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The competition for the attention of users is a central element of the Internet. Crucial issues are the origin and
predictability of big hits, the few items that capture a big portion of the total attention. We address these issues
analyzing 106 time series of videos’ views from YouTube. We find that the average gain of views is linearly
proportional to the number of views a video already has, in agreement with usual rich-get-richer mechanisms
and Gibrat’s law, but this fails to explain the prevalence of big hits. The reason is that the fluctuations around
the average views are themselves heavy tailed. Based on these empirical observations, we propose a stochastic
differential equation with Lévy noise as a model of the dynamics of videos. We show how this model is
substantially better in estimating the probability of an ordinary item becoming a big hit, which is considerably
underestimated in the traditional proportional-growth models.
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I. INTRODUCTION

YouTube is a representative example of online platforms
in which items (videos in this case) compete for the attention
of users [1–3]. The popularity of videos varies by orders of
magnitude, resembling the fat-tailed distributions that have
been reported in other online systems [4–6], in income and
wealth [7], in finance [8], and in disciplines such as ecology,
earth science, and physics [9]. The origin of such fat-tailed
distributions is a century-old problem that lies at the heart of
complex-systems science [10–15]. At the core of the different
proposed models lies the idea that the current popularity
(wealth) determines the future popularity gain (income) and
enhances the inequality (rich-get-richer). Indeed, such (linear)
proportional growth is the essential ingredient of Gibrat’s law
(used to describe the growth of firms [11,13] and cities [16]),
the Yule-Simon model (to model species genera [10] and
language [17,18]), scientific memes [19], and the preferential
attachment model of network growth [20]. Proportional growth
suggests that the big hits are very predictable because they
originate from early advantages that are amplified over time.

The application of growth models to describe the popularity
of online items brings new opportunities and challenges. On
the one hand, due to the increasing availability of data sets,
it becomes possible to compare models with an unprecedent
accuracy. On the other hand, the expectations we have of the
models are higher. For instance, a central question is how to
forecast and identify the origins of the big hits [21,22], the
most successful videos, which capture most of the attention
and produce most of the revenue through advertisement. To
address this and other questions, the characterization of the
heavy-tailed distribution of aggregated activity is not enough.
One has to (i) improve the description of the dynamics of
individual items, and (ii) go beyond the average growth and
analyze the stochastic fluctuations [23,24]. The importance of
these factors is illustrated in Fig. 1, where we show trajectories
(views vs. time) of videos with the same early success (the
same number of views three days after publication). We see
that trajectories quickly spread and that many trajectories with
a weak start become popular in time. This suggests that big
hits have a low predictability (i.e., they are hard to anticipate).

In this article, we investigate the predictability of big hits
using stochastic models of individual items. Predictability
is the possibility of anticipating the future based on present
information and we confront the predictability expected from
models to observations in the data. We compare traditional
growth models to data (Xt , views over time) of more than
106 YouTube videos. We find that previously proposed models
are unable to correctly account for the (random) fluctuations
observed in the data, which we find to be described by a Lévy-
stable distribution. We propose and validate a stochastic model
that explains such reduced predictability by incorporating both
proportional growth and Lévy noise. This shows that, even if
present, proportional growth is not the only thing responsible
for the origin of fat-tailed distributions. Finally, we show
that our model substantially improves the prediction of the
probability of big hits, but that unexpected big hits have an even
higher probability in real data due to temporal correlations not
accounted by this class of models.

II. THEORETICAL FRAMEWORK

YouTube is a web site where videos generated by third
parties are shared. It is the third most visited web site of all
the Internet. We collected more than 106 time series of the
daily number of views of videos published between December
2011 and March 2013 [25]. The number of views a video
receives depends on the interplay between its content and
various factors. Videos related to ongoing events are strongly
influenced by their development, their media coverage, and
other factors exogenous to the online activity of users. Videos
are also influenced by endogenous factors, such as the sharing
and recommendation in online media, generating cascades of
activity in the social network [26,27]. Additionally, a video
can be viewed by following a link from a related video,
i.e., hopping through the videos’ network, which changes
continuously according to YouTube’s recommendation and
promotion algorithms. The interplay and feedback between
these and other factors lead to the complex dynamics we
observe in the time series. Modeling specific factors [28] and
differentiating between them (e.g., between exogenous and
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FIG. 1. Evolution of videos’ views Xt as a function of the time t after publication. After t = 3 days the distribution of views is already
heavy tailed (orange histogram). Videos having initially the same amount of views show very distinct evolutions. This is illustrated here by
highlighting two groups of videos with the same number of views at t = 3 (blue Xt=3 = 50 and green Xt=3 = 100). Each line (at the bottom
and in the right plot) corresponds to the trajectory of one video. On the back, the histograms of the two groups of videos at t = 20 days are
shown.

