1)N < |Ij | ≤ c(M + 1)−kN .

We fix a large integer n satisfying c(M + 1)−nN < |Ij| for all j; then
Jk = ∅ for all k ≥ n.
If j ∈ Jk and p, q ∈ ÛN ∩Ij , then the first kN digits of β(p) and β(q)

coincide by the above lemma, so that at most
∣∣∣BkN+1,nN(Û

′
N )
∣∣∣ elements

of BnN(Û
′
N) may occur for the bases q ∈ ÛN ∩ Ij. Hence

∣∣∣BnN(Û
′
N)
∣∣∣ ≤

∑

k

∑

j∈Jk

∣∣∣BkN+1,nN(Û
′
N )
∣∣∣ .

Using (5.2) and (5.3) this is equivalent to
(
(M + 1)N − 2

)−2
≤
∑

k

∑

j∈Jk

(
(M + 1)N − 2

)−k
,
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Introducing the number σ = σ(N) ∈ (0, 1) by the equation

(5.4) (M + 1)N − 2 = (M + 1)σN ,

we may rewrite the preceding inequality in the form

(M + 1)−2σN ≤
∑

k

∑

j∈Jk

(M + 1)−σNk.

Since

(M + 1)−Nk < c−1(M + 1)N |Ij|

by the definition of Jk, it follows that

(M + 1)−2σN ≤
∑

k

∑

j∈Jk

c−σ(M + 1)σN |Ij|
σ

or equivalently ∑

j

|Ij|
σ ≥ cσ(M + 1)−3σN .

Since the right side is positive and depends only on N , we conclude
that dimH ÛN ≥ σ(N).
It follows from the definition (5.4) that σ(N) → 1 as N → ∞. Since

ÛN ⊆ U ⊆ R for all N , letting N → ∞ we conclude that dimH U =
1. �

6. Proof of Theorem 1.5 and the Lebesgue measure of U

Set B′ := {β(q) : q ∈ (1,M + 1]} for brevity.
Our main tool is a generalization of a reasoning in [12]. Given two

positive integers n, t and a word η1 · · · ηn ∈ Bn(B
′), the sets

{q ∈ [1,M + 1) : βi(q) = ηi, i = 1, . . . , n}

and
{
q ∈ [1,M + 1) : βi(q) =

{
ηi, i = 1, . . . , n,

0, i = n + 1, . . . , n+ t

}

are two intervals [q1, q2) and [q1, q3) satisfying q3 ≤ q2.

Lemma 6.1. The following inequality holds:

q3 − q1
q2 − q1

≥
(q1 − 1)3

M2qt+2
2

.

We stress the fact that the right side does not depend on n.
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Proof. It follows from the greedy algorithm that
n∑

i=1

ηi
qi1

= 1,(6.1)

n∑

i=1

ηi
qi2

+
∞∑

i=n+1

M

qi2
≥ 1

and
(

n∑

i=1

ηi
qi3

)
+

1

qn+t
3

= 1.(6.2)

Using the first two relations and the relation η1 ≥ 1 we obtain that

M

qn2 (q2 − 1)
≥

n∑

i=1

ηi
(
q−i
1 − q−i

2

)
≥ q−1

1 − q−1
2 =

q2 − q1
q1q2

.

Hence

(6.3) (0 <)q2 − q1 ≤
Mq1q2

qn2 (q2 − 1)
.

Similarly, using (6.1) and (6.2) we obtain that

1

qn+t
3

=

n∑

i=1

ηi
(
q−i
1 − q−i

3

)
≤ M

∞∑

i=1

(
q−i
1 − q−i

3

)

= M

(
q−1
1

1− q−1
1

−
q−1
3

1− q−1
3

)
=

M(q3 − q1)

(q1 − 1)(q3 − 1)
.

Hence

(6.4) q3 − q1 ≥
(q1 − 1)(q3 − 1)

Mqn+t
3

.

Combining (6.3) and (6.4), and using the inequalities q1 ≤ q3 ≤ q2
we conclude that

q3 − q1
q2 − q1

≥
(q1 − 1)(q3 − 1)

Mqn+t
3

·
qn2 (q2 − 1)

Mq1q2
≥

(q1 − 1)3

M2qt+2
2

. �

In the next lemma λ denotes the usual Lebesgue measure.

Lemma 6.2. The following inequality hold for all 1 < p < r ≤ M + 1
and for all positive integers n and t:

λ ({q ∈ [p, r) : βn+1(q) = · · · = βn+t(q) = 0}) ≥
(p− 1)3

M2rt+2
(r − p).
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Before proving the lemma we recall that the bases q for which β(q)
is finite form a (countable) dense set in [1,M + 1]. Indeed, if β(q)
is infinite for some q, then the truncated sequences β1(q) · · ·βk(q)0

∞

belong to B′ for all k = 1, 2, . . . by an elementary reasoning given in
[23, Lemma 3.1]. Therefore there exist bases qk ∈ [1,M + 1] such that

β(qk) = β1(q) · · ·βk(q)0
∞,

and then qk → q.

