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Abstract

In signal set tissue systems with overlapping localities (ssolt-systems) evolution
rules can be associated with several cells. Rules may influence each other through
instant signalling and, moreover, they are synchronised when sharing activated cells.
The latter is a new feature. We study the behaviour of ssolt-systems in the form
of labelled step transition systems. This allows to compare ssolt-systems with
and without signalling and overlapping localities. Next the synthesis problem is
considered, i.e., the question when given a step transition system, how to effectively
construct an ssolt-system exhibiting this behaviour. To this end, ssolt-systems
are related to a new class of Petri nets, that are behaviourally equivalent to ssolt-
systems. It is shown how certain region based synthesis techniques can be applied
to these nets and hence are also available for ssolt-systems.
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1 Introduction

Tissue systems are a computational model inspired by the way biochemical
reactions and interactions take place inside and among living cells ([21, 22]).
Like membrane systems, tissue systems are defined in terms of evolution rules

∗ corresponding author
Email addresses: h.c.m.kleijn@liacs.leidenuniv.nl (Jetty Kleijn),

maciej.koutny@ncl.ac.uk (Maciej Koutny), marta.koutny@ncl.ac.uk (Marta
Pietkiewicz-Koutny).

Preprint submitted to Elsevier 7 February 2017



that specify how objects (molecules) can be combined to form new objects. In
both types of systems reactions are localised, i.e., they take place in compart-
ments where their reactants reside and their products can either remain in the
originating compartment or be delivered to a neighbouring one. A membrane
system has an associated hierarchical structure (a tree) that reflects the struc-
ture of a cell; the tree corresponds to the nesting of its compartments separated
by membranes. The more general tissue systems use a graph to formalise neigh-
bourhood relations between compartments, now like cells arranged in a tissue.
Motivated by reaction systems [6, 8, 9] that model biochemical processes using
a qualitative rather than a quantitative approach, [12] has introduced a vari-
ant of membrane systems — set membrane systems, independently introduced
also in [1] — with evolution rules that no longer refer to multisets of objects
(indicating how many instances of each object are involved), but rather to sets
(merely indicating presence/absence) of objects. In [13] set tissue systems, i.e.,
tissue systems with such qualitative evolution rules, are enhanced with instant
signalling that makes it possible to fast process certain objects even within
the same computational step that has produced them. This extension is an
abstraction of cell signalling, a complex system of communication employed
in cellular biochemical processes. In a biological micro environment, signalling
is a fundamental feature, governing and coordinating the activities of cells.
This ability to pass on and respond immediately to the presence of signalling
objects has been abstracted in [13] in the framework of set tissue systems
through the concurrent execution of evolution rules based on a local maximal-
ity (eagerness) principle that reflects that everything that can happen (in an
active compartment) does not wait and occurs as soon as possible. As said,
the various models of membrane and tissue systems discussed so far are based
on the idea that reactions take place locally, i.e., in individual compartments.
Moreover, executions in different compartments are unrelated.
In this paper, we introduce evolution rules that are associated with conglom-
erates of compartments, i.e., each rule has a locality consisting of all compart-
ments where it may occur. The underlying idea is that not only the reactions
taking place within and among cells are influencing each other by the produc-
tion of biochemical substances, but that there may also be external stimuli
(mechanical, temperature, light etc.) that simultaneously affect several cells
within a tissue. A rule that is associated with thus ‘activated’ compartments
will then be simultaneously executed in each of the compartments with which
it is associated. In this paper we are interested in the behaviour of the re-
sulting signal set tissue system with overlapping localities, or ssolt-systems.
To capture this behaviour, labelled transition systems (so-called concurrent
reachability graphs) are used that describe how starting from an initial con-
figuration (state), a ssolt-system evolves from configuration to configuration
through a ‘locally maximal’ execution of evolution rules. Here, we distinguish
between two types of semantics depending on the interpretation of local maxi-
mality, i.e., the interpretation of the eagerness underlying the locally maximal
execution of the enabled rules. In the first interpretation, a rule is involved
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whenever all its compartments are activated (have resources). In the second
semantics, a rule is involved whenever at least one (any) of its compartments
is activated. Consequently, there will be two kinds of concurrent reachability
graphs that can be defined by a ssolt-system. As will be shown, in both these
semantics, signalling and simultaneous activation of compartments have each
their own effect on the expressiveness of the resulting models in terms of the
generated reachability graphs.

On the other hand, we will also consider how to obtain from a labelled step
transition system a ssolt-system that behaves as specified, i.e., has a con-
current reachability graph (of type all or any) that is isomorphic to the given
transition system — if at all possible. Algorithmic methods to synthesise con-
current systems from behavioural specifications (like step transition systems)
provide an attractive way to construct systems that behave according to spec-
ification. This so-called synthesis problem has been extensively studied in the
context of Petri nets, a well-established mathematical framework for the mod-
elling of concurrent and distributed systems (see, e.g., [23, 24]). As we will
demonstrate, some of the theory developed there can be extended and then
transferred to ssolt-systems.
Thus, we will relate the concurrent reachability graphs of ssolt-systems to
those of a suitable class of Petri nets. At a very basic level, the dynamics
of membrane and tissue systems is similar to that of Petri nets (see [10]).
Molecules in a compartment correspond to tokens in a specific place and evo-
lution rules can be viewed as transitions related to input and output places
in accordance with the objects consumed and produced by the rule. Once
a similar mode of execution for both models has been agreed upon, there
is a one-to-one correspondence between configurations and markings (token
distributions) and between the concerted execution of multiple rules and the
simultaneous firing of their related transitions, guaranteeing isomorphic reach-
ability graphs. This correspondence has been proven to be robust in the sense
that various concepts and methods could be transferred from one framework
to the other. From the observation that the evolution rules of a membrane or
tissue system are localised (belong to compartments) came the idea to also
associate a locality with Petri net transitions and to define a locally maximal
execution mode ([18, 17]). And membrane systems with qualitative evolution
rules relate to set nets — that have a firing rule based on sets rather than
multisets — with localities ([12]). Instant signalling on the other hand involves
an application of the special so-called a/sync places that can be used for the
instantaneous transfer of tokens from an input transition to an output tran-
sition ([11]). Overlapping localities of transitions, resembling the overlap of
localities of the rules in a ssolt-system, have been considered in [20].

Our solution to the synthesis problem will be based on the notion of region,
introduced in the seminal paper [7] for the synthesis of Elementary Net systems
with a sequential execution semantics, a basic class of Petri Nets. Over the
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years, this idea has been further developed and extended in various directions,
including synthesis modules of tool kits, various application areas of other
net classes, other execution semantics, and different behavioural specification
models. One of the key advances in the design of region based solutions has
been the development in [3] of a general approach for dealing with region
based synthesis for a range of synthesis problems. This approach is founded
on so-called τ -nets and τ -regions. The parameter τ conveniently captures the
marking information and different connections between places and transitions
of varying classes of Petri nets, removing the need to re-state and re-prove the
basic results every time a net model is modified. Once a class of Petri nets has
been shown to be a class of τ -nets, i.e., to correspond to a class of τ -nets for
some suitable τ , this general method can be applied.

Based on the above considerations, we thus introduce a new class of Petri
nets, so-called signal set nets with overlapping localities, or ssol-nets. It is
demonstrated that indeed ssolt-systems and ssol-nets closely correspond
to each other both in structure and dynamics and hence for each of the two
execution modes (all and any), the related concurrent reachability graphs are
essentially the same. Finally, we show that ssol-nets are indeed a class of
τ -nets. Hence it is possible to address the synthesis problem using τ -regions.
However, since ssol-nets have two kinds of places (normal ones and signal
places), in this case the parameter τ is based on two net-types to describe the
connections between places and transitions, which is a new feature.