endogenous factors [26,29,30]) are topics of recent research.
This approach is difficult to be pursued because it requires
detailed information of user activities and the possibility
of isolating the factors. Instead, here we aim at a coarse-
grained description of the dynamics of attention in which
the combination of the different factors described above are
effectively accounted for by deterministic and stochastic terms.

Let Xt be the cumulative number of views that a video
received in the first t days after its release. A very general
stochastic model for the growth of Xt in t is the diffusion
process [23,31,32]

dXt = μ(t,Xt )dt + σ (t,Xt )dWt, (1)

where Wt is a Wiener process (〈Wt 〉 = 0 and 〈W 2
t 〉 = dt),

μ(t,Xt ) is the average growth, and σ (t,Xt ) scales the fluc-
tuations; an additional cutoff in dWt is added to ensure that
dXt > 0. We consider all videos to be indistinguishable so that
variations in the behavior of videos with the same Xt should be
accounted for by the stochastic term σ (t,Xt )dWt . Extensions

of our model could consider μ(t,Xt ) and σ (t,Xt ) to depend
on properties of the video and on Xt ′ for t ′ < t .

III. DATA ANALYSIS

We now analyze the data in order to identify the functions
μ(t,Xt ) and σ (t,Xt ). Since the minimum resolution of our data
is �t = 1 day, the models we propose aim to fit the quantity
�Xt = Xt+1 − Xt , the number of views obtained exclusively
in the day t + 1. We first focus on the deterministic term of
Eq. (1), μ(t,Xt ). In linear proportional growth models the
average growth is proportional to the views, μ(t,Xt ) = μtXt ,
where the temporal dependence on μt accounts for the decay
in the attention gain [2]; this decay is very strong in the first
weeks, so we will focus on the days up to t = 30.

This condition is consistent with our data: in Fig. 2(a) we
see for a fixed t that the dependence of the conditional average
〈�Xt |Xt 〉 (computed in windows of N videos) with Xt is
roughly a line with slope 1, a standard method to check for
proportional growth [15,33]. We now repeat the analysis for

FIG. 2. Average and fluctuations in the growth of YouTube videos. (a) Mean 〈�Xt 〉 and (b) standard deviation σ (�Xt ) for videos with
Xt views t = 3 days after publication. Both 〈. . .〉 and σ are computed in windows centered at Xt and containing N items (see legend). (c)
Complementary cumulative density function F (�Xt |Xt ) for Xt ∈ [499,513] and t = 3. Data (blue circles) is compared with fits of three
distributions (S: Lévy-stable, LN: log-normal, CEV: constant elasticity of variance) and confirms the existence of heavy tails, which are best
described by the Lévy distribution.
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the stochastic term σ (Xt,t) of Eq. (1). A natural proposal
for σ is σ (Xt,t) = σtX

β
t [32], where the β parameter allows

us to model a possible fluctuations’ scaling in the form of
the Taylor’s Law [34]. In particular, the β = 1 case used
in Ref. [23], is equivalent to Yt = ln Xt exhibiting constant
fluctuations, and corresponds to a geometric Brownian motion.
The simplest way to evaluate the stochastic term in this context
is to repeat what was done for the mean and measure the
standard deviation σ in a window of N items centered around
Xt [23]. This is equivalent to the standard estimation of the
drift and diffusion coefficients in a Fokker-Planck equation
[35]. Results in Fig. 2(b) confirm the roughly linear scaling in
the double logarithmic scale, in agreement with σ (Xt,t) ∝ X

β
t

with β ≈ 1. However, in contrast to the case of μ(Xt,t) shown
in Fig. 2(a), the data show strong fluctuations across Xt and
depend on the sample size N (the larger the N the larger the
measured σ ).

The observations above motivate us to look at the full
probability distribution P(�Xt |Xt ) [36]. In Fig. 2(c) we
see in the particular histogram P(�X3|X3 ≈ 500), that the
distribution has a heavy tail; this explains the observation
that σ grows with N , i.e., P(�Xt |Xt ) has a diverging second
moment [37]. Heavy-tailed fluctuations of �Xt may still be
compatible with Eq. (1) if one considers that the temporal
interval used in our analysis is not infinitesimal �t = 1 day
� dt ; indeed, Gaussian fluctuations are expected only when
�t → 0. In this case, the stochastic differential equation has
to be integrated up to �t , so the fluctuations predicted from
Eq. (1) can be log-normal (for β = 1) or a distribution arising
from the constant elasticity of variance model (CEV, for β 
= 1)
[38], as shown in Appendix A. Besides Eq. (1), classical
models associated with Gibrat’s law (Champernowne-Gabaix
or Yule-Simon) predict P(�Xt |Xt ) to have either short tails
or log-normal distributions (see Appendix B). Beyond the
log-normal and CEV distributions, which follow from Eq. (1),
we consider also the Lévy-stable distribution (S) because
it originates from the generalized central limit theorem for
variables without finite variance [39]. In Fig. 2(c) we show the
fits of discretized versions of these three distributions to the
particular histogram discussed above. The best fit is obtained
by the (completely asymmetric) Lévy-stable distribution (with
a difference in the Bayes information criterion [40,41], BIC, of
178 and 175, with respect to the log-normal and CEV models).
This result, which is confirmed below for different Xt and t ,
indicates that the fluctuations observed in the data are not
compatible with the Wiener process Wt in Eq. (1), and that the
analysis of the mean and standard deviation done for Figs. 2(a)
and 2(b) may be not enough to define the functions of Eq. (1).

IV. ALTERNATIVE MODEL

Motivated by the better fit of the Lévy distribution and by
the linear scaling of μ and σ with Xt (as shown in Fig. 2), we
propose as an improvement of Eq. (1) [42]

dXt = μtXtdt + (atXt + bt )dLt , (2)

where Lt is an α-stable Lévy process, analogous to the
Wiener process, except that the distribution of dLt follows a
Lévy-stable distribution with index α, asymmetry 1, location
parameter 0 and scale 1 (using parametrization 1 of Ref. [43]).

TABLE I. Summary of models, see Appendix A for details.

Name P(�Xt |Xt ) functional form Parameters

LN log-normal μt , σt

CEV CEV μt , σt , βt

S Lévy-stable αt , μt at , bt

A cutoff in the noise term is added as above to ensure dXt � 0,
so 〈dLt 〉 > 0 and 〈�Xt 〉 is not given alone by the deterministic
term μtXt (even if dLt is understood in the Ito sense, as we
do here [44]). The parameters α,μ,a, and b depend on time t

(bt is important only for small Xt and t). Table I summarizes
all models.

V. IMPROVED DATA ANALYSIS

We now discuss how to determine the parameters of the
two models derived from Eq. (1) and of the alternative model
in Eq. (2) and to test which model best describes the data. The
likelihood Lt of the models, for a fixed day t , is the product of
the likelihoods of each distribution of �Xt conditioned on Xt

with respect to the parameters of the model θ as

lnLt =
∑
Xt

∑
�Xt

N (�Xt,Xt ) ln f (�Xt |θ,Xt ), (3)

where N (�Xt,Xt ) is the observed number of videos with
a given �Xt,Xt , and f is the probability density function
proposed by the models. The best parameters θ are obtained
maximizing lnLt [45] and the models are compared based
on their (maximum) likelihood, penalizing the addition of
parameters (using the BIC [41]). The distributions f we test
are the same as above: log-normal (LN) and constant elasticity
of variance (CEV), obtained from Eq. (1), and Lévy-stable
(stable), obtained from Eq. (2). The latter is the f resulting
from Eq. (2) because, since it seems to be a better fit to the
data, we consider in this model that the time step �t is small
such that �Xt ≈ dXt , making the distribution to be fitted
exactly the Lévy. Each of the distributions f has different
parameters that depend on θ and Xt , as summarized in Table I
and detailed in Appendix A. Our approach based on Eq. (3)
considers all conditional distributions P(�Xt |Xt ), avoiding
the difficulties and arbitrary choices involved in the grouping
of data in windows [46] as done in previous estimations and
in Fig. 2.

