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Abstract The immense complexity of the mammalian

brain is largely reflected in the underlying molecular sig-

natures of its billions of cells. Brain transcriptome atlases

provide valuable insights into gene expression patterns

across different brain areas throughout the course of

development. Such atlases allow researchers to probe the

molecular mechanisms which define neuronal identities,

neuroanatomy, and patterns of connectivity. Despite the

immense effort put into generating such atlases, to answer

fundamental questions in neuroscience, an even greater

effort is needed to develop methods to probe the resulting

high-dimensional multivariate data. We provide a com-

prehensive overview of the various computational methods

used to analyze brain transcriptome atlases.

Keywords Brain atlases � Gene expression � Co-
expression � Omics integration � Imaging genetics

Mapping gene expression in the brain

The mammalian brain is a complex system consisting of

billions of neuronal and glia cells that can be categorized

into hundreds of different subtypes. Understanding the

organization of these cells, throughout development, into

functional circuits carrying out sophisticated cognitive

tasks can help us better characterize disease-associated

changes. Advances in technology and automation of lab-

oratory procedures have facilitated high-throughput char-

acterization of functional neuronal circuits and connections

at different scales (Pollock et al. 2014). For example, the

Human Connectome Project maps the complete wiring of

the brain using magnetic resonance imaging (Van Essen

and Ugurbil 2012). Despite the importance of these

imaging modalities in characterizing brain pathologies and

development, it is imperative to analyze the molecular

structure to gain a better mechanistic understanding of how

the brain works. However, studying the molecular mech-

anisms of the brain has proved very challenging due to the

unknown large number of cell types (Sunkin 2006).

The complexity of the brain is largely reflected in the

underlying patterns of gene expression that defines neu-

ronal identities, neuroanatomy, and patterns of connectiv-

ity. With 80% of the 20,000 genes in the mammalian

genome expressed in the brain (Lein et al. 2007), charac-

terizing spatial and temporal gene expression patterns can

provide valuable insights into the relationship between

genes and brain function and their role throughout neu-

rodevelopment. Brain transcriptome atlases have proven to

be extremely instrumental for this task.

Following earlier progress in other model organisms

(Kim et al. 2001; Spencer et al. 2011; Milyaev et al. 2012),

several projects have assessed gene expression in the

mouse brain with various degrees of coverage for genes,

anatomical regions, and developmental time-points (Sun-

kin 2006; Pollock et al. 2014). In rodents, the Gene

Expression Nervous System Atlas (GENSAT) (Gong et al.

2003; Heintz 2004) and GenePaint (Visel et al. 2004)

mapped gene expression in both the adult and developing

mouse brain, while the EurExpress (Diez-Roux et al. 2011)

and the e-Mouse Atlas of Gene Expression (EMAGE)

(Richardson et al. 2014) focused on the developing mouse
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brain. Comparable atlases of gene expression in the human

brain are far less abundant due to the challenges posed by

difference in size between the human and mouse brain as

well as the scarcity of post-mortem tissue. However, sev-

eral studies have profiled the human brain transcriptome to

analyze expression variation across the brain (Lonsdale

2013), expression developmental dynamics (Oldham et al.

2008; Colantuoni et al. 2011; Kang et al. 2011), and dif-

ferential expression in the autistic brain (Voineagu et al.

2011), albeit in a limited number of coarse brain regions.

The Allen Institute for Brain Science provides the most

comprehensive maps of gene expression in the mouse and

human brain in terms of the number of genes, the spatial-

resolution, and the developmental stages covered (Pollock

et al. 2014). Several atlases have been released which map

gene expression in the adult and developing mouse brain

(Lein et al. 2007; Thompson et al. 2014), the adult and

developing human brain (Hawrylycz et al. 2012; Miller

et al. 2014a), and the adult and developing non-human

primate (NHP) brain (Bernard et al. 2012; Bakken et al.

2016); see Fig. 1. Sunkin et al. (2013) provides a complete

review of the Allen Brain Atlas resources.

The availability of genome-wide spatially mapped gene

expression data provides a great opportunity to understand

the complexity of the mammalian brain. It provides the

necessary data to decode the molecular functions of dif-

ferent cell populations and brain nuclei. However, the

diversity of cell types and their molecular signatures and

the effect of mutations on the brain remain poorly under-

stood. For example, de novo loss-of-function mutations in

autistic children have been shown to converge on three

distinct pathways: synaptic function, Wnt signaling, and

chromatin remodeling (Krumm et al. 2014; De Rubeis et al.

2014). Except for the synaptic role of autism-related genes,

it is not clear how alternations in basic cell functions, such

as Wnt signaling and chromatin remodeling, can result in

the complex phenotype of autism spectrum disorders

(ASD). A recent effort to map somatic mutations in cortical

neurons using single-cell sequencing has shown that neu-

rons have on average *1500 transcription-associated

mutations (Lodato et al. 2015). The significant association

of these single-neuron mutations and genes with cortical

expression indicates the vulnerability of genes active in

human neurons to somatic mutations, even in normal

individuals. The difference between these patterns in the

normal and diseases brains remains unclear. Efforts to

understand genotype-phenotype relationships in the brain

face several challenges, including the complexity of the

underlying molecular mechanisms and the poor definition

of clinically based neurological disorders. In addition, the

high-dimensionality of the data makes most studies

underpowered to detect any associations. This is especially

true in the case of testing genetic associations with

phenotype markers, such as imaging measurements (Med-

land et al. 2014). A combination of efforts to map the

genomic landscape of the brain and data-driven approaches

can add to our understanding of the underlying genetic

etiology of neurological processes and how they are altered

in neurological disorders.

Several review articles provide extensive insights into

the gene expression maps of the brain. French and Pavlidis

(2007) provide a global overview of neuroinformatics,

including ontology, semantics, databases, connectivity,

electrophysiology, and computational neuroscience. Jones

et al. (2009) give an overview on developing the mouse

atlas, the challenges faced, the community reaction, limi-

tations, and atlas usage examples, as well as the data

mining tools provided by the Allen institute. Pollock et al.

(2014) provide a detailed review of the technology and

tools which are currently advancing the field of molecular

neuroanatomy. Recently, Parikshak et al. (2015) illustrated

the power of using network approaches to leverage our

understanding of the genetic etiology of neurological dis-

orders. Yet, a global overview of the computational

methodologies applied to brain transcriptome atlases to

increase our understanding of neurological processes and

disorders remains missing.

In this review, we provide an overview of the compu-

tational approaches used to expand our understanding of

the relationship between gene expression on one hand and

the anatomical and functional organization of the mam-

malian brain on the other hand. We focus our discussion on

spatial and temporal brain transcriptomes mapped by the

Allen Institute for Brain Sciences. Nevertheless, we also

discuss how the methods can be extended to epigenomes

and proteomes of the brain and other human tissues. We

describe the different computational approaches taken to

analyze the high-dimensional data and how they have

contributed to our understanding of the functional role of

genes in the brain, molecular neuroanatomy, and genetic

etiology of neurological disorders. Finally, we discuss how

these methods can help solve some of the data-specific

challenges, and how the integration of several data types

can further our understanding of the brain at different

scales, ranging from molecular to behavioral.

Computational analysis of spatial and temporal
gene expression data in the brain

Spatio-temporal transcriptomes of the brain pose several

challenges due to their high-dimensionality. In this section,

we identify the different types of approaches taken to

analyze the spatially mapped gene expression data. We

show the strengths of each approach and demonstrate how

it has enriched neuroscience research. We divide the
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different methods into two categories. First, we describe a

class of methods used to analyze the expression profile of

gene(s) across different brain regions, cell types, and

developmental stages. Second, we discuss methods focus-

ing on the molecular organization and the genetic signature

of the brain.

Analyzing the expression patterns of genes
in the brain

Mapping gene expression across the brain is very helpful

in determining the neural function of a gene of interest by

associating it with a specific brain region and/or devel-

opmental stage or in identifying genetic markers of those

brain regions and developmental stages. Brain transcrip-

tome atlases, such as the Allen Brain Atlases, provide

useful information about the expression of a gene under

‘‘normal’’ conditions. Such information can be used to

direct in-depth studies about a specific gene in biologi-

cally/clinically relevant cohorts. With the increasing

number of genes implicated in neurological diseases as

well as the realization that complex phenotypes of the

brain likely result from the combined activity of several

genes, a number of studies analyze gene sets rather than

individual candidate genes. By studying the expression of

a gene set rather than a single gene, neuroscientists are

faced with a challenge on how to summarize this data to

understand the relationship between genes and neuronal

phenotypes.

Fig. 1 Spatially mapped gene expression in the mammalian brain. To

map gene expression across the human and mouse brains, the Allen

Institute for Brain Sciences followed two different strategies. In the

human brain, samples covering all brain regions are extracted (a) and
gene expression is measured using either microarray or RNA-

sequencing (Hawrylycz et al. 2012; Miller et al. 2014b) (b).
Accompanying histology sections and MRI scans are acquired to

localize samples. Manual delineation of anatomical regions on the

histology sections allowed for accurate sample annotation (c). In the

mouse brain, gene expression is measured in coronal and sagittal

sections using in situ hybridization (Lein et al. 2007) (d). Several
slices covering the mouse brain are extracted per gene. Image

registration methods are used to align the set of sections acquired for

each gene to a common reference atlas (e). Anatomical regions are

delineated on the reference atlas allowing for sample annotation (f).
Data from the mouse and human atlases can be represented in a data

matrix of three dimensions representing: genes, brain regions, and

developmental stages (in case of the developmental atlases) (g)

Brain Struct Funct (2017) 222:1557–1580 1559

123



Gene expression visualization

High-throughput data visualization approaches can facili-

tate the exploration of complex patterns in multivariate

high-dimensional gene expression data sets (Pavlopoulos

et al. 2015). For example, heatmaps are commonly used to

visualize gene expression levels across a set of samples

using a two-dimensional false-color image (Fig. 2f).

However, heatmaps are not ideal to represent brain tran-

scriptomes, because they fail to capture the multivariate

nature of the data (genes, samples, and time-points) and to

represent the inherent spatial and temporal relationships

between different brain regions and developmental stages,

respectively. To acquire high-resolution gene expression

maps, the Allen atlases of the developing and adult mouse

brain rely of ISH images (Fig. 2a). The Brain Explorer 3D

viewer (Lau et al. 2008) is an interactive desktop appli-

cation that allows the visualization of the 3D expression of

one or more genes with the possibility to link them back to

the high-resolution ISH images (Sunkin et al. 2013)

(Fig. 2b). ISH images can be synchronized between dif-

ferent genes and also with the anatomical atlas of the

mouse brain (Fig. 2c), facilitating the analysis of a group of

genes. For the adult and developing human atlases, the

gene expression data (microarray or RNA-seq) are mainly

visualized using heatmaps (Fig. 2d). In the adult human

atlas, the expression data can also be visualized on top of

the magnetic resonance images (Fig. 2e). The Brain

Explorer 3D viewer is also used to visualize gene expres-

sion from cortical samples using an inflated cortical

Fig. 2 Gene expression visualization. Gene expression of spatially

mapped samples can be visualized using several approaches. a Mouse

gene expression data of the gene Man1a can be investigated using the

original ISH sections. b BrainExplorer software allows visualization

of the 3D expression volume with an overlay of the anatomical atlas

and the ability to go back to the original high-resolution ISH

section. c Simultaneously, viewing the ISH section and the corre-

sponding atlas section helps in localizing gene expression to brain

regions. d Heatmaps are commonly used to visualize gene expression.

Expression of the two exons of the NEUROD6 gene from the

BrainSpan Atlas is visualized using a heatmap in which samples are

ordered according to the age of the donor. e Samples from the Allen

Human Brain Atlas are associated with coordinates of their location in

the corresponding brain MRI. f Using the BrainExplorer, expression

values ofMecp2 can be mapped to an inflated white matter surface for

better visualization of the cortex. g Alternatively, expression values

can be mapped on an anatomical atlas of the human brain
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surface, a surface-based representation of the cortex that

allows better representation of the relative locations of

laminar, columnar, and areal features (Fig. 2f). In addition,

gene expression can be mapped to an anatomical repre-

sentation of the brain to facilitate interpretation (Fig. 2g).

Ng et al. developed a method to construct surface-based

flatmaps of the mouse cortex that enables mapping of gene

expression data from the Allen Mouse Brain Atlas (Ng

et al. 2010). Similarly, French (2015) developed a pipeline

to map the expression of any gene from the Allen Human

brain atlas to the cortical atlas built into the FreeSurfer

software, which shall facilitate integration with medical

imaging studies.

Summary statistics and visualization-based methods

The early studies employing the Allen Brain Atlases used a

variety of visualization and qualitative measurements to

analyze the expression of gene sets associated with dopa-

mine neurotransmission (Björklund and Dunnett 2007),

consummatory behavior in the mouse brain (Olszewski

et al. 2008), midbrain dopaminergic neurons (Alavian and

Simon 2009), and changes in locomotor activity in the

mouse brain (Mignogna and Viggiano 2010). Kondapalli

et al. (2014) used a similar qualitative approach to analyze

the expression of Na?/H? exchangers (NHE6 and NHE9),

which are linked to several neuropsychiatric disorders, in

the adult and developing mouse brain atlases.

To provide better quantitative representations of the

expression of gene sets, several studies relied on basic

summary statistics, such as the mean and standard deviation.

Zaldivar and Krichmar (2013) used summations to summa-

rize the expression of cholinergic, dopaminergic, noradren-

ergic, and serotonergic receptors in the amygdala, and in

neuromodulatory areas. By plotting the average expression

of genes harboring de novo loss-of-function mutations

identified by means of exome sequencing across human

brain development, Ben-David and Shifman (2012a) iden-

tified two clusters with antagonistic expression patterns

across development. In addition, spatio-temporal exonