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1. Chronic diseases, unmet medical needs  

Treating chronic diseases such as rheumatoid arthritis (RA) and type 2 diabetes 

mellitus (T2DM) is a hot topic that has been discussed widely and investigated 

extensively, but never solved, due in part to their high complexity (e.g., dynamic 

disease processes, multiple pathologies, and associated complications). The onset 

of a chronic disease usually starts from a slowly developing, asymptomatic stage, 

which can last several years until clinically detectable signs of disease appear, then 

progresses to an irreversible stage. With respect to prevalence, approximately 1% 

of the global population currently has RA, and this percentage is increasing. For 

T2DM, epidemiology studies estimate that 285 million individuals are currently 

affected worldwide, and this number is projected to reach 439 million by 2030 [1]; 

moreover, a large number of individuals are undiagnosed due to only mild 

symptoms in the early stages of the disease [2][3]. This long-term undiagnosed 

state can directly and/or indirectly affect quality of life, serving as a major cause of 

morbidity, hospitalization, systematic complications, and even mortality. At the 

same time, the costs associated with caring for patients with diabetes are extremely 

high, with hospitalization and complications accounting for the largest portion of 

these costs. Thus, from the perspective of both patients and the economy, it is 

essential to develop more reasonable and efficient approaches to diagnose these 

diseases early, thereby increasing treatment efficacy. 

 

2. Diagnosing chronic disease using a systems approach  

Early diagnosis is an essential step in the detection of chronic disease, helping the 

clinician identify the appropriate target for intervention and decreasing the risk of 

complications, reducing mortality, and reducing economic costs. With respect to 

chronic diseases, subtle perturbations associated with metabolic disorders are often 

present for years before the appearance of clinically severe symptoms. Therefore, 
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the slow development of chronic disease, as well as dynamic phenotypes, make 

diagnosing a chronic disease more complex and challenging, as well as leading to 

complications if not diagnosed in an early stage. Current diagnostic approaches are 

based primarily on a single marker (usually the most relevant marker), which is 

sometimes not directly applicable and/or might not adequately reflect the chronic 

disease. The ability to predict disease early and to dynamically observe chronic 

disease remain challenging and if solved can—to a certain extent—prevent the 

development of irreversible lesions. Given the complexity and long-term dynamics 

of chronic disease, a personalized approach to phenotyping may help improve our 

understanding of the early stages of chronic disease. In addition, integrating 

disease-related information using a systems approach may help improve our 

knowledge of all stages of the disease, thus improving the accuracy of diagnosing 

chronic disease.   

 

3. Personalized medicine: going beyond the “one-size-fits-all” 

approach 

The definition of “health” is shifting changing from the notion of complete well-

being towards a state of dynamic control (i.e., homeostasis); thus, reduced 

resilience of the body’s systems can lead to disease [4]. This loss of resilience can 

occur at any time point and/or with dynamics unique to each individual. Thus, with 

respect to disease, it is reasonable to assume that each patient will experience a 

unique situation that reflects that patient’s personalized disease characteristics. 

Given the shift in our concept of health in recent decades, the Western model for 

treating disease is also shifting from the “one disease-one target-one drug” 

approach towards a more personalized approach that focuses on the individual 

patient [5]. The concept of personalized medicine, which reveals unique symptoms 

that are related to disease, has the ultimate goal of helping improve diagnostics and 
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prognostics, improving healthcare by providing accurate, personalized treatment 

targets, and providing opportunities to minimize—or even eliminate—side effects 

and non-responded therapies in patients.  

The reductionist approach helps improve our understanding of complex 

processes by dividing these processes into smaller, simpler units. Although living 

organisms are rather complex, with many interactions, systematic approach‒based 

integrative analysis has the advantage of providing an overall understanding by 

evaluating “what the complex system looks like, how complex systems connect 

and interact, and why the various components function in the organism as they do.” 

Therefore, in recent decades Western medicine has been shifting from identifying 

individual components to identifying interactions within intricate networks. In 

addition, a systems approach can be considered a guide for developing 

complementary approaches to healthcare [5] and may contribute to personalized 

diagnostics/prevention, evaluation, and intervention.  

Homeostasis

AllostasisAdapted state 
of the system

Disease

“Health promotion”

Focus on resilience

“Disease management” 

Focus on symptom(s)

Challenge

 

Fig. 1: Schematic diagram illustrating health (homeostasis) and the dynamic development of 
disease.  
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In the healthy state, challenges can be overcome and the body’s resilience enables the system to 
remain healthy. The disease state develops when the body loses the ability to overcome this challenge. 
Subtle perturbations often occur for years (in the early stage of disease), and the disease progression 
can take various paths, producing various phenotypes (phenotype A, B, or C) before the appearance 
of serious symptoms with irreversible disease sequelae (in the late disease stage). Personalized 
medicine focuses on the individual patient, and a systems-based approach may help improve our 
understanding of phenotypes by measuring complex interactions between intricate networks, even in 
the early stages of disease.  

Combining integrative thinking at the systems level with integrative measuring 

techniques and bioinformatics can help overcome challenges related to 

understanding living systems and disorders, and can help move towards truly 

personalized medicine. With respect to integrative thinking, traditional Chinese 

medicine (TCM)‒based concepts may provide a suitable holistic model, as TCM 

describes disease syndromes/phenotypes as an experience-based reference from the 

systems level. Such descriptions may also help with the development of specific 

treatments based on various syndromes and phenotypes, thereby achieving 

personalized medicine, which is particularly applicable to chronic disease [6], [7].  

With respect to systems-based approaches, metabolomics has many advantages, 

including linking current bodies of knowledge and providing biological 

interpretations of the pathophysiology of disease [8]; specifically, these approaches 

provide a comprehensive picture of small molecular metabolites in biological 

systems and can be used as a readout of an organism’s physiological status [9]. 

These integrative tools provide a wealth of biological information beyond single 

molecules by simultaneously measuring a range of metabolites—including lipid 

metabolites, fatty acid‒derived oxylipins, organic acids, sugars, amino acids and 

their biogenic metabolites, etc.,—in order to provide an overview of the disease 

state and reflect system-wide perturbations. Therefore, metabolomics is considered 

a suitable approach for obtaining evidence-based scientific data; moreover, in 

principle metabolomics is an appropriate method for studying the complexity of 

chronic diseases from the perspective of systems biology. In addition, combining 

metabolomics with TCM concept‒based diagnostics may provide comprehensive 

data that can be used as a readout to reflect even the early stages of disease and/or 
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specific phenotypes, thereby facilitating early diagnosis and personalized medicine. 

However, because metabolomics approaches do not necessarily cover the entire 

metabolome, choices must be made based on available metabolomics platforms.  

Recently, the rapid, highly sensitive, non-invasive measurement of ultra-weak 

photon emission (UPE) has been proposed for supporting TCM-based diagnostics 

[10]. UPE measures spontaneously emitted photons at the surface of the skin [11]; 

therefore, UPE has been proposed to reflect the body’s physiological and 

pathological status and is considered to have potential in terms of clinically 

diagnosing and observing disease [12]–[14]. Because of the relationship between 

UPE and reactive oxygen species (ROS), which play an importantly role in 

inflammatory disease during metabolic processes, UPE may be correlated with 

oxidative metabolic processes, thereby reflecting the dynamics of disease [15]–[18]. 

In addition, UPE has potential applications for systematically characterizing TCM-

based diagnostics[19], [20]. Given that both metabolomics and UPE have distinct 

advantages in terms of reflecting disease, combining metabolomics with TCM-

based diagnostics will provide a robust model for investigating the biological 

processes that underlie UPE.  

 

4. Scope and outline of this thesis 

Given the challenges described above, this thesis aimed to investigate system-wide 

perturbations by providing i) a systems view of chronic disease, and ii) 

personalized phenotyping guided by TCM-based principles. By using a systems 

approach, the biological meaning of relevant molecules related to 

disease/phenotype was revealed by metabolomics, and the relationship between 

metabolomics and UPE was investigated, thereby providing a molecular basis for 

UPE and bridging different techniques.  
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In Chapter 2 and Chapter 3, we used metabolomics in an animal model of RA 

to evaluate metabolic perturbations in a disease situation from various perspectives, 

including inflammatory- and ROS-related oxylipins (Chapter 2) and amine-related 

energy levels (Chapter 3). These studies revealed metabolic characteristics of RA 

in a commonly used animal model using two well-established platforms. To further 

understand and further characterize the relationship between metabolic processes 

and UPE, we then examined the correlations between metabolites (i.e., the 

integrated dataset described in Chapters 2 and 3) and UPE intensity (measured in 

the same group of mice) using correlation network analysis; these results are 

discussed in Chapter 4. Such a combination study provides more information and 

an overall look at the complex pathophysiology underlying RA from a systems 

perspective. Correlation networks were also created to explore the relationship 

between UPE and metabolomics under disease conditions and in health.  

Personalized phenotyping guided by TCM-based diagnostic principles, 

metabolomics, and UPE provides a unique contribution to personalized medicine. 

An explorative study combining metabolomics and UPE with TCM-based 

diagnostics may further our understanding of personalized medicine from a 

systems perspective. Thus, information obtained from several analytic technologies 

can be integrated, helping generate a systems view of disease, with the ultimate 

goal of achieving personalized medicine. In Chapter 5, we provide a general 

overview of the applications of UPE that were guided by TCM-based diagnostic 

principles, and we discuss why linking metabolomics and UPE with TCM-based 

diagnostics may create new avenues for personalized medicine, systems 

diagnostics, and systems-based interventions for treating chronic disease. In 

Chapter 6, we present our explorative study based on the notions introduced in 

Chapter 5. We first examined the application of metabolomics for subtyping 44 

early-stage T2DM subjects in an attempt to identify key metabolites that contribute 

to subtypes defined using TCM. We then examined the relationship between 

metabolites and UPE in these TCM-based subtype. 
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Abstract 

Oxylipins play important roles in various  biological processes and are considered 

as mediators of inflammation for a wide range of diseases such as rheumatoid 

arthritis (RA). The purpose of this research was to study differences in oxylipin 

levels between a widely used collagen-induced arthritis (CIA) mice model and 

healthy control (Ctrl) mice. DBA/1J male mice (age: 6-7 weeks) were selected and 

randomly divided into two groups, viz. a CIA- and a Ctrl group. The CIA mice 

were injected intraperitoneal (i.p.) with  the joint cartilage component collagen type 

II (CII) and an adjuvant injection of lipopolysaccharide (LPS). Oxylipin 

metabolites were extracted from plasma for each individual sample using solid 

phase extraction (SPE) and were detected with high performance liquid 

chromatography/tandem mass spectrometry (HPLC-ESI-MS/MS), using dynamic 

multiple reaction monitoring (dMRM). Both univariate and multivariate statistical 

analysis was applied.  The results in univariate student’s t-test revealed 10 

significantly up- or down-regulated oxylipins in CIA mice, which were 

supplemented by another 6  additional oxylipins, contributing to group clustering 

upon multivariate analysis. The dysregulation of these oxylipins revealed the 

presence of ROS-generated oxylipins and an increase of inflammation in CIA mice. 

The results also suggested that the Collagen-induced arthritis might associate with 

dysregulation of apoptosis, possibly inhibited by activated NF- κ B because of 

insufficient  PPAR-γ ligands. 

.
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1. Introduction 

Rheumatoid arthritis (RA) is a chronic, destructive  auto-immune disease which 

involves primarily the joints in the extremities. The disease is characterized by the 

destruction of the cartilage in the joints and inflammation of the synovium. This 

local immune response is characterized by both cell –mediated and humoral 

immune factors. CD4+ T cells, activated B cells are present in the synovium 

together with cytokines such as interleukins (e.g. IL-1 and IL-6), tumor necrosis 

factor (TNFα) and interferon gamma (IF- γ) [1]–[3]. Recent studies have shown an 

important role of fibroblasts-like synovial cells in the pathophysiology of RA [4]–

[6]. Upon pro-inflammatory stimuli and in combination with genetic and 

epigenetic/environmental factors,  these cells, normally responsible for proper 

composition of the synovial fluid and extracellular matrix, transform into an 

aggressive phenotype. This phenotype is characterized by a reduced ability to 

undergo apoptosis [7]–[12], the production of extracellular enzymes like 

collagenase and metalloproteases responsible for the destruction of the joints [13], 

[14] and the secretion of (pro-/anti) inflammatory cytokines, chemokines, pro-

angiogenic factors and oxylipins [15]–[17]. Due to local hypoxia, the formation of 

reactive oxygen and nitrogen species is promoted [18]–[21].  

Although the role of cytokine/chemokine triggered signal transduction 

pathways such as MAP kinase and nuclear factor-kappa B (NF- κB) in the 

pathophysiology of RA has been subject of extensive research, the role of oxylipins 

is less well understood. Oxylipins are bioactive lipid mediators synthesized from 

omega-6 polyunsaturated fatty acid such as arachidonic acid (AA), linoleic acid 

(LA) and dihomo- γ -linolenic acid (DGLA) and omega-3 polyunsaturated fatty 

acid like eicosapentaenoic acid (EPA), docosahexanoic acid (DHA) and alfa-

linolenic acid (ALA) upon liberation from membrane bound phospholipids by 

activation of phospholipase A2 and subsequent oxidation by cyclooxygenase 

(COX), lipoxygenase (LOX) and cytochrome P450 expoxygenase (CYP450) 

systems [22]. This leads to the formation of, over at least hundred, bioactive 
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oxylipins such as prostaglandins (PG), leucotrienes (LT), thromboxanes (TBX), 

hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EpETrEs). 

They can act both on local and distant targets by secretion into the circulation 

system of body. AA is the substrate of pro-inflammatory lipid mediators while 

EPA and DHA derived lipid mediators are anti-inflammatory such as resolvins and 

protectins playing a role in the resolution of inflammation [23]. Nonenzymatic 

oxidation of polyunsaturated fatty acids produces the closely related bioactive 

lipids mediators like, for example, isoprostanes, HETEs and HDoHEs, indicators of 

oxidative stress [24]–[29]. Therefore, investigation of the changes of oxylipins in 

RA animal models will certainly contribute to the understanding of biochemical 

events in RA research. 

Metabolomics is an important and rapidly emerging field of technology 

enabling the comprehensive analysis of a large number of metabolites associated 

with disease phenotypes. We have applied a metabolomics approach using a LC-

MS based platform combined with elaborate statistical methods to analyze 

oxylipins in a validated model of RA that is collagen induced arthritis in mice. Our 

results point to a diminished anti-inflammatory response and increased oxidative 

stress in the RA-induced situation. 
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2. Materials and Method 

2.1 Chemicals  

Methanol (MeOH), acetonitrile (ACN), isopropanol (IPA), ethyl-acetate (EtOAC) 

and purified water were purchased from Biosolve (Netherlands). All reagents used 

during the HPLC-MS/MS experiments were ultra-performance liquid 

chromatography grade (UPLC). Acetic acid was purchased from Sigma-Aldrich (St. 

Louis, Mo). Standards were purchased from Cayman (Netherlands). 

 

2.2 Animal Studies  

DBA/1J male mice (6–7 weeks; Charles River Laboratories) were used in this 

study. Twenty mice were randomly divided in two groups (10 in CIA group, 10 in 

Ctrl group as healthy control). In the CIA group, immunization with collagen type 

II will provoke chronic polyarthritis by the induced autoimmune response. Each 

mouse was intraperitoneally induced (i.p.) with joint cartilage component collagen 

type II (CII; 100µg diluted with a 100 µl volume 0.005M acetic acid) which was 

extracted from bovine nasal cartilage (Funakoshi Co., Tokyo, Japan) at day 0 (T=0). 

Thereafter, the CII injection was repeated i.p. on days 14,28,42 and 56. In the ctrl 

mice, 100 µL of 0.005M acetic acid alone was administered i.p. on the same days 

(0, 14,28,42 and 56).  

Next, to all experimental mice, 5 mg of Lipopolysaccharide from E. coli 011:B4 

(Chondrex, Redmond, USA) dissolved in 100 µL phosphate buffered saline (PBS) 

was given i.p. immediately after each injection of CII. In the Ctrl group, 100 µl 

PBS was similarly administered as a control. This protocol for arthritis induction is 

well established and extensively described [30]. All animals were maintained in a 

temperature and light controlled environment with free access to standard rodent 

chow and water. From day 71 to day 75, blood was taken from each animal of both 

groups (CIA mice (CIA1) died when sampling, leaving 9 animal blood samples in 

the CIA group) and collected in pre-cooled tubes containing EDTA 
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(Ethylenediaminetetraacetic acid) as coagulant (BD Vacutainer, Plymouth, UK). 

After centrifugation at 3000g for 10 minutes, the EDTA-plasma was collected and 

aliquots were stored at -80 ºC until further processing. 

 

2.3 Ethics Statement  

This study was carried out in strict accordance with the recommendations in the 

Guide for the Care and Use of Laboratory Animals of the National Institutes of 

Health. The experiments were performed with the approval of the Tohoku Institute 

of Technology Research Ethics Committee, Sendai, Japan (approval date 18 

January 2009). 

 

2.4 Oxylipin HPLC-MS/MS Analysis on Study Mouse Samples  

The details of extraction and analysis of oxylipins species were adapted for the 

analysis of mouse plasma from a previously described oxylipin profiling method 

[31].  Antioxidant mixture (5 µL) (0.4 mg/mL BHT and 0.4 mg/mL EDTA mixed 

with volume ratio 1:1) and a mixture of internal-standard mixtures (ISTDs) (5 µL, 

1000nM) were added into each 50 µL aliquot of mouse plasma. Subsequently the 

samples were loaded on the activated SPE plates (Oasis-HLB 96-well plates, 60mg, 

30µm) and eluted using ethyl acetate (1.5mL).  The dried eluate was re-dissolved 

in 50 µL acetonitrile/methanol (50:50  v/v) and 5 µL were analyzed by HPLC 

(Agilent 1290, San Jose, CA,USA) on an Ascentis Express column (2.1 × 150 mm, 

particle size of 2.7 µm) coupled to electrospray ionization on a triple quadrupole 

mass spectrometer (Agilent 6490, San Jose, CA, USA). Performance 

characteristics for the adapted method including recovery, linearity (R2), linear 

dynamic range  and sensitivity (LOD/ LOQ) were evaluated in a separate 

validation experiment and the results were comparable to those published before 

for human plasma by Strassburg et al. [31]. The data is included in the 
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Supplementary Material (Table S1, figure S1, available online at 

http://dx.doi.org/10.1155/2015/543541). 

 

2.5 Data Processing and Statistical Analysis  

Peak areas were exported from Mass Hunter software (Agilent Technologies, 

version B.05.01) and ratios to internal standards were computed (target 

compounds/ ISTDs). Subsequently, an in-house developed QC tool [32], [33] was 

used to correct for instrument drift and batch effects. The reliability of the 

measurements was assessed by calculating the reproducibility of each metabolite in 

a QC pool which was measured after every 10 samples. Oxylipins which met the 

criteria RSD-QC lower than 35% were included in the final list for the further 

statistical analysis. Data were log transformed (Glog) and scaled by the standard 

deviation (autoscaling) in order to get a normal distribution [34], [35]. Univariate 

analysis (two-tailed unpaired Student’s t-test) was employed to evaluate significant 

differences between groups for each metabolite (determined by p< 0.05). Principal 

component analysis (PCA) and partial least square discriminant analysis (PLSDA) 

were performed to further investigate the discrimination oxylipins between the two 

groups using tools provided in the metaboanalyst software package 

(http://www.metaboanalyst.ca) [36]. Cross validation was used in order to validate 

the performance of the PLS-DA model [37].  A permutation test with 100 iterations 

was performed to estimate the null distribution, by randomly permuting the class 

labels of the observations. p values of each pair of comparison in the permutation 

test were calculated to evaluate the null hypotheses. To select the potential 

important metabolites which contribute to group separation, Variable Importance in 

the Projection (VIP) scores based on PLS-DA analysis were used. The higher the 

VIP score of a metabolite is, the greater its contribution in the group clustering will 

be. VIP scores higher than 0.8 are considered as meaningful. Variables with VIP 

score higher or equal to 1 were considered as significant important features [38], 

[39]. 
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3. Results  

In this study, the relative concentrations of a panel of oxylipins were determined in 

control and CIA mice. When evaluating the results from the LC-MS/MS analysis, 

lower response of  ISTDs peak areas were found in two samples, which lead to an 

extreme high peak area ratio compared with other study samples. Therefore, these 

two outliers from Ctrl group  were excluded from statistical analysis. The list of 

detected endogenous oxylipins in mice plasma assigned by their precursors is given 

in Table 1 (details in supplementary table).   

 

3.1 Univariate and Multivariate Analysis Results 

From the QC corrected data, a total of 30 unique oxylipins out of a target list of 

110 oxylipins included in the metabolomics platform met the criteria RSD-QC 

<35%. In order to generally visualize the variance of the samples, a principal 

components analysis (PCA) analysis, as an unsupervised multivariate analysis 

approach, was performed using these oxylipins. Fig.1 displays the PCA results in 

the form of a score plot. The first two principal components accounted for 60.1% 

of the total variance (PC1 35.6% and PC2 24.5% respectively), which means the 

model explains well the variance of the samples. The score plot showed a natural 

distribution of samples between the CIA group and Ctrl group (consisting of the 

symbols “△” or “+” plots). All 8 samples (100%) of Ctrl group clustered in PCA. 

Eight out of 9 mice (88.9%) of CIA group clustered as well, while one sample in 

CIA group was misclassified and clustered within the Ctrl group. This cluster 

indicates that there are some differences between the samples, which were mainly a 

reflection of the CIA/Ctrl groups. 

Determining the oxylipin species responsible for the differences between the 

CIA and Ctrl group is key to unraveling the biological role of this class of 

compounds in RA. Student’s t-test is one of the most widely used method to 

determine the statistical significance. In order to understand which of the detected 
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oxylipins showed significant differences between the two groups, an unpaired 

Student’s t-test analysis was evaluated in each individual metabolite. From the t-

test, 10 out of the 30 detected oxylipins (percentage of 33.3%) showed significant 

differences (p<0.05) namely 9,10-DiHOME, 9-KODE, 12,13-DiHOME, 14-

HDoHE, 13-HDoHE, 12S-HEPE, 9,12,13-TriHOME, 9,10,13-TriHOME,  9,10-

EpOME and 10-HDoHE. In order to show the effect size and variance among the 

samples, a comparison of individual metabolite levels measured for CIA and 

control mice is displayed in Fig. 2, in the form of boxplots, with a “＊” indicating 

statistical significance between groups.  In the boxplot, lines extended from the 

boxes (whiskers) showed the variabilities outside from the upper and lower 

quartiles of the data.  

 
Fig. 1 PCA plot of oxylipin data in study mice plasma. PCA score plot of plasma oxylipin data 
from all study samples revealed general clusters in CIA mice samples and Ctrl samples. The 

individual samples were marked with“△” or “+”to show the group (CIA versus Ctrl) clustering. 
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Fig. 2 Changes in metabolite levels between Ctrl and CIA mice. Individual metabolite levels for 
the two groups are illustrated using box-plots with the whisker drawn, after logarithmic 
transformation for normalization. Boxplot colored: white box: metabolites in Ctrl group; grey box: 
metabolites in CIA group. The metabolites which differed significantly based on Students’ t-test (p < 

0.05) are marked with “＊”.  
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Given that compounds which showed nonsignificant changes from univariate 

approaches (such as t-tests) may also contribute to group clustering and provide 

useful information on biological interpretation, a PLS-DA model as a supervised 

clustering method was further applied to get a more focused view on the  

metabolites which contribute to group clustering. A PLS-DA scores plot using two 

components with total score of 43.5% (component 1 = 24.5%,  component 2 = 19%) 

gives a reasonable group separation (figure in supplementary data). However, this 

model needs to be validated in order to prevent overfitting. Therefore, cross-

validation and permutation test was performed. The predictive accuracy (0.88 ) 

accompanied with a goodness of fit R2 (0.84) in cross-validation revealed a sound 

basis for the PLS-DA model. The permutation tests with  an average of 4 

misclassifications in100 iterations (p = 0.04) showed robustness of the model.  

Thus classification of  groups based on this approach can be considered as 

significant based on both cross-validation and 100 permutation tests.   

For this model, the Variable Importance in the Projection (VIP)  score was used 

to summarize the relative contributions of each individual metabolite to the group 

separation in the PLS-DA. The VIP score shows 14 variables which contributed to 

the group clustering (VIP > 1), including 5 up-regulated oxylipins (14-HDoHE, 13-

HDoHE, 12S-HEPE, 10-HDoHE and 8-HETE) and 9 down-regulated oxylipins 

(9,10-DiHOME, 9-KODE, 12,13-DiHOME, 9,12,13-TriHOME, 9,10,13-TriHOME, 

9,10-EpOME, 9-HODE,13-KODE and 12,13-EpOME). The top ten of them are 

also detected in univariate t-test results, which confirmed the importance of these 

oxylipins.  

Given that the oxylipins 13,14-dihydro-PGF2α and12-HETE have been 

implicated in inflammatory regulation in disease and also given that they showed a 

meaningful VIP score close to 1 (0.96, 0.95 respectively) with increasing trend in 

the CIA group, changes in these metabolites can provide insight in the biological 

interpretation for CIA and are included in further biological interpretation. The  
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detailed pieces of  p value from Students’ t-test, VIP scores from PLS-DA, and 

their direction of regulation are shown in Table 1.   

Table 1.  List of oxylipins detected in mice plasma, measured using multiple reaction 
monitoring  (precursor ions → product ions) in LC-MS/MS analysis. 

Compounds MS transitions(m/z) p-value VIP Regulation Pathway 

LA      

9,10-DiHOME 313.2 -> 201.1 0.0002 1.86 ↓ CYP450 

12,13-DiHOME 313.2 -> 183.2 0.006 1.51 ↓ CYP450 

9,10-EpOME 295.2 -> 171.2 0.028 1.27 ↓ CYP450 

12,13-EpOME 295.2 -> 195.2 0.096 1.00 ↓ CYP450 

9-KODE 293.2 -> 185.2 0.003 1.61 ↓ 5-LOX 

9,12,13-TriHOME 329.2 -> 211.2 0.017 1.36 ↓ 5-LOX 

9,10,13-TriHOME 329.2 -> 171.1 0.026 1.29 ↓ 5-LOX 

9-HODE 295.2 -> 171.1 0.052 1.14 ↓ 5-LOX 

13-KODE 293.2 -> 113.1 0.082 1.04 ↓ 12/15-LOX 

13-HODE 295.2 -> 195.2 0.733 0.21 - 12/15-LOX 

EPA      

12-HEPE 317.2 -> 179.1 0.016 1.37 ↑ 12/15-LOX 

DHA      

14-HdoHE 343.2 -> 205.0 0.010 1.45 ↑ ROS 

13-HdoHE 343.2 -> 281.0 0.012 1.42 ↑ ROS 

10-HdoHE 343.2 -> 153.0 0.035 1.23 ↑ ROS 

17-HdoHE 343.2 -> 281.3 0.173 0.83 - 12/15 LOX 

19,20-DiHDPA 361.2 -> 273.3 0.509 0.41 - CYP450 

DGLA      

6-keto-PGF1a 369.2-> 163.1 0.390 0.53 - COX 

8-HETrE 321.3 -> 303.0 0.469 0.45 - 12/15 LOX 

AA      

8-HETE 319.2 -> 155.1 0.074 1.06 ↑ 12/15-LOX 

12-HETE 319.2 -> 179.2 0.116 0.95 ↑ 12/15 LOX 

15-HETE 319.2 -> 219.2 0.770 0.18 - 12/15-LOX 

5-HETE 319.2 -> 115.1 0.713 0.23 - 5-LOX 

13,14-dihydro-PGF2a 355.2 -> 275.3 0.112 0.96 ↑ COX 

PGF2a 353.2 -> 193.1 0.176 0.82 - COX 

13,14-dihydro-15-keto-PGF2a 353.2-> 183.1 0.618 0.31 - COX 

12S-HHTrE 279.2 -> 179.2 0.733 0.21 - COX 

TXB2 369.2 -> 169.1 0.900 0.08 - COX 

14,15-DiHETrE 337.2 -> 207.2 0.662 0.27 - CYP450 

9-HETE 319.2 -> 167.1 0.408 0.51 - ROS 

11-HETE 319.2 -> 167.1 0.820 0.14247 - ROS 
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The oxylipins are grouped based on the original polyunsaturated fatty acid precursor: linoleic acid 
(LA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), dihomo- γ -linolenic acid (DGLA), 
and arachidonic acid (AA). 

Their metabolic pathways include enzymatic pathways: cyclooxygenase (COX), lipoxygenase (LOX), 
cytochrome P450 (P450), and nonenzymatic reactive oxygen species (ROS) pathway. The 
significance of changes between two groups was illustrated by p value from univariate test (Student’s 
t-test) and VIP score from multivariate test (PLS-DA). The important regulations in the CIA group 
were marked with “↓”or“↑” selected based on VIP scores.  

↓: downregulated in CIA group.  
↑:upregulated in CIA group. 
 
 

3.2 Physiological pathways of altered oxylipins 

We grouped the detected oxylipins by their metabolic pathways in order to 

illustrate their biological roles in fig. 3. Color is used to indicate the up/down-

regulation (marked in yellow/blue boxes) in the CIA group. Among these 

colored16 metabolites, all the 9 down-regulated oxylipins (9,10-DiHOME, 9-

KODE, 12,13-DiHOME, 9,12,13-TriHOME, 9,10,13-TriHOME, 9,10-EpOME, 9-

HODE, 13-KODE and 12,13-EpOME) are derived via the LA group; 3 up-

regulated oxylipins (8-HETE, 13,14-dihydro-PGF2a, 12-HETE) are derived from 

AA; 3 up-regulated oxylipins (14-HDoHE, 13-HDoHE and 10-HDoHE) are 

derived from DHA; and 1 up-regulated oxylipins (12S-HEPE) is produced from 

EPA. 
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Fig. 3 Overview of regulations of oxylipins in CIA mice compared with Ctrl, including 
metabolic pathways. Metabolites detected in mice plasma are grouped by metabolic pathways. 
Important metabolites which contribute most to group clustering based on PLS-DA are colored:  
yellow box: up-regulated in the CIA group; blue box: down-regulated in the CIA group.  
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4. Discussion 

Inflammation is a self-limiting innate mechanism under complex regulation with 

the purpose to recruit leukocytes and plasma proteins, trafficking these to the site 

of infection or tissue damage, supporting a robust adaptive immune response and 

subsequent resolution [40]. RA is the consequence of a systemic auto-immune 

activation/response within the synovial fluid in the joint triggering a dysregulated 

chronic inflammatory response, of which the exact underlying pathogenic 

mechanisms still remain largely unclear. RA is characterized with a strong 

inflamed cytokine phenotype with elevated levels of IL-1 β, IL-6, TNFα as well as 

increased levels of ROS [18], [41], [42], seen in fig. 4(a). Perturbations related to 

TNFα activation of the NF- κB pathway inhibiting apoptosis in activated antigen-

presenting cells including neutrophils, macrophages, fibroblast-like cells, and B-

cells, forms the general accepted pathological basis of RA [9], [10], [43], [44]. 

Hence we applied a comprehensive oxylipin metabolomics platform to the plasma 

of DBA/1J mice induced by a co-administration of type II collagen with 

lipopolysaccharide, to elucidate the role of these potent inflammatory mediators in 

RA. 

We detected an increased pro-inflammatory oxylipin response, which can be 

attributed to the activation of NF-κB and increased ROS (Figure 4(b)). NF-κB is 

the transcription factor for COX-II, and its activation during RA [45], [46] can 

explain the increased levels of the COX derived prostaglandin F2α measured via its 

downstream product 13,14-dihydro-PGF2α in CIA mice [47], [48]. Several 

hydroxyl-fatty acids were also implicated as role players in the chronic 

inflammatory phenotype of RA. Due to two possible de novo synthesis routes for 

hydroxyl-fatty acids, it implicates both increased LOX activity concurrently with 

elevated oxidative stress within CIA mice [24]–[27]. Increased 12-LOX signaling 

mediators included 8-HETE and 12-HETE supporting a pro-inflammatory milieu 

[49], [50]. In an oral tolerance test in CIA rats, Ding et al. [51] measured elevated 

levels of EPA-derived 18-HEPE, while we detected increased level of  a similar 
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metabolite 12-HEPE. Overexpression of 12-LOX in RA has been published by 

Liagre & Kronke [52], [53], which can further mediate the activation of NF-κ B 

[54]–[56], indicating the chronic nature of RA. Although 8-HETE, 12-HETE and 

12-HEPE together with the docosahexaenoic acid derived HDOHEs also provide a 

readout for ROS induced biologically active lipid peroxidation products [24]–[27]. 

Oxidative stress leading to increased free radicals as well as ROS levels have been 

reported in RA by Ozkan et al. [18], supporting this finding.  

 
Fig. 4 A systematic auto-immune activation in RA. Appearance of pro-inflammatory cytokines (IL-
1 β and IL-6, TNFα) as well as the appearance of ROS in RA. The cytokines normally induce the 
apoptosis via the caspase pathway, but also inhibit apoptosis through degradation IκB activating 
nuclear factor-κB (NF-κB), which consequently translocate to the nucleus upregulating the 
antiapoptotic genes (BcL2 and BcL-xL). The activated NF-κB then can also further enhance the 
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production of pro-inflammatory cytokines and chemokines as well as COX-II enzyme.  (b) 
Upregulated oxylipin response. During RA increased levels of AA derived prostaglandins and HETEs 
are detected. 8- and 12-HETE is able to activate NF-κB exasperating RA. Due to increased levels of 
ROS, DHA derived peroxidation products are also found. (c) – Dysregulated anti-inflammatory 
response. LA derived Oxylipins including: HODEs, KODEs, TriHOMEs, DiHOMEs and EpOMEs 
are ligands of peroxisome proliferator-activated receptor (PPAR)-γ. Due to decreased levels of these 
anti-inflammatory oxylipins, the ability of PPAR-γ to inhibit the activation of NF-κB and indirectly 
affect apoptosis, is diminished. 

Alongside the increased pro-inflammatory oxylipins, we also identified 

significantly decreased LA derived oxylipins in CIA mice plasma. The decreased 

LA cytochrome P450 products (EpOMEs, DiHOMEs) and LA LOX products 

(TriHOMEs) implicate a fatty acid precursor perturbation and/or a possible 

oxylipin enzymatic impairment in RA. AA is the ELOVL mediated elongation 

product of LA, and the detected increasing trend in AA derived oxylipins indicate 

sufficient CYP and LOX activity to rule out enzyme activity as the cause of the LA 

oxylipin reductions. In addition, these LA derived oxylipins as well as the 

decreased HODEs and KODEs are ligands for nuclear hormone receptor 

peroxisome proliferator-activated receptor-gamma (PPAR-γ) activation [57]–[63], 

shown in Fig. 4(c). PPAR-γ are anti-inflammatory regulators of immune cells and 

can inhibit the activation of NF-κB [44], [46], [61], [62], [64]–[70]. Therefore, the 

decreased LA-derived oxylipins and PPAR-γ ligands indicate a perturbation in 

mechanisms related to the resolution of inflammation, unable to inhibit NF-κB 

activation and its downstream inhibition of apoptosis.   

As discussed above, our detected oxylipins indicate insufficient PPAR-γ ligands, 

as well mechanisms leading to the activation of NF-κB, supporting and enhancing 

our understanding of the inhibition of apoptosis in CIA mice. Apoptosis plays an 

important role leading to the phagocytic clearances of damage cells stifling the 

development of chronic inflammation and autoimmunity [71]. The inhibition of 

apoptosis prevents the silencing of activated leukocytes, dysregulating clearance 

mechanisms contributing to chronic autoimmune inflammation in RA [72].  
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5. Conclusion 

Using our comprehensive oxylipin method we were able to show that the CIA mice 

had an arachidonic acid dependent increased proinflammatory profile, with 

increased levels of oxidative stress.  Several studies have been published 

advocating anti-inflammatory diets ( the restriction of AA in the diet), leading to 

therapeutic benefits and ameliorating RA [73]. We also detected a significant 

decrease in potent anti-inflammatory oxylipins derived from linoleic acid capable 

of signaling via PPAR-γ to inhibit the activation of NF-κB, namely, the molecular 

basis for RA. Interestingly, PPAR-γ has been identified and reported as a 

therapeutic agent for arthritis[74]. The reduced levels of linoleic acid derived 

oxylipins implicated fatty acid precursor pools, shedding light on the unexplored 

routes of fatty acid elongation pathways in the pathogenicity of RA, and need 

further work.  As additional metabolites have been reported to play a role in RA, a 

systems biology approach would complement the study of systematic auto-immune 

induced rheumatoid arthritis.  
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7. Abbreviations 

AA:  arachidonic acid;  

ALA:  α-arachidonic acid;  

CIA:  Collagen induced arthritis;  

CII:  Collagen Type II;  

COX:  cyclooxygenase;  

CYP 450:  cytochrome P450 

expoxygenases;  

DGLA:  dihomo- γ -linolenic acid;  

DHA:  docosahexaenoic acid;  

DiHETrE:  dihydroxyeicosatrienoic 

acid ;  

DiHOME  

dihydroxyoctadeca(mono)enoic acid;   

EPA: eicosapentaenoic acid;  

EpETrE:  epoxyeicosatrienoic acids;  

EpOME:  epoxyoctadecenoic acid;   

HDoHE:  hydroxydocosahexaenoic 

acid;  

HEPE:  hydroxyeicosapentaenoic acid;  

HETE:  hydroxyeicosatetraenoic acid;  

HETrE: hydroxyeicosatrienoic acid;  

HHTrE:  hydroxyheptadecatrienoic acid;  

HODE: hydroxyoctadecadienoic acid;  

HOTrE:  hydroxyoctadecatrienoic acid;   

ISTDs:  internal standards;  

KETE: ketoeicosatetraenoic acid;  

KODE:  ketooctadecadienoic acid;   

LA : linoleic acid;  

LOX :  lipoxygenase;  

LPS :  Lipopolysaccharide;  

NF- κB:   Nuclear factor-kappa B;  

PG:  prostaglandin;  

PPAR: peroxisome proliferator-

activated receptor;  

RA:  rheumatoid arthritis;   

ROS:  Reactive Oxygen Species;  

TNF:  tumor necrosis factor;  

TriHOME:  trihydroxyoctadecenoic 

acid; 
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Support information 

The supplementary material provides the methodology of oxylipin extraction and 

detection and reports performance characteristics of this method. Detailed results 

from supervised. PLS-DA analysis and VIP scores are also provided in order to 

demonstrate the important contributions of significant oxylipins to the group 

clusters. 

Supplementary figures 

 

S-fig. 1: Recovery (%) of 15 deuterated oxylipins ISTDs . Oxylipins recovery for SPE extraction 
method was displayed in forms of percentage value. 
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S-Fig. 2: Score plot  (component 1 vs. component 2) of PLS-DA based on the whole targeted 
plasma oxylipin profiling (n=30) from LC-MS in CIA model (CII+LPS induction) group and 
Ctrl group. Peak area ratio to relevant internal standards after Glog transformation and 
autoscaling was used for the PLS-DA analysis. 

 

S-Fig. 3: Variable Importance in the Projection(VIP) scores of detected oxylipins based on PLS-
DA. Fourteen oxylipins showed VIP score higher than 1, while another to are extremely closer to 

1(0.96 and 0.95 respectively). The regulation information of increase (▇) and decrease (□) are given 

in the right side of the figure. 
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Supplementary tables 

S-Table 1: Linearity(R2), reproducibility(RSD), Limitation of detection(LOD) and 
quantitation(LOQ)  of LC/ESI-MS/MS for oxylipins detected in mice plasma 

Oxylipins Chemical class R2 RSD[%] LOD[nM] LOQ[nM] 

AA 
     

12S-HHTrE ^ Alcohols 0.999 12 1 3.5 

20-HETE  Alcohols 0.999 11 6.1 20.2 

15-HETE^ Alcohols 0.904 26 2.6 8.8 

11-HETE^ Alcohols 0.963 12 0.6 1.8 

12-HETE ^ Alcohols 0.794 7 15.6 52.1 

8-HETE^ Alcohols 0.95 30 13.1 43.5 

9-HETE ^ Alcohols 0.932 19 33.9 113 

5-HETE^ Alcohols 0.82 17 5.2 17.4 

5S,6R-LipoxinA4  Diols 0.994 4 1.5 5.1 

5S,6S-Lipoxin A4  Diols 0.996 5 4.4 14.5 

6-trans-LTB4  Diols 0.99 7 8.3 27.5 

LTB4  Diols 0.999 12 0.4 1.3 

14,15-DiHETrE ^ Diols 1 9 0.4 1.4 

11,12-DiHETrE Diols 0.999 14 1.6 5.5 

8,9-DiHETrE  Diols 0.999 17 0.7 2.4 

5,6-DiHETrE Diols 0.999 5 18.8 62.6 

14,15-EpETrE Epoxides 0.847 7 3.7 12.4 

5,6-EpETrE  Epoxides 0.999 8 3.9 12.8 

12S-HpETE  Hydroperoxides 0.902 10 116.7 389.1 

5S-HpETE Hydroperoxides 1 27 0.4 1.3 

15-KETE  Ketones 0.998 32 4.8 16 

5-KETE  Ketones 0.985 32 39.1 130.4 

8-iso-PGF2a  Prostanoids/throboids 1 13 0.5 1.7 

5-iPF2a-VI  Prostanoids/throboids 1 10 0.1 0.3 

TXB2 ^ Prostanoids/throboids 0.999 10 1.3 4.5 

PGF2a ^ Prostanoids/throboids 0.999 11 0.9 2.8 

PGE2  Prostanoids/throboids 0.998 12 1.9 6.2 

11beta-PGE2  Prostanoids/throboids 0.998 6 2.5 8.5 

13,14-dihydro-PGF2a ^ Prostanoids/throboids 1 13 4.1 13.8 

13,14-dihydro-15-keto-PGF2a^ Prostanoids/throboids 1 9 1.94 6.48 
PGA2  Prostanoids/throboids 0.998 8 2.3 7.7 

PGJ2  Prostanoids/throboids 1 6 0.03 0.1 

d12-PGJ2  Prostanoids/throboids 0.995 10 2.3 7.6 

PGD2 Prostanoids/throboids 0.996 6 2.5 8.5 

HepoxilinA3  Prostanoids/throboids 0.992 7 57.7 192.3 

ALA 
     

9-HOTrE Alcohols 0.998 12 0.3 1 

12,13-DiHODE Diols 0.993 13 54.5 181.8 

DGLA 
     

15S-HETrE  Alcohols 0.998 27 1.3 4.3 

8-HETrE^ Alcohols 0.979 15 2.8 9.2 

5-HETrE  Alcohols 0.999 23 1.6 5.4 

6-keto-PGF1a^ Prostanoids/throboids 1 15 1.08 3.62 
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DHA 
     

17-HDoHE^ Alcohols 0.988 10 0.4 1.2 

20-HDoHE  Alcohols 0.993 14 4.8 15.8 

16-HDoHE  Alcohols 0.983 13 7.6 25.5 

13-HDoHE^ Alcohols 0.977 11 113.9 379.6 

14-HDoHE^ Alcohols 0.900 9 13.7 45.7 

10-HDoHE ^ Alcohols 0.974 13 8.8 29.3 

7-HDoHE  Alcohols 0.991 9 0.1 0.4 

11-HDoHE  Alcohols 0.986 9 3.6 11.8 

4-HDoHE  Alcohols 0.976 22 29.6 98.5 

8-HDoHE  Alcohols 0.92 19 14 46.8 

10S,17S-DiHDoHE  Diols 1 4 1.6 5.4 

19,20-DiHDPA ^ Diols 1 19 3.6 11.9 

19,20-EpDPE  Epoxides 0.984 16 95.6 318.7 

EPA 
     

18-HEPE  Alcohols 0.991 19 29.9 99.7 

15-HEPE  Alcohols 0.999 25 7.6 25.3 

12-HEPE ^ Alcohols 0.939 11 12.3 40.8 

9-HEPE  Alcohols 0.995 15 4.8 16.1 

5-HEPE  Alcohols 0.999 25 1.2 4 

8S,15S-DiHETE  Diols 0.832 3 40.3 134.4 

5S,15S-DiHETE  Diols 0.998 4 8.2 27.2 

5S,6S-DiHETE Diols 1 9 3.0 10.1 

LA 
     

13-HODE ^ Alcohols 0.884 9 2.7 9.2 

9-HODE ^ Alcohols 0.903 8 1.6 5.3 

12,13-DiHOME ^ Diols 1 3 0.9 3 

9,10-DiHOME ^ Diols 0.999 5 0.6 2.1 

12,13-EpOME  ^ Epoxides 1 9 1.6 5.3 

9,10-EpOME  ^ Epoxides 0.999 26 1.1 3.7 

13-KODE^ Ketones 0.996 6 1.4 4.7 

9-KODE^ Ketones 0.998 9 0.6 1.9 

9,12,13-TriHOME ^ Triols 0.994 8 1 3.3 

9,10,13-TriHOME ^ Triols 0.996 9 2.7 9.1 

^: oxylipins were also detected in the study samples. 
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Abstract 

Background: Rheumatoid arthritis (RA) is a complex, chronic autoimmune 

disease characterized by various inflammatory symptoms, including joint swelling, 

joint pain, and both structural and functional joint damage. The most commonly 

used animal model for studying RA is mice with collagen-induced arthritis (CIA); 

the wide use of this model is due primarily to many similarities with RA in human 

patients. Metabolomics is used increasingly in biological studies for diagnosing 

disease and for predicting and evaluating drug interventions, as a large number of 

disease-associated metabolites can be analyzed and interpreted from a biological 

perspective. 

Aim: To profile free amino acids and their biogenic metabolites in CIA mice 

plasma. 

Method: Ultra-high-performance liquid chromatography/tandem mass 

spectrometry (UPLC-ESI-MS) coupled with multiple reaction monitoring (MRM) 

was used for metabolomics study. 

Results: Profile of 45 amine metabolites, including free amino acids and their 

biogenic metabolites, in plasma was obtained from CIA mice. We found that the 

plasma levels of 20 amine metabolites were significantly decreased in the CIA 

group. 

Conclusion: The results suggest that a disordered amine response is linked to RA-

associated muscle wasting and energy expenditure.  

Key words: Collagen-induced arthritis, mouse model, amine metabolites, systems 

biology. 
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1. Introduction 

Rheumatoid arthritis (RA) is a highly prevalent chronic disease, currently affecting 

approximately 1% of the world’s population [1]–[3]. Patients with RA typically 

have destruction of joint cartilage and bone accompanied by joint stiffness, 

hyperplasia, microvascular injury, swelling, and pain. The pathogenesis of RA is 

mainly associated with the secretion of cytokines such as interleukins (e.g., IL-1 

and IL-6), tumor necrosis factor (TNFα), interferon gamma (IFNγ), and various 

pro-inflammatory mediators [4], [5]. Increased activity of the nuclear factor (NF)-

κB pathway, which inhibits apoptosis in immune cells, also plays a role in RA [6]–

[10]. A variety of cellular immune responses are also activated and/or dysregulated 

by increased cytokine levels in RA [11]–[14]. Interestingly, nearly two-thirds of 

patients with RA develop cachexia and sarcopenia, with a loss of skeletal muscle 

mass, degradation of proteins, and energy expenditure [15]–[18]. This perturbation 

in catabolic processes drives the body into a state of negative energy balance, 

leading to skeletal muscle atrophy, loss of muscle strength, and reduced physical 

activity [18], [19].  

Considering the complex nature of RA, animal models have been useful for 

studying the underlying pathology and disease mechanisms. The most widely used 

animal model for studying chronic RA is the collagen-induced arthritis (CIA) 

mouse model; in addition to high reproducibility and easy induction, the 

physiological processes and pathogenic features of  CIA mice are strikingly similar 

to the clinical features associated with patients with RA [20]–[23]. For example, 

increased levels of IL-6 , IL-1, and TNFα play a role in the development of CIA 

[24]. In addition, high correlation between muscle wasting and the severity of 

clinical arthritis has also been observed in animal models, including both monkeys 

and mice with CIA [25], [26]. 

Applying a systems biology approach using metabolomics can provide a 

comprehensive functional readout of the organism’s physiological status [27]. 

Recently, van Wietmarschen and van der Greef summarized the putative 
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inflammatory mediators identified in RA patients using metabolomics [28]. 

Although some pro-inflammatory mediators have been observed in CIA mice [29], 

the complexity of the disease warrants a search for additional compound classes 

and a study of their relationship with the biochemical processes underlying RA. 

Free amino acids and their derivative biogenic amines play essential roles in both 

energy production and protein synthesis/degradation; thus, changes in the levels of 

these amine metabolites may reflect changes in the body’s state and catabolism of 

proteins in RA disease. Therefore, we used a liquid chromatography mass 

spectrometry (LC/MS)-based amine platform to measure the levels of amine 

metabolites in the plasma of CIA and control mice. We observed reduced levels of 

amine metabolites in the plasma of CIA mice, possibly reflecting systemic changes 

in this model of RA. Based on these results, we speculate that decreased amine 

metabolite levels likely reflects muscle mass loss and protein degradation and may 

associates with inflammatory activity. 
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2. Materials and Methods 

2.1 Induction of Arthritis by Co-Administration of Collagen Type II and 
Lipopolysaccharide 

A total of 20 male DBA/1J mice (age 6–7 weeks) were obtained from Charles 

River Laboratories (Yokohama, Japan). The animals were randomly divided into 

two groups, with ten mice in the experimental (CIA) group and ten mice in the 

control (Ctrl) group. The protocol for inducing arthritis is well established and has 

been described in detail [29]–[31]. In brief, the mice were given intraperitoneal 

(i.p.) injections containing collagen type II (extracted from bovine nasal cartilage 

and dissolved in acetic acid) and lipopolysaccharide (extracted from Escherichia. 

coli 011:B4  and dissolved in phosphate-buffered saline) in order to induce chronic 

polyarthritis by stimulating an autoimmune response; control mice received i.p. 

injections of vehicle (acetic acid and phosphate-buffered saline) only. All animals 

were housed in a temperature- and light-controlled environment with free access to 

standard rodent chow and water throughout the experiments. After repeated 

injections (administered on days 0, 14, 28, 42, and 56), blood samples were 

collected from each animal on day 70 and stored in pre-cooled Vacutainer tubes 

(BD Vacutainer, Plymouth, UK) containing ethylenediaminetetraacetic acid 

(EDTA) as an anticoagulant. After centrifugation, the EDTA-plasma fractions were 

collected and aliquots—including individual study samples and pooled quality 

control (QC) samples—were stored at -80ºC until further analysis. During 

sampling, one mouse in the CIA group died; thus, the final analysis is based on 9 

CIA mice and 10 control mice. 

 

2.2  Extraction of Amine Metabolites and Analysis using UPLC-MS/MS 

The methods for extracting and analyzing amine metabolites were adapted for 

mouse plasma samples based on a previously described protocol [32]. For each 

sample, a 5-µl aliquot of plasma was used for the analysis. A mixture of internal 
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standards containing 13C15N-labeled amine metabolites was added to each 5-µl 

plasma sample. After the proteins were precipitated using MeOH, the supernatant 

was transferred to a fresh Eppendorf tube and dried under N2. The residue was then 

dissolved in borate buffer (pH 9), and 6-aminoquinolyl-N-hydroxysccinimidyl 

carbamate (AQC) derivatization reagent (Waters, Etten-Leur, The Netherlands) 

was added. The reaction mixture was then neutralized by the addition of formic 

acid (20%), and the solution was transferred to injection vials for ultra-high-

performance LC tandem MS (UPLC-MS/MS) analysis (injection volume: 1.0 µl) 

using an ACQUITY UPLC system (Waters) equipped with an AccQ-Tag Ultra 

column (2.1 mm × 100 mm, 1.7 µm particles, Waters) coupled to a Xevo mass 

spectrometer with electrospray ionization source (Waters). Multiple reaction 

monitoring was performed in the positive ion mode in order to monitor the analytes. 

A gradient elution starting with Eluent A (water containing 2% formic acid) and 

ramping to Eluent B (aqueous acetonitrile containing 2% formic acid) was used as 

the mobile phase in the UPLC system. The samples were analyzed in random order.  

 

2.3 Data Processing and Statistical Analysis  

The integrated peak areas of the target analytes were calculated using Quanlynx 

software (Waters) and corrected using the appropriate internal standards. The 

response ratio (calculated at the ratio between the target analyte and the respective 

internal standard) was used for further statistical analysis. The reproducibility and 

reliability of each metabolite measurement was determined using repeated 

measurements of the QC pool performed after every ten samples. By defining the 

acceptable relative standard deviation as <15%, 45 amine metabolites (from a 

starting list of 74) were considered high quality and were included in the final list 

for further analysis. The data were log-transformed to correct for distribution 

skewness and auto-scaled to achieve uniform units.  
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To visualize clustering of individual samples, unsupervised principal 

component analysis (PCA) was performed using MetaboAnalyst version 3.0 

(http://www.metaboanalyst.ca) [33]. To measure the significance of differences in 

each individual amine metabolite between the CIA group and the Ctrl group, a two-

sided unpaired Student’s t-test was performed, assuming unequal variance; 

differences with a p-value <0.05 were considered significant (H0: group means are 

equal). Fold change (FC) was then calculated in order to determine the direction 

(log2 of FC) and magnitude (FC ratio reflecting the CIA/Ctrl ratio) of differences 

between two group mean values. A positive value for the log2 of FC indicates 

higher levels of metabolites in the CIA group, whereas a negative value indicates 

lower levels of metabolites in the CIA group. In the FC analysis, a minimum 

threshold of 1.5 was used, meaning that the ratio of metabolites between the CIA 

and Ctrl groups exceeded 1.5. 
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3.  Results  

A 2D plot of the PCA scores was generated using an unsupervised pattern 

recognition method and was used to provide a visual overview of the natural 

distribution of amines detected in the plasma samples of the nine CIA and ten Ctrl 

mice (Fig. 1). PC1 and PC2 accounted for 56.6% and 13.9% of the variation, 

respectively; thus, these two principal components (i.e., PC1 and PC2) explained a 

total of 70.5% of the variance. From the 2D plot of the PCA scores, the CIA group 

(depicted with triangles symbol) and the Ctrl group (depicted with the “+” symbol) 

were generally distributed in distinct regions with respect to PC1, with the CIA 

samples clustering largely on negative side of the plot and the Ctrl samples 

clustering largely on the positive side of the plot, thereby reflecting group 

differences with respect to the composition of free amine metabolites in the plasma 

samples. 

 

Fig. 1 2D plot of the PCA scores for the amine metabolites measured in the plasma samples 
from CIA (△) and control (+) mice. The plot of the PCA scores shows that the two groups form 
distinct clusters along the x-axis (corresponding to PC1), indicated by the vertical dashed line. 
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To measure whether the differences between the two groups were significant, 

we performed a Student’s t-test for each amine metabolite. In total, 20 of the 45 

detected amine metabolites differed significantly differences between the two 

groups (p<0.05); these 20 amine metabolites are shown in Fig. 2, and all 45 

detected amine metabolites are summarized in Table 1. Metabolite changes were 

reported in the table 1 only when the p-values from the Student’s test were lower 

than 0.1. Table 1 also lists the false discovery rate-adjusted p-values. Fold change 

(FC) analysis was performed to indicate the direction of change and the magnitude 

of change for the detected amine metabolites (FC of the CIA/Ctrl ratio). The 

analysis revealed that 11 amine metabolites decreased by more than one-third in 

the CIA group (FCCIA/Ctrl <0.67). The log2 value of FC indicates that 43 of the 45 

amine metabolites detected (95.6%) were lower in the CIA group (i.e., a negative 

log2 value of FC), whereas the remaining two metabolites (methylcysteine and O-

phosphoethanolamine) were higher in the CIA group. 

 

Fig. 2 Summary of the 20 amine metabolites that differed significantly between the 
collagen-induced arthritis (CIA) and control groups (p<0.05). The values are presented as the 
response ratio of the peak area (determined as the ratio of the target amine metabolite to its 
corresponding internal standard) after logarithmic transformation and auto-scaling. 
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Table 1. Summary of the 45 amine metabolites detected in CIA and control mice 

Amine Metabolite HMDB p-value FDR FCCIA/Ctrl Direction of Change 

Methionine HMDB00696 0.001 0.017 0.533 ↓ 

Homocysteine HMDB00742 0.001 0.017 0.640 ↓ 

Threonine HMDB00167 0.001 0.017 0.628 ↓ 

Proline HMDB00162 0.003 0.031 0.521 ↓ 

Alanine HMDB00161 0.003 0.031 0.573 ↓ 

Cystathionine HMDB00099 0.005 0.032 0.818 ↓ 

Valine HMDB00883 0.005 0.032 0.650 ↓ 

Glycylglycine HMDB11733 0.006 0.032 0.660 ↓ 

Lysine HMDB00182 0.007 0.032 0.686 ↓ 

Serine HMDB00187 0.007 0.032 0.815 ↓ 

Asparagine HMDB00168 0.009 0.036 0.667 ↓ 

Cysteine HMDB00574 0.012 0.044 0.802 ↓ 

Tryptophan HMDB00929 0.015 0.051 0.789 ↓ 

Homocitrulline HMDB00679 0.017 0.051 0.737 ↓ 

Methionine sulfoxide HMDB02005 0.017 0.051 0.582 ↓ 

Isoleucine HMDB00172 0.020 0.056 0.682 ↓ 

Gamma-glutamylalanine HMDB06248 0.021 0.056 0.616 ↓ 

Histidine HMDB00177 0.041 0.103 0.799 ↓ 

Glutamine HMDB00641 0.047 0.107 0.775 ↓ 

Leucine HMDB00687 0.048 0.107 0.741 ↓ 

Citrulline HMDB00904 0.052 0.112 0.818 ↓ 

Saccharopine HMDB00279 0.086 0.168 0.698 ↓ 

Ornithine HMDB00214 0.087 0.168 0.727 ↓ 

2-Aminoadipic acid HMDB00510 0.093 0.168 0.732 ↓ 

Phenylalanine HMDB00159 0.094 0.168 0.755 ↓ 

Homoserine HMDB00719 0.103 0.178 0.852 - 

Methylcysteine HMDB02108 0.114 0.187 1.330 - 
Sarcosine HMDB00271 0.119 0.187 0.860 - 
Arginine HMDB00517 0.120 0.187 0.866 - 
Tyrosine HMDB00158 0.154 0.231 0.723 - 
Alpha-aminobutyric acid HMDB00452 0.165 0.239 0.765 - 
Kynurenine HMDB00684 0.270 0.379 0.861 - 
Glycine HMDB00123 0.335 0.439 0.902 - 
Beta-alanine HMDB00056 0.338 0.439 0.809 - 
Putrescine HMDB01414 0.341 0.439 0.777 - 
Norepinephrine HMDB00216 0.371 0.463 0.660 - 
Glutamic acid HMDB00148 0.399 0.485 0.850 - 
5-Hydroxylysine HMDB00450 0.417 0.494 0.630 - 
Glutathione HMDB00125 0.497 0.573 0.841 - 
4-Hydroxyproline HMDB06055 0.565 0.635 0.934 - 
Aspartic acid HMDB00191 0.713 0.781 0.960 - 
Serotonin HMDB00259 0.729 0.781 0.699 - 
Spermidine HMDB01257 0.785 0.812 0.933 - 
O-Phosphoethanolamine HMDB00224 0.794 0.812 1.015 - 
Ethanolamine HMDB00149 0.963 0.963 0.858 - 

CIA, collagen-induced arthritis; Ctrl, control; HMDB, Human Metabolome Database; 
FC, fold change; FDR, false discovery rate
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4. Discussion  

RA is a chronic disease in which the immune response is dysregulated and the 

levels of several cytokines and factors are elevated, including TNFα, IL-1β, IL-6, 

IFNγ, and ROS [34], [35]; in addition, NF-κB activation is increased [36]. Changes 

in metabolic factors such as arachidonic acid‒derived inflammatory mediators have 

also been reported in RA [37], suggesting that a metabolomics approach may 

provide insight into the biochemical processes underlying this disease.  

In addition to the well-characterized inflammatory dysregulation in RA, muscle 

wasting and energy expenditure are also common features and are linked to the 

production of cytokines during the immune response [38]–[40]; muscle wasting 

and energy expenditure can then dysregulate the protein degradation pathway, 

leading to perturbed metabolic processes [15], [16], [19], [41]–[43]. Given the 

close relation between amine metabolites and proteins, it is therefore reasonable to 

speculate that changes in amine metabolites may reflect protein dysregulation 

which owing to muscle wasting and energy expenditure. However, few studies 

have focused on measuring muscle wasting in RA by measuring the plasma levels 

of amine metabolites. 

Studies of the biochemical processes associated with RA revealed that activated 

NF-κB is linked to skeletal muscle loss [44], and this activation has been observed 

in animal models of RA [45], [46]. Moreover, injecting TNF and IL-1 into healthy 

rats causes muscle wasting [47]. Previously, we reported increased levels of 

inflammatory mediators and ROS-generated oxylipins in the plasma of CIA mice, 

and this was associated with the production of cytokines and increased NF-κB 

activation [29]. Increased ROS levels, which affect muscle signaling pathways, 

have also been measured in CIA mice [48]; similar results have been reported in 

tumor-bearing rats [49]. Given that increased cytokines, ROS, and NF-κB 

activation robustly affect muscle metabolism, we expected to identify a metabolic 

“signature” in the plasma of CIA mice.  
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Building on the previous report of increased inflammatory mediators and 

increased ROS-generated oxylipins in CIA mice [29], we used a targeted amine 

platform to evaluate the changes in plasma amine metabolites in age- and gender-

matched CIA mice compared with control mice. We found that the plasma amine 

metabolomes were clearly distinguishable between CIA mice and control mice. 

Specifically, 20 amine metabolites were significantly lower in the plasma of CIA 

mice. 

Given that certain free amino acids such as branched-chained amino acids are 

closely associated with protein degradation, amino acids—and their biogenic 

amines—might be used as a biomarker of muscle wasting [50]. In support of this 

notion, decreased plasma levels of some amine metabolites have been reported in 

other diseases (e.g., chronic obstructive pulmonary disease) and have been linked 

to resting energy expenditure and muscle wasting [51]. Increased excretion of 

nitrogen into the urine due to muscle wasting has been reported in RA patients [17], 

[52], and increased levels of acyl-carnitines in the urine of RA patients reflect 

muscle breakdown [53]. Together, these lines of evidence suggest that muscle 

wasting is a highly relevant phenomenon related to RA. However, to date relatively 

few clinical studies examined muscle wasting in RA by measuring amine 

metabolite levels. The large decrease in plasma amine metabolite levels (e.g., 

histidine, valine, leucine, phenylalanine, and tryptophan metabolites) is consistent 

with a previous study of CIA rats by Zhang et al. [54]. The earliest studies of 

amino acids regulation in RA patients date back to the mid-20th century [55], when 

researchers found decreased levels of several amino acids but were relatively 

limited with respect to the biological interpretation. Kobayashi et al. measured a 

similar decrease in some amine metabolites in the plasma of Japanese patients with 

RA [56]; although the authors used these results to demonstrate a relationship 

between ornithine metabolism and inflammation, they did not discuss the possible 

biological interpretation of non-significantly changed amine metabolites, including 

alanine, isoleucine, leucine, lysine, serine, and valine [56]. In addition, other 

clinical studies have reported inconsistent changes in the levels of amine 



Chapter 3 

62  

metabolites, and did not attribute these changes to muscle wasting [57]–[61]. The 

difference between our CIA mouse model and RA patients with respect to changes 

in amine metabolites may be due to differences in catabolic processes between 

mice and humans. Alternatively, the relative complexity of clinical data in patients 

may mask certain changes in amine metabolites, as various confounding variables 

are not always taken into consideration in clinical studies, including factors such as 

age, gender, illness stage, treatment protocol, and diet.  Our findings indicate that 

CIA mice are a valuable tool for studying the pathological processes that underlie 

RA; specifically, this model is easy to induce, and researchers can easily 

control/exclude confounding factors that may affect the study results, including age, 

gender, genetic background, and drug exposure.  

In summary, combining our previous oxylipin results and our current amine 

metabolomics results allows us to speculate upon the biological relationship 

between muscle wasting and the inflammatory response in RA (Fig. 3). In addition, 

our results indicate that muscle wasting conditions such as cachexia can be 

measured using a metabolomics approach (for example, by measuring amine 

metabolites). Lastly, our results indicate that changes in branched-chain amino 

acids as well as other amine metabolites may reflect muscle wasting status in RA. 



The role of amino acids in rheumatoid arthritis studied by metabolomics  

63 

 

 

Fig. 3. Proposed biological interpretation of muscle wasting in RA. In RA, increased levels of 
inflammatory cytokines, ROS, and NF-κB activation play a role in the production of inflammatory 
oxylipins, which then trigger an inflammatory response in muscle cells. The inflammatory response 
then increases resting energy expenditure and thermogenesis, leading to amino acid wasting and 
accelerating protein breakdown. Thereafter, the accelerated protein catabolism and the subsequent 
reduction in amines—accompanied by the excretion of nitrogen in the urine, causes the muscle mass 
loss/atrophy that manifests clinically as muscle weakness / cachexia in RA patients. 
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5. Conclusion 

In summary, using metabolomics, we found that the levels of amine metabolites are 

systematically decreased in the plasma of CIA mice, which is consistent with 

similarities between our CIA mouse model and RA patients at the metabolomics 

level. This result indicates that the muscle wasting and energy expenditure issues 

(e.g., cachexia) associated with RA—and models of RA—are highly complex. 

The cachexia and sarcopenia associated with muscle atrophy, protein 

breakdown, and energy expenditure are not unique to RA. For example, several 

other chronic inflammatory diseases have been associated with catabolic wasting, 

including cancer [62], HIV/AIDS) [63], type 2 diabetes [64], renal failure, uremia 

[65], and heart failure [66]. We therefore hypothesize that systemic decreases in the 

levels of amine metabolites may reflect muscle mass loss and protein degradation 

due to inflammation. 

Considering the complexity and consequences of muscle wasting in a wide 

variety of chronic diseases, using a metabolomics-based approach may provide a 

clearer understanding of the biological processes involved in these diseases. 
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Abstract 

The increasing prevalence of rheumatoid arthritis has driven the development of 

new approaches and technologies for investigating the pathophysiology of this 

devastating, chronic disease. From the perspective of systems biology, combining 

comprehensive personal data such as metabolomics profiling with ultra-weak 

photon emission (UPE) data may provide key information regarding the complex 

pathophysiology underlying rheumatoid arthritis. In this article, we integrated UPE 

with metabolomics-based technologies in order to investigate collagen-induced 

arthritis, a mouse model of rheumatoid arthritis, at the systems level, and we 

investigated the biological underpinnings of the complex dataset. Using correlation 

networks, we found that elevated inflammatory and ROS-mediated plasma 

metabolites are strongly correlated with a systematic reduction in amine 

metabolites, which is linked to muscle wasting in rheumatoid arthritis. We also 

found that increased UPE intensity is strongly linked to metabolic processes (with 

correlation co-efficiency |r| value >0.7), which may be associated with lipid 

oxidation that related to inflammatory and/or ROS-mediated processes. Together, 

these results indicate that UPE is correlated with metabolomics and may serve as a 

valuable tool for diagnosing chronic disease by integrating inflammatory signals at 

the systems level. Our correlation network analysis provides important and 

valuable information regarding the disease process from a system-wide perspective.    
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1. Introduction  

Rheumatoid arthritis (RA) is one of the most prevalent chronic auto-immune 

diseases, occurring in about approximately 1% of the population in Western 

countries [1], [2]. RA manifests as a complex inflammatory syndrome that 

typically includes joint swelling, pain, and hyperthermia, as well as synovial 

hyperplasia and destruction of cartilage and bones in the joints. RA is considered a 

systemic disease that is caused by a variety of pathophysiological processes [3]. 

These processes are accompanied by increased levels of cytokines such as tumor 

necrosis factor α (TNF-α) and interleukins (IL-1β and IL-6) in the blood and 

interstitial fluids, activation of NF-κB pathways (to inhibit apoptosis in various 

immune cells), and systemic disruptions in inflammatory metabolite synthesis [4]–

[6].  

Experimental studies of RA—particularly the pathophysiological mechanisms 

of therapeutic interventions—are often conducted using animal models. The most 

commonly used model for RA is the collagen-induced arthritis (CIA) mouse model, 

which has pathophysiological processes and features similar to patients with RA 

[7]–[11]. In addition, advances in metabolomics technology, which now enable 

researchers to measure extremely low concentrations of metabolites in several 

pathways simultaneously [12], has facilitated the study of RA in considerably more 

detail, thereby increasing our understanding of the pathological mechanisms that 

underlie the disease [13]. We previously studied the differences in molecular 

profiles between CIA mice and control mice by examining differences with respect 

to inflammation and reactive oxygen species (ROS), analyzed using univariate and 

multivariate metrics [14]. In addition to the well-characterized inflammatory 

phenomenon, issues related to muscle wasting and energy expenditure are also 

present in RA [15]–[18], and this is reflected by the presence of amine metabolites 

in the plasma of CIA mice [19]. 
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Differences between CIA mice and control mice were also observed with 

respect to the intensity of ultra-weak photon emission (UPE), which reflects 

differences in the organization of the system at a biophysical level [20]. UPE is a 

process that occurs in all living organisms and is the spontaneous emission of light 

with extremely weak intensity (101–103 photons/sec/cm2) in the UV, visible, and 

near-IR spectra [21]. Many studies have focused on the relationship between UPE 

and ROS production during metabolic processes [22]–[26]. Considering that ROS 

production is closely associated with inflammatory diseases and impaired 

metabolic processes, it is reasonable to expect that UPE is also associated with 

inflammatory disease and/or metabolic processes. UPE might therefore be used to 

help diagnose inflammation and inflammation-related diseases. UPE has been 

proposed for monitoring lipid peroxidation in cell membranes [27], and 

applications using UPE in human studies—and their potential relationship with 

ROS—were summarized by van Wijk [23]. Moreover, the putative relationship 

between UPE, physiological state, and metabolic processes has been proposed by 

several research groups [28]–[31]. Here, we performed an integrated analysis of the 

biochemical and biophysical differences between CIA mice and control mice, 

based on the hypothesis that a combined analysis would reveal unique insight into 

the biochemical and biophysical changes that occur during RA.  

Network biology is an emerging field in biomedical research, and network 

biology tools are increasingly used to identify clusters of correlated parameters, to 

visualize or explore high-dimensional data, and to understand or interpret 

interactions that reflect part of a complex biological system [32], [33]. Correlation 

networks have been used in “omics” studies to combine complex data sets, for 

example combinations of metabolomics, genomics, and/or proteomics data sets. 

Correlation networks are also used to support the biological interpretation of large 

data profiles and to differentiate disease phenotypes [34]–[37]. Here, we expanded 

the systems-based approach of correlation-based analyses in order to examine the 

relationship between metabolomics profiling and UPE data. Using this correlation 

network analysis, we visualized systematic perturbations in bio-photons, 
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inflammatory processes, and ROS-related mediators. This approach may be used to 

facilitate the diagnosis of disease and/or to discriminate between disease 

syndromes, particularly with respect to complex chronic diseases such as RA and 

type 2 diabetes mellitus. 
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2. Materials and Methods 

2.1 Animal study samples, Modelling, and ethics Statement 

CIA was induced by the intraperitoneal injection of type II collagen and 

lipopolysaccharide in adult (6-7 weeks of age) DBA/1J male mice as described 

previously [38]; the CIA and control (Ctrl) groups contained 10 mice each. The 

injections were performed on days 0, 14, 28, 42, and 56; After 70 days’ modeling, 

UPE intensity was measured in each paw, and blood was collected into pre-cooled 

EDTA tubes (BD Vacutainer, Plymouth, UK). The blood samples were centrifuged 

at 3000×g for 10 minutes, and then stored at -80ºC until metabolic measurements 

were performed [14]. All animal experiments were performed in compliance with 

the Guide for the Care and Use of Laboratory Animals (National Institutes of 

Health, Bethesda, MD). All animal care and experiments were approved by the 

Tohoku Institute of Technology Research Ethics Committee, Sendai, Japan. 

 

2.2 Instruments and data acquisition  

2.2.1 UPE instruments and settings   

UPE was measured using a 600 series CCD camera system (Spectral Instruments, 

Inc., Tucson, AZ) equipped with a closed-cycle mechanical cryogenic unit (held at 

-120°C) as the cooling system. Prior to the UPE measurement, mice were 

maintained in controlled dark conditions. The detailed settings of the CCD system 

including figures about the measured location on mice is described in Van Wijk et 

al [20]. In brief, the CCD camera was mounted on the top of a dark chamber, and 

the animal was immobilized using isoflurane anesthesia. UPE intensity was 

recorded at five independent regions on each paw and used for further correlation 

analysis. The regions were named according to the paw measured, and numbers 

were added (ranging from 1 to 5, indicating the location closest to the tip of the 

paw through the location farthest from the tip of the paw) as follows: LFP (left 

front paw) 1 through LFP5; LHP (left hind paw) 1 through LHP5; RFP (right front 

paw) 1 through RFP5; and RHP (right hind paw) 1 through RHP5. 
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2.2.2 Extraction of plasma metabolites and metabolomics analysis 

Plasma samples were aliquoted and extracted via different methods in order to 

obtain separate classes of compounds, including oxylipins, amine metabolites, and 

oxidative stress‒related metabolites. Oxylipins (bioactive lipid mediators derived 

from polyunsaturated fatty acids) were extracted using solid phase extraction and 

analyzed using an Agilent 1290 HPLC coupled to an Agilent 6490 triple 

quadrupole mass spectrometer with electrospray ionization as described 

previously [14], [39]. Amine metabolites (including free amino acids and their 

biogenic metabolites) were extracted using AccQ-TagAQC derivatization and 

analyzed using a Waters ACQUITY UPLC coupled to a Waters Xevo mass 

spectrometer with electrospray ionization source as described by Noga et al. [40]. 

Oxidative stress‒mediated metabolites—primarily PGs/IsoPGs, NO2-FAs, 

lysophosphatidic acids, and sphingosine/sphingosine-related sphingolipids—were 

extracted using liquid–liquid extraction and analyzed using a validated method 

with an Agilent 1290 HPLC coupled to an Agilent 6490 triple quadrupole mass 

spectrometer with electrospray ionization. The peak area of each target compound 

was corrected using the appropriate internal standard (ISTD), leading to a ratio 

(target compound/ISTD) that was used for further analysis in the correlation study. 

 

2.3 Data preprocessing and statistical analysis 

The metabolomics and UPE data collected from both the CIA and Ctrl groups 

were included in the correlation analysis. Univariate correlations were performed 

using the Spearman’s rank correlation method using RStudio software (version 

3.0.3). Absolute values of the Spearman’s rank correlation coefficient (|r|) >0.7 

were considered to reflect a strong correlation between parameters, and this 

threshold was used to create highly correlated graphical networks using Cytoscape 

software (version 3.3.0, http://www.cytoscape.org) with the MetScape plug-in for 

extracting and integrating information and for visualizing the correlation networks 
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[41], [42]. Positive and negative correlations were indicated by positive and 

negative values of r, respectively.  

 

3. Results and Discussion 

3.1 Collagen-induced arthritis alters the local distribution of UPE 

Differences in UPE between CIA and Ctrl mice have been reported previously 

[20].  A schematic figure was displayed, in order to show the CCD setup of UPE 

instrument as well as the locations for UPE measurements on mouse front and 

hind paws (Fig. 1). Here, we used correlation networks to visualize the 

relationship between individual UPE intensities at the locations measured in both 

CIA mice and in Ctrl mice (Fig. 2), as visualizing the profile of location-based 

UPE may provide important information regarding the disease. We then 

interpreted the differences and similarities between the two groups with respect to 

their correlation structures. 

 
Fig. 1 Schematic figure of CCD set-up as well as locations for UPE measurements on mouse 
front and hind paws. Adapted from E. van Wijk et al. 2013. 
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Fig. 2. Bio-photonic variance is revealed by location-based UPE-to-UPE correlation networks. 
The figure illustrates the differences in correlations between CIA mice (a) and Ctrl mice (b). In CIA 
mice, the strong correlations also indicate a strong similarity in UPE between the LFP (left front paw) 
and RFP (right front paw), as well as between the LHP (left hind paw) and RHP (right hind paw). 
The numbers (1 through 5) indicate the specific locations for the measurements (see Materials and 
Methods). Thus, the differences between the front paws and hind paws are clearly visible in the CIA 
group. The networks were established using the Spearman correlation analysis, and the lines 
represent Spearman correlation coefficients (|r|) >0.7. 

The correlations were quantified using the parameters (i.e., |r| values and p-

values) obtained from the Spearman correlation analysis. In total, 71 and 26 

strongly positive UPE-to-UPE correlations were found in the CIA and Ctrl groups, 

respectively; no strongly negative correlations were found. The difference in the 

number of strongly positive correlations between the CIA and Ctrl groups can be 

seen visually in Fig. 2. In the CIA group, UPE intensity was tightly correlated 

between the two front paws and between the two hind paws (Fig. 2a). In contrast, 

we found no clear correlation patterns in the Ctrl group (Fig. 2b). 

 

3.2 Differences in metabolite correlations between CIA mice and control mice 

Next, we acquired metabolic data from plasma samples using HPLC-MS/MS. The 

following three groups of metabolites were extracted using three validated 
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methods and detected using three specific instruments: amine metabolites 

(including free amino acids and their biogenic metabolites), oxylipins, and 

oxidative stress‒related metabolites. A total of 110 endogenous metabolites were 

detected in the plasma samples, including 30 oxylipins, 45 amine metabolites, and 

35 oxidative stress‒related lipids. Univariate and multivariate analyses were then 

applied to the metabolite sets in order to characterize the differences between CIA 

mice and Ctrl mice at the metabolomics level. Previously, we reported the 

differences between CIA mice and Ctrl mice with respect to oxylipins and amine 

metabolites [14], [19]. Based on the oxidative stress platform, after log 

transformation and auto-scaling of the data, we also found a number of key 

metabolites that differed between the CIA the Ctrl groups (p<0.05, Student’s t-

test). Table 1 summarizes the key metabolites that differed significantly between 

the CIA and Ctrl groups. 

Table 1. Summary of the key metabolites that significantly differed between the 
CIA and Ctrl groups 

Oxylipins Amine metabolites  Oxidative stress 

Compound Changes Compound Changes Compound Changes 

9,10-DiHOME ↓ Methionine ↓ PGE3 ↓ 

9-KODE ↓ Homocysteine ↓ 8,12-iso-iPF2a ↓ 

13-HDoHE ↑ Threonine ↓ cyclic-LPA C16:0 ↓ 

14-HDoHE ↑ Proline ↓ cyclic-LPA C18:2 ↓ 

12,13-DiHOME ↓ Alanine ↓ 
  

9,12,13-TriHOME ↓ Valine ↓ 
  

12-HEPE ↑ Cystathionine ↓ 
  

9,10,13-TriHOME ↓ Lysine ↓ 
  

9,10-EpOME ↓ Glycylglycine ↓ 
  

10-HDoHE ↑ Serine ↓ 
  

9-HODE* ↓ Asparagine ↓ 
  

8-HETE* ↑ Cysteine ↓ 
  

13-KODE* ↓ Tryptophan ↓ 
  

12,13-EpOME* ↓ Methionine sulfoxide ↓ 
  

13,14-dihydro-PGF2a* ↑ Homocitrulline ↓ 
  

12-HETE* ↑ Isoleucine ↓ 
  

  
Gamma-glutamylalanine ↓ 

  

  
Histidine ↓ 

  

  
Glutamine ↓ 

  
  Leucine ↓   
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Abbreviations: DiHOME, dihydroxyoctadeca(mono)enoic acid;  EpOME, epoxyoctadecamonoenoic 
acid; HDoHE,  hydroxydocosahexaenoic acid; HEPE, hydroxyeicosapentaenoic acid; HETE, 
hydroxyeicosatetraenoic acid;  
HODE, hydroxyoctadecadienoic acid; KODE, ketooctadecadienoic acid;  PG, prostaglandin; 
TriHOME, trihydroxyoctadecenoic acid. 
↓: Decreased in CIA mice; ↑: Increased in CIA mice;   

*: Extra important oxylipins which contributed to the group clustering are based on multivariate 
analysis (VIP>1). 

Differences in metabolites generally do not occur independently, but often 

change together with other, related metabolites, as metabolic reactions are often 

part of a dynamic system and have many biological processes in common [35]. 

Metabolic network analysis is an emerging approach used to diagnose disease, and 

it has the advantage of integrating “omics” datasets in order to identify links and 

select useful information from among chaos [34], [43]. We therefore performed a 

correlation network analysis in order to visualize pair-wise metabolic correlations 

and to extract novel information regarding dynamic alternatives. A merge between 

the metabolite-to-metabolite correlation networks measured in the plasma of CIA 

and Ctrl mice is illustrated in fig. 3a and 3b, respectively. Next, the Spearman 

correlation coefficient between metabolites (rm) was calculated, and only strong 

correlations (either positive or negative) (i.e., with an |rm| value >0.7) were 

included in the resulting network. We found a total of 394 positive correlations and 

91 negative correlations in the CIA group, and a total of 864 positive correlations 

and 117 negative correlations in the Ctrl group. In general, metabolites that are in 

the same chemical class or in the same biochemical pathway tended to correlate 

with each other; these so-called “chemical class-based” clusters and “pathway-

based” clusters were more pronounced in the Ctrl group, leading a highly 

connected region among oxylipins and another region among amine metabolites. 

This network analysis revealed certain structural or pathway similarities among 

those highly connected metabolites with respect to significant positive correlations. 

Moreover, the associations between oxylipins and amine metabolites were 

relatively weak in the Ctrl group, possible because oxylipins and amine metabolites 

are generated via two separate metabolic pathways.   
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Fig. 3. Metabolic correlation networks in the CIA and Ctrl groups. Depicted are the metabolite-
to-metabolite correlation networks for CIA (3a) and Ctrl (3b) mice. All of the metabolites detected in 

our analysis are included in the networks models.  
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Nodes with a positive correlation are indicated with solid red lines, and nodes with a negative 
correlation are indicated by solid blue lines. Shaded ellipses with a light red or light blue background 
indicate clusters of oxylipins or amine metabolites, respectively. Thickness of lines indicate gradient 
correlation strength: the thicker the line is, the stronger the correlation is (visible correlation co-
efficiency: |r|  ranges from 0.7 to 1). (For better visualization of the detailed figures, please visit the 
web version of this article online: http://www.sciencedirect.com/cache/MiamiImageURL/1-s2.0-
S1011134416307539-gr3_lrg.jpg/0?wchp=dGLzVlV-zSkWl&pii=S1011134416307539)  

Interestingly, we found that some of the strong correlations in the Ctrl group—

including both “oxylipin-to-oxylipin” and “amine-to-amine” correlations—were 

weaker in the CIA group. In contrast, the CIA group contained more negative 

oxylipin-to-amine correlations (Fig. 3a) than the Ctrl group (Fig. 3b). For example, 

the HETEs and HDoHEs that were elevated in CIA mice were strongly correlated 

with the branched chain amino acids valine, leucine, and isoleucine, as well as with 

cystathionine, alanine, glutamine, and asparagine. The use of HETEs and HDoHEs 

as inflammatory/ROS-related biomarkers has been described previously [14], and 

we also found that decreases in these amine metabolites may reflect muscle 

wasting and/or energy expenditure (cachexia) in RA [19]. Therefore, our analysis 

of metabolic correlation networks suggests that the increased inflammation and 

ROS levels reflected by oxylipins may also be associated with the onset of muscle 

wasting and increased energy expenditure in RA. 

 

3.3 UPE is correlated with inflammatory signaling‒related metabolites in CIA 

mice 

As discussed in the Introduction, UPE arises as a result of metabolic reactions, 

particularly oxidation-reduction (redox) reactions; therefore, we hypothesized that 

UPE emission patterns may be correlated with metabolite patterns. To test this 

hypothesis, we created a correlation network to visualize potential associations 

between UPE intensity and peak area ratios of measured metabolites (see 

Materials and Methods). Therefore, we used UPE-to-metabolite correlations (i.e., 

between a given UPE value, u, and a given metabolite, m) in the correlation 
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networks, and the Spearman’s correlation coefficient |rum| was calculated for each 

UPE-metabolite pair in both the CIA group and the Ctrl group.  

The heat map in Fig. 4 depicts a general UPE-to-metabolite correlation profile 

used to compare the differences measured between the CIA group and the Ctrl 

group. A cluster analysis reveals clear location-based clusters in the CIA mice. The 

heat map also indicates a systemic change in the CIA group (i.e., the majority of 

positive correlations, shown in red) compared with the Ctrl group (i.e., the majority 

of negative correlations, shown in green). After removing relative weaker 

coefficient from the Spearman correlation analysis (|rum|<0.7), networks were built 

to reflect the highly correlated entities and to show the most important metabolites 

(fig.4b). After we removed the relatively weaker correlations from the Spearman 

correlation analysis (i.e., |rum| values <0.7), we built a network to reflect the 

strongly correlated entities and to illustrate the most relevant metabolites (Fig. 4b). 

Circle-attributed networks were then used to identify the key correlations and to 

compare the CIA group with the Ctrl group. A total of 27 strongly positive 

correlations and 79 negative correlations were identified in the Ctrl group, and a 

total of 146 positive and 9 negative correlations were identified in the CIA group. 

The correlation networks revealed that the majority of UPE-to-metabolite 

correlations in the Ctrl group were negative, whereas the majority of UPE-to-

metabolite correlations in the CIA group were strongly positive. The major 

metabolites that were positively correlated with UPE in the CIA group are the 

monohydroxyeicosatetraenoic acids (HETEs), prostaglandins (PGs), thromboxane 

(TBX) synthase products, lysophosphatidic acids (LPAs), sphingolipid signaling 

molecules, and some amine metabolites (Fig. 4b). UPE intensity measured at 

various locations was correlated with various metabolites in the CIA group. For 

example, UPE intensity in the front paws was more strongly correlated with some 

LPAs, whereas UPE intensity in the hind paws was more strongly correlated with 

PGs (13,14-dihydro-15-keto-PGF2a, PGE2, PGD2, and 6-keto-PGF2a), TBX 

synthase products (TBX2 and 12-HHTrE), HETEs (8-HETE, 15-HETE, 11-HETE, 

and 12-HETE), and sphingolipids; see the CIA correlation networks in Fig. 4b.  
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CIA

Ctrl

(a) (b)

Putrescine
Ethanolamine
Ornithine
Lysine
Glycine
5-hydroxylysine
Sarcosine
Beta-alanine
Alanine
Alpha-aminobutyric acid
Serine
Cystathionine
Proline
Valine
Homoserine
Threonine
Cysteine
Isoleucine
Leucine
4-Hydroxyproline
Asparagine
Glycylglycine
Aspartic acid
Methylcysteine
Homocysteine
O-Phosphoethanolamine
Glutamine
Glutamic acid
Methionine
Histidine
Spermidine
Aminoadipic acid
Methionine sulfoxide
Phenylalanine
Norepinephrine
Arginine
Citrulline
Serotonin
Tytosine
Homocitrulline
Tryptophan
Kynurenine
5-Glutamylalanine
Saccharopine
Glutathione
10-HDoHE
11-HETE
12,13-DiHOME
12,13-EpOME
12-HETE
12-HEPE
12-HHTrE

13,14-dihydro-15-keto-PGF2a
13,14-dihydro-PGF2a
13-HDoHE
13-HODE
13-KODE
14,15-DiHETrE
14-HDoHE
15-HETE
17-HDoHE
19,20-DiHDPA
5-HETE
6-keto-PGF1a
8-HETE
8-HETrE
9,10,13-TriHOME
9,10-DiHOME
9,10-EpOME
9,12,13-TriHOME
9-HETE
9-HODE
9-KODE
PGF2a
TXB2
2 E,D series Unknown 
2,3-dinor-8-iso-PGF2a 
8,12-iso-iPF2a 
alkyl-LPA C14:0 
alkyl-LPA C18:0 
cyclic LPA C16:0
cyclic LPA C18:0
cyclic LPA C18:1
cyclic LPA C18:2
cyclic LPA C18:3
cyclic LPA C20:4
LPA C14
LPA C16
LPA C16:1
LPA C18
LPA C18:1
LPA C18:2
LPA C20
LPA C20:1
LPA C20:3
LPA C20:4
LPA C22:5
LPA C22:6
PGA2
PGD2
PGD3
PGE2
PGE3
PGF2a-1
S-1-P C18:1 
Spha1-1-P C18:0 
Sphinganine C18 
Sphinganine C20
Sphingosine C18:1 
Sphingosine C20

Cytokines activation/ROS

Cellular signaling 

Inflammatory response, 
response to stress

HETEs
（LOX/ROS）

PGs, TXs
(COX-2)

FPs
HPs

Lysophosphatidic acid
(LPA)

Sphingosine, S-1-P

FPs HPs

 

Fig. 4. Correlation-based analysis between UPE and metabolites measured in the plasma of 
CIA mice and Ctrl mice. a) Heat map showing the entire UPE-metabolite correlation profile, as 
well as the differences between the CIA and Ctrl mice. Colored blocks represent the value of the 
correlation coefficient, which were color-coded from 1 (strongly positive, light red) to -1 (strongly 
negative, light green). b) Visualized network model of the strong correlations (defined as a |rum| 
value >0.7). The red and blue lines indicate positive and negative correlations, respectively, and the 
thickness of the lines indicate the strength of the correlation. Several important pathway-related 
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networks reflect the inflammation, ROS production, and muscle wasting associated with RA. Each 
dot indicates an individual parameter that includes a given metabolite and UPE value: yellow dots 
reflect location-based UPE intensity, and black, gray, and white dots represent oxylipins, biogenic 
amines, and oxidative stress‒related metabolites, respectively. Also shown (between the Ctrl and 
CIA network models) are enlarged views of the key metabolites that differed significantly based on 
our univariate and multivariate analyses. The up-triangles and down-triangles indicate the direction 
of the metabolic change in the CIA mice (i.e., up-regulation or down-regulation, respectively). (For 
better visualization of the detailed figures, please visit the web version of this article online: 
http://www.sciencedirect.com/cache/MiamiImageURL/1-s2.0-S1011134416307539-
gr4_lrg.jpg/0?wchp=dGLbVBA-zSkzV&pii=S1011134416307539) 

Next, the pathways related to these metabolites based on our previous study [14] 

and the Kyoto Encyclopedia of Genes and Genomes were organized (Fig. 5). LPAs 

act on G protein‒coupled signaling and cellular signaling responses and function as 

inflammatory mediators [44], [45]. PGs and TBXs, which are synthesized from 

arachidonic acid via COX-II pathways, have well-established pro-inflammatory 

functions [46], [47]. The 12/15-LOX products (12-HETE, 15-HETE, and 8-HETE) 

promote the production of cytokines and activate the NF-κB pathway to inhibit 

cellular apoptosis [48], [49]. In addition, 8-HETE, 12-HETE, and 11-HETE can 

also be peroxided non-enzymatically by ROS to inhibit apoptosis [50]–[54]; 

therefore, these three HETEs may be important inflammatory mediators [55], [56]. 

The sphingomyelin-derived sphingolipids sphingosine and sphingosine-1-

phosphate (S1P) are signaling molecules in immune cells that mediate neutrophil 

activation and apoptosis, and are therefore also considered to be inflammatory 

mediators [57]–[62]. Based on the correlation networks, it can be seen that these 

inflammatory mediators participated in the systemic perturbations (measured using 

both metabolomics and UPE) in the CIA mice, even though some of these 

mediators were not altered significantly in our univariate analysis. We also 

conclude that UPE intensity is correlated with systemic inflammatory mediators, 

ROS mediators, and cellular signaling processes; therefore, measuring UPE 

intensity may provide a means to diagnose inflammatory disease. In addition, UPE 

may also be used to monitor lipid peroxidation which relate to inflammation and 

ROS level in both healthy and diseased individuals (Fig. 6). Thus, a specific 

phenotype of a disease can be complemented by measuring both “omics” profiles 
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and UPE patterns, thereby providing a more detailed understanding of the disease 

and its underlying processes. 
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In the CIA mice, a strongly negative correlation between cystathionine and UPE 

was measured, whereas several amine metabolites—including serotonin, 

tryptophan, and aspartic acid—were positively correlated with UPE. Cystathionine 

is a scavenger of free radicals [63];  therefore, given its significant decrease in CIA 

mice compared to Ctrl mice, the negative correlation between cystathionine and 

UPE intensity indicates that the increase in UPE intensity may be due to a decrease 

in antioxidants in RA. Both tryptophan metabolism and the serotonergic system 

have been well described as key pathways that can influence signaling in the 

central nervous system [64]. Thus, UPE may also be correlated with metabolic 

systems that are associated with neurotransmission. In addition, based upon 

pathways that regulate amine metabolites listed in the Kyoto Encyclopedia of 

Genes and Genomes, all of the other amine metabolites that were positively 

correlated with UPE are associated either directly or indirectly with the TCA cycle 

(see Fig. 5). The correlations identified between UPE intensity and these 

metabolites may suggest that during disease, some of  the electrons that would 

otherwise participate in chemical reactions to produce energy (for example, with 

amine metabolites in the TCA cycle) actually escape and set free the energy which 

they carry, as photons, whereby the electrons change from high to low energy level 

states. Simultaneously, free radicals and/or ROS are produced, driving lipid 

peroxidation to produce inflammatory HETEs and PGs. While such a speculation 

need more rigorous validation.   

The reduction in amine metabolites in the plasma of CIA mice compared to Ctrl 

mice may be linked to the contribution of muscle wasting in arthritis [19]. 

Considering that we found strong correlations between amine metabolites and UPE 

intensity, and given that muscle wasting is a common feature in many disease 

processes, including some cancers [65], HIV/AIDs [66], type 2 diabetes [67], renal 

failure, uremia[68],  and heart failure [69] , UPE may also have potential 

perspective for the use of monitoring energy wasting and muscle wasting in other 

diseases. In this respect, future studies should examine the relationship between 

muscle wasting and UPE. 
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Interestingly, HETEs, PGs, sphingosine, and S1P—which were strongly 

correlated with UPE intensity in our study—are also considered to be important 

inflammatory biomarkers in a variety of diseases, including RA [70], 

cardiovascular disease and/or atherosclerosis‒related inflammation [59], [61], [71], 

[72], congestive heart failure [60], cancers and other tumors [54], [73], some 

prostate diseases [55] , and nonalcoholic steatohepatitis [56]. Therefore, our 

finding that UPE is correlated with these inflammatory mediators may shed light 

on the biological mechanisms that underlie these diseases from a systems biology 

perspective.  
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4. Conclusions 

Given its complex pathophysiology, RA has been studied using a variety of 

technologies and approaches. Indeed, integrating various data sets can provide 

important information regarding the disease process and possible treatment 

strategies. Generating correlation networks can provide valuable information, and 

these networks have been used recently within a wide range of “omics” studies, 

including proteomics, genomics, and metabolomics, thereby helping distinguish 

specific diseases and/or phenotypes [34], [35], [74]. Here, we performed the first 

study that integrates UPE with metabolomics in both diseased mice (i.e., mice 

with collagen-induced arthritis) and healthy control mice; this novel, powerful 

approach yielded meaningful information regarding RA. Moreover, we found 

specific correlations between metabolomics and UPE. Lastly, our correlation 

network analysis shows a systematic way to illustrate the complexity of RA , 

including dysregulation of both UPE and metabolomics. 

Using our correlation networks, we also found that oxylipins were negatively 

correlated with certain amine metabolites in the CIA group. This may indicate a 

systematic perturbation under inflammation and ROS response in RA-induced 

situation. However, further study is needed in order to elucidate whether the 

inflammation and ROS are the consequence of muscle wasting, or vice versa. We 

also found that UPE was correlated with certain inflammatory mediators, and we 

expanded the biological interpretation of RA using correlation networks.  

In conclusion, our correlation network analysis provides valuable information 

regarding the disease process from a system-wide perspective. Understanding the 

underlying biochemical phenomena that give rise to UPE is of great importance to 

learn about potential applications of UPE in early disease characterization. 
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Abstract 

To present the possibilities pertaining to linking ultra-weak photon emission (UPE) 

with Chinese medicine‒based diagnostics principles, we conducted a review of 

Chinese literature regarding UPE with respect to a systems view of diagnostics. 

Data were summarized from human clinical studies and animal models published 

from 1979 through 1998. The research fields can be categorized as follows: 1) 

human physiological states measured using UPE; 2) characteristics of human UPE 

in relation to various pathological states; and 3) the relationship between diagnosis 

(e.g., Chinese syndromes) and the dynamics of UPE in animal models. We 

conclude that UPE has clear potential in terms of understanding the systems view 

on health and disease as described using Chinese medicine‒based diagnostics, 

particularly from a biochemistry-based regulatory perspective. Linking UPE with 

metabolomics can further bridge biochemistry-based Western diagnostics with the 

phenomenology-based Chinese diagnostics, thus opening new avenues for studying 

systems diagnostics in the early stage of disease, for prevention-based strategies, as 

well as for systems-based intervention in chronic disease. 
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1. Introduction 

The use of ultra-weak photon emission (UPE) in living organisms was first 

described by Gurwitsch in 1923 [1]. At that time, the technical capabilities for 

measuring radiation using physical devices was rather limited. This technology 

became more feasible when sensitive photomultipliers were developed in the 1960s 

in the former Soviet Union. The early data were published primarily in Russian 

journals [2], [3], with only a fraction of the reports translated into English [4]. 

Since the 1970s, UPE has been used by research teams in Germany [5], Australia 

[6], Poland [7], Japan [8], the United States [9], and China [10]. UPE has been used 

successfully in a wide variety of organisms, including bacteria, yeast, plants, 

animals, and humans, as well as in cells and cellular homogenates derived from 

living organisms [5]–[11].  

UPE occurs spontaneously in living organisms, without the need for external 

intervention [12]. The emission range of UPE is approximately 10–103 

photons/sec/cm2. The spectral range of the photons emitted from living systems is 

300‒750 nm [13]; the photons emitted from human tissue ranges from 420‒570 nm 

[14]. The source of UPE is closely related to the electronic transport and the 

generation of reactive oxygen species (ROS) during oxidative metabolic processes, 

with UPE originating from the transition from either the singlet excited state (such 

as singlet oxygen 1O2) or the triplet excited level of carbonyl species (3R=O*) to 

the singlet ground state [15], [16]. Biological ROS—including the reactions of 

superoxide radical (O2·−), hydrogen peroxide (H2O2), and hydroxyl radical (HO·)—

are produced dynamically during chemical metabolic redox reactions, including 

lipid peroxidation and protein/nucleic acid generation; moreover, during these 

metabolic processes, electrons can become excited, and energy is emitted in the 

form of photons [17]. Similar to the ROS theory described above, photons can also 

be released during the metabolism of radical nitrogen species (RNS). ROS causes 

the oxidation of biomolecules such as nucleic acids, proteins, and lipids, which 

play essential roles in many cellular processes, including cell signaling, apoptosis, 
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and pro/anti-inflammatory regulation [18], [19]. Therefore, UPE can be measured 

in order to detect the physiological state of the human body and to measure 

dynamic changes in health [12], [13], [20].  

In humans, UPE is usually measured using a photomultiplier tube (PMT) or a 

charge-coupled device (CCD). Emitted photons can be measured directly through 

the skin in a light-tight, dark environment [21], [22]. The use of UPE as a 

diagnostic tool for health-related issues in humans has been reviewed recently [23]. 

The intensity of UPE emitted from the human body can be influenced by several 

physiological states, including age [24], gender [25], biological rhythms [22], [26]–

[29], and conscious activities [30]–[32], thus leading to the discovery of putative 

diagnostic properties of photon emission. For example, hypothyroidism can be 

diagnosed by measuring the emission of photons from the index finger of human 

subjects [33]. Furthermore, differences in the intensity of photon emissions have 

been measured between patients with multiple sclerosis and healthy subjects [34], 

[35]. Moreover, patients with hemiparesis have asymmetrical UPE intensity 

between the left and right hands, suggesting that measuring photon emission 

symmetry could be used as a novel diagnostic parameter in addition to measuring 

UPE intensity [36], [37]. Based on the aforementioned experimental observations, 

UPE has been proposed as a non-invasive indicator of the integrated states and 

dynamic changes in human health [12], [20], [38].  

In the newly emerging systems-based view of health, biology can be considered 

a hierarchy of various levels of organization, ranging from low levels (e.g., 

biochemistry and molecules) to the cellular and organ levels, all the way up to the 

integrated systems level [38]. In Western medicine, “omics” technologies are often 

utilized to study genes, proteins, and metabolites at relatively low organizational 

levels [39]. Recent work suggests that the dynamic distribution of UPE emissions 

from the human body can reflect both the health status at a large-scale organization 

level and the dynamics of the system [13], [20]. Similar to UPE, Chinese medicine 

integrates physiological and pathological information at a higher level of 
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organization—i.e., the phenotype level—in order to obtain a holistic description of 

the body’s state. Two important types of descriptions are frequently used: 

constitution differentiation and syndrome differentiation [39]–[41]. However, 

Chinese medicine‒based diagnostics is a descriptive, phenomenological approach 

based on many clinical observations, and the insights regarding molecular and 

mechanistic biology have been explored only recently [42]. Given that UPE may 

provide important insight into health at a high level of organization, measuring 

UPE parameters may provide novel scientific insights into Chinese medicine‒

based diagnostics and may help guide Western medicine towards a systems-based 

view of life, both from a diagnostic perspective and from an intervention 

perspective. Therefore, it is important to explore the history of this relationship 

between UPE and Chinese medicine‒based diagnostics. 

Applications in which UPE has been used to understand and measure systemic 

organization can be found in Chinese literature; these publications have generally 

focused on the relationship between UPE and Chinese medicine‒based concepts in 

both human and animal studies. In this review, we summarize these studies 

published in Chinese scientific journals from 1979 through 1998. In studies 

published in 1979-1998, Chinese medicine‒based concepts were used to establish 

UPE experimental designs. After the turn of the century, UPE research interests in 

China shifted from healthcare to plant and agriculture area [43], [44], and no more 

literature fit in the area regarding UPE and Chinese medicine‒based concepts then. 

Because much of the clinical data was published in Chinese, UPE research is 

relatively unknown among scientists in non-Chinese-speaking countries. By 

reviewing this literature, we hope to educate scientists in terms of the possibilities 

regarding linking UPE with Chinese medicine‒based diagnostics principles. 

Furthermore, because Western UPE researchers rarely study Chinese medicine‒

based diagnostics from a systemic regulatory perspective, this review will also 

provide a basis for further research in this specific area.  
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2. Temporal variations in UPE intensity among healthy 

human subjects 

According to the Chinese medicine theory, one’s health depends on a dynamic 

balance between one’s physiological state and the surrounding environment. The 

human body can adapt in response to many environmental factors (e.g., changes in 

the seasons) and internal environmental changes (e.g., emotional variations). These 

patterns of change that result from changes in the internal and external 

environments are essential for obtaining a diagnosis in Chinese medicine. 

Therefore, Chinese physicians are taught to make a comprehensive diagnosis that 

includes an evaluation of how the body responds to the surrounding environment at 

various ages, as well as the effect of seasonal fluctuations [45]–[47].  

In China, UPE measurements have been used to study temporal changes in 

human physiological states since the 1980s. Zheng [48] investigated the effect of 

gender and age on UPE measured from the fingertips of seven groups of healthy 

subjects; these results are summarized in Figure 1. In general, the intensity of UPE 

was higher among males than among females, and UPE intensity tended to increase 

with age. This association between age and UPE was later confirmed by 

Sauermann et al.[24]. In a separate study, Yan [49] examined the relationship 

between age and UPE by measuring the specific acupuncture point LI1 (also 

known as the Shangyang acupuncture point); Yan found higher UPE intensity 

among young subjects (17-49 years of age) compared with both older subjects (50-

72 years age) and children (11-16 years of age).   
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Fig.1: UPE intensity measured in male and female human subjects at the indicated ages (in 
years). UPE intensity was measured as the average photon counts (per 30 seconds) of the total photon 
emission from ten fingertips; the data are the average of five separate measurements per subject48. 

Yang measured UPE intensity at various acupuncture points located at the 

extremities and on the torsos of male and female children and adults [50], [51]. 

Consistent with the studies described above, Yang found that UPE intensity was 

higher in men than in women and higher in adults than in children. The association 

between UPE intensity and season (i.e., higher photon emission in the summer 

compared to the winter) that was originally reported by Zheng [52] for the fingers 

of healthy subjects has been later confirmed with UPE measurements of other body 

locations by Popp and Cohen [34], Van Wijk [53], Bieske et al. [54], and Jung et al. 

[55]; importantly, these authors did not refer and probably had no prior knowledge 

of Chinese literature regarding UPE measurements. These findings indicate that 

measuring UPE can provide insight into the state of harmony between the human 

body and the environment. Thus, deviations from these temporal rhythms in UPE 

intensity might be utilized further in order to study the pathological state and 

Chinese medicine‒based diagnostic patterns.  
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3. The association between UPE and pathological state based 

on Chinese medicine‒based diagnostic principles 

In Chinese medicine, illness is viewed as a disruption of the body’s dynamic 

balance. The body’s dynamic balance is an abstract way to describe the flow of 

energy through the entire body, as well as the exchange between the body and the 

external environment. Measuring this flow of energy—particularly interruptions in 

this flow—provides important diagnostic information regarding the occurrence of 

specific illnesses. The aims of acupuncture are to regulate this flow of energy, 

remove blockages that interrupt energy flow, and help the ailing body re-establish 

its dynamic homeostasis [56]–[60]. In Western medicine‒based terms, this might 

indicate a dysregulation of processes, which can be experienced as chronic disease. 

The dynamic balance concept was recently correlated with symmetry—and 

asymmetry—in UPE intensity between the left and right sides of the human body 

[13], [37], [61], [62]. As far back as the early 1980s, this UPE left-right symmetry 

was identified by Chinese researchers as an important parameter for distinguishing 

between health and disease [52]. Thus, healthy subjects can be characterized by a 

symmetry in UPE intensity between acupuncture points on the two sides of the 

body [63]–[65]. Significant differences in UPE intensity at acupuncture points 

between the left and right sides of the body have been observed in typical “Western” 

diseases, including hypertension, facial nerve paralysis, and constipation [63]–[68]. 

Figure 2 shows an example of UPE asymmetry measured using acupuncture points 

on the hand. The left side of the figure shows disease states diagnosed using 

Western medicine. These specific diseases correspond to acupuncture point 

locations at which significant UPE asymmetry was measured. The right side of the 

figure shows the acupuncture point numbers and related meridian channels. These 

meridian channels always correspond with a diagnosis of the specific 

corresponding diseases in Chinese medicine [46], [63]–[65], [67]. Here, UPE may 

serve to bridge the Western medicine and Chinese medicine concepts. In other 

words, because UPE can be used to demonstrate potential deviations from 
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homeostasis in a meridian, and because these deviations can also be related to 

specific Western diseases, UPE provides the opportunity to connect Chinese 

medicine‒based diagnoses with specific Western diseases [61], [69]; in this way, 

the long history of knowledge regarding Chinese medicine can be used to enrich 

Western medicine.  

 
Fig.2: UPE patterns are related with both the Western medical concept of disease and Chinese 
medicine concepts [63]–[65], [67].  

The Western medicine description of diseases corresponding to Chinese acupuncture points and 
specific UPE intensity asymmetries.  

I: Thumb; II: Index finger; III: Middle finger; IV: Ring finger; V: Pinkie 

PC9: Zhongchong acupuncture point on the middle fingertip; LI1: Shangyang acupuncture point on 
the index fingertip; HT9: Shaochong acupuncture point on the pinkie fingertip; SI1: Shaoze 
acupuncture point on the pinkie fingertip; LU9: Taiyuan acupuncture point on the wrist; LU11: 
Shaoshang acupuncture point on the index fingertip. 

Other studies have shown an uneven distribution of UPE intensity at 

acupuncture points at various body locations [50], [51], [70]. Higher intensity UPE 

has been measured at acupuncture points compared with non-acupuncture points; 

this difference was based on measurements of more than 150 acupuncture points 

together with their surrounding non-acupuncture points. Thus, the authors 
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suggested that acupuncture points with higher UPE intensity generally coincide 

with the theoretical meridians [71]–[73]. Interestingly, Guo et al. used chemical 

indicators to obtain fluorescence-based images of visible ROS distributions in an 

animal model and found that the areas with the strongest fluorescence were 

superimposable on human meridian lines [74]. Given that ROS content defines 

UPE intensity in living systems [9], [18], [19], [75], [76], the meridian-like lines of 

ROS activity measured in animals support—albeit indirectly—the correspondence 

between meridians and UPE intensity in humans. 

In Chinese medicine, needles are used to stimulate acupuncture points and to 

trigger a dynamic interaction between the acupuncture points and the connective 

tissue along the meridian [77], [78]. This dynamic interaction was measured in 

several Chinese studies by measuring changes in UPE intensity [79], [80]. After 

placing needles in the acupuncture points of the forearm or calf, UPE intensity will 

change significantly at the acupuncture points of a finger or toe, respectively. In 

addition, UPE asymmetry can also be used to measure the therapeutic effect of 

acupuncture in patients. For example, left-right UPE asymmetry was measured at 

various acupuncture points on both sides of the body and was found to change 

following acupuncture [81]. Some studies also examined the therapeutic effect of 

acupuncture treatment by comparing the concentration changes in ROS-related 

enzymes and endogenous metabolites before and after treatment; these studies have 

been performed in both human subjects and animal models [82]–[86]. In addition, 

adiposity decreased when ROS-related anti-oxidant products (e.g., a recombinant 

superoxide dismutase protein) were applied to specific acupuncture points in obese 

subjects, and this therapeutic effect is similar to the effect of Chinese acupuncture 

[86]. The aforementioned studies of the therapeutic effect of acupuncture based on 

UPE and ROS measurements suggest that linking UPE parameters to changes in 

ROS may provide more opportunities to study the effect of acupuncture at the 

biochemical level.  
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 4. UPE in relation to Chinese syndromes based in studies 

using animal models 

Chinese studies have provided examples for how to study basic Chinese 

diagnostics concepts using UPE measurements, and this has been supported by 

similar UPE studies conducted in both Japan [87] and Korea [37], [88]. The pattern 

of UPE in the human body—and the changes in UPE intensity at specific body 

locations following acupuncture—appear to coincide with the meridian theory of 

Chinese medicine. Thus, the question arises whether UPE can also reflect the 

Chinese diagnostic syndrome theory. 

The term “Chinese syndrome” refers to a combined pattern of physiology, 

psychology, and pathology in relation to a specific condition. The goal of 

syndrome differentiation is to understand illness as a pattern of relationships. 

Typically, several diagnostic procedures are used in order to identify the syndrome; 

these procedures include inspection, listening and smelling, inquiry, and palpation. 

Correctly identifying a Chinese syndrome is the basis of personalized therapies that 

use Chinese herbs, nutritional advice, acupuncture, physical exercise, and 

medication [89], [90]. To obtain a better understanding of Chinese syndromes from 

a modern biological perspective, several Western analytical tools—for example, 

omics-based approaches—have been used to study basic Chinese syndromes in 

patients with chronic diseases such as rheumatoid arthritis and diabetes. Using this 

approach, chemical biomarkers have been identified successfully for subtypes of 

patients with diabetes or rheumatoid arthritis [91], [92].  

Given its potential for measuring overarching regulatory processes, UPE may 

be a useful diagnostic tool for identifying Chinese syndromes. In the Chinese 

literature, UPE has been used in three animal models to study deficiency 

syndromes [10], [93]–[95]. Marked reductions in UPE intensity at the acupuncture 

points located at the governor vessel (gV) and the conception vessel (cV) meridian 

channels were observed in Yang deficiency rats and Blood deficiency rats, 
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respectively; an increase in UPE intensity was measured after stimulating these 

acupuncture points [96]. In another study, a rabbit model of Qi deficiency was 

established by excessive intake of Rhubarb. In this model, a rapid decline in UPE 

intensity, followed by a slow rise in intensity, was measured in the rabbit’s ears, 

reflecting the rabbit’s altered dynamics as it progressed from illness to a healthy 

state [97]. In addition, the UPE level of the rabbit’s organs (e.g., the spleen and 

stomach) decreased considerably, suggesting that UPE can also reveal changes in 

organs induced by treatment with herbs [98]. The Chinese research showed an 

intriguing change in UPE intensity related to the specific dynamics of deficiency 

syndromes. As more UPE parameters are identified in the future, they will likely 

provide more information regarding Chinese syndromes.  

 

 5. Perspective: UPE-guided metabolomics based on Chinese 

medicine‒based diagnostics  

In this review, we discussed the UPE research that has been performed in China 

within the past century with respect to physiological and pathological conditions. 

Importantly, our review revealed that UPE experimental observations are closely 

correlated with Chinese medicine‒based diagnostic concepts. Some researchers 

have hypothesized that this correlation may be due to the concordance between the 

coherence theory of photon emissions in humans and the energetic properties of 

living organisms as developed in Chinese medicine [99], [100].  

Here, we propose that a UPE-guided metabolomics approach based on Chinese 

diagnostic theory may improve the dialogue between Western medicine and 

Chinese medicine. UPE parameters and Chinese diagnostics reflect dynamic 

responses that arise as a result of internal and/or external disturbances in the human 

body at a relatively high organizational level. In addition, because its origin lies in 

oxidative metabolic processes, UPE has been proposed to link to metabolic 
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networks [20]. Various ROS-regulating metabolites have been detected in several 

diseases, including cardiovascular disease, hypertension, rheumatoid arthritis, and 

type 2 diabetes [91], [92]. Several metabolomics platforms—such as platforms 

based on amino acids and oxylipins—have been established, and these platforms 

reflect ROS/oxidative stress products, as well as their biosynthetic pathways [101]–

[103]. Given that ROS play an important role in mechanisms associated with UPE 

and metabolic processes, they might serve as a direct biochemical bridge between 

UPE and metabolomics. 

If UPE parameters can be linked to ROS-related metabolic pathways, the 

Chinese diagnostic principle, which is characterized by UPE, may be related to 

biochemical mechanisms. Thus, UPE might be used to detect early perturbations, 

even before they can be detected using metabolomics. In this way, UPE 

measurements could be used to indicate when metabolomics measurements would 

be warranted. Alternatively, depending on the UPE parameter that is changed, a 

specific metabolomics platform can be used for further analysis. In other words, by 

characterizing Chinese diagnostics using UPE parameters, and by studying the 

relationship between UPE and metabolomics, UPE-guided metabolomics based on 

Chinese diagnostics can be used to improve healthcare. 

 

6. Conclusions 

In this review, we discussed the UPE research linked to Chinese medicine that was 

published in the Chinese literature in the last century. Several experimental 

observations using UPE were found to be highly correlated with Chinese 

medicine‒based diagnostic concepts. A UPE-based metabolomics approach guided 

by the Chinese medicine‒based diagnostic concept may provide a biochemical 

bridge between Western medicine and Chinese medicine. From this perspective, 

three areas of UPE-based research should be explored further: i) the UPE-based 
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methodologies should be developed and optimized; ii) experimental work should 

bridge UPE with Chinese medicine‒based diagnostics and metabolomics; and iii) 

dynamic UPE-based data should be integrated with other system-based diagnostic 

measurements. 

Linking UPE, a dynamic diagnostics tool, with omics measurements in systems 

biology studies will increase our understanding of the diagnosis, prediction, and 

treatment of many diseases. Moreover, combining UPE with metabolomics based 

on ROS production might provide an effective approach for studying the 

relationship between health and disease and will help improve our understanding of 

the healthy state. 
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Abstract 

Ethnopharmacological relevance: The prevalence of type 2 diabetes mellitus 

(T2DM) is increasing rapidly worldwide. Because of the limited success of generic 

interventions, focus has shifted toward personalized strategies, particularly in early 

stages of the disease. Traditional Chinese medicine (TCM) is based on a systems 

view combined with personalized strategies and has improved our knowledge with 

respect to personalized diagnostics. From a systems biology perspective, this 

understanding can be improved in order to yield a biochemical basis for such 

strategies, for example using metabolomics combined with other system-based 

diagnostic methods such as ultra-weak photon emission (UPE). In this respect, 

UPE has been used successfully to support TCM-based subtyping. Combining 

these technologies will further support TCM-based subtyping of diseases such as 

T2DM. 

Aim of the study: The aim of this study was to investigate the feasibility of using 

plasma metabolomics to stratify the following TCM-based subtypes: Qi-Yin 

deficiency, Qi-Yin deficiency with dampness, and Qi-Yin deficiency with 

stagnation. Furthermore, we studied the relationship between plasma metabolomics 

and UPE with respect to TCM-based subtyping in order to obtain biochemical 

information for further interpreting disease subtypes. 

Materials and methods: Plasma samples obtained from 44 subjects were extracted 

and analyzed using both liquid chromatography/tandem mass spectrometry and gas 

chromatography/tandem mass spectrometry. We then profiled various classes of 

metabolites, including amine metabolites, organic acids, sugars, and 

lysophosphatidic acid‒derived metabolites, as well as lipids, including 

sphingomyelin phosphatidylcholine, phosphoethanolamine, lyso-
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phosphatidylcholine, lyso-phosphoethanolamine, , cholesterol esters and 

triglycerides. Multivariate analysis (principal component analysis and orthogonal 

projections to latent structures discriminant analysis) was used to analyze the 

metabolomics profiles and to study TCM-based stratification. Finally, Spearman’s 

rank correlation-based networks were used to correlate the metabolites with the 

UPE parameters. 

Results and discussion: Principal component analysis of plasma metabolites 

revealed differences among the TCM-based pre-T2DM subtypes. Relatively high 

levels of lipids (e.g., triglycerides and cholesterol esters) were important 

discriminators of two of the three subtypes and may be associated with a higher 

risk of cardiovascular disease. Correlation networks revealed that plasma 

metabolomics and UPE yielded similar TCM-based subtypes. Finally, plasma 

metabolomics data indicate that the lipid profile is an essential component captured 

by UPE with respect to stratifying subtypes of T2DM.  

Conclusions: Metabolic differences exist among different TCM-based subtypes of 

pre-T2DM, and profiling plasma metabolites can be used to discriminate among 

these subtypes. Plasma metabolomics provides biochemical insights into system-

based UPE measurements. 

Key words: Type 2 diabetes mellitus, plasma metabolites, disease subtypes, ultra-

weak photon emission, correlation networks
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1. Introduction 

Type 2 diabetes mellitus (T2DM) is a chronic, devastating complex disease. T2DM 

is characterized by increased fasting plasma glucose levels, impaired postprandial 

insulin secretion, decreased insulin sensitivity, and impaired pancreatic beta-cell 

function [1]. In addition, patients with T2DM have increased levels of 

inflammatory factors such as TNFα, IL-6, IL-8, and reactive active species [2], [3], 

altered levels of hormones, peptides, proteins, and enzyme activity, as well as other 

metabolic perturbations [4]. Striking, nearly all of these metabolic changes are 

often present years before the patient presents with clinical symptoms leading to a 

diagnosis of T2DM [5], [6]. 

Based on epidemiology studies, an estimated 285 million individuals are 

affected by diabetes worldwide, and this number continues to increase [7]. 

Furthermore, this number is likely an underestimate, as many individuals are not 

diagnosed in an early stage due to insufficient knowledge regarding the multi-

symptom relationships at a systems level [8], [9]. Receiving a diagnosis only in a 

later stage of diabetes—together with the severe complications associated with 

disease progression—can lead to high costs and can reduce the efficacy of 

treatment [10]. For example, long-term dysglycemia increases the risk of severe 

complications such as hypertension, blindness, renal failure, and cardiovascular 

disease [11], [12]. These complications reduce quality of life and are a major cause 

of morbidity, hospitalization, and mortality among patients with diabetes. Current 

diagnostic tests are based primarily on a single screening tool such as the oral 

glucose tolerance test or measuring fasting plasma glucose. Understanding the 

symptoms that develop in an early stage of the disease and developing indicators of 

disease progression would likely contribute to improving both prevention and 

treatment strategies, including strategies based on changes in lifestyle. Moreover, 

treatments based on generic observations—which have led to the notion of one 

drug-one target-one disease (or one-size-fits-all)—are extremely limited, 
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particularly in early stages of the disease. Therefore, system-based approaches are 

needed in order to achieve personalized approaches. 

Integrative holistic forms of medicine such as traditional Chinese medicine 

(TCM) provide descriptions of disease syndromes and subtypes at a systems level, 

including descriptions that can be used to diagnose early syndromes of chronic 

diseases. Such descriptions can be used as a guide or reference in order to achieve 

personalized medicine. In this respect, TCM has provided descriptions of pre-

T2DM syndromes, indicating its potential for helping develop personalized 

medicine [13], [14]. To bridge TCM with Western medicine, evidence-based 

scientific data is needed at the biochemical level. Thus, modern systems biology 

research—including metabolomics—is a promising approach for exploring the 

biochemistry underlying TCM subtyping. 

Metabolic disorders are often present for years before the appearance of clinical 

disease, and metabolomics is a widely used technique for predicting and 

diagnosing disease [15]. Metabolomics provides a comprehensive profile of small 

molecular metabolites in biological systems and can be used as a readout of the 

organism’s physiological status [16]. In principle, this approach is well suited to 

studying complex TCM-based diagnostics. Metabolomics is generally performed 

on fluids such as blood, urine, and cerebrospinal fluid. Urine is commonly used for 

metabolomics, as it easily obtained, contains information regarding the excretion of 

products, and can reflect how metabolic processes change during the disease 

process. Several studies have used urine metabolomics to explore TCM-based 

diagnostics and T2DM syndrome subtypes [17], [18]. In addition to urine, blood 

also contains information regarding the body’s regulatory status and dynamics. 

Thus, performing metabolomics on different fluids can provide complementary 

information, thereby improving our understanding of T2DM. An explorative study 

at TNO (https://clinicaltrials.gov/ct2/show /NCT00469287) was designed in which 

44 pre-T2DM subjects received a diagnosis by a panel of three TCM-trained 
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physicians [17], and we explored these TCM-based subtypes using plasma 

metabolomics. 

Recently, a sensitive, non-invasive technique has been proposed for supporting 

TCM-based diagnostics [19]. This technique, called ultra-weak photon emission 

(UPE), is used to measure spontaneous photon emissions from the skin’s surface 

[20]. Because UPE reflects the body’s physiological and pathological status, it 

represents a promising tool for use in clinical diagnostics at a systems level [21], 

[22]. The underlying biochemistry of UPE is related to metabolism and is 

correlated with reactive oxygen species in oxidative metabolic processes [23]–[26]. 

Although the use of UPE properties for characterizing TCM-based diagnostics has 

been summarized previously [19], [20], [27], further understanding of the 

molecular basis of UPE is needed. Therefore, combining metabolomics with TCM-

based diagnostics can be used to investigate the biological meaning of UPE and to 

explore the added value of each technology. Importantly, UPE was used previously 

to subtype the same cohort of 44 subjects with pre-T2DM [27], thereby enabling us 

to study the correlation between UPE and plasma metabolomics.  
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2. Materials and Methods 

2.1 Inclusion criteria for the selection of pre-diabetic subjects and the diagnosis 

of syndrome subtypes based on TCM 

The recruitment of subjects and the diagnosis of pre-T2DM subtypes by TCM-

trained physicians were described previously [17]. In brief, clinical parameters 

were obtained from 44 male Dutch subjects who met the following inclusion 

criteria: 30-70 years of age, body mass index of 26-35 kg/m2, and a fasting glucose 

level of 6.1-6.9 mmol/L. No other clinical abnormalities or evidence of diabetic 

complications were detected. The subjects were then diagnosed separately in a 

blinded study by three TCM-certified physicians with at least five years of training 

in TCM and at least ten years of clinical experience. Three categories were based 

on TCM-based diagnostic terms, and 85% consensus was reached among the three 

CM physicians with respect to diagnosing the subjects. These three categories are 

defined as follows: QYD (Qi-Yin deficiency, n=15 subjects), QYD_Damp (Qi-Yin 

deficiency with dampness, n=20 subjects), and QYD_Stag (Qi-Yin deficiency with 

stagnation, n=9 subjects). Blood samples were collected after overnight fasting and 

used for the metabolomics study. In addition, UPE was measured from the palmar 

and dorsal surfaces of both hands.   

 

2.2 Ethics statement 

This explorative study was designed and conducted by TNO (Zeist, the 

Netherlands; https://clinicaltrials.gov/ct2/show/NCT00469287) and was approved 

by the Medical Ethics Committee of Tilburg (METOPP).  

 

2.3 Data acquisition 

2.3.1 Plasma metabolomics profiling 
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Metabolic profiles were measured by the Netherlands Organization for Applied 

Scientific Research (TNO, Zeist, the Netherlands). Heparinized blood samples 

were collected, and plasma was obtained by centrifugation (2000×g at 4ºC for 15 

min). The plasma samples were aliquoted and stored at -20ºC prior to metabolite 

extraction and mass spectrometry. 

Using a gas chromatography/mass spectrometry (GC-MS) platform, a large 

variety of metabolic classes were measured, including amine metabolites, organic 

acids, sugars, and lysophosphatidic acid (LPA)-derived metabolites. The details of 

the extraction and the GC-MS analysis protocol have been published previously 

[28]. In brief, 100-μl aliquots of plasma were spiked with a mixture of internal 

standards (ISTDs) and deproteinized with methanol. After centrifugation, the 

supernatant was transferred to a new sample vial for evaporation and two-step 

derivatization. The derivatized extracts were then analyzed using an Agilent 6890 

gas chromatograph on a DB5-MS capillary column (30 m × 250 µm i.d., 0.25-µm 

film thickness; J&W Scientific, Folsom, CA) coupled to an Agilent 5973 mass 

selective detector; helium was used as the carrier gas at a flow rate of 1.7 ml/min 

for temperature-programmed gradient chromatographic separation. The raw data 

were pre-processed and exported using ChemStation G1701CA software (version 

D.01.02, Agilent), providing response ratios to the appropriate internal ISTD for 

each metabolite; these ratios were used for further statistical analysis. 

For liquid chromatography/tandem mass spectrometry (LC-MS) lipid 

measurements, seven classes of lipids, including both polar lipids—such as 

phosphatidylcholine, phosphoethanolamine, lyso-phosphatidylcholine, lyso-

phosphoethanolamine, and sphingomyelin —and non-polar lipids—such as 

cholesterol esters and triglycerides—were investigated using targeted analysis as 

reported previously by van Wietmarschen et al. [29] and Draisma et al. [30]. In 

brief, 10-µl aliquots of plasma were deproteinized by the addition of isopropanol 

containing a mixture of ISTDs. The lipids were separated and analyzed using a 

TSQ Quantum Discovery Triple Quad mass spectrometer coupled to a Surveyor 
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MS HPLC system on an Alltech Prosphere C4 300Å column (150 x 3.2 mm, 

particle size of 5 μm; Alltech, Lexington, KY) in combination with a Symmetry 

300 C4 guard column (2.1 × 10 mm, particle size of 3.5 μm; Waters, Milford, MA) 

in positive ionization mode. The peak areas of the target lipids were integrated, and 

raw data were exported using LCQuan software (version 2; Thermo Fisher 

Scientific, Waltham, MA), yielding response ratios to the appropriate internal 

ISTD for each metabolite; these ratios were used for further statistical analysis. 

During the GC-MS and LC-MS experiments, quality control (QC) samples were 

prepared by pooling equal amounts of plasma from each sample, then dividing the 

pooled samples into aliquots; these QC samples were used to check the 

performance of the LC-MS platform as well as to identify temporal trends in the 

acquired data. The relative standard deviation (RSD) of each target peak in the QC 

samples was used to confirm the quality of the data acquired from each analytical 

platform.  

2.3.2 UPE measurements 

UPE signals were measured from the same cohort of 44 subjects. A photomultiplier 

system (provided by Meluna Research B.V., Geldermalsen, the Netherland) with 

two detecting heads located at the top of a dark chamber was used to measure UPE. 

Each detecting head contains a 9558QB photomultiplier tube within a spectral 

sensitivity range of 190-650 nm (Electron Tubes Enterprises Ltd., Ruislip, UK) and 

an electronically controlled shutter. The dark chamber was maintained at 20±1.0°C. 

The settings used to measure UPE have been described previously [31], [32]. All 

measurements were controlled automatically via computer-driven software. UPE 

signals were measured at the following four hand surfaces: left dorsal (LD), right 

dorsal (RD), left palm (LP), and right palm (RP). 

 

2.4 Data preprocessing and statistical analysis 
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2.4.1 Metabolomics data processing and analysis 

Before performing a statistical analysis on the metabolomics data, the log-

transformed dataset was processed using various scaling options (i.e., autoscaling, 

range scaling, and pareto-scaling) using the online software package 

MetaboAnalyst 3.0 (http://www.metaboanalyst.ca/) [33]. The pareto-scaling 

approach (mean-centered and scaling by the square root of the standard deviation 

of each variable) was chosen because it provided the best grouping performance, 

consistently explaining the largest variabilities when considering the same number 

of principal components (both 2D and 3D) [34]–[36]. Preliminary selection of 

variables prior to multivariate analysis is needed in order to: i) limit the dataset of 

variables for reliably separating the sample groups; ii) remove irrelevant and/or 

confounding variables; and iii) decide which variables to retain for the multivariate 

analysis; however, this selection is not needed in order to identify potential 

biomarkers, which has been applied in metabolic profiling studies [37], using p-

values obtained from a one-way analysis of variance (ANOVA) (p<0.1) in GC-MS 

and LC-MS. Multiple comparisons, including principal component analysis (PCA) 

and orthogonal projections to latent structures discriminant analysis (OPLS-DA), 

were conducted using MetaboAnalyst 3.0, which provides standard validation 

information, including cross-validation and a permutation test to prevent over-fit of 

the models to the data [33]. 

2.4.2 Acquisition of UPE data and derived parameters 

From a 50-ms bin, the following ten UPE properties were calculated from all four 

hand surfaces: strength, FF0, FF1, FF2, alpha, gamma, theta, phi, SSI, and SSR 

[31], [32], [38]. Thus, a total of 40 UPE parameters were obtained from each 

subject.  

2.4.3 Correlation analysis 

The statistics software package R (version 3.0.3) was used to calculate Spearman’s 

rank correlation coefficient in order to examine the relationship between the 
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metabolites and UPE parameters. A graphical overview of the correlation networks 

was created using CytoScape version 3.3.0 (http://www.cytoscape.org) with the 

MetScape plugin [39], [40]. Positive and negative correlations are indicated by 

positive and negative values of r, respectively. 
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3. Results and Discussion 

3.1 Subtyping based on plasma metabolomics  

TCM-based diagnostics is based on several standard diagnostic steps, including 

inspection, listening and smelling, inquiry and question, and palpation. The 

outcomes from these steps are combined to create an individual profile, which is 

used to establish a diagnosis. In this study, 26 variables were determined using 

TCM-based diagnostics [17]. From this exploratory study, plasma samples were 

used to obtain evidence-based information that was used to help subtype the pre-

T2DM subjects.  

We used two validated metabolomics methods based on GC-MS and LC-MS. 

GC-MS yielded 147 untargeted metabolites, and LC-MS yielded 110 targeted 

metabolites; all of these metabolites were included in the total metabolomics 

profile. The metabolites detected by GC-MS included various metabolic classes, 

but primarily included amine metabolites, organic acids, sugars, and fatty acids 

such as LPA and LPA-derived metabolites. The metabolites detected by LC-MS 

included seven classes of lipids, including both polar lipids such as 

phosphatidylcholine, phosphoethanolamine, lyso-phosphatidylcholine, lyso-

phosphoethanolamine, and sphingomyelin and non-polar lipids such as cholesterol 

esters (ChEs) and triglycerides (TGs). Given the relatively small number of 

subjects (44) compared to the large number of total variables (257), a first step in 

selecting variables was required before proceeding with a multivariate analysis; 

this step allowed us to optimize the variable/object ratio for discriminant type 

approaches, and it allowed us to remove potential irrelevant and/or confounding 

variables [37]. A total of 32 preliminary variables were selected based on an 

ANOVA analysis (p<0.1); these variables included 14 plasma metabolites 

identified by GC-MS and 17 plasma lipids identified by LC-MS. These variables 

were then used for subsequent multivariate analyses, including PCA, Partial least 

squares discriminant analysis (PLSDA), and OPLS-DA (see S-table 1 and S-fig. 1).  
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The first step in our analysis focused on investigating whether plasma 

metabolomics could be used to discriminate between the three TCM-based 

syndrome subtypes of pre-T2DM (i.e., QYD vs. QYD_Damp, QYD vs. QYD_Stag, 

and QYD_Damp vs. QYD_Stag). A 3D PCA plot was used to visualize the natural 

distribution of the three groups in 3-dimensional space [37], [41]. The first three 

principal components analyzed described 66.5% of the total variance in the plasma 

metabolome (Fig. 1). We found no large distance between the three subtypes 

reflected by PCA, which is not surprising given that their TCM-based diagnostic 

patterns are all-linked (interrelated) and TCM-based syndromes subtypes are not 

independent but with dynamic changes towards different direction [13], [14]. 

However, we did observe tendency of clusters within the subtypes, with minor 

overlap in the PCA analysis.  

 

Fig. 1: 3D PCA score plot based on plasma metabolite profiling, acquired and integrated from 
GC-MS and LC-MS, for visualizing clusters of the three pre-T2DM subtypes (QYD, 
QYD_Damp and QYD_Stag). 
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Next, we used supervised models, including LDA, PLSDA, and OPLS-DA, in 

order to identify relevant plasma metabolites (S-fig. 2). The OPLS-DA model 

provided the highest R2 and Q2 values and was therefore used to identify the most 

relevant variables based on score plots [42][43]. Furthermore, permutation tests 

with 1000 iterations (p<0.05) showed a good performance of the model. Fig. 2 

shows the OPLS-DA score plots for the first two principal components between 

each pair of subtypes (see also S-fig. 3).  

 

Fig. 2: OPLS-DA score plots of plasma metabolite profilling (integrated from LC-MS and GC-
MS) for comparing differences between each pair of subtypes. a) QYD vs. QYD_Damp; b) QYD 
vs. QYD_Stag; and c) QYD_Damp vs. QYD_Stag. 

Table 1 summarizes the relevant metabolites (defined as the combination of 

covariance |p[1]|>0.7 and correlation coefficient |p(corr)|>0.3[43]) for each pair of 

groups, together with their contribution between each pair of subtypes (QYD vs. 

QYD_Damp, QYD vs. QYD_Stag, and QYD_Stag vs. QYD_Damp). As shown in 

Table 1, 15 of the 18 metabolites that contributed to the differentiation between 

QYD and QYD_Damp are long-chain non-polar lipids (11 TGs and 4 ChEs); these 

metabolites were higher in the QYD_Damp group than in the QYD group. 

Fourteen of these same metabolites (10 TGs and 4 ChEs) were also higher in the 

QYD_Stag group than in the QYD group. Thus, we conclude that an increase in 

long-chain non-polar lipids is associated with the QYD_Damp and QYD_Stag 

groups.  
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The physiological mechanisms that underlie the early phases of T2DM have 

been linked to lifestyle issues such as the consumption of a diet high in fat and 

calories [44]–[47], which is similar to chronic fatigue syndrome and/or mild 

inflammatory status [17]. Triglycerides are the precursors of phospholipids, which 

are the building blocks of cell membranes and play an important role in energy 

homeostasis. Cholesterol esters are a stored form of cholesterol that is normally 

exported as a high-density lipoprotein (HDL) and returned to the liver. High levels 

of cholesterol and triglycerides (hypercholesterolemia and hypertriglyceridemia, 

respectively) are associated with fat accumulation, atherosclerosis, and 

cardiovascular disease [48], [49]. Therefore, patients in the pre-T2DM subgroups 

QYD_Damp and QYD_Stag may have an increased risk of developing 

atherosclerosis and/or cardiovascular disease in a later disease stage. 

Table 1: List of relevant metabolites identified by OPLS-DA 

QYD_Damp. vs. QYD QYD_Stag. vs. QYD QYD_Stag. vs. QYD_Damp. 

Metabolite Change Metabolite Change Metabolite Change 

C52_5_TG ↑ C22_5_ChE ↑ Beta-Alanine ↓ 

C54_6_TG ↑ C54_7_TG ↑ 6926ukx10* ↓ 

C54_5_TG ↑ C54_6_TG ↑ 1-Methylhistidine % 10227\01.03 uk x 45* ↓ 

C54_7_TG ↑ C58_10_TG ↑ 31944uk05* ↓ 

C56_8_TG ↑ C52_6_TG ↑ 
  

C56_7_TG ↑ C56_8_TG ↑ 
  

C56_9_TG ↑ C18_3_ChE ↑ 
  

C58_8_TG ↑ C52_5_TG ↑ 
  

1-Methylhistidine % 10227\01.03 uk x 45* ↑ C22_6_ChE ↑ 
  

C58_9_TG ↑ C56_7_TG ↑ 
  

C52_6_TG ↑ C56_9_TG ↑ 
  

C18_3_ChE ↑ C20_3_ChE ↑ 
  

C16_0_ChE ↑ C54_5_TG ↑ 
  

C22_6_ChE ↑ C58_9_TG ↑ 
  

C20_3_ChE ↑ 31944uk05 ↓ 
  

Creatinine ↑ 
    

1-Palmitoyl-L-alpha-lysophosphatidic acid ↓ 
    

1-Stearoyl-sn-glycero-3-phosphocholine ↓ 
    

↑, increase; ↓, decrease.  
*, Structural unidentified metabolites in GC-MS untargeted measurement. 
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Although TGs and ChEs were increased in both the QYD_Damp and 

QYD_Stag groups relative to the QYD group, these two groups had several 

metabolic differences (Table 1). The relatively lower levels of amine metabolites in 

the QYD_Stag group (and/or the relatively higher levels in the QYD_Damp group) 

may suggest that the difference between the QYD_Stag and QYD_Damp subtypes 

is based primarily in differences in the TCA cycle and/or muscle catabolism 

processes [50]. In summary, 23 metabolites contribute to the stratification of pre-

T2DM subtypes. Thus, different subtypes of pre-T2DM may be discriminated 

based on differences in plasma metabolomics, including plasma lipids and amine 

metabolites.  

Previously, Wei, et al. reported that urine metabolomics can be used to reflect 

changes in carbohydrate metabolism and renal function in patients with QYD_Stag 

syndrome; specifically, two of the three TCM-based subtypes could be stratified 

[17]. In contrast, plasma metabolomics provides stratification among the three 

subgroups, which is likely due to the use of a lipidomics platform, which measures 

a class of compounds that cannot be measured using urine metabolomics. This 

finding suggests that measuring lipid metabolomics is important for accurately 

subtyping pre-T2DM. 

 

3.2 Correlation between metabolomics and UPE  

We also measured UPE in our cohort of subjects with pre-T2DM. Stratification of 

the three TCM-based syndrome subtypes using 16 UPE parameters has been 

studied previously [27]. Given that both plasma metabolomics and UPE can stratify 

subjects into pre-T2DM subgroups, plasma metabolomics data may be used to 

obtain biochemical insight into UPE [51]–[53]. To explore the relationship 

between these two approaches, we used Spearman’s rank correlation coefficient to 

establish a correlation-based metabolite-to-UPE network. Such a correlation 
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network may provide additional information that may further stratify disease 

subtypes and may provide a biochemical interpretation of UPE parameters. 

We generated correlation networks between the 23 metabolites and 16 UPE 

parameters that contributed to the stratification of subtypes in order to visualize the 

most relevant correlations related to the three subtypes (Figure 3). These networks 

revealed clearly distinct distributions of UPE-to-metabolite correlations between 

the three subtypes. Specifically, the QYD_Damp subtype contained relatively few 

correlations, whereas the QYD and QYD_Stag subtypes contained relatively more 

positive and negative correlations, respectively. Moreover, although clear links are 

visible between UPE parameters and specific classes of metabolites (e.g., TGs and 

ChEs), the correlations differ among the subtypes. The differences between the 

three networks provide a clear distinction between the subgroups and might serve 

as an additional diagnostic tool.  
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4. Conclusions and perspectives 

Here, we report that plasma metabolomics can be used to stratify the three TCM-

based subtypes of early-stage type 2 diabetes, providing better stratification than 

urine metabolomics. Specifically, increased levels of plasma lipids such as TGs 

and ChEs may indicate a relatively higher risk of developing cardiovascular 

disease among patients with specific subtypes. In addition, we used UPE as a non-

invasive method for subtyping pre-T2DM, and the UPE parameters were correlated 

with specific plasma metabolites—primarily lipid metabolites—and these 

correlations differed among the three subtypes. Thus, combining UPE and plasma 

metabolomics provides additional insight into the diagnosis of disease and the 

underlying biochemistry of UPE from a systems biology perspective.  

The ability to identify the pre-T2DM syndrome subtype based on TCM is 

essential for achieving a personalized treatment plan, thereby significantly 

improving patient care. These results provide a window of opportunity for 

combining metabolomics with UPE in order to achieve personalized medicine and 

improve the early diagnosis of disease. Nevertheless, metabolomics platforms do 

not necessarily cover the entire metabolome, and choices must be made based on 

the metabolomics platforms that are currently available. Given the difficulties 

associated with obtaining comprehensive information regarding the dynamic 

changes reflected by measuring metabolomics, linking metabolomics to UPE under 

the guidance of TCM-based diagnostics is particularly attractive, promoting the 

early diagnosis of T2DM. Additional research is needed in order to expand the 

correlation networks between metabolites and UPE parameters. In addition, current 

approaches for stratifying T2DM are based on various criteria, which must be 

consistent for further clinical diagnosis. Therefore, additional research is needed in 

order to understand TCM-based concepts such as disease syndromes and subtypes. 
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Supplementary information 

S-table 1. Preliminary variables in the MS data identified by ANOVA (p<0.1) 

Compounds p-value Post-hoc test(Fisher's LSD) between groups  

Metabolites in GC-MS    

Citric acid 0.018 QYD - QYD_Damp; QYD_Damp - QYD_Stag 

Creatinine 0.019 QYD – QYD_Damp; QYD_Damp - QYD_Stag 

L-Threonine 0.028 QYD - QYD_Damp; QYD - QYD_Stag 

Beta-Alanine 0.039 QYD_Damp - QYD_Stag 

D-Ribulose or D-Xylulose 0.049 QYD – QYD_Damp 

31944 uk 05 0.052 QYD - QYD_Stag; QYD_Damp - QYD_Stag 

1-Stearoyl-sn-glycero-3-phosphocholine 0.054 QYD - QYD_Damp; QYD - QYD_Stag 

1-Methylhistidine % 10227\01.03 uk x 45 0.054 QYD_Damp - QYD_Stag 

VP9pl uk17 0.054 QYD – QYD_Damp; QYD – QYD_Stag 

unknown 39d 0.06 QYD_Damp - QYD_Stag 

Myo-inositol-1,2-cyclicphosphate % unknown 0.065 QYD_Damp- QYD_Stag 

6926 uk x 10 0.068 QYD_Damp - QYD_Stag 

31944 uk 04 0.073 QYD_Damp- QYD_Stag 

1-Palmitoyl-L-alpha-lysophosphatidic acid 0.091 QYD - QYD_Damp; QYD - QYD_Stag 

   

Metabolites in LC-MS   

C56_9_TG 0.005 QYD - QYD_Damp; QYD - QYD_Stag 

C54_6_TG 0.024 QYD - QYD_Damp; QYD - QYD_Stag 

C58_10_TG 0.027 QYD - QYD_Damp; QYD - QYD_Stag 

C54_5_TG 0.031 QYD - QYD_Damp; QYD - QYD_Stag 

C54_7_TG 0.035 QYD - QYD_Damp; QYD - QYD_Stag 

C52_5_TG 0.044 QYD - QYD_Damp; QYD - QYD_Stag 

C18_3_ChE 0.050 QYD - QYD_Damp; QYD - QYD_Stag 

C20_3_ChE 0.056 QYD - QYD_Damp; QYD - QYD_Stag 

C58_9_TG 0.056 QYD - QYD_Damp 

C52_6_TG 0.061 QYD - QYD_Damp; QYD - QYD_Stag 

C22_6_ChE 0.070 QYD - QYD_Damp; QYD - QYD_Stag 

C58_8_TG 0.081 QYD - QYD_Damp 

C38_3_PC 0.085 QYD - QYD_Damp; QYD - QYD_Stag 

C16_0_ChE 0.085 QYD - QYD_Damp; QYD - QYD_Stag 

C56_7_TG 0.086 QYD - QYD_Damp; QYD - QYD_Stag 

C40_5_PC 0.091 QYD - QYD_Stag 

C56_8_TG 0.092 QYD - QYD_Damp 



Traditional Chinese medicine-based subtyping of early-stage type 2 diabetes  

149 

Citric acid

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

*
*

Creatinine

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0
*

*

L-Threonine

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5 *
*

Beta-Alanine

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5 *

D-Ribulose -r D-Xylulose

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0 *

31944 uk 05

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-2.0

-1.0

0.0

1.0

2.0

3.0

1-Stearoyl-sn-glycero-3-phosphocholine

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

1-Methylhistidine % 10227\01.03 uk x 45

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

VP9pl uk 17

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Unknown 39d

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

Myo-inositol-1,2-cyclicphosphate % unknown

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

6926 uk x 10

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

31944 uk 04

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

1-Palmitoyl-L-alpha-lysophosphatidic acid

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

C56:9 TG

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0 *
*

C54:6 TG

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

*
*

C58:10 TG

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0 *
*

C54:5 TG

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0
*

*

C54:7 TG

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-3.0

-2.0

-1.0

0.0

1.0

2.0
*

*

C52:5 TG

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0
*

*

C18:3 ChE

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
*

*

C20:3 ChE

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

C58:9 TG

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

C52:6 TG

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

C22:6 ChE

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

C58:8 TG

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

C38:3 PC

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

C16:0 ChE

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

C56:7 TG

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

C40:5 PC

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

C56:8 TG

Q
Y

D

Q
Y

D
_S

Q
Y

D
_D

-3

-2

-1

0

1

2

 
S-fig. 1: Box plots summarizing the 32 preliminary variables (plasma metabolites detected by 
LC-MS and GC-MS, identified by ANOVA (p<0.1)) in pre-T2DM subjects. Individual metabolite 
(peak area ratio between target metabolites and relevant internal standard) for the three groups are 
illustrated using boxplots after logarithmic transformation and pareto-scaling for data normal 
distribution. The metabolites which differed significantly based on ANOVA (p<0.05) were then 
followed by a post-hoc analysis (Fisher’s least significant difference method) to show between which 
two groups the differences are significant (*).  
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S-fig. 2: Performance comparison between three supervised multivariate analysis models (LDA, 
PLSDA, and OPLS-DA), based on metabolite profiling in plasma of pre-T2DM subjects 
detected and integrated by LC-MS and GC-MS. A Permutation test with 1000 iterations (p<0.05) 
as well as the R2 and Q2 showed that the OPLS-DA model performed best.  
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1. Summary and Conclusions 

1. 1 Systems-based evaluation of chronic disease 

Chronic diseases such as rheumatoid arthritis (RA) and type 2 diabetes mellitus 

(T2DM) involve complex processes and pathologies that result in multiple 

interactions within the body, including inflammatory symptoms, complications, an 

increased risk of morbidity, loss of mobility, and mortality. Under the chronic 

disease state, complex responses often lead to unpredictable, subtle perturbations 

and dynamic changes. A systems biology‒based analytical approach that integrates 

comprehensive data may provide unique insight into the underlying 

pathophysiological mechanisms. Rather than looking for a single target to 

characterize chronic disease, the studies in this thesis investigated systematic 

processes relevant to chronic disease using systems level analyses. Specifically, 

metabolomics was used to measure a large set of small molecule metabolites in 

combination with measuring spontaneous ultra-weak photon emission (UPE). 

In research, animal models of chronic disease are widely used due to their many 

similarities with human patients. In Chapter 2 and Chapter 3, metabolomics, 

which provides a comprehensive measure of small molecule metabolites as a 

readout of physiological status, was applied to mice with collagen-induced arthritis 

(CIA)—a commonly used mouse model of RA—to evaluate interactions at the 

metabolic level under chronic disease conditions. Oxylipins are bioactive lipid 

mediators synthesized from polyunsaturated fatty acids. Because of their important 

role in inflammatory processes, we measured plasma oxylipin levels in CIA mice 

in order to gain insight into inflammation- and ROS-related metabolites (Chapter 

2). Compared to control mice, we found dysregulated oxylipins in CIA mice, 

reflecting inflammation and increased ROS levels. In addition, we found that 

collagen-induced arthritis may be associated with a dysregulation of apoptosis, 

perhaps due to activated NF-κB as a result of reduced levels of PPAR-γ ligands. 

Given that free amino acids—and their derivative biogenic amines—play essential 
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roles in both energy production and protein synthesis/degradation, we measured 

plasma levels of amino acid‒based metabolites in CIA mice in order to gain a 

different perspective regarding the levels of energetic metabolites (Chapter 3). 

Our finding of reduced levels of free amino acids together with their biogenic 

metabolites suggests a link between arthritis and muscle wasting/energy 

expenditure.  

From these studies, we found that both oxylipins and amine metabolites 

reflecting arthritis but from different perspectives with respect to interpreting 

putative pathophysiological mechanisms. Systems biology‒based metabolomics 

can provide new ways of improving the diagnosis of chronic disease and can 

provide insight into of the underlying pathophysiological mechanisms.  

Correlation network‒based analyses provide the opportunity to integrate data 

obtained from different technical platforms, thereby providing a correlation-based 

understanding of systemic interactions and regulation[1]. Interaction networks 

based on correlation analyses can be visualized and analyzed using software such 

as Cytoscape[2]. UPE is a non-invasive method for measuring photons emitted 

from the surface of body and may be correlated with oxidative metabolic 

processes[3], [4]. UPE intensity was increased in CIA mice[5]. In Chapter 4, we 

performed a correlation networks‒based study to explore the relationship between 

metabolic processes and UPE by integrating the metabolic data described in 

Chapter 2 and Chapter 3 with UPE data measured in the same group of mice. 

This combination study yielded valuable information and provided insight into the 

disease process from a systems perspective. Our results revealed that the increase 

in UPE with arthritis is associated with a specific metabolites processes (primarily 

lipid oxidation, inflammatory metabolites and/or ROS-mediated metabolic 

processes). These results provide a window of knowledge into in our attempt to 

integrate different datasets and analyze complex interactions in RA, and these 

results provide further evidence to support the relationship between metabolic 

processes and UPE. 



Summary, conclusions and perspectives 

157 

1.2 Personalized medicine-based phenotyping using TCM-based principles 

Epidemiology studies have shown a rapid increase in the prevalence of clinic 

diseases, as well as a large undiagnosed patient population due primarily to mild 

clinical symptoms. Indeed, mild physiological perturbations can be present for 

years before the appearance of severe symptoms. The ability to predict disease 

early and to dynamically observe chronic disease remain challenging and if solved 

can—to a certain extent—prevent the development of irreversible lesions. In 

addition, if left undiagnosed long-term, chronic disease can develop in different 

directions, producing a wide range of phenotypes. Moreover, treatments based on 

generic observations (i.e., the “one drug-one target-one disease” or “one-size-fits-

all” approach) are extremely limited, particularly in the early phases of a disease in 

which a personalized, systems-based approach is needed. Developing a 

personalized approach based on systems biology will reveal the unique clinical 

characteristics in individual patients and may shed light on the complexity and 

variability of chronic disease.  

Traditional Chinese medicine (TCM) is based on a systems view combined with 

personalized strategies to provide descriptions of disease syndromes and subtypes 

as a guide to diagnose early syndromes of chronic diseases, an approach that has 

been shown to improve knowledge regarding personalized diagnostics. Based on 

TCM-based diagnostics, metabolomics may provide evidence-based biological 

mechanisms, thereby leading to personalized medicine and establishing a bridge 

between TCM and Western medicine. UPE reflects both the physiological and 

pathological status and is a potential tool for clinical diagnostics at the systems 

level[6] [7]; moreover, TCM-based diagnostics, metabolomics, and UPE each 

contributes to personalized medicine for treating chronic diseases. Integrating UPE 

with metabolomics under the guide of TCM-based diagnostics may create new 

opportunities for personalized medicine, systems-based diagnostics, and systems-

based interventions for treating chronic disease (reviewed in Chapter 5). Based on 

the ideas described in Chapter 5, we performed an explorative study by combining 
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metabolomics and UPE with TCM-based diagnostics (Chapter 6). We examined 

the relationship between metabolomics and TCM-guided subtypes of early-stage 

T2DM (“pre-T2DM”), and we identified key metabolites—primarily plasma 

lipids—that contribute to phenotypic subtypes. In addition, these key plasma lipids 

were correlated with the UPE parameters that were used to stratify the same cohort 

of pre-T2DM diabetic subjects, and these correlations differed among subtypes. 

These differences between subgroups may be used to establish correlation 

networks for improved diagnostics.  

 

2. Perspectives 

Analyses at the systems biology level offer many opportunities for understanding 

chronic disease from various perspectives by integrating various sets of 

information. This systems approach requires collaboration among scientists from 

various fields, including medicine, analytical biology, chemical biology, and 

bioinformatics. Metabolomics is a systems-based approach for studying 

comprehensive pathophysiological mechanisms in chronic disease. However, 

before conducting a metabolomics study, one must select the most suitable 

metabolomics platform. Future studies require additional metabolomics platforms 

in order to supplement biochemical information and to provide a link to other 

techniques, including UPE. 

In this thesis, UPE was measured at specific positions on the body. Measuring a 

larger number of anatomical positions may provide additional information 

regarding disease, thus helping improve our understanding of personalized 

medicine. Here, we visualized the relationship between metabolomics and UPE 

using the statistic network tool Cytoscape (www.cytoscape.org) and based on our 

Spearman’s rank correlation analysis presents in Chapter 4 and Chapter 6. In the 
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future, correlation-based networks may provide more comprehensive data for 

exploring interactions under a variety of disease conditions. 

Animal models have many advantages for studying chronic disease. Specifically, 

the researcher can easily control and/or exclude potential confounding factors that 

may affect the results, including age, gender, genetic background, duration of 

disease, and drug exposure. However, although animal models are qualitatively 

similar to chronic disease in patients, metabolic differences clearly exist among 

patients, due to genetic differences and other factors; therefore, any biological 

mechanisms identified in animal models must be carefully compared to patients 

and validated in clinical studies involving patients.  

Our study in human subjects (Chapter 6) illustrates the feasibility of stratifying 

patients using metabolomics guided by TCM-based diagnostics and provides a 

molecular correlate to UPE, thus illustrating that both metabolomics and UPE can 

be used to identify patient subtypes of pre-T2DM. Importantly, combining 

metabolomics and UPE measurements provides evidence-based data to support 

TCM-based diagnostics. Nevertheless, additional study is clearly needed in order to 

expand our knowledge and to achieve a systems view-based approach to 

personalized diagnostics. 
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SAMENVATTING 

Chronische ziekten, zoals reumatoïde artritis (RA) en type 2 Diabetes (T2DM), zijn 

gerelateerd aan complexe pathologische processen en  met mogelijk ernstige 

consequenties zoals inflammatoire symptomen, een verhoogd risico op ziekte, 

verlies van mobiliteit en sterfte. In een chronische ziektetoestand ontstaan vaak 

complexe biologische responsen, die leiden tot onvoorspelbare subtiele 

veranderingen in dynamische processen. Een systeembiologische analytische 

benadering, die omvangrijke datasets integreert, kan wellicht een uniek inzicht 

geven in de onderliggende pathofysiologische processen. In plaats van te zoeken 

naar één enkele variabele voor de beschrijving van een ziekteproces, richt de 

research in dit proefschrift zich op systemische beschrijving van chronische ziekten 

door gebruik te maken van methoden die systemische relevante gegevens 

opleveren. In het bijzonder wordt metabolomics gebruikt om grote datasets te 

genereren rond de concentratie van kleine metabolieten in combinatie met ultra-

lage fotonemissie (Ultra-low Photon Emission, UPE) om een systeemperspectief te 

verkrijgen. 

Gezien de relatief grote overeenkomsten met de humane situatie is het 

gebruikelijk om in research diermodellen voor chronische ziekten te gebruiken. In 

Hoofdstuk 2 en Hoofdstuk 3 is metabolomics als methodiek gebruikt om op 

uitgebreide schaal de concentraties van kleine metabolieten te meten als uitlezing 

van de fysiologische status. Dit is toegepast op een collageen-geïnduceerd artritis 

muizenmodel (CIA) , dat veel gebruikt wordt in RA research, om relaties op het 

metabolietenniveau op te sporen in chronische situaties. Oxylipiden zijn bioactieve 

lipidenmediatoren, die gesynthetiseerd worden uit meervoudig onverzadigde 

vetzuren en die een belangrijke rol spelen in ontstekingsprocessen.  De plasma 

concentraties van oxylipiden in CIA-muizen werden gemeten om inzicht te 

verkrijgen in ontstekingsprocessen en metabolieten, gerelateerd aan reactieve 

zuurstofverbindingen (Hoofdstuk 2). In vergelijking met controle muizen, werden 

ontregelde oxylipiden aangetroffen in de CIA-muizen, die een reflectie kunnen zijn 
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van ontsteking en toegenomen reactieve zuurstofverbindingen. Bovendien, werd 

gevonden dat de collageen geïnduceerde artritis geassocieerd kan zijn met een 

ontregeling van de apoptose, wellicht door activatie van NF-κB ontstaan door 

gereduceerde niveaus van PPAR-γ liganden. Omdat vrije aminozuren – en de 

daarvan afgeleide biogene aminen – een essentiële rol spelen in zowel de 

energieproductie als de eiwit-synthese/degradatie, zijn de plasmaconcentraties van 

aminozuur-gerelateerde metabolieten in CIA-muizen ook gemeten, zodat er een 

beter inzicht verkregen werd rond de metabolieten, betrokken bij energieregulatie 

(Hoofdstuk 3). Er werden verlaagde niveaus van zowel vrije aminozuren als 

biogene metabolieten gevonden hetgeen suggereert dat er een link is tussen CIA en 

spierafbraak/energieverbruik. Uit deze studies werd gevonden dat oxylipiden en 

amine-metabolieten een weerspiegeling geven van CIA, maar beiden vanuit een 

ander perspectief op de vermeende pathofysiologische processen. Systeembiologie 

gebaseerd op metabolomics, kan derhalve nieuwe inzichten verschaffen in de 

pathofysiologie van onderliggende processen. 

De op correlatie-netwerk gebaseerde analyses bieden de mogelijkheid om 

gegevens te integreren, die verkregen zijn uit verschillende technische platforms, 

zodat een correlatie-gebaseerd begrip verkregen kan worden van systemische 

interacties en regulatie.  UPE is een niet-invasieve methode om fotonen te meten, 

waarbij het belangrijk is dat de UPE-emissie gecorreleerd kan worden met 

oxidatieve metabole processen. In Hoofdstuk 4 is correlatie-netwerk analyse 

toegepast om de relatie tussen metabole processen en UPE te verkennen, door de 

data gemeten aan dezelfde muizen van Hoofdstuk 2 en Hoofdstuk 3 te integreren. 

Deze studie leverde belangrijke informatie op en gaf inzicht in het ziekteproces 

vanuit een systeemvisie.  Zo blijkt uit deze studie dat de toename van UPE bij de 

voortgang van artritis geassocieerd is met specifieke metabole processen, in het 

bijzonder lipidenoxidatie, ontsteking-gerelateerde metabolieten en/of ROS-

gemedieerde processen. Deze resultaten betekenen een belangrijke stap voorwaarts 

in de wijze waarop datasets geïntegreerd kunnen worden om complexe processen 
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in RA te bestuderen, maar leveren ook een verdere onderbouwing over de relatie 

tussen metabole processen en UPE. 

Diermodellen hebben specifieke voordelen voor de bestudering van chronische 

processen. In het bijzonder is het voor de researcher eenvoudiger om potentieel 

verstorende factoren van de resultaten en de interpretatie daarvan uit te sluiten of te 

controleren. Onder dergelijk factoren kunnen leeftijd, geslacht, genetische 

achtergrond, duur van de ziekte, blootstelling aan medicatie etc. gerekend worden. 

Echter ondanks het feit dat diermodellen kwalitatieve overeenkomsten met de 

chronische ziekteprocessen bij de mens hebben, zijn er ook duidelijke verschillen 

door genetische variatie en andere factoren. Derhalve moeten biologische 

mechanismen die relevant gevonden worden in diermodellen, zorgvuldig 

geëvalueerd worden in patiënten en gevalideerd worden in humane klinische 

studies.  

Epidemiologische studies laten een snelle toename zien in het voorkomen van 

chronische ziekten, waarbij een groot aantal patiënten met lichte klinische 

symptomen niet gediagnosticeerd worden. Zo kunnen milde fysiologische 

verstoringen over vele jaren plaatsvinden voordat zich ernstige symptomen 

voordoen.  Niet gediagnosticeerde patiënten kunnen over langere tijd, op een 

verschillende wijze, chronische ziekten ontwikkelen met een uiteenlopende schaal 

van fenotypen. Behandelingen met een generieke aanpak (one drug – one target ; 

one-size-fits-all benadering) zijn uiterst beperkt vooral in de vroege fasen van 

ziekten, waarbij een geïndividualiseerde systeemaanpak noodzakelijk is.  

Ontwikkeling van een geïndividualiseerde benadering, gebaseerd op 

systeembiologie, kan de unieke klinische karakteristieken opleveren in individuele 

patiënten, zodat er meer inzicht wordt verkregen over de complexiteit en diversiteit 

van chronische ziekten.  

Traditionele Chinese geneeskunde (TCM) is gebaseerd op een systeemvisie 

gecombineerd met geïndividualiseerde interventie-strategieën. Dit kan gebruikt 
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worden, om een betere beschrijving van ziektesyndromen of subtypen te verkregen, 

om vroege stadia van syndromen of chronische ziekten op te sporen. Deze 

beschrijving kan dan als diagnosegids dienen, in een vroeg stadium van syndromen 

van chronische ziekten en verrijkt tevens onze kennis voor geïndividualiseerde 

diagnose.  Metabolomics kan meer wetenschappelijk bewijs leveren van op TCM-

gebaseerde diagnostiek door  opsporing van de onderliggende biologische 

mechanismen en geïndividualiseerde diagnose, daarbij een brugvormend tussen 

TCM en Westerse geneeskunde. UPE reflecteert zowel de fysiologische als de 

pathologische toestand en heeft potentie als klinisch systeemdiagnostische methode. 

De combinatie van op TCM gebaseerde diagnostische concepten, metabolomics en 

UPE,  kunnen elk met een unieke inbreng bijdragen aan de ontwikkeling en 

behandeling van chronische ziekten. Op basis van deze geïntegreerde aanpak 

kunnen er nieuwe mogelijkheden worden gecreëerd voor geïndividualiseerde 

geneeskunde onderbouwd met systeemdiagnose en systeembehandeling voor 

chronische ziekten, zoals beschreven in Hoofdstuk 5. Op basis van het 

gedachtegoed in Hoofdstuk 5 is er een verkennende studie uitgevoerd door de 

combinatie van metabolomics, UPE en TCM-diagnose, zie Hoofdstuk 6.  In het 

bijzonder is de vermeende relatie tussen metabolomics en op TCM gebaseerde 

subtypering van vroeg stadium diabetes (pre-T2DM) bestudeerd en zijn de 

sleutelmetabolieten – voornamelijk plasmalipiden – die bijdragen aan de 

subtypering geïdentificeerd. Daarnaast werden deze plasma sleutelmetabolieten 

gecorreleerd met de UPE parameters, die eveneens gebruikt konden worden om 

dezelfde subtypen te identificeren in het cohort van pre-T2DM patiënten.  Deze 

correlaties bleken verschillend te zijn voor verschillende subtypen. Deze 

verschillen zouden gebruikt kunnen worden voor het differentiëren tussen subtypen. 

Op basis van deze verschillen tussen subtypen kunnen mogelijk 

correlatienetwerken ontworpen worden om verbeterde diagnostiek te verkrijgen. 

In de humane studie, beschreven in Hoofdstuk 6,  is de haalbaarheid voor 

subtypering van patiënten met metabolomics, TCM-diagnose en UPE geïllustreerd. 

Deze studie liet zien dat zowel metabolomics als UPE toegepast kunnen worden 
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voor de subtypering van pre-T2DM patiënten. Daarenboven geeft de combinatie 

van metabolomics met UPE biomedisch bewijs voor de onderbouwing van TCM-

gebaseerde diagnostiek. Ondanks deze veelbelovende resultaten, zijn er 

aanvullende studies nodig om de kennis verder te verrijken tot een systeemvisie 

gebaseerd op geïndividualiseerde diagnostiek. 

Samenvattend, analyse uitgevoerd op een systeembiologisch niveau, verrijkt de 

kennis van chronische ziekten vanuit verschillende perspectieven door de integratie 

van verschillende bronnen van informatie. Deze systeembenadering vereist 

samenwerking tussen wetenschappers uit verschillende velden waaronder 

geneeskunde, analytische chemie , biologie en bioinformatica. In dit proefschrift is 

metabolomics gebruikt in een systeembenadering voor de bestudering van 

pathofysiologische mechanismen in chronische ziekten door de meting van een 

omvangrijk aantal kleine metabolieten en door het combineren daarvan met 

spontane UPE. Deze resultaten bevestigen de mogelijkheid om verschillende 

datasets te kunnen integreren en om complexe interacties te bestuderen in 

chronische ziekten. Bovendien verschaffen deze resultaten aanvullend bewijs voor 

het aantonen van een relatie tussen metabole processen en UPE. 
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