The application of the analysis described above to the
YouTube data leads to significant evidence in favor of the
Lévy-stable model, Eq. (2). Figure 3 shows how this model
allows for the collapse of the many P(�Xt |Xt ) in a single
curve, well described by a Lévy-stable curve. More formally,
the BIC [41] difference of the stable model with respect to the
other models is above 105 for all 0 � t � 30 (inset of Fig. 3),
indicating very strong statistical support for our model.

A. Dependence of parameters with respect to t

The parameters of the S model [Eq. (2)] are explicitly time
dependent, so we repeat the previous procedure for each of the
days considered. In Fig. 4 the values of these are shown for the
first 30 days after the publication of the videos. The parameters
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FIG. 3. Agreement of the model with respect to data. Main panel:
complementary cumulative distribution of the views rescaled by the
fitted parameters for t = 3. The rescaled histograms P(�X3|X3) are
plotted as points, where each color corresponds to a different value
of X3; the black line is the Lévy-stable distribution with location 0
and scale 1. Inset: BIC difference with respect to the S model [41].

show a strong dependence in t in the first week. In particular,
μt decays in this period (reflecting a decay in the gain of views)
and αt ≈ 1.75 for t > 5. It is worth to be noted is that the value
of μt becomes negative; while apparently in contradiction with
the positive slope of 〈�Xt |Xt 〉 [see Fig. 2(a)], it has to be
recalled that the distribution is truncated at �Xt = 0. The
values of the averages from the data can be recovered through
an exact, numerical computation.

If wanted, a model of the temporal dependence of
αt ,μt ,at ,bt can be introduced; in that case, it is possible to sum
the likelihoods in Eq. (3) over t and therefore to reduce the
number of parameter of the models by avoiding independent
fittings for each t .

Altogether, these analysis support our proposal of stochastic
differential equation with Lévy noise, Eq. (2), to describe the
dynamics of popularity in YouTube.

VI. PREDICTION OF BIG HITS

We now focus on the estimation of the probability of an item
becoming a big hit after a given time. We define as a big hit at

FIG. 4. Evolution of the parameters for the S model, Eq. (2), in
the first 30 days after the release.

FIG. 5. Probability of videos becoming a big hit. Performance of
the models evolved in time with respect to data; the selected videos
had 100 views one day after their publication. Main panel: amount of
videos that exceed a threshold x at t = 6. In the top axis, the quantiles
q are indicated. Inset: amount of videos that enter into the 5% most
viewed. Shaded areas: 95% confidence intervals, by bootstrapping.

time t the top q% videos with highest Xt (Xt > x
q
t ). We are

particularly interested in estimating the probability P (Xt >

x
q
t |Xt0 = x0) of videos that are not big hits at time t0 < t

(i.e., x0 < x
q
t0 ) becoming big hits at time t . This probability

quantifies how unpredictable the system is. For instance, in
a deterministic (proportional growth) model, the rank of the
videos does not change and therefore such probability is zero.
A positive probability is thus a measure of the deviation of
such perfect predictability.

As an example, we select the videos that had 100 views
one day after publication, X1 = 100, which belong to a rank
of q ≈ 15%. We are interested in the probability of these
videos having Xt � 100 at t > 1. To obtain the expectations
of the models, we computed P (Xt |X1 = 100) iteratively
from P (dXs |Xs) for s = 1, . . . t , using X1 = 100 and the
t-dependent parameters estimated in the previous section. The
results shown in Fig. 5 (main panel) for t = 6 confirm that the
Lévy-stable model predicts a substantially higher probability
for large Xt than alternative models. In order to investigate
the temporal dependence, we focus on the probability of the
videos improving their rank and being by day t in the top
q = 5%, using the previously computed probabilities from
the models and the thresholds x

q
t estimated from data. The

results are summarized in Fig. 5 (inset) and show that the
Lévy-stable model succeeds in estimating this probability in
the short term, while for the long term the data shows an even
higher probability (mixing of ranks). The other models assign
a video a substantially lower possibility of becoming a big hit,
an effect of their highly predictable dynamics. The fact that
our model provides a good account for short-time intervals
but not in the long run suggests the existence of correlations
in the attribution of views that span multiple days and that
are not accounted for by our assumption of an independent
noise.
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VII. DISCUSSION AND CONCLUSION

