
1 
 

Author version of: Peters, S., van der Meulen, M., Zanolie, K., & Crone, E. A. (2017). Predicting 

reading and mathematics from neural activity for feedback learning. Developmental Psychology, 

53(1), 149-159. doi: 10.1037/dev0000234 

©American Psychological Association, 2017. This paper is not the copy of record and may not exactly 

replicate the authoritative document published in the APA journal. Please do not copy or cite without 

author's permission. The final article is available, upon publication, at: 10.1037/dev0000234 

 

Predicting reading and mathematics from neural activity for feedback learning  

 

 

Sabine Peters
ab*

, Mara van der Meulen
ab

, C. Kiki K. Zanolie & Eveline A. Crone
ab 

 

a
 Department of Developmental Psychology, Leiden University, The Netherlands 

b
 Leiden Institute for Brain and Cognition, The Netherlands 

 

* Corresponding author: Sabine Peters, Institute of Psychology; Brain and Development Lab, 

Leiden University, Wassenaarseweg 52; 2333 AK Leiden; The Netherlands; E-mail: 

s.peters@fsw.leidenuniv.nl ; Telephone: +31715271844 

 

 

 

 



2 
 

Abstract 

 Although many studies use feedback learning paradigms to study the process of 

learning in laboratory settings, little is known about their relevance for real-world learning 

settings such as school. In a large developmental sample (N=228, 8-25 years), we investigated 

whether performance and neural activity during a feedback learning task predicted reading 

and mathematics performance two years later. The results indicated that feedback learning 

performance predicted both reading and mathematics performance. Activity during feedback 

learning in left superior dorsolateral prefrontal cortex (DLPFC) predicted reading 

performance, whereas activity in pre-supplementary motor area/anterior cingulate cortex (pre-

SMA/ACC) predicted mathematical performance. Moreover, left superior DLPFC and pre-

SMA/ACC activity predicted unique variance in reading and mathematics ability over 

behavioral testing of feedback learning performance alone. These results provide valuable 

insights into the relationship between laboratory-based learning tasks and learning in school 

settings, and the value of neural assessments for prediction of school performance over 

behavioral testing alone. 
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Introduction 

Learning from performance feedback is an important skill allowing us to rapidly adjust 

behavior based on changes in environmental demands (Holroyd & Coles, 2002). It is an 

adaptive form of learning allowing people to flexibly and creatively adapt to a changing 

environment. Feedback learning is often investigated in controlled laboratory settings to study 

the process of learning. However, it is currently unclear how feedback learning in these 

controlled experimental paradigms relate to real-world learning in settings, such as school. In 

this study, we investigated this question in a large developmental sample of participants 

between 8-27 years, focusing on both neural and behavioral indices of feedback learning as 

predictors for school performance two years later. 

School performance can be measured in different ways. The most important school 

performance skills taught in schools across the world are reading and mathematics, of which 

reading is arguably the most important skill, given that many courses in school rely on 

children’s ability to read proficiently. Also, many children who are poor readers in school 

keep having difficulties with reading later in life (O’Shaughnessy, Lane, Gresham, & Beebe-

Frankenberger, 2003). Mathematical abilities are also important for many different subjects in 

school. More importantly, research has demonstrated that performance on mathematical tests 

predicts employability, productivity and salaries in adulthood (Geary, 2000; Rivera-Batiz, 

1992).  

One of the main reasons why laboratory-based feedback learning tasks and school 

performance may be related is because the capacity to learn from feedback is crucial in 

educational settings. In educational contexts, a large proportion of learning occurs based on 

the feedback from teachers, or feedback in other forms such as grades for tests or peer 

feedback. The degree to which children learn from feedback (which can be studied in an 
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isolated way in laboratory settings) may predict how well they do on school tests as well, and 

is thus ultimately relevant for school performance. In the current feedback learning task 

participants were instructed to sort series of three pictures in a certain order. The sort order of 

the three pictures needed to be inferred based on positive and negative performance feedback. 

We distinguished between a ‘learning phase’ and an ‘application phase’ to study neural 

responses to feedback that is relevant for learning (early in the learning process), compared to 

feedback that is no longer informative because the participant already knows the correct 

location (later in the learning process). We tested whether the degree to which participants 

could successfully use feedback, was predictive of school learning measures. With regard to 

neural activity, we were specifically interested in neural responses to feedback during the 

learning phase compared to feedback during the application phase, as this may be an index of 

sensitivity to learning signals.  

Aside from sensitivity to learning signals, another possible reason for a link between 

laboratory-based feedback learning tasks and school performance is that both feedback 

learning and reading and mathematics are linked to executive functions. Executive functions 

are defined as the ability to perform goal-directed actions in new situations and to overcome 

automatic thoughts and behaviors (Garon, Bryson, & Smith, 2008). Executive functions are 

thought to consist of three sub-processes, or basic executive functions: (1) working memory, 

(2) inhibition and (3) switching (Huizinga, Dolan, & van der Molen, 2006; Miyake et al., 

2000). It has been argued that complex cognitive tasks which rely on multiple sub-processes 

of executive functions, such as the classic Wisconsin Card Sorting Task, are the most reliable 

correlates of cognitive challenges in daily life (Barcelo & Knight, 2002), possibly because 

these tasks are more similar to everyday challenges. Similar to the WCST, the current 

feedback learning task relied on multiple aspects of executive functioning. For instance, 

participants needed working memory skills to keep relevant information online, they needed 
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to plan for next trials, to form and test hypothesis on the correct sort order, they needed to 

switch hypotheses about the correct order after negative feedback, etc. Compared to the 

WCST, we aimed to study behavioral and neural reactions to learning from feedback per se, 

without the component of rule switches. Unexpected negative feedback after a string of 

correct answers, may result in very different brain activity compared to negative feedback 

during the search for a new correct rule (Barcelo & Knight, 2002). Thus, we focused on one 

aspect of the WCST which is rule learning, but not on the second aspect which is rule 

switching. 

Several studies have provided evidence for a relationship between school performance 

and executive functioning. For instance, numerous studies have demonstrated a link between 

working memory, inhibition and switching on the one hand, and reading and mathematics 

performance on the other (Blair & Razza, 2007; Bull & Scerif, 2001; Raghubar, Barnes, & 

Hecht, 2010; Van der Sluis, De Jong, & Van der Leij, 2004). The link between executive 

functioning and school performance is not surprising, given that to develop reading and 

mathematics understanding, children probably need additional cognitive skills. For example, 

children have to be able to understand grammatical and numerical structure, keep track of the 

sentences read or mathematical steps taken before, and integrate information from long-term 

memory with current information to form a coherent view (Cain, Oakhill, & Bryant, 2004; 

Landi, Frost, Mencl, Sandak, & Pugh, 2013), which are all processes intimately related to 

executive functioning. This led us to hypothesize that feedback learning in controlled 

laboratory settings is a valid predictor of real-world learning performance in schools.  

Recently, an increasing body of research has directed attention to predicting school 

performance from brain measures. A possible advantage of collecting neural measures in 

addition to behavioral measures is the hypothesis that brain measures can provide unique 

predictive information over behavioral measures alone. A prior study already demonstrated 
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that neural activity during a working memory task predicted unique variation in mathematical 

performance two years later (Dumontheil & Klingberg, 2012). Similarly, reading encoding 

ability was better predicted by a combination of neural and behavioral measures rather than 

behavioral testing alone (Hoeft et al., 2007). The main neural areas involved during feedback 

processing are the dorsolateral prefrontal cortex (DLPFC), superior parietal cortex (SPC) and 

pre-supplementary motor area/anterior cingulate cortex (pre-SMA/ACC) (Peters, Braams, 

Raijmakers, Koolschijn, & Crone, 2014; Zanolie, Van Leijenhorst, Rombouts, & Crone, 

2008). Meta-analyses of fMRI-activity during reading and mathematics also show recruitment 

of these areas (Arsalidou & Taylor, 2011; Ferstl, Neumann, Bogler, & Von Cramon, 2008; 

Houdé, Rossi, Lubin, & Joliot, 2010) and pre-SMA/ACC (Ferstl et al., 2008; Houdé et al., 

2010) amongst other areas (mostly lateralized to the left hemisphere). Interestingly, meta-

analyses on mathematics-related neural activity also showed involvement of the DLPFC 

(Arsalidou & Taylor, 2011; Houdé et al., 2010), parietal cortex and pre-SMA/ACC (Arsalidou 

& Taylor, 2011). Possibly, the same neural regions that respond to feedback signals are also 

associated with reading and mathematics. 

In this study, we investigated the link between learning in a controlled laboratory 

setting, and reading and mathematical ability as indices for real-world learning. We focused 

on fluency at reading single words, because this is one of the most crucial aspects of reading 

determining reading ability at a later stage (Jenkins, Fuchs, Van Den Broek, Espin, & Deno, 

2003; Juel, 1988). To assess mathematics proficiency, we used a standardized arithmetic test 

that is part of the Wechsler Adult Intelligence Scale and the Wechsler Intelligence Scale for 

Children. This task measures numerical reasoning and mathematical problem solving and 

relies on the use of mathematical facts, procedures and concepts, all of which have been 

related to executive functioning skills (Cragg & Gilmore, 2014). In addition, we investigated 

whether individual differences in working memory could explain a possible link between 
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feedback learning and reading and mathematics performance. For instance, Huizinga et al. 

(2006) found in a sample of 7 to 21-year olds that from the factors working memory, 

inhibition and switching, only working memory predicted WCST performance, a task that 

also relies on learning from feedback. We hypothesized that feedback learning would predict 

reading and mathematics performance two years later, and that neural measures would 

provide additional information over behavioral testing (feedback learning performance, 

working memory) alone.  

Methods 

Participants 

The initial sample consisted of 299 participants (data also published in Peters, Braams, 

et al., 2014; Peters, Koolschijn, Crone, Van Duijvenvoorde, & Raijmakers, 2014), for whom 

data was collected on two time points (T1 and T2) which were approximately 2 years apart 

(M= 1.99, SD=0.10, range: 1.66-2.47 years). The included sample with complete data at T1 

for feedback learning and fMRI data consisted of 268 participants. At T1 participants were 

excluded from analyses for a variety of reasons, such as reported history of neurological or 

psychiatric disorders or use of psychotropic medication, movement in the MRI scanner 

exceeding 3.0 mm (N=19), technical issues (N=3) or because they were outliers at the lower 

end (more than three times the interquartile range) on feedback learning performance (N=3). 

Reading and mathematics data was only obtained at T2. At T2, there was complete 

data on reading and math performance for 228 participants (119 females) who were also 

included at T1 (aged 8.01 – 24.55 years at T1 (M=14.35, SD= 3.57) and aged 9.92 – 26.62 at 

T2 (M=16.34, SD=3.58)). All analyses were performed on these 228 participants. See Table 1 

for an overview of these participants per age and per sex. IQ scores at T1 were estimated 

using two subtests (Similarities and Block Design) of the WISC-III (participants 8-15 years 
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old) or WAIS-III (participants 16-25 years old). Estimated IQ scores ranged from 85 to 143 

(M = 110.78, SD = 9.80). The study was approved by the Institutional Review Board at the 

University Medical Center and all participants older than 12 (and participants’ parents for 

children under 18) signed an informed consent form. Adults received payment (€60) for 

participation and children and their parents received brain-related presents and a payment for 

travel reimbursement (€30 for children 12-17 years, €25 for children 8-11 years). 

Materials  

Reading Fluency. Technical reading skills were measured at T2 with a reading 

fluency task. We used one of the tests in the Dutch “Three-Minute-Test” (Krom, Jongen, 

Verhelst, Kamphuis, & Kleintjes, 2010). In this task, participants received a list of words and 

were instructed to read aloud as many words as possible in one minute. The total score is 

defined as the number of correct words read minus the number of incorrect words. The Three-

Minute-Test has good validity and reliability (Cronbach’s alpha, dependent on age group 

>0.92) (Krom et al., 2010). 

Mathematics. Mathematical ability was measured at T2 with the subscale 

“Arithmetic” of the Wechsler Intelligence Scales (WISC-III for participants under 16, WAIS-

III for participants of 16 years and older). A set of arithmetical problems of increasing 

difficulty was administered verbally. All arithmetic problems had a time limit of 30 to 75 

seconds, depending on the difficulty of the problem. If the participants failed to correctly 

answer three consecutive problems the test was aborted. Both the WISC and the WAIS 

resulted in raw scores that were converted to norm scores relative to same-aged peers. We 

used norm scores in further analyses (see also Barnea-Goraly et al., 2005; Li, Hu, Wang, 

Weng, & Chen, 2013) to ensure comparability between the different ages (reflected in WISC 
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and WAIS scores). In addition, we performed our main analyses with the mathematics subtest 

with raw scores for the WISC and WAIS group separately. 

Working memory. We measured working memory performance at T1 to assess 

whether feedback learning and reading and mathematics performance were explained by 

individual differences in working memory. Working memory capacity was measured with the 

Mental Counters task (Huizinga et al., 2006), in which participants need to keep numerical 

information active. For this task, two independent counters were presented on a computer 

screen. The counters were horizontal bars for which the values changed depending on the 

position of a square. If a square was presented above a counter the participant was instructed 

to add 1 to the current value, if a square was presented below the counter the participant was 

instructed to subtract 1 from the current value of the counter. The squares appeared randomly 

above or below one of the two counters. Participants were explicitly instructed to use a verbal 

counting strategy, by instructing them to keep track of both counters by mentally counting 

(e.g. 0-0, 1-0, 1-1, 1-2, etc.) and to press a button as soon as one of the counters reached a 

given criterion value (e.g., when one of the counters reached the value 3). The squares were 

randomly presented in series (the number of trials before criterion was reached) of 5 or 7 trials 

with inter-trial intervals of 1000 to 1300 ms, with a total of 16 trials. The proportion of correct 

trials was used as a measure of performance.  

Feedback Learning Task. Participants performed a feedback learning task in the 

MRI scanner (Peters, Braams, et al., 2014; Peters, Koolschijn, et al., 2014). On every trial, 

three empty boxes were presented in the top half of the screen in the stimulus and feedback 

display. During presentation of the stimulus display  one of three different stimuli was 

presented in the centre of the bottom half of the screen (see Figure 1). Participants were 

instructed that each stimulus belonged in one of three boxes for an entire sequence and they 

had to find the correct location for all three stimuli by using performance feedback. Each trial 



10 
 

started with a 500 ms fixation cross, presented in the center of the screen. After fixation the 

stimulus display was presented for 2500 ms, during which participants were required to sort 

the stimulus in one of three squares. Participants responded by pressing one of three buttons 

strapped to their right leg. If participants failed to respond within 2500 ms  “Too Late” was 

presented in the centre of the screen, after which the sequence continued. After the response, 

performance feedback was presented for 1000 ms. When a participant sorted a stimulus in the 

correct square a plus-sign (positive feedback) was shown, when a participant sorted a stimulus 

in the incorrect square a minus-sign (negative feedback) was shown. Inter-trial interval (blank 

screen) was jittered to optimize the timing for fMRI based on OptSeq (Dale, 1999) with 

intervals between 0 and 6 seconds. A sequence was aborted when the participant sorted each 

stimulus twice in the correct location, or after 12 trials in total. When a sequence ended a new 

sequence with three new unique stimuli was presented. There were 15 sequences in total, 

resulting in a maximum of 180 trials. The mean number of trials was 138.80 (SD=9.25, 

range=117-165 trials). Stimuli were presented in a pseudorandom order, with a maximum of 

two identical stimuli in a row. During the MRI session the task was divided into two runs of 

eight and seven sequences, respectively. Before the MRI session, all participants practiced 

three sequences. During the practice session, experimenters were observing the participants’ 

responses to check whether the participant had understood the task. Almost all participants 

understood the instructions. If not, further instructions were provided to make sure all 

participants were able to perform the task. 

To calculate a performance measure for feedback learning we calculated the 

percentage of trials in the learning phase where feedback was successfully used on the next 

trial. That is, if a participant received positive feedback for a stimulus, and opted for the same 

response the next time that stimulus appeared, this would mean that the positive feedback was 

successfully applied in a next trial. For negative feedback, feedback was succesfully applied 
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when the participant did not choose the same option in a next trial. To calculate the 

performance measure, we divided the number of trials during the learning phase which were 

successfully applied in the next trial, by the total number of trials during the learning phase.  

FMRI data acquisition 

MRI scans were obtained with a Philips 3.0 Tesla MRI scanner. Functional scans for 

the feedback learning tasks were acquired during two runs with T2*-weighted echo-planar 

imaging (EPI). The first two volumes were discarded to allow for equilibration of T1 

saturation effects. The following settings were used: TR = 2.2 s, TE = 30 ms, sequential 

acquisition, 38 slices, slice thickness = 2.75 mm, Field of View (FOV) = 220 x 220 x 114.68 

mm. For the structural scan, a high-resolution 3D T1-FFE was obtained after the experimental 

tasks (TR = 9.76 ms, TE = 4.59 ms, 140 slices, voxel size = 0.875 mm, FOV = 224 × 177 × 

168 mm). The experimental task was projected on a screen, which was visible to participants 

through a mirror. Total scan duration for the task was on average 11.57 minutes (range 9.75-

13.75 minutes). Participants were accustomed to the MRI environment and sounds with a 

mock scanner before the actual MRI scan. 

FMRI data Analysis 

We used SPM8 (Wellcome Department of Cognitive Neurology, London) to analyze 

fMRI. The following pre-processing steps were used: correction for slice timing acquisition 

and rigid body motion, spatial normalization to T1 templates (MNI305 stereotaxic space 

(Cocosco, Kollokian, Kwan, & Evans, 1997)) using a 12-parameter affine transform together 

with a nonlinear transformation involving cosine basis functions and resampling of the 

volumes to 3 mm voxels. Functional scans were smoothed with an 8mm FWHM isotropic 

Gaussian kernel. For further fMRI analyses, we used a contrast that reveals brain areas with 

sensitivity to informative feedback for learning (Eliassen et al., 2012; van den Bos, Güroğlu, 
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van den Bulk, Rombouts, & Crone, 2009), that is, areas responding more to feedback 

providing new information (i.e., more informative) compared to feedback providing known 

information. To compare neural activity for ‘informative’ and ‘uninformative’ feedback, we 

distinguished between a learning phase and an application phase for each stimulus. For the 

learning phase, we included trials where participants had not correctly sorted this particular 

stimulus yet, and were thus still using feedback to determine the correct location. Only trials 

for which feedback was used appropriately on the next trial for that stimulus were included. 

Thus, feedback was categorized as learning, when positive feedback resulted in choosing the 

same location on a next trial and when negative feedback resulted in sorting in a different 

location. These trials during the learning phase were compared to the application phase: trials 

in which a stimulus was sorted correctly on a preceding trial, and continued to be sorted 

correctly. All further analyses were based on a comparison between the learning phase and the 

application phase, i.e. the contrast Learning > Application. In order to calculate this contrast 

for all participants, we first modeled the fMRI time series with events corresponding to the 

events “Positive Learning”, “Negative Learning”, and “Application”, time-locked with 0-

duration to the moment of feedback, which were convolved with a canonical hemodynamic 

response function. Other trials (e.g., trials during the learning phase that did not result in 

learning or trials where participants responded too late) were modeled as events of no interest. 

The events were used in a general linear model; along with a set of cosine functions which 

high-pass filtered the data. The least-squares parameter estimates of height of the best-fitting 

canonical HRF for each condition were used for the calculation of the contrast Learning 

(Positive Learning + Negative Learning) > Application for each subject. The resulting 

contrast images were submitted to higher-level analyses. 

FMRI Region-of-interest analysis 
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In order to examine neural effects of feedback learning and its relation to reading and 

mathematics performance, region-of-interest (ROI) analyses were performed with the 

Marsbar toolbox in SPM8 (Brett, Anton, Valabregue, & Poline, 2002). The contrast used to 

generate functional ROIs was Learning > Application (FWE corrected, p<.05, >10 contiguous 

voxels). The resulting ROIs spanned several brain regions. Therefore, the ROIs were 

subdivided by masking the functional ROI with the following anatomical Marsbar ROIs 

(based on Automated Anatomical Labeling (AAL)): left and right DLPFC (Middle Frontal 

Gyrus in AAL), pre-SMA/ACC (Supplementary Motor Area in AAL; left and right 

combined), left and right SPC (Superior Parietal Lobule in AAL). These ROIs were selected 

based on earlier studies demonstrating that these areas show developmental changes for 

feedback learning (Crone, Zanolie, Van Leijenhorst, Westenberg, & Rombouts, 2008; Peters, 

Braams, et al., 2014; van Duijvenvoorde, Zanolie, Rombouts, Raijmakers, & Crone, 2008) 

and were also used in a prior study with the same experimental task (Peters, Braams, et al., 

2014). The DLPFC ROIs, even after masking, were still very large (right: 28488 mm; left: 

28240 mm), therefore, we created 6 mm radius spheres based on four local maxima within the 

DLPFC regions (two per hemisphere). These areas are referred to as ‘superior DLPFC (sup-

DLPFC)’ and ‘mid-DLPFC’. Centre-of-mass MNI (x y z) coordinates for the ROIs were: pre-

SMA/ACC: 0 9 58; right sup-DLPFC: 21 9 57; left sup-DLPFC: -24 3 57, right mid-DLPFC: 

42 18 39; left mid-DLPFC: -42 24 39; right SPC: 27 -62 55; left SPC: -23 -64 50 (See Figure 

2).  

Results 

Data checks  

We performed several data quality checks by investigating relationships between the 

main variables of interest (neural activity and behavioral performance for feedback learning, 

and reading and mathematics) and age, IQ, working memory and sex (See Table 2 for an 
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overview of the values for age, IQ, working memory, feedback learning, reading and 

mathematics). There were no sex differences in any of the measures except for working 

memory which was higher for males (see Table 2). Because there were no sex differences for 

the key variables reading, mathematics and feedback learning, we did not investigate sex 

effects further. We also investigated correlations between the different variables. There was 

an age-corrected correlation between reading and mathematics scores (r=.20, p=.003). 

Working memory at T1 correlated positively (corrected for age) with feedback learning 

performance at T1 (r=.33, p<.001), reading fluency at T2 (r=.15, p=.026) and mathematics at 

T2 (r=.25, p<.001) but not with neural activity at T1. IQ estimates at T1 correlated with 

mathematics norm scores at T2 (r=.32, p<.001, age-corrected) but not with the other measures 

(reading fluency, feedback learning and neural activity).  

With regard to age effects, we found that age at T1 correlated positively with reading 

fluency (r=.31, p<.001), working memory (r=.34, p<.001), and feedback learning 

performance (r=.47, p<.001). Age was also positively related to neural activity for the 

difference score Learning > Application in all 7 ROIs. Therefore, we corrected for age in 

further analyses. Even though mathematics scores were norm scores, i.e., scores relative to 

same-aged peers, there was still a small but significant correlation with age (r=.16, p=.018). 

We therefore also corrected for age in all further analyses with mathematics scores. Figure 3 

shows the relations with age separated in categories for illustrative purposes.  

For the outcome variables (reading fluency and mathematics scores) we furthermore 

tested whether the relationship with age was best described by a linear function of age at T1, a 

quadratic function of age, or a cubic function of age (for a similar approach, see Braams, van 

Duijvenvoorde, Peper, & Crone, 2015; Somerville et al., 2013). We used a hierarchical 

regression approach with reading/mathematics as dependent variable, and added age
1
 as first 

step, age
2
 as second step, and age

3
 as third step, in order to test whether polynomials of age 
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explained the relation better compared to a simpler model. For mathematics, the relationship 

with age was best described by a linear age pattern. However, reading fluency showed a 

combined linear and quadratic age pattern, leveling off towards adulthood. In all further 

analyses with reading fluency as a dependent variable, we therefore added not only age
1
 but 

also age
2
 as a control variable. 

Predicting reading and mathematics performance at T2 from T1 feedback learning  

We first investigated whether reading and mathematics performance at T2 could be 

predicted from behavioral performance on the feedback learning task at T1. A hierarchical 

regression with age at T1 entered as a first step and feedback learning performance at T1 as a 

second step, showed that in addition to age, feedback learning performance significantly 

predicted reading fluency and mathematics performance two years later (positive relation), 

see Table 3.  

Predicting reading and mathematics performance at T2 from T1 neural activity during 

feedback learning 

Next, we assessed whether brain activity during feedback learning in 7 ROIs at T1 

predicted reading and mathematics performance at T2. We performed hierarchical regressions 

with age at T1 as first step and neural activity in one of the 7 ROIs as second step. These 

analyses showed that in addition to age and age
2
, reading fluency was predicted by left sup-

DLPFC activity (see Table 4). For mathematics performance at T2, activity in pre-SMA/ACC 

was a  significant predictor above age (see Table 5). For a visual representation of the 

relationship between right sup-DLPFC activity and mathematics performance, and left sup-

DLPFC and reading fluency, see Figure 4.  

We also tested whether neural activity for feedback learning explained additional 

variance in reading and mathematics above age and behavioral performance for feedback 



16 
 

learning. We analyzed this with hierarchical regressions with age (and age
2
 for reading 

fluency) at T1 as first step, feedback learning performance at T1 as second step, and neural 

activity (per ROI) as third step. Neural activity explained additional variance above 

behavioral measures for both reading fluency (left sup-DLPFC remained significant (β=.15, 

p=.026) and mathematics (pre-SMA/ACC remained significant (β=.16, p=.022). This 

indicates that neural activity in left sup-DLPFC and pre-SMA/ACC explained unique variance 

in reading and mathematics over and beyond age and behavioral feedback learning 

performance. 

Cross-validation 

To further confirm these models, we used leave-one-out cross-validation using the 

cv.glm function in R package boot (Canty & Ripley 2012). This method leaves out one 

participant at every turn and predicts the dependent variable using all remaining data (N-1).  

These analyses indicated that the main results were confirmed by cross-validation. That is, for 

reading fluency a model including age, age2 and feedback learning performance resulted in a 

lower prediction error (192.34) compared to a model including only age and age2 (194.35). 

For mathematics norm scores, prediction error for a model including age and feedback 

learning (7.35) was lower compared to a model including only age (7.77). Also the 

neuroimaging results were confirmed using cross-validation. A model to predict reading 

fluency with age, age2 and left superior DLPFC activity resulted in a lower prediction error 

(191.05) compared to a model with only age and age2 (194.35). This was also the case when 

we tested whether neural activity explained additional variance over feedback learning 

performance: a model with age, age2 , feedback learning performance and left superior 

DLPFC activity resulted in a lower prediction error (189.76) compared to a model with age, 

age2 and  feedback learning performance (192.34). The model predicting mathematics from 

age and SMA activity resulted in a lower prediction error (7.59) than a model with only age as 
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predictor (7.77). The cross-validation approach confirmed that SMA activity also explained 

additional variance above feedback learning performance, i.e. a model with age, feedback 

learning performance and SMA activity resulted in a lower prediction error (7.25) compared 

to a model with age and feedback learning performance (7.35). 

Specificity of the effects for reading vs. mathematics 

The correlation between reading and mathematics performance (while controlling for age) 

was significant (r=.19, p=.003). We therefore performed follow-up analyses to test whether 

the prediction of reading and mathematics from feedback learning was specific to either 

reading or mathematics, or whether the predictive effect may be related to a more general 

effect on school performance measures. The follow-up regression analyses showed that 

feedback learning performance no longer predicted reading fluency (β=.08, p=.273) over age 

and age
2
 when adding mathematics performance to the model, indicating a general effect on 

school performance rather than a specific effect for reading. In contrast, feedback learning 

performance still predicted mathematics performance (β=.13, p=.047) in addition to age and 

reading fluency, suggesting a specific effect for mathematics. 

Next, the same follow-up analyses were performed with neural activity as predictor for 

reading and mathematics. In the previous paragraph, we showed that left sup-DLPFC 

predicted reading fluency over age and age
2
. Follow-up analyses indicated that this effect 

remained significant (β =.14, p=.031) when adding mathematics performance to the model, 

suggesting a specific relation between sup-DLPFC activity and reading fluency. Also, pre-

SMA/ACC (β=.18, p=.011) still predicted mathematics over age when adding reading fluency 

to the model, suggesting a specific effect on school performance measures. 

Specificity of the effects for different brain regions 
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To test whether reading fluency and mathematics performance were specifically 

predicted by these two neural regions, or whether there was also a general effect of activation 

in the feedback learning network, we calculated mean activation across all 7 ROIs. Next, we 

performed regression analyses with reading fluency and mathematics as dependent variables, 

age (and age
2 

for reading) as first step, mean activity in all ROIs as second step, and left sup-

DLPFC activity/pre-SMA/ACC activity as third step. The results showed that reading fluency 

was specifically predicted by left sup-DLPFC activity (β=.24, p=.007, and the mean activity 

across all ROIs was not a significant predictor (β=-.13, p=.167). For mathematics, mean 

activity for all ROIs was not a significant predictor either (β=-.03, p=.821), but activity in pre-

SMA/ACC only remained marginally significant when adding mean activity in all ROIs to the 

model (β=.21, p=.072).Adding working memory and IQ as control variables 

To assess whether the relationship between feedback learning and reading and 

mathematics performance could be explained by individual differences in working memory, 

we tested whether the above effects remained significant when analyzing a hierarchical 

regression with age (and age
2
 for reading fluency) as a first step, working memory and IQ at 

T1 as a second step, and feedback learning performance or neural activity as a third step. 

Reading fluency was still predicted by left sup-DLPFC (β=.15, p=.023), over age (β=1.51, 

p=.001), age
2 

(β=-1.31, p=.003), IQ (β=.029, p=.652) and working memory (β=.094, p=.173). 

However despite the fact that neither IQ (β=.15, p=.877) nor working memory (β=.97, 

p=.335) was a significant predictor of reading fluency, the prediction of reading fluency from 

feedback learning performance was no longer significant (β=.13, p=.093), which is possibly 

related to the increased number of predictors in the analysis. 

For mathematics, feedback learning performance remained a significant predictor 

(β=.18, p=.015) over age (β=.16, p=.018), working memory (β=.22, p=.001) and IQ (β=.30, 

p<.001). Pre-SMA/ACC (β=.16, p=.016) was also still a significant predictor over age 
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(β=.051, p=.456), IQ (β=.29, p<.001) and working memory (β=.21, p=.002). Together, these 

results indicate that  feedback learning performance and neural activity explained unique 

variance in reading and mathematics that was not explained by working memory or IQ. 

Mathematics raw scores 

All prior analyses used mathematics norm scores. To investigate whether results were 

also present when using raw scores, we also performed the analyses with feedback learning 

performance and neural activity as predictors for raw mathematics scores. Because the 

younger age group (10-15, N=116) performed the mathematics test from the WISC-III and the 

older group (16-27, N=112) the WAIS-III, these age groups were analyzed separately. The 

results showed that effects were only present in the younger adolescents but not the in the 

older adolescent/adult group. That is, for the youngest group, mathematics performance was 

predicted above age by feedback learning performance (β=.14, p=.027) and by pre-SMA/ACC 

activity (β=.23, p=.030). None of the effects were significant for the participants who were 16 

years and older, suggesting a specific effect for the younger age range. 

 

Discussion 

In this study we investigated whether performance and neural activity during a 

feedback learning paradigm, used to study learning processes in a controlled laboratory 

setting, could predict indices of real-world learning performance in school two years later 

(reading and mathematics performance). The results of this study showed that 1) Feedback 

learning performance predicted both reading and mathematics performance two years later, 2) 

Neural activity during feedback learning in left sup-DLPFC predicted reading fluency, and 

neural activity in  pre-SMA/ACC predicted mathematics performance two years later, 3) 

These neural regions predicted unique variation in school performance over behavioral testing 
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alone, and 4) Relations between feedback learning performance and neural activity with 

school performance remained significant when controlling for individual differences in 

working memory capacity and IQ. These results are discussed further in the following 

paragraphs. 

Relation between feedback learning performance and school performance 

For both reading and mathematics, our results indicated that performance could be 

predicted by feedback learning performance two years earlier. To date, no prior research has 

investigated the relation between laboratory-based feedback learning measures and indices of 

real-world learning in school settings. The results confirmed our hypothesis that laboratory 

based learning measures can be powerful predictors of school outcomes. A possible reason for 

the relation between feedback learning and school performance measures is that the ability to 

learn from feedback is very important in school settings. Learning in schools relies in large 

part on learning from performance feedback from teachers or test scores. Children may differ 

in their ability to learn from feedback, and this may ultimately influence school performance.  

It is also possible that the relation between feedback learning and school performance 

is explained by underlying individual differences in executive functions. It is well 

conceptualized that both feedback learning and school performance are related to executive 

functions (Diamond, 2013). Consistent with this, we found a positive correlation between 

working memory performance and feedback learning, as well as between working memory 

and reading and mathematics performance. However, even when adding working memory as 

a predictor to the model, feedback learning performance still predicted unique variance for 

both reading and mathematics, suggesting that working memory may explain a part of, but not 

all variance. Note that in our study, we only included a measure of working memory (but no 

measure of other executive functions). Another way to have a better understanding of the 
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mechanisms through which feedback learning predicts school outcomes is by understanding 

the neural activity related to feedback learning, given that these are strongly linked to learning 

performance (Peters, Braams, et al., 2014). 

Relation between neural activity for feedback learning and school performance 

An important question tested in this study was whether neural activity could predict 

reading and mathematics performance two years later, and whether neural activity could 

provide additional information over behavioral testing alone. This was based on prior studies 

showing that neural measures can predict reading (Hoeft et al., 2007; Maurer et al., 2009) and 

mathematics performance (Dumontheil & Klingberg, 2012). Consistent with these studies, we 

found evidence for a relation between neural activity for feedback learning and reading and 

mathematics ability. First, we found that left sup-DLPFC activity predicted reading ability. 

These findings fit with earlier research showing that a mostly left-lateralized network 

including DLPFC is involved during reading tasks (Ferstl et al., 2008). Second pre-

SMA/ACC predicted mathematics ability two years later. This fits with meta-analyses 

showing involvement of pre-SMA/ACC during arithmetical tasks (Arsalidou & Taylor, 2011; 

Houdé et al., 2010). Notably, for all areas we found a positive relation, indicating that 

increased activity predicts better performance on reading or mathematics tests. With the 

current design, it is not possible to determine whether higher activity might indicate better 

functioning or perhaps earlier maturation of these regions. Future research could build on this 

study by analyzing longitudinal fMRI measures and data on structural brain development. 

In addition, we performed analyses to assess whether neural measures provided unique 

information that cannot be captured by behavioral testing alone. Both regions remained 

significant predictors when controlling for behavioral performance during feedback learning.. 

This indicated that assessing feedback learning ability is useful for predicting reading and 
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mathematics, but adding neural measures in addition to behavioral assessment further 

enhanced predictive ability. The finding that neural activity measures have added value over 

behavioral testing alone fits with earlier studies for the prediction of reading (Hoeft et al., 

2007) and mathematics (Dumontheil & Klingberg, 2012)..   

Prior research suggested that working memory is an important component of both 

feedback learning (Miyake et al., 2000) and reading and mathematics (Alloway & Alloway, 

2010), therefore it was possible that working memory is the underlying factor explaining 

these relations. When we controlled for working memory and IQ, there was still a significant 

prediction of reading fluency from feedback learning performance and activity in left sup-

DLPFC, and for prediction of mathematics from feedback learning performance and activity 

in pre-SMA/ACC. This indicates that although working memory may play a role in the 

relation between feedback learning and reading and mathematics, there is still unique 

variation in reading and mathematics that is explained by neural activity during feedback 

learning. Other aspects of feedback learning performance that might be relevant for learning 

in school settings, are for instance the capacity to monitor one’s actions and keep track of 

performance feedback, ignoring irrelevant aspects of the task, perceived competence and 

motivation (Fortier, Vallerand, & Guay, 1995; St Clair-Thompson & Gathercole, 2006). 

Future research is needed to examine this in more detail. 

   

Limitations and future directions 

There are several limitations to this study. First, school performance can be measured 

in many ways. In this study, we measured only two short, well-validated measures for reading 

and mathematics. Future research could build on this study by relying on a more extensive 

assessment of school performance involving multiple measures. Second, we only collected 
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reading fluency and mathematics data at the second time point but not at the first time point. 

An interesting question would be to investigate whether feedback learning and brain measures 

can predict reading and mathematics even better than tests for reading and mathematics 

themselves. On the other hand, an advantage of measuring feedback learning or other 

executive functioning tasks is that it captures abilities that are essential to both reading and 

mathematics. Third, IQ was assessed with only two subtests of the WISC/WAIS. A more 

comprehensive assessment of IQ might give a more definite answer to the question whether 

the relation between feedback learning and school performance is driven by underlying 

differences in general intelligence. Fourth, mathematics was assessed with the WISC for 

younger participants (10-15 years at T2) and with the WAIS for older participants (16-27 

years at T2). When we performed the analyses with mathematics raw scores rather than norm 

scores (scores relative to same-aged peers), we needed to perform the analyses in separate age 

groups. These analyses showed that the prediction of mathematics scores from behavioral 

performance and neural activity for feedback learning was only present in the youngest age 

group (10-15 years).  One tentative interpretation is that prediction is stronger in the younger 

age groups, when brain maturation is still undergoing major changes (Giedd & Rapoport, 

2010). Alternatively, it is possible that the WISC scores are more sensitive for picking up 

change than the WAIS scores. Further studies should use a wider battery of tests to test these 

competing hypotheses in more detail.  

It should also be noted that the working memory task we used in this study involved 

simple mental addition and subtraction. Therefore this particular working memory task may 

be related more to mathematics than to reading performance. Also, younger children may be 

less proficient in these simple addition and subtraction skills, resulting in lower working 

memory outcomes. The working memory task contained both visuo-spatial elements as well 

as a verbal rehearsal component. In future studies, working memory could be controlled for 
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with additional measures of working memory performance, to investigate the generalizability 

of these findings and the effects of visuo-spatial vs. verbal working memory. In a similar way, 

the feedback learning task contains both visuospatial and verbal elements. Given that the 

correct stimulus needs to be sorted in one of three locations gives it a clear visuospatial 

aspect. However, many participants reported using a verbal rehearsal strategy during the task. 

Future studies should try to disentangle these components, given that they may contribute to 

reading and math in different ways. 

Finally, in future research studying prediction of future behavioral outcomes from 

neuroimaging data, it is important to use statistical models that provide more definitive 

answers to the question whether prediction in an independent sample is possible. A recent 

review (Gabrieli, Ghosh, & Whitfield-Gabrieli, 2015) argues for the use of cross-validation 

analyses (such as the leave-k-out method) to make claims about the prediction of behavior 

from neuromarkers stronger. 

Conclusion 

In conclusion, this study found contributions of feedback learning performance and 

neural activity in predicting school outcomes two years later. This provides evidence that 

studying learning processes through simplified laboratory tasks provides at least some 

relevance for real-world learning. In addition, we showed that neural measures explain unique 

variance in school outcomes two years later that is not captured by behavioral testing of 

feedback learning performance, working memory or IQ alone. An important direction for 

future research is to unravel which predictors are involved in specific functions (such as 

reading or arithmetic) and which are involved in general school performance (for example, 

predicting both reading and arithmetic). These results will be important to eventually tailor 

educational programs to the individual needs of children. 
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Figures 

Figure 1: Display of task sequence for the feedback learning task. A trial started with a 2500 

ms stimulus display during which the participant responded by sorting the stimulus in one of 

the three boxes. In this example, the participant (correctly) chose the left box. Next, feedback 

was presented for 1000 ms by either a ‘+’ for correct feedback or a ‘–’ for incorrect feedback. 

After an inter-trial interval (varying from 0-6 s) and a 500 ms fixation cross, the next stimulus 

was presented. 

 

 

  



33 
 

Figure 2: Wholebrain results for the contrast Learning > Application (FWE-corrected at 

p<.05, > 10 contiguous voxels) and the regions-of-interest based on this contrast. 
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Figure 3: Display of age effects for feedback learning, working memory, reading and 

mathematics. Note that for T2 one participant was 9.92 years old, therefore the youngest age 

group at T2 was 9 and 10 years combined. 
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Figure 4: Scatterplot of the significant relationships between reading and mathematics 

performance at T2 and neural activity at T1 for the contrast Learning > Application. 
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Tables 

Table 1: Number of participants (final included sample) per age and per sex.  

 

Sex 

 Age Male Female Total 

8 years 6 4 10 

9 years 10 5 15 

10 years 8 8 16 

11 years 8 11 19 

12 years 16 9 25 

13 years 16 15 31 

14 years 10 14 24 

15 years 10 11 21 

16 years 10 8 18 

17 years 11 11 22 

18-25 years 14 13 27 

Total 119 109 228 
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Table 2: Descriptive values for age, IQ, working memory, feedback learning, reading and 

mathematics scores for male and female participants separately. In the right-most column, we 

indicated the p-value for sex differences. 

 
Female Male 

   Mean SD Min Max Mean SD Min Max p sex 

Age T1 14.10 3.39 8.01 22.79 14.63 3.75 8.01 24.55 .27 

Age T2 16.10 3.40 10.02 24.83 16.60 3.77 9.92 26.62 .30 

IQ T1 109.83 10.09 85.00 143.00 111.81 9.40 93.00 138.00 .13 

Working Memory T1 0.79 0.17 0.13 1.00 0.86 0.12 0.38 1.00 p<.001 

Feedback Learning T1 93.62 5.36 71.29 100.00 93.78 4.40 81.11 100.00 .81 

Reading Fluency T2 98.02 14.51 64.00 120.00 97.72 15.46 58.00 120.00 .88 

Mathematics T2 11.75 2.88 6.00 19.00 12.44 2.69 4.00 18.00 .06 
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Table 3: Hierarchical linear regression models with age and feedback learning performance as 

significant predictors for reading and mathematics performance. 

Steps Predictor B SE B β p F R
2
 

Dependent: Reading Fluency T2 

      1 Overall model 

    

19.334*** .15 

 

Age T1 7.68 1.72 1.83 <.001*** 

   Age T1
2
 -.21 .055 -1.55 <.001***   

2 Overall model 

    

14.510*** .16 

 

Age T1 6.17 1.85 1.47** .001** 

   Age T1
2
 -.17 1.85 -1.25 .004**   

 

Feedback Learning T1 .46 .22 .15 .039* 

  Dependent: Mathematics T2  

     1 Overall model 

    

5.47* .02 

 

Age T1 .12 .05 .15 .020* 

  2 Overall model     10.53*** .09 

 

Age T1 .02 .06 .02 .760 

    Feedback Learning T1 .16 .04 .28 <.001***     

* p<.05 ** p<.01 *** p<.001 
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Table 4: Hierarchical linear regression models for neural activity in left sup-DLPFC as 

significant predictor above age for reading fluency. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Steps Predictor B SE B β P F R
2
 

1 Overall model     19.33*** .15 

 

Age T1 7.68 1.72 1.83 <.001***   

 Age T1
2
 -.21 .06 -1.55 <.001***   

2 Overall model     15.098*** .17 

 

Age T1 7.08 1.72 1.71 <.001***   

 Age T1
2
 -.20 .06 -1.46 <.001***   

  Sup-DLPFC L 1.12 .47 .16 .017*   

* p<.05 ** p<.01 *** p<.001 
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Table 5: Hierarchical linear regression models for neural activity in pre-SMA/ACC as 

significant predictor above age for mathematics performance. 

  Predictor B SE B β p F R
2
 

Dependent: Mathematics 

      1 Overall model 

    

5.47* .02 

 

Age T1 .12 .05 .15 .020* 

  2 Overall model 

    

6.31** .05 

 

Age T1 .08 .05 .10 .159 

  

 

Pre-SMA/ACC .54 .21 .18 .009** 

          

        

        

        

        

* p<.05 ** p<.01 *** p<.001 

       

 

 