Proof. We use the notations of the preceding lemma.
We may assume by density that β(p) and β(r) are finite. Choose a

sufficiently large integer n such that βi(p) = βi(r) = 0 for all i > n,
and consider the intervals [q1, q2) corresponding to n. Then some of
these intervals form a finite partition of [p, r). Since we have

q3 − q1
q2 − q1

≥
(q1 − 1)3

M2qt+2
2

≥
(p− 1)3

M2rt+2

for each of these intervals by the preceding lemma, the required in-
equality follows by summing the inequalities

q3 − q1 ≥
(p− 1)3

M2rt+2
(q2 − q1). �

Lemma 6.3. Given an arbitrary real number s > 1, there exists a
sequence (nk) of natural numbers satisfying the inequalities

nk > logs (n1 + · · ·+ nk) , k = 1, 2, . . .

and the divergence relation

∞∑

k=1

s−nk = ∞.

Proof. For s = 2 this was proved in [13, Lemma 6]. The proof remains
valid for every s > 1. �

Now we are ready to prove Theorem 1.5:

Proof of Theorem 1.5. By density it suffices to show for any fixed 1 <
p < r ≤ M + 1, the required property holds for almost all q ∈ [p, r).
For convenience we normalize λ and we use the equivalent probabilistic
measure µ := λ

r−p
on [p, r). Then we may adapt the usual proof of the

Borel–Cantelli lemma.
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Choose a sequence (nk) satisfying the conditions of preceding lemma
with s := r, and set

Cj :=



q ∈ [p, r) :

n1+···+nj∑

i=n1+···+nj−1+1

βi(q) > 0



 , j = 1, 2, . . . .

It follows from Lemma 6.2 and 6.3 that

µ
(
∩∞
j=kCj

)
≤

∞∏

j=k

(
1−

(p− 1)3

M2r2
r−nj

)
= 0

for every k = 1, 2, . . . .
Therefore C := ∪∞

k=1 ∩
∞
j=k Cj has also zero Lebesgue measure. We

complete the proof by observing that if q ∈ [p, r) \ C, then β(q) has
the required property for infinitely many m = n1 + · · ·+ nk. �

Finally we compute the Lebesgue measure of U :

Proof of Theorem 1.6 (i). Since U \ U is countable, it suffices to prove
that U is a null set. Furthermore, it suffices to prove that U ∩ [p,M+1)
is a null set for each p ∈ (1,M + 1) such that β(p) is finite.
It follows from the lexicographical characterization (5.1) of U that

U ∩ [p,M + 1) ⊆ C, where C is the null set in the proof of the above
lemma, corresponding to the choice [p, r) = [p,M + 1). Hence U ∩
[p,M + 1) is a null set indeed. �

7. Proof of Theorem 1.7

In view of Theorems 1.1 and 1.4 it suffices to prove that D′ < 0
almost everywhere in (q′,∞). This was implicitly proved in [24, The-
orems 2.5 and 2.6]. Here we give an alternative proof.
Since U is a null set by Theorem 1.5 (i), it suffices to prove that D′ <

0 everywhere in each connected component I = (q0, q
∗
0) of (q

′,∞) \ U .
Fixing p ∈ (q0, q

∗
0) arbitrarily, we deduce from Theorem 1.3 and Lemma

2.11 that

D(q) =
h(U ′

p)

log q

for all q ∈ I, and therefore

D′(q) = −
h(U ′

p)

q(log q)2

for all q ∈ I. Since p > q′ and therefore h(U ′
p) > 0 by Theorem 1.1, we

have D′(q) < 0 for all q ∈ I indeed.
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Remark. Since q′ and M + 1 are the smallest and largest elements of
U , the first and last connected components of (1,∞) \U are (1, q′) and
(M + 1,∞).
We recall from [8] that the left and right edpoints of the remaining

connected components I = (q0, q
∗
0) run over U \ U and some proper

subset U∗ of U , respectively.
It follows from some theorems of Parry [28] and Solomyak [33] that

each element of U \ U is an algebraic integer, all of whose conjugates
are smaller than the Golden Ratio in modulus.
On the other hand, it was proved in [24] that the points q∗0, called

de Vries–Komornik numbers, are transcendental. The smallest one is
the Komornik–Loreti constant q′. Their expansions are closely related
to the classical Thue–Morse sequence.
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