Our finding that the growth of views in YouTube is governed
by both linear proportional growth and Lévy fluctuations has
important consequences for the mathematical modeling of
complex systems. First, it shows that, even if proportional
growth is present, it cannot be attributed as responsible for
the origin of the heavy tails because this is a feature already
present in the fluctuations. Second, the use of Gaussian-based
stochastic equations, such as Eq. (1) or traditional Fokker-
Planck equations, overestimate the predictability of videos, by
neglecting the mobility of popularity. We showed that better
results are obtained in YouTube using a stochastic equation
with Lévy noise, Eq. (2), an approach that has been previously
used in physics [42], climate research [47], and finance [8]. Our
work indicates that this formalism, and possibly also kinetic
equations of the fractional type [48,49], should be considered
in problems involving the dynamics of social media items and,
more generally, in models of the economy of attention.

Our results bring new insights on the attention economy
of the Internet. The fact that the multiple factors affecting
the popularity of videos can be effectively modeled by a
Lévy-stable distribution shows that the decisions of different
individuals are correlated to each other and lead themselves to
strong fluctuations. The Lévy-stable distribution is invariant
under convolution, i.e., if X1,X2 are stable, also X1 + X2 is
stable, and therefore it may naturally appear when multiple
processes with diverging moments are combined (e.g., bursty
activity patterns that characterize online social media). One
challenge for future work is to identify mechanistic models
of the spreading of information on the Internet (e.g., models
in which viral items spread through a social network) that are
compatible with these fluctuations [23,24,27]. The presented
analysis of fluctuations is enabled by the large availability of
data in YouTube videos and we expect similar results to hold
also in more general systems in which items compete for the
attention of users.
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APPENDIX A: MODELS

We compare the data collected with the distribution pre-
dicted by a series of simple models: from Eq. (1), we derive
the log-normal (LN) and constant elasticity of variance (CEV)
models; from Eq. (2) we derive the Lévy-stable model (S). To
compare with data, we compute the distributions of Xt+1 of
the different models. Note that for the LN and CEV models,
these distributions are the result of integrating Eq. (1) over a
period of one day, while for the S models, this integration is
not performed, i.e., we assume that in the period of one day
the distribution of Xt+1 is essentially the one of the noise.

1. Log-normal (LN)

The LN model is defined by considering a linear scaling of
the noise term in Eq. (1)

dXt = μtXtdt + σtXtdWt . (A1)

We integrate this equation for a time equal to one day (where
we consider μt and σt constant), such that Xt+1 is distributed
log-normally, with a probability density function

P(Xt+1 = x|Xt = x0)

= exp
{ − [

log x − (
log x0 + μt − σ 2

t /2
)]2/(

2σ 2
t

)}
√

2πσtx
.

(A2)

�Xt+1 = Xt+1 − Xt is distributed also log-normally, since Xt

is fixed, but a truncation at 0 is necessary. Since the data is
distributed on the natural numbers, we discretize as well the
distribution, normalizing by the sum of the PDF over its new
domain.

2. Constant elasticity of variance (CEV)

If instead of Eq. (A1) the equation

dXt = μtXtdt + σtX
β
t dWt (A3)

is used, we have to use the distribution of the constant elasticity
of variance process (CEV), described in Ref. [38]. When β <

1, it has the form

P(Xt+1 = x|Xt = x0)

= 2(1 − β)k
1

2(1−β) (xz1−4β )
1

4(1−β) e−x−zI| 1
2(1−β) |(2

√
xz) (A4)

with

k = μ

σ 2(1 − β)(e2μ(1−β) − 1)

x = k(x0e
μ)2(1−β)

z = kx2(1−β),

where I is the modified Bessel function of the first kind. The
expression simplifies using the substitution p = 2(1 − β):

P(Xt+1 = x|Xt = x0) = pk
1
p (xz2p−3)

1
2p e−x−zI| 1

p
|(2

√
xz)

(A5)
with

k = 2μ

σ 2p(eμp − 1)

x = kx
p

0 eμp

z = kxp.

When β > 1, the distribution is the same as above but
multiplied by −1. Note that the β parameter is the exponent
of the power-law tail that the distribution has asymptotically.
Here we also subtract Xt to obtain a distribution of �Xt , which
we also truncate, discretize, and normalize.

3. Lévy-stable (S)

In the S model, defined in Eq. (2), dXt is Lévy-stable
distributed with location parameter m = μtx0, scale parameter
s = atx0 + bt , asymmetry βL = 1 and its tail decays as an
α power of dXt [50]. These parameters correspond to the
parametrization 1 of Ref. [43], where the characteristic func-
tion of dX (there is no explicit form of the Lévy probability
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distribution function), φdX(k) is given by

log φdX(k) =
{

imk − sα|k|α[
1 + iβL tan

(
πα
2

)
sign(k)

]
α 
= 1

imk − s|k|[1 + iβL
2
π

sign(k) log(|k|)] α = 1.
(A6)

We consider �Xt ≈ dXt , and the parameters absorb the
dependence on �t . In order to get the distribution P(Xt+1 =
x|Xt = x0), the characteristic function has to be transformed
to the real space, translated on the Xt+1 axis by an amount x0,
and then truncated at Xt+1 = x0, discretized, and normalized.

Numerically, the Lévy distribution is computed as:
(i) the characteristic function (its Fourier transform) is

inverted numerically on a grid inα ∈ (0.5,2) and β ∈ (0,1)
(with a resolution of 0.05, values of α below 0.5 are very
unlikely and for β < 0 the distribution can be computed from
the one of −β using symmetry);

(ii) for general values α,β, we compute the distribution as
an interpolation of the values on the grid (using the Catmull-
Rom cubic splines);

(iii) the numerical integration often becomes unstable in
the tails of the distribution (large x). In order to avoid this
problem, we use the power-law approximation described in
Ref. [33] to describe the distribution beyond a threshold.

We provide the code of this procedure in the package
PYLEVY [51]. It contains routines to compute the PDF of the
Lévy distribution and to fit it.

APPENDIX B: FLUCTUATIONS EXPECTED FROM
EXISTING MODELS

Here we discuss the form that P(�Xt |Xt ) has for the classi-
cal linear proportional growth models. There are basically two
schemes of implementing linear proportional growth in order
to get heavy-tailed distributions.

(i) Scheme 1: Champernowne [52] introduces a lower
positive limit to X. A master equation is defined to regulate
the transitions to different states (amount of views), which
eventually leads to a stationary distribution with a power-
law tail. This argument was formalized and popularized in
Refs. [16,53], using a linear stochastic differential equation
(as geometric Brownian motion, GBM), which, in the limit of
long time, converges to a heavy-tailed distribution; note that
in this scheme, all items start with the same initial condition.

(ii) Scheme 2: Yule and Simon [10,17] design a scheme
where views are added to different items while at the same time

new items are introduced, resulting in a power-law distribution.
This is basically the model known as preferential attachment
[20] in the context of network growth. Here the items start in
different conditions, since the system is growing in the number
of items, hence the first ones are privileged.

We focus on the transition probability P(�Xt |Xt ). Scheme
1 (GBM) is a mechanism that leads to a heavy-tailed
distribution asymptotically, but also relies on the possibility
of negative growth rates dXt , which is not realistic in the
context of videos’ views, and more generally in the context of
cumulative allocation of attention. For an infinitesimal increase
of time (�t ≈ dt), the distribution is normal, but if a finite time
interval is considered (�t � dt), the integration of the model
results in a log-normal distribution.

The Scheme 2, instead, is fundamentally different and can
be thought of as a Pólya’s urn process where at a given time t0,
a number of views N is assigned to a set of videos M that has
exactly x0 views already. The probability of assigning a view
to a particular video is, of course, proportional to the amount
of views each video has. The distribution P(�Xt |Xt ) of views
among the videos is of the beta binomial type, with means

EBB(�Xt |Xt = x0) = N

M
(B1)

and variance

VBB(�Xt |Xt = x0) = N (M − 1)(Mx0 + N )

M2(Mx0 + 1)
(B2)

and can be roughly approximated by a normal distribu-
tion with same mean and variance. The variance scales in
two regimes because of the Mx0 + N term: when x0 �
N/M, σ ∝ x

−1/2
0 N/M , and when x0 � N/M , σ ∝ √

N/M .
Notice though, that the amount of views allocated, N , is
not independent. In fact, since growth is linear, we expect
N ∝ x0M , so we have in this particular case σ ∝ x

1/2
0 .

In conclusion, for Scheme 1, we expect normal or log-
normal distributions of �Xt , depending on the choice of
whether integrating over a finite time or not, while for Scheme
2 we expect approximately normal distributions, with variance
scaling as Xt .
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