The paper is organized as follows. After a preliminary section, ssolt-systems
are introduced together with their all and any execution semantics in Sec-
tion 3. In the same section, the expressive power of the different features is
compared in terms of the concurrent reachability graphs. Section 4 introduces
ssol-nets and relates them to ssolt-systems, whereas it is demonstrated in
Section 5 that ssol-nets are τ -nets. The synthesis problem is then addressed in
Section 6. In the concluding Section 7 we summarise what has been achieved.

2 Preliminaries

A labelled transition system, or lt-system, is a triple LTS = (Q,A, δ), where
Q is a finite set of states, A is a finite set of labels, and δ : Q × A → Q
is a partial function. For every state q ∈ Q, we define enbldLTS(q) = {a |
δ(q, a) is defined} is the set of labels enabled at q. LTS can be identified with
a labelled directed graph, where Q is the set of nodes, and δ defines the labelled
arcs, i.e., δ = {(q, a, q′) ∈ Q× A×Q | a ∈ enbldLTS(q) ∧ q

′ = δ(q, a)}.

A step transition system, or st-system, (over a finite set T ) is a quadruple
STS = (Q,A, δ, q0) such that LTS = (Q,A, δ) is an lt-system, q0 ∈ Q is
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the designated initial state, and A = 2T is the set of steps. For every q ∈ Q,
we define enbldSTS (q) = enbldLTS (q). Moreover, we may also associate with
STS the labelled directed graph defined through LTS . We require that each
t ∈ T occurs in the label of at least one arc in this graph, and that for each
state q 6= q0, there is a directed path from q0 to q. Finally, we require that
δ(q,∅) = q for all q ∈ Q. (Note that the three requirements above are needed
when applying the theory of regions in order to synthesise nets from transition
systems.)

Let STS = (Q, 2T , δ, q0) and STS ′ = (Q′, 2T
′

, δ′, q′0) be two st-systems, and
φ : T → T ′ be a bijection. Then STS and STS ′ are φ-isomorphic if there is a
bijection ν : Q→ Q′ such that ν(q0) = q′0 and, for all q, q′ ∈ Q and α ⊆ T ,

(q, α, q′) ∈ δ ⇐⇒ (ν(q), φ(α), ν(q′)) ∈ δ′ ,

where φ(α) = {φ(t) | t ∈ α}. We denote this by STS ∼=φ,ν STS ′ or STS ∼=φ

STS ′. Moreover, two st-systems, STS and STS ′, are isomorphic (denoted
STS ∼= STS ′) if there exists a bijection φ such that STS and STS ′ are φ-
isomorphic. That is, the relation ∼= considers two st-systems isomorphic if
they are the same up to the renaming of their states and arc labels.

3 Signal Set Tissue Systems with Overlapping Localities

A tissue structure γ (of degree m ≥ 1) is an undirected graph with m nodes
identified with the integers 1, . . . , m. For all i, j ∈ {1, . . . , m}, we write (i, j) ∈
γedges to indicate that there is an edge between i and j, and i ∈ γnodes means
that i is a node of γ (see Figure 1 for an example). We will refer to the nodes
of a tissue structure as compartments. An edge between i and j indicates that
direct communication between the compartments i and j is possible.

1

2 3 4

Fig. 1. A tissue structure γ of degree 4.

Let V be a finite set of objects, V sgl ⊆ V be a set of signal objects, and γ
be a tissue structure of degree m. A signal set tissue system with overlapping
localities, or ssolt-system, over V , V sgl and γ is a tuple

Σ = (V, V sgl , γ, w0
1, . . . , w

0
m,R)

such that, for every i ∈ γnodes, w
0
i is a set of objects from V present initially in

the compartment i, andR is a set of (evolution) rules. A configuration of Σ is a

5



tuple C = (w1, . . . , wm) of sets of objects, and C0 = (w0
1, . . . , w

0
m) is the initial

configuration. Each evolution rule r ∈ R is of the form r = (cr : lhsr → rhsr),
where c

r, the locality of r, is a nonempty subset of {1, . . . , m}; lhsr, the left
hand side of r, is a non-empty subset of V ; and rhsr, the right hand side of
r, is a subset of

V ∪ {a⊲j | a ∈ V ∧ j ∈ (γnodes \ c
r) ∧ ∃i ∈ c

r : (i, j) ∈ γedges} .

A rule r, when executed, will consume some objects from the compartments
belonging to its locality, and produce some objects in the compartments of its
locality and possibly in some of the compartments linked to them according to
γedges. Each a ∈ V in the left hand side of r represents an object to be consumed
from each of the compartments of cr. Each a ∈ V in the right hand side of
r represents an object which is to be produced in each of the compartments
of cr. Therefore, one can understand the locality c

r as the scope of r. The
indexed symbols a⊲j represent an object a that is sent to compartment j not
belonging to the locality of r but linked in γ with one of the compartments in
the locality of r. Figure 2 shows a pictorial representation of a ssolt-system

Σ0 = ({a, b, c}, {b}, γ, {a}, {a, c}, {a}, {a}, {r1, r2, r3, r4}),

where:

r1 = ({1, 2} : {a} → {c})

r2 = ({2} : {a, c} → {b⊲1})

r3 = ({1, 3, 4} : {a} → {b})

r4 = ({4} : {b} → {c⊲3}) .

1

2 3 4ac→ b⊲1

a→ c a→ b

b→ c⊲3

a

ac a a
Fig. 2. An ssolt-system over the tissue structure γ shown in Figure 1. Note that
the evolution rules are abbreviated (e.g., ac denotes {a, c}).

A ssolt-system evolves from configuration to configuration through the appli-
cation (execution) of evolution rules based on the notion of a set-rule defined
as a set of evolution rules.
For the rest of this section we let Σ be a ssolt-system as specified above.
Let R ⊆ R be a set-rule. Then c

R =
⋃

r∈R c
r denotes the set of compartments

in the localities of the rules in R; we define tuples lhsR = (lhsR1 , . . . , lhs
R
m) and
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rhsR = (rhsR1 , . . . , rhs
R
m) such that, for every i ∈ γnodes,

1

lhsRi = {a ∈ V | ∃r ∈ R : (i ∈ c
r ∧ a ∈ lhsr)}

rhsRi = {a ∈ V | ∃r ∈ R : ((i ∈ c
r ∧ a ∈ rhsr) ∨ a⊲i ∈ rhsr)} .

The tuple lhsR specifies which objects are needed per compartment for the
simultaneous execution of all the evolution rules in R. In the case of non-
signal objects, these must be already present, but any signal object required
by R may be created during the simultaneous execution of the evolution rules
in R. 2 Thus, a set-rule R ⊆ R is resource enabled, or res-enabled, at a
configuration C = (w1, . . . wm) if, for all i ∈ γnodes, lhs

R
i \ wi ⊆ rhsRi ∩ V sgl .

The set-rules that are res-enabled at the initial configuration of the ssolt-
system depicted in Figure 2 are all subsets R ⊆ {r1, r2, r3, r4} such that r4 ∈
R implies r3 ∈ R. Also, c{r1,r2} = {1, 2} and c

{r1,r4} = {1, 2, 4}. Moreover,
for the singleton R = {r3}, we have lhsR = ({a},∅, {a}, {a}) and rhsR =
({b},∅, {b}, {b}).

Proposition 3.1 If R,R′ ⊆ R are set-rules res-enabled at a configuration
C, then R ∪R′ is also res-enabled at C.

Proof. Let C = (w1, . . . wm) and i ∈ γnodes. We first observe that

lhsR∪R′

i = lhsRi ∪ lhsR
′

i and rhsR∪R′

i = rhsRi ∪ rhsR
′

i .

Moreover, since R and R′ are res-enabled at a C,

lhsRi \ wi ⊆ rhsRi ∩ V sgl and lhsR
′

i \ wi ⊆ rhsR
′

i ∩ V sgl .

Hence we obtain:

lhsR∪R′

i \ wi = (lhsRi ∪ lhsR
′

i ) \ wi

= (lhsRi \ wi) ∪ (lhsR
′

i \ wi)

⊆ (rhsRi ∩ V sgl) ∪ (rhsR
′

i ∩ V sgl)

= (rhsRi ∪ rhsR
′

i ) ∩ V sgl

= rhsR∪R′

i ∩ V sgl .

Thus R ∪ R′ is res-enabled at C. ✷

1 We do not define lhsri and rhsri for single evolution rules r. However, R can be a
singleton set containing just one rule.
2 This is called instant signalling. In fact, it is possible that a single evolution rule
produces some of its own input in the form of signal objects.
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To be executable a set-rule must not only be res-enabled, but also satisfy a
maximality criterion that guarantees that evolution rules of ‘active’ compart-
ments (belonging to the localities of rules already included in the set-rule)
that could occur with the set-rule are also included in the set-rule. When
formalising this, it appears that there are two levels of ‘eagerness’ justifying
such inclusion: firstly, evolution rules of which the whole locality (all compart-
ments) is active, need to be included; and secondly, evolution rules which have
one or more active compartments, need to be included.

Let R be a set-rule res-enabled at a configuration C. Then R is:

• all-control enabled (or ctrlall-enabled) at C if there is no set-rule R′ ⊃ R
which is res-enabled at C with c

R′

= c
R, and

• any-control enabled (or ctrlany-enabled) at C if there is no set-rule R′ ⊃ R
which is res-enabled at C with c

r ∩ c
R 6= ∅, for every r ∈ R′ \R.

There are two set-rules ctrlany-enabled at the initial configuration of the
ssolt-system depicted Figure 2: ∅ and {r1, r2, r3, r4}. Moreover, there are
five set-rules which are ctrlall-enabled at the same configuration: ∅, {r2},
{r1, r2}, {r3, r4}, and {r1, r2, r3, r4}.

Let µ ∈ {all, any} be an execution mode. If R is ctrlµ-enabled at configura-
tion C, then it can be µ-executed leading to C ′ = (w′

1, . . . w
′
m) such that, for

all i ∈ γnodes,

w′
i = (wi \ lhs

R
i ) ∪ (rhsRi \ (lhsRi \ wi))

= ((wi ∪ rhsRi ) \ lhs
R
i ) ∪ (wi ∩ rhsRi ∩ lhsRi ) .

We denote this by C
R
−→µ C

′. Note that R = ∅ is ctrlµ-enabled at any C,

and that C
∅
−→µ C always holds. Note also that the index µ refers to the type

of enabledness, but that the result of executing a set-rule does not depend on
whether it stands for all or any.
For the initial configuration of the ssolt-system depicted Figure 2, we have:

({a}, {a, c}, {a}, {a})
{r1,r2,r3,r4}
−−−−−−−→any ({b, c}, {c}, {b, c},∅)

({a}, {a, c}, {a}, {a})
{r3,r4}
−−−−→all ({b}, {a, c}, {b, c},∅)

Proposition 3.2 Let R be a set-rule res-enabled at a configuration C, and
µ ∈ {all, any}. Then there is a set-rule R′ ⊇ R which is ctrlµ-enabled at C.

Proof. Follows from the fact that there are no infinite ⊂-increasing chains of
set-rules in Σ. ✷

A µ-evolution is a finite sequence of µ-executions starting from C0, and any
configuration which can be obtained through such an evolution is µ-reachable.
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Moreover, the µ-concurrent reachability graph of Σ is the step transition sys-
tem CRGµ(Σ) = ([C0〉µ, 2

R, δ, C0), where [C0〉µ is the set of all µ-reachable
configurations which are the states of the graph, C0 is the initial state, and

δ = {(C,R,C ′) | C,C ′ ∈ [C0〉µ ∧ R ⊆ R∧ C
R
−→µ C

′} .

Note that we can assume without loss of generality that each evolution rule of
Σ occurs in at least one set-rule labelling an arc in δ. Indeed, let r ∈ R, and
RC be the set of all set-rules res-enabled at a configuration C ∈ [C0〉µ. If there
is C ∈ [C0〉µ and R ∈ RC such that r ∈ R then, according to Proposition 3.2,
there is a set-rule R′ ⊇ R which is ctrlµ-enabled at C, and so r occurs in
the label of an arc of CRGµ(Σ). Otherwise, for each C ∈ [C0〉µ, the sets of
res-enabled set-rules remains the same if we take R\{r} instead of R. Hence
the set of set-rules ctrlµ-enabled at C remains the same. As a result, r can
be deleted from R without any influence on the behaviour of Σ.

3.1 Overlapping localities vs. instant signalling

To assess the effect of the new feature of overlapping localities, we focus on
the dynamics of the computational systems represented. Since the operational
semantics of ssolt-systems is fully captured by their concurrent reachability
graphs, we will use the latter in order to compare the relative expressive power
of the different sub-models. To carry out a meaningful comparison, we now
single out three syntactical sub-models of ssolt-systems.

A ssolt-system Σ = (V, V sgl , γ, w0
1, . . . , w

0
m,R) is called :

• signal set tissue system, or sst-system, if |cr| = 1, for every r ∈ R [13].
• set tissue system with overlapping localities, or solt-system, if V sgl = ∅.
• basic set tissue system, or bst-system, if it is an sst-system and a solt-
system [12].

Our first observation is that for an sst-system Σ, ctrlall-enabledness and
ctrlany-enabledness are identical notions, and so CRGall(Σ) = CRGany(Σ).
We will in this case omit the reference to all and any and simply write e.g.,
CRG(Σ) for the concurrent reachability graph of Σ.

We thus have the following families of concurrent reachability graphs:
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CRGall
ssolt are the all-concurrent reachability graphs of ssolt-systems.

CRGany
ssolt are the any-concurrent reachability graphs of ssolt-systems.

CRGall
solt are the all-concurrent reachability graphs of solt-systems.

CRGany
solt are the any-concurrent reachability graphs of solt-systems.

CRGsst are the concurrent reachability graphs of sst-systems.

CRGbst are the concurrent reachability graphs of bst-systems.

The families of isomorphism classes (i.e., equivalence classes of the relation ∼=)
of the members of these six families will be respectively denoted by CRGall

ssolt,
CRGany

ssolt, CRGall
solt, CRGany

solt , CRGsst, and CRGbst.

The relationships between the four classes of tissue systems described above
are clear. What is not clear, however, is the relationship between the families
of concurrent reachability graphs they generate. Directly from the definitions,
we obtain:

Proposition 3.3 CRGbst ⊆ CRGsst

CRGbst ⊆ CRGall
solt CRGsst ⊆ CRGall

ssolt CRGall
solt ⊆ CRGall

ssolt

CRGbst ⊆ CRGany
solt CRGsst ⊆ CRGany

ssolt CRGany
solt ⊆ CRGany

ssolt .

The above result, in turn, immediately yields (for the families of isomorphism
classes):

Proposition 3.4 CRGbst ⊆ CRGsst

CRGbst ⊆ CRGall
solt CRGsst ⊆ CRGall

ssolt CRGall
solt ⊆ CRGall

ssolt

CRGbst ⊆ CRGany
solt CRGsst ⊆ CRGany

ssolt CRGany
solt ⊆ CRGany

ssolt .

We will now strengthen the above results. The next three propositions will be
used to demonstrate that all the inclusions in Proposition 3.4 are strict.

Proposition 3.5 CRGsst \ CRGall
solt 6= ∅ and CRGsst \ CRGany

solt 6= ∅.

Proof. Let Σ = ({a}, {a}, γ, {a}, {a}, {r, r′}) be an sst-system, where γ con-
sists of nodes {1, 2} with an edge between 1 and 2, and:

r = ({1} : {a} → ∅)

r′ = ({2} : {a} → a⊲1) .
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Then: (i) enbldCRG(Σ)(C0) = 2{r,r
′}, (ii) C0

{r}
−−→ C1, and (iii) enbldCRG(Σ)(C1) =

{∅, {r′}, {r, r′}}, where C0 = ({a}, {a}) and C1 = (∅, {a}).

We show that there is no solt-system Σ′ such that CRG(Σ) ∼= CRGall(Σ
′) or

CRG(Σ) ∼= CRGany(Σ
′). Suppose that such a Σ′ exists (in both cases).

Thus, Σ′ has two rules r and r′ (perhaps differently defined than their coun-
terparts in Σ) and no others. Let C ′

0 and C ′
1 be the two configurations of Σ′

corresponding to C0 and C1, respectively.

We first observe that {r} is res-enabled at C ′
1, because {r, r

′} ∈ enbldCRG(Σ)(C1)
and Σ′ has no signal objects. We then consider two cases.

Case 1: cr ∩ c
r′ = ∅. Then, since {r} is res-enabled at C ′

1 and there are no
other rules apart from r′, it is also ctrlall-enabled and ctrlany-enabled at
C ′

1, contradicting (iii).

Case 2: cr ∩ c
r′ 6= ∅. Then, since {r, r′} ∈ enbldCRGany(Σ′)(C

′
1), it follows that

{r, r′} and {r′} are res-enabled at C ′
1. So {r′} is not ctrlany-enabled at C ′

1,
a contradiction. In the case of ctrlall-enabledness, it would have to be the
case, by (iii), that cr

′

⊂ c
r. However, this would produce a contradiction with

{r}, {r, r′} ∈ enbldCRGall(Σ′)(C
′
0) (see (i)).

Hence Σ′ does not exist. ✷

Proposition 3.6 CRGall
solt \ CRGsst 6= ∅.

Proof. Let Σ = ({a},∅, γ, {a}, {a}, {a}, {a}, {r, r′, r′′}) be an solt-system,
where γ has {1, 2, 3, 4} as its set of nodes and no edges, and:

r = ({1, 3} : {a} → ∅)

r′ = ({2, 4} : {a} → ∅)

r′′ = ({1, 2} : {a} → ∅) .

Then enbldCRGall(Σ)(C0) = 2{r,r
′,r′′} \ {r, r′}, where C0 = ({a}, {a}, {a}, {a}) is

the initial configuration of Σ.

We need to show is that there is no sst-system Σ′ such that CRGall(Σ) ∼=
CRG(Σ′). Suppose that such a Σ′ exists.

Thus, the rules of Σ′ are r, r′, and r′′ (perhaps differently defined than their
counterparts in Σ). Their localities in Σ′ are given by c

r = {i}, cr
′

= {j}, and
c
r′′ = {k}. We observe that the following hold:

(1) {r}, {r′}, {r′′}, {r, r′′}, {r′, r′′}, and {r, r′, r′′} are all res-enabled at C ′
0

(the initial configuration of Σ′).

11



(2) i 6= j 6= k 6= i. This follows from (1) and the definition of ctrlall-
enabledness (CRG(Σ′) = CRGall(Σ

′) = CRGall(Σ)).
(3) {r, r′} is res-enabled at C ′

0. This follows from (1) and Proposition 3.1.

Hence, by (2), (3) and the definition of ctrlall-enabledness, {r, r
′} is ctrlall-

enabled at C ′
0, contradicting {r, r

′} /∈ enbldCRGall(Σ)(C0) = enbldCRGall(Σ′)(C
′
0). ✷

Proposition 3.7 CRGany
solt \ CRGsst 6= ∅.

Proof. Let Σ = ({a, b},∅, γ, {a, b}, {a, b}, {r, r′, r′′}) be an solt-system, where
γ has {1, 2} as its set of nodes and no edges, and:

r = ({1} : {a} → {a})

r′ = ({2} : {a} → {a})

r′′ = ({1, 2} : {b} → ∅) .

Then: (i) enbldCRGany(Σ)(C0) = {∅, {r, r′, r′′}}, where C0 = ({a, b}, {a, b}) is

the initial configuration; (ii) C0
{r,r′,r′′}
−−−−−→any C1, where C1 = ({a}, {a}); and

(iii) enbldCRGany(Σ)(C1) = {∅, {r}, {r′}, {r, r′}}.

We need to show that there is no sst-system Σ′ such that (iv) CRGany(Σ) ∼=
CRG(Σ′).

Suppose that such a Σ′ exists. Let C ′
0 = (w1, . . . , wm) be its initial configura-

tion. The rules of Σ′ are r, r′, and r′′ (perhaps differently defined than their
counterparts in Σ). Their localities in Σ′ are given by c

r = {i}, cr
′

= {j}, and

c
r′′ = {k}. Moreover, let C ′

0

{r,r′,r′′}
−−−−−→ C ′

1 where C ′
1 = (u1, . . . , um). Recall that

for Σ′, ctrlany-enabledness and ctrlall-enabledness are the same notion.

We first show that {r} is res-enabled at C ′
0 in Σ′. Suppose that this does not

hold. Then, by (i) and (iv), there is (in Σ′) a signal object v such that v /∈ wi,
v ∈ lhsr \ rhsr and v ∈ rhsr

′

∪ rhsr
′′

. By the definition of any-executability
of R = {r, r′, r′′} at C ′

0, we have v /∈ ui. Hence {r} is not res-enabled at C ′
1,

contradicting (iii).

We then observe that, by (iii) and (iv), enbldCRGany(Σ′)(C
′
1) = {∅, {r}, {r′}, {r, r′}}.

Hence, by the definition of ctrlany-enabledness, we have i 6= j.

Suppose now that i 6= k. Since, as we just argued {r} is res-enabled at C ′
0,

we have, by the definition of ctrlany-enabledness and j 6= i 6= k, that {r} is
ctrlany-enabled at C ′

0, contradicting (i).

Hence i = k and, by symmetry, j = k. Thus i = j, a contradiction. ✷

From the above propositions we obtain a complete characterisation of the
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relative expressive power of the various kinds of tissue systems considered
here separately for the two different modes of execution.

Theorem 3.8 The graphs in Figure 3 depict strict inclusions between the
domains forming their respective nodes. Moreover, no other inclusion holds.

Proof. The weak ⊆ inclusions all follow from Proposition 3.4. By Propo-
sition 3.5 and Proposition 3.6, CRGall

solt and CRGsst are incomparable (not
included in one another). Similarly, by Proposition 3.5 and Proposition 3.7,
CRGany

solt and CRGsst are incomparable. As an immediate conseqence of the
above, all inclusions depicted are strict. ✷

CRGall
ssolt

CRGall
solt

CRGsst

CRGbst

CRGany
ssolt

CRGany
solt

CRGsst

CRGbst

Fig. 3. Expressiveness of different classes of tissue systems.

4 Systems and nets

In this section we first add the concept of overlapping localities to the signal
set nets of [13]. Next we compare the resulting net class with ssolt-systems.

4.1 Signal set nets with overlapping localities

A signal set net with overlapping localities, or ssol-net, is a tuple N =
(P, P sgl , T, F, ℓ,M0), where P and T are finite disjoint sets of respectively
places and transitions, P sgl ⊆ P are signal places, F ⊆ (P × T ) ∪ (T × P ) is
the flow relation, ℓ : P ∪T → 2{1,2,...} \∅ is the locality mapping, and M0 ⊆ P
is the initial marking. It is assumed that ℓ(t) is finite, for every transition
t ∈ T , and that |ℓ(p)| = 1, for every p ∈ P . For a transition t, we refer to ℓ(t)
as the locality of t and to the elements of ℓ(t) as locations. Thus a transition

13



may have several locations which can be shared with other transitions (in case
of overlapping localities). Places have only one location, but different places
may have the same location.

If |ℓ(t)| = 1, for every t ∈ T , then N is basically a signal set net from [13],
and if, additionally, P sgl = ∅ then we obtain a model as in [12]. The latter
was derived from set-nets [19], originally developed as a Petri net model for
reaction systems [6, 8, 9]. In [20], overlapping localities are introduced, but the
formalisation is different: a transition can belong to several designated sub-
sets of transitions, referred to as localities; and there are no explicit localities
assigned to places.

Let N be a ssol-net as specified above.
A set of places is amarking, and a set of transitions is a step. If t is a transition,
then we denote by •t = {p ∈ P | ∃(p, t) ∈ F} its set of input places and by
t• = {p ∈ P | (t, p) ∈ F} its set of output places. Moreover, if U is a step,
then we define •U =

⋃

t∈U
•t and U• =

⋃

t∈U t
•; and ℓU =

⋃

t∈U ℓ(t) are the
locations associated with the transitions of U . Moreover, for t ∈ T : •t = •{t}
and t• = {t}•.
A step U is resource enabled, or res-enabled, at a marking M if •U \M ⊆
U•∩P sgl , i.e., if all input non-signal places of its transitions belong to M , and
all signal input places that are not in M are outputs of its transitions.

Markings indicate the presence of resources, but without any quantification
(hence ‘set net’). Consequently, if a place is marked (belongs to the current
marking), it can provide input (resources) to any number of simultaneously
executed transitions. Executing a transition empties all its input places and
each of its output places will belong to the resulting marking. Moreover, re-
sources produced as output for signal places can be consumed in the same
step by another (or even the same) transition having that place as an input
place.

To be executable at a marking, a res-enabled step must also be ‘maximal’ in
the sense that it cannot be extended with additional transitions with a locality
that is already involved in that step. We distinguish between two criteria.
According to the first one, there are no transitions left out which could be
added to yield a new res-enabled step with the same set of localities as the
original step; whereas the second one requires that there are no transitions
left out that have an active locality (their localities overlap with some of the
localities of the transitions forming the step) and could be added to yield a
new res-enabled step.

Let U be a step res-enabled at a marking M . Then U is:

• all-control enabled (or ctrlall-enabled) at M if there is no step U ′ ⊃ U
which is res-enabled at M with ℓU ′ = ℓU , and
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• any-control enabled (or ctrlany-enabled) at M if there is no step U ′ ⊃ U
which is res-enabled at M with ℓ(t) ∩ ℓU 6= ∅, for every t ∈ U ′ \ U .

A step U which is ctrlµ-enabled w.r.t. an execution mode µ ∈ {all, any} at
M can be µ-executed leading to the marking M ′ given by

M ′ = (M \ •U) ∪ (U• \ (•U \M)) = ((M ∪ U•) \ •U) ∪ (M ∩ U• ∩ •U) .

We denote this by M [U〉µM
′. It should be observed here that the subscript

µ refers to the enabling condition; the effect of executing a step is in both
modes the same. A µ-computation of N is a finite sequence of µ-executions
starting from M0, and any marking which can be obtained through such a
computation is µ-reachable. Moreover, the µ-concurrent reachability graph of
N is the step transition system CRGµ(N) = ([M0〉µ, 2

T , δ,M0), where [M0〉µ
is the set of all µ-reachable markings which are the states of the graph, M0 is
the initial state, and

δ = {(M,U,M ′) |M,M ′ ∈ [M0〉µ ∧ U ⊆ T ∧M [U〉µM
′} .

Note that we can assume here - without loss of generality - that all transitions
of N are useful, i.e., they occur in at least one µ-execution in a µ-computation
of N).

4.2 Relating ssolt-systems and ssol-nets

In this sub-section, we show that the two models of concurrent systems intro-
duced in this paper are closely related in a behavioural sense. More precisely,
we will identify for each ssolt-system an ssol-net that generates essentially
the same concurrent reachability graph. As before in, e.g., [13, 14], the evo-
lution rules become transitions and the objects will be places - in this case
preserving their (non-)signalling properties; the flow relation preserves the in-
put and output of the evolution rules; and the locality mapping corresponds
to compartments and localities in the ssolt-system. This leads to a natural
partition of the constructed places with a subset for each different object and
each place in that subset corresponding to one of the compartments where
the object may reside. Conversely, given a tissue structure and an ssol-net
that has input and output relations between transitions and places ‘consistent’
with their localities, we will be able to construct an ssolt-system with the
same concurrent reachability graph.

Let γ be a tissue structure, N = (P, P sgl , T, F, ℓ,M0) be an ssol-net, and Π
be a partition of the set of places P such that, for every π ∈ Π, ℓ is injective
on π, and π ⊆ P \P sgl or π ⊆ P sgl

STS . Then N is spanned over γ w.r.t. Π if, for
all p ∈ P , t ∈ T , and π ∈ Π such that p ∈ π, the following hold:
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• ℓ(p), ℓ(t) ⊆ γnodes,
• (p, t) ∈ F implies ℓ(p) ⊆ ℓ(t) and, for every i ∈ ℓ(t), there is p′ ∈ π such
that (p′, t) ∈ F and ℓ(p′) = {i},

• (t, p) ∈ F implies one of the following:
· ℓ(p) ⊆ ℓ(t) and, for every i ∈ ℓ(t), there is p′ ∈ π such that (t, p′) ∈ F and
ℓ(p′) = {i}, or

· ℓ(p) ∩ ℓ(t) = ∅ and (ℓ(t) × ℓ(p)) ∩ γedges 6= ∅ (i.e., there is an edge in γ
between some i and j, where (i, j) ∈ ℓ(t)× ℓ(p)).

4.2.1 ssol-nets corresponding to ssolt-systems

Let Σ = (V, V sgl , γ, w0
1, . . . , w

0
m,R) be an arbitrary, but fixed, ssolt-system.

The ssol-net corresponding to Σ is ts2pn(Σ) = (P, P sgl , T, F, ℓ,M0), where:

• P = {pai | i ∈ γnodes ∧ a ∈ V }, P sgl = {pai | i ∈ γnodes ∧ a ∈ V sgl},
T = {tr | r ∈ R}.

• ℓ(p) = {i} and ℓ(t) = c
r, for all p = pai ∈ P and t = tr ∈ T ; moreover:

•t = {pai | i ∈ c
r ∧ a ∈ lhsr}

t• = {pai | i ∈ c
r ∧ a ∈ rhsr} ∪ {pai | a⊲i ∈ rhsr} .

• M0 = {pai | i ∈ γnodes ∧ a ∈ w0
i }.

Proposition 4.1 ts2pn(Σ) is an ssol-net spanned over the tissue structure γ
w.r.t. the partition Π = {{pai | i ∈ γnodes} | a ∈ V } of the places of ts2pn(Σ).

Proof. Follows directly from the definitions. ✷

The configurations of Σ and the markings of ts2pn(Σ) are related by a mapping
ν which, for every configuration C = (w1, . . . , wm) of Σ, yields a marking
ν(C) = {pai | i ∈ γnodes ∧ a ∈ wi} of ts2pn(Σ). Moreover, φ(r) = tr is the
transition of ts2pn(Σ) corresponding to rule r ∈ R.

Proposition 4.2 The mappings ν and φ are bijections, and

ν−1(M) = ({a ∈ V | pa1 ∈ M}, . . . , {a ∈ V | pam ∈M}) ,

for every marking M of ts2pn(Σ).

Proof. Follows directly from the definitions. ✷

Proposition 4.3 ν(C0) =M0, where C0 is the initial configuration of Σ.

Proof. Follows directly from the definitions. ✷
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The strong behavioural relationship between the operation of ssolt-systems
and the corresponding ssol-nets is established in the next result.

Proposition 4.4 Let C and C ′ be configurations, R ⊆ R be a set-rule of Σ,
and µ be an execution mode. Then:

C
R
−→µ C

′ if and only if ν(C) [φ(R)〉µ ν(C
′)

in Σ in ts2pn(Σ) .

Proof. Below, for a configuration C = (w1, . . . , wm) of Σ and a set-rule R of
Σ, we denote:

set(C) = {a@i | i ∈ γnodes ∧ a ∈ wi}

in(R) = {a@i | i ∈ c
R ∧ a ∈ lhsRi }

out(R) = {a@i | i ∈ c
R ∧ a ∈ rhsRi } ,

where a@i denotes an object a in compartment i (an extended name).

Then R is res-enabled at a configuration C iff

in(R) \ set(C) ⊆ out(R) ∩ {a@i | i ∈ γnodes ∧ a ∈ V sgl} .

The latter is equivalent to •φ(R) \ ν(C) ⊆ φ(R)• ∩ P sgl since each pai can be
identified with a@i, and, for each R ⊆ R, the set of input places of φ(R) can
be identified with in(R) and the set of output places of φ(R) with out(R).

Hence a set-rule R is res-enabled at C iff φ(R) is res-enabled at ν(C). More-
over, cr = ℓ(tr), for every r ∈ R, and so we have c

R = ℓφ(R). Hence R is
ctrlµ-enabled at C iff φ(R) is ctrlµ-enabled at ν(C). It therefore remains
to show that the results of the executions of R at C and of φ(R) at ν(C)
correspond to each other.

Suppose that C
R
−→µ C

′. Then

set(C ′) = (set(C) \ in(R)) ∪ (out(R) \ (in(R) \ set(C))) ,

and so ν(C ′) = (ν(C) \ •φ(R)) ∪ (φ(R)• \ (•φ(R) \ ν(C))). Hence we obtain
ν(C) [φ(R)〉µ ν(C

′) which completes the proof. ✷

Together with Propositions 4.2 and 4.3, this means that the concurrent reach-
ability graphs of Σ and ts2pn(Σ) are isomorphic if we identify each rule with
the corresponding transition. Hence we obtain

Theorem 4.5 Let µ be an execution mode. Then CRGµ(Σ) and CRGµ(ts2pn(Σ))
are φ-isomorphic step transition systems.
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4.2.2 ssolt-systems corresponding to ssol-nets

Let N = (P, P sgl , T, F, ℓ,M0) be an arbitrary, fixed, ssol-net spanned over the
tissue structure γ of degree m w.r.t. a partition Π of P . The ssolt-system cor-
responding to N w.r.t. Π is pn2ts(N,Π) = (V, V sgl , γ, w0

1, . . . , w
0
m,R), where:

• V = {aπ | π ∈ Π} and V sgl = {aπ | π ∈ Π ∧ π ⊆ P sgl}.
• w0

i = {aπ | π ∈ Π∧M0∩π∩ ℓ
−1({i}) 6= ∅}, for every i ≤ m. We then define

ν ′(M) = (w1, . . . , wm), where wi = {aπ | π ∈ Π ∧M ∩ π ∩ ℓ−1({i}) 6= ∅},
for every marking M of N .

• R = {rt | t ∈ T}, where each rt = φ′(t) = (ℓ(t) : lhs → rhs) is such that:

lhs = {aπ | π ∈ Π ∧ π ∩ •t 6= ∅}

rhs = {aπ | π ∈ Π ∧ ∃p ∈ π ∩ t• : ℓ(p) ⊆ ℓ(t)} ∪

{aπ⊲i | π ∈ Π ∧ ∃p ∈ π ∩ t• : ℓ(p) ∩ ℓ(t) = ∅ ∧ ℓ(p) = {i}} .

Proposition 4.6 pn2ts(N,Π) is an ssolt-system over the tissue structure γ.

Proof. Follows from the definitions. ✷

The translation results in a very close behavioural correspondence between
the chosen classes of Petri nets and tissue systems. By proceeding similarly as
in the case of the previous translation, we obtain

Theorem 4.7 Let µ be an execution mode. Then the step transition systems
CRGµ(N) and CRGµ(pn2ts(N,Π)) are φ

′-isomorphic.

We can therefore conclude, by Theorems 4.5 and 4.7, that ssolt-systems and
ssol-nets spanned over tissue structures are essentially equivalent semanti-
cal models. This means, in particular, that the synthesis of ssolt-systems
from step transition systems can be approached as the synthesis of ssol-nets
spanned over tissue structures.

5 Net-types

As discussed in, e.g., [3, 15], several Boolean Petri net classes (i.e., those types
of nets where markings are subsets of places) can be distinguished on the basis
of individual connections between places and transitions. Moreover, the effect
of the simultaneous execution of a certain combination of transitions on a place
can be calculated using a commutative monoid which returns the composite
connection between the place and the given step. The resulting formalism,
based on the generic notions of net-type τ and τ -net, provides an alternative
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presentation of net theory which is particularly suitable for dealing with the
net synthesis problem. In this section we demonstrate that ssol-nets are a
class of τ -nets.

A net-type is supposed to capture the behaviour of a place of a net of a
particular kind. It is an lt-system τ = (Q, S, δ) such that: Q is a set of states; S
is a connection monoid (a set of connections equipped with a commutative and
associative binary composition operation ⊕ and a neutral (identity) element
0); and δ is a partial function satisfying δ(q, 0) = q, for all q ∈ Q. In the
case of ssol-nets considered here, Q = {0, 1} indicating whether a place is
marked or not, and S = {0, ins, rem, lp}, i.e., there are four kinds of possible
connections between places and transitions: ‘no connection’,‘ insert’, ‘remove’
and ‘loop’.

0 : p t ins : p t rem : p t lp : p t

The above connections give rise to two different interpretations in terms of net-
types, depending on the intended ‘signalling’ status of a place. We therefore
consider two net-types, τnsgl = (Q, S, δnsgl) and τ sgl = (Q, S, δsgl), with δnsgl

and δsgl given respectively in Figure 4(a) and Figure 4(c), and the common
table, shown in Figure 4(b), defining the composition operation used.

Proposition 5.1 (S,⊕), where S = {0, ins, rem, lp} and ⊕ is defined in Fig-
ure 4(b), is a commutative monoid with 0 as neutral element, lp an absorbing
element, and ins and rem idempotent elements.

Proof. ⊕ is commutative as the table in Figure 4(b) is symmetric, and the
listed properties of individual elements clearly hold. Hence, to show the as-
sociativity of ⊕, we only need to observe that ins ⊕ (ins ⊕ rem) = lp =
(ins ⊕ ins) ⊕ rem, ins ⊕ (rem ⊕ ins) = lp = (ins ⊕ rem) ⊕ ins, and
rem⊕ (ins⊕ ins) = lp = (rem⊕ ins)⊕ ins. ✷

The only difference between the net-types τnsgl and τ sgl is in the ‘loop’ connec-
tion which in the signalling case is non-blocking (enabled) also for 0. However,
it is not the case that 0 = lp for signal places since they behave differently in
compositions as 0 is the neutral element whereas lp is an absorbing element.

A class of nets can be rendered as a class of τ -nets if we can find a suitable net-
type τ to describe the behaviour of its places. Unlike in the standard definitions
of τ -nets, the class of τ -nets corresponding to ssol-nets, will employ two net-
types, τnsgl and τ sgl , to accommodate both signal and non-signal places as
they have different semantical properties.

As before, we let Q = {0, 1} and S = {0, ins, rem, lp}.
A signal set τ -net with overlapping localities (or ssol-τ -net) is a tuple Z =
(P, P sgl , T, G, ℓ,M0), where P , P

sgl , T and ℓ are as in the definition of an
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0 1

0 0 ins lp

ins

rem

⊕ 0 ins rem lp

0 0 ins rem lp

ins ins ins lp lp

rem rem lp rem lp

lp lp lp lp lp

0 1

0 lp 0 ins lp

ins

rem

(a) (b) (c)

Fig. 4. (a & b) define the net-type τnsgl ; and (b & c) define the net-type τ sgl .

ssol-net, G : (P × T ) → S is the connection mapping, and M0 : P → Q is
the initial marking (in general, any mapping M : P → Q is a marking).

Below, for p ∈ P and U ⊆ T , we denote G(p, U) =
⊕

t∈U G(p, t) with
G(p,∅) = 0 and

⊕

t∈{t1,...,tn}G(p, t) = G(p, t1) ⊕ · · · ⊕ G(p, tn), where ⊕ is
as defined in Figure 4(b).

A step U ⊆ T of Z is resource enabled (or res-enabled) at a marking M if,
for every p ∈ P \ P sgl , G(p, U) ∈ enbld τnsgl (M(p)), and, for every p ∈ P sgl ,
G(p, U) ∈ enbldτ sgl (M(p)).

Let U be a step res-enabled at a marking M . Then U is:

• all-control enabled (or ctrlall-enabled) at M if there is no step U ′ ⊃ U
which is res-enabled at M with ℓU ′ = ℓU , and

• any-control enabled (or ctrlany-enabled) at M if there is no step U ′ ⊃ U
which is res-enabled at M with ℓ(t) ∩ ℓU 6= ∅, for every t ∈ U ′ \ U .

A step U which is ctrlµ-enabled at M can be µ-executed leading to the
marking M ′ such that, for every p ∈ P \ P sgl , M ′(p) = δnsgl(M(p), G(p, U)),
and, for every p ∈ P sgl , M ′(p) = δsgl(M(p), G(p, U)). We denote this by
M [U〉µM

′. A µ-computation of Z is then a finite sequence of µ-executions
starting from M0, and any marking which can be obtained through such a
computation is µ-reachable. Moreover, the µ-concurrent reachability graph of
Z is the step transition system CRGµ(Z) = ([M0〉µ, 2

T , δ,M0), where [M0〉µ
is the set of all µ-reachable markings which are the states of the graph, M0 is
the initial state, and

δ = {(M,U,M ′) |M,M ′ ∈ [M0〉µ ∧ U ⊆ T ∧M [U〉µM
′} .

Again, we can assume that all transitions are useful.

Let γ be a tissue structure and Π be a partition of the set of places P such
that, for very π ∈ Π, ℓ is injective on π, and π ⊆ P \ P sgl or π ⊆ P sgl

STS . Then
Z is spanned over γ w.r.t. Π if, for all p ∈ P , t ∈ T , and π ∈ Π such that
p ∈ π, the following hold:
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• ℓ(p), ℓ(t) ⊆ γnodes,
• G(p, t) ∈ {rem, lp} implies ℓ(p) ⊆ ℓ(t) and, for every i ∈ ℓ(t), there is p′ ∈ π
such that G(p′, t) = G(p, t) and ℓ(p′) = {i},

• G(p, t) = ins implies one of the following:
· ℓ(p) ⊆ ℓ(t) and, for every i ∈ ℓ(t), there is p′ ∈ π such that G(p′, t) = ins

and ℓ(p′) = {i}, or
· ℓ(p) ∩ ℓ(t) = ∅ and (ℓ(t)× ℓ(p)) ∩ γedges 6= ∅.

Theorem 5.2 There is a bijection ψ from ssol-nets to ssol-τ -nets such that
CRGµ(N) = CRGµ(ψ(N)), for every ssol-net N and every execution mode
µ. Moreover, the sets of places of N and ψ(N) are the same, and N is spanned
over γ w.r.t. Π iff ψ(N) is spanned over γ w.r.t. Π, for every tissue structure
γ and every partition Π of the common set of places of N and ψ(N).

Proof. Let N = (P, P sgl , T, F, ℓ,M0) be an ssol-net. We then define the
ssol-τ -net ψ(N) = (P, P sgl , T, G, ℓ,M0), where, for all p ∈ P and t ∈ T :

G(p, t) =







































0 if (p, t) /∈ F ∧ (t, p) /∈ F

ins if (p, t) /∈ F ∧ (t, p) ∈ F

rem if (p, t) ∈ F ∧ (t, p) /∈ F

lp if (p, t) ∈ F ∧ (t, p) ∈ F .

It is easy to check that, for all M ⊆ P and U ⊆ T , U is res-enabled at M
in N iff U is res-enabled at M in ψ(N). Hence, for every execution mode µ,
U is ctrlµ-enabled at M in N iff U is ctrlµ-enabled at M in ψ(N). As a
result, CRGµ(N) = CRGµ(ψ(N)). Moreover, the second part of the theorem
is obvious. ✷

Thanks to Theorems 4.7 and 5.2, the problem of synthesising an ssolt-system
from a given st-system can be replaced by the problem of synthesising an
ssol-τ -net from a given st-system.

6 Synthesis

To specify the behaviour of a net to be synthesised, we use st-systems. As the
semantics of the nets we intend to synthesise, ssol-nets, can be expressed by
two net-types, it is possible to adapt the approach developed for the general
theory of Petri net synthesis investigated, e.g., in [2, 3, 4, 16, 15].
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We consider the following problem:

synthesis

Let STS = (Q, 2T , δ, q0) be an st-system, γ be a tissue structure, ℓ : T →
2γnodes \∅ be a locality mapping for T , and µ be an execution mode.
Provide necessary and sufficient conditions for STS to be µ-realisable by
some ssol-τ -net Z, i.e., STS ∼= CRGµ(Z), so that Z is spanned over γ
w.r.t. some partition of its places, and the locality mapping of Z extends ℓ.
Moreover, construct a suitable Z and a partition of its places if STS is
µ-realisable.

In what follows, STS , γ, ℓ, and µ are fixed.

Existing solutions to similar net synthesis problems tend to use some notion of
a region of STS whose definition depends on the net-type of the nets for which
it is defined. Each region represents a place in the net to be constructed and
contains all the information about its marking (local state) at every q ∈ Q,
and its connection to every t ∈ T given by an element of the connection
monoid of the net-type. Therefore, in the definition of a region, we will have
two mappings σ and η to calculate such markings and connections. Moreover,
the specific notion of a region defined below will comprise the locality of the
place it represents, and we will need to ensure that this locality is consistent
with the fact that the net being constructed has to be spanned over the tissue
structure γ. Finally, we will also need to define two kinds of regions to reflect
the difference in behaviour of signal and non-signal places.

Let ξ ∈ {nsgl , sgl} and τ ξ = (Q, S, δξ). A τ ξ-region of STS in the synthesis

problem is a triple ρ = (k ∈ γnodes, σ : Q → Q, η : T → S) such that, for all
t ∈ T , q ∈ Q, and U ∈ enbldSTS (q):

• η(t) ∈ {rem, lp} implies k ∈ ℓ(t),
• η(t) = ins and k /∈ ℓ(t) implies (ℓ(t)× {k}) ∩ γedges 6= ∅, and
•

⊕

η(U) ∈ enbld τξ(σ(q)) and δ
ξ(σ(q),

⊕

η(U)) = σ(δ(q, U)),

where
⊕

η(∅) = 0 and
⊕

η(U) = η(t1)⊕ · · · ⊕ η(tn), for U = {t1, . . . , tn}.

Below we denote ρ = (kρ, σρ, ηρ). The set of τ ξ-regions is denoted by Regξ
STS ,

and RegSTS = Regnsgl
STS ∪ RegsglSTS denotes the set of τ -regions of STS .

By comparing the diagrams of net-types τnsgl and τ sgl in Figure 4, we imme-
diately obtain

Proposition 6.1 RegnsglSTS ⊆ RegsglSTS .

Hence, checking whether a triple (k, σ, η) is a τ -region means checking it first
for the non-signalling case, and only if this fails, checking the signalling case.
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Having introduced τ -regions, one may now introduce a derived notion of step
enabledness. For every q ∈ Q, enbldSTS ,τ (q) is the set of all τ -enabled steps
U ⊆ T meaning that

⊕

ηρ(U) ∈ enbldτ (σρ(q)), for each τ -region ρ of STS .
Directly from the definitions, we obtain

Proposition 6.2 enbldSTS (q) ⊆ enbldSTS ,τ (q), for every q ∈ Q.

We then obtain a complete characterisation of the positive instances of the
synthesis problem.

Theorem 6.3 The synthesis problem has a solution iff there exists a non-
empty family Ω of non-empty sets of τ -regions of STS such that the following
hold, for all ω ∈ Ω, ρ ∈ ω, t ∈ T , q, q′ ∈ Q, and U ⊆ T :

(1) ℓ is injective on ω, and ω ⊆ Regnsgl
STS or ω ⊆ RegsglSTS .

(2) If ηρ(t) ∈ {rem, ins, lp} and kρ ∈ ℓ(t), then, for every i ∈ ℓ(t), there is
ρ′ ∈ ω with kρ′ = i and ηρ′(t) = ηρ(t).

(3) axiom i: state separation

If q 6= q′ then there is ρ ∈
⋃

Ω with σρ(q) 6= σρ(q
′).

(4) axiom ii: forward closure

If U /∈ enbldSTS (q) ∪ cdsµ(enbldSTS ,τ(q)) then there is ρ ∈
⋃

Ω with
⊕

ηρ(U) /∈ enbldτ (σρ(q)), where, for every X ⊆ 2T : 3

cdsall(X ) = {U ∈ X | ∃U ′ ∈ X : U ⊂ U ′ ∧ ℓU ′ = ℓU}

cdsany(X ) = {U ∈ X | ∃U ′ ∈ X : U ⊂ U ′ ∧ (∀t ∈ U ′ \ U : ℓ(t) ∩ ℓU 6= ∅)} .

Moreover, if (1)–(4) above hold, then Z = (P, P sgl , T, G, ℓ,M0), where:

• P = {pωρ | ρ ∈ ω ∈ Ω} and P sgl = {pωρ | ρ ∈ ω ∈ Ω ∧ ω ⊆ Reg sgl
STS},

• G(pωρ , t) = ηρ(t), for all pωρ ∈ P and t ∈ T , and
• ℓ(pωρ ) = {kρ} and M0(p

ω
ρ ) = σρ(q0), for every pωρ ∈ P ,

is a ssol-τ -net solving the synthesis problem. In addition, a suitable parti-
tion of P is given by Π = {{pωρ | ρ ∈ ω} | ω ∈ Ω}.

Proof. Note that Π is a partition of
⋃

Π even if Ω was not a partition of
⋃

Ω.
Moreover, Z is spanned over γ w.r.t. Π which follows from (1) and (2) above
and the definition of a τ -region.

The theorem follows by a straightforward adaptation of the results presented
in [4] and [5]. The only property we need to verify is that cdsµ defines a step
firing policy in the sense of [4]. This means that we need to show that, for all
X ⊆ 2T and Y ⊆ X :

3 It is always the case that ∅ /∈ cdsall(X ) and ∅ /∈ cdsany(X ). The notation ‘cds ’
comes from [4] and is meant to indicate ‘control disabled steps’.
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(i) cdsµ(X ) ⊆ X .
(ii) cdsµ(Y) ⊆ cdsµ(X ).
(iii) X ⊆ 2T and X \ cdsµ(X ) ⊆ Y imply cdsµ(X ) ∩ Y ⊆ cdsµ(Y).

Clearly, (i) and (ii) hold. To show (iii), let µ = all, X \ cdsall(X ) ⊆ Y ⊆
X ⊆ 2T and U ∈ cdsall(X ) ∩ Y . Since U ∈ cdsall(X ) and T is finite, there is
a maximal (w.r.t. ⊆) set U ′ ∈ X such that U ⊂ U ′ and ℓU ′ = ℓU . Clearly,
U ′ /∈ cdsall(X ), and so U ′ ∈ X \ cdsall(X ) ⊆ Y . As U ∈ Y by assumption, we
have U ∈ cdsall(Y).

For µ = any the proof is similar. ✷

Note that we only need to consider a minimal Ω, i.e., such that deleting any of
its components would make at least one instance of axioms i or ii unsatisfied.

It is interesting to observe the relationship between signal and non-signal
places in the constructed net. By Proposition 6.1, RegnsglSTS ⊆ Reg sgl

STS . If ρ ∈
Regnsgl

STS then its ‘witnessing power’ w.r.t. axiom i is the same as for ρ ∈
Reg sgl

STS . However, considering axiom ii, the same is no longer the case as ρ
will have a strictly greater witnessing power when interpreted as included in
Regnsgl

STS than when interpreted as included in RegsglSTS (this follows from the
fact that the lt-system in Figure 4(c) enables at least as many connections
as that in Figure 4(a) at the corresponding states). Hence, whenever we have
a witnessing ρ ∈ RegnsglSTS there is no need to add its counterpart ρ ∈ Reg sgl

STS

to the solution being constructed.

7 Conclusion

In this paper we have introduced a new class of set tissue systems by for-
malising the idea that the computational process progresses in synchronised
overlapping localities. This feature has been shown to properly extend the
expressive power of the original systems. Currently, Theorem 3.8 provides a
full picture of relative expressiveness of tissue systems for each of the all and
any modes separately. We plan to investigate the relationships between the
two modes.

Next ssolt-systems have been related to ssol-nets with the same behaviour.
Since ssol-nets can be rendered as τ -nets, their synthesis problem is solvable
and thus also that of ssolt-systems. In fact, to establish the class of τ -nets
that corresponds to ssol-nets it was necessary to introduce two net-types
rather than one as is standard. We consider this further evidence for the
solidity and flexibility of the general region-based approach to synthesis of
Petri nets based on τ -nets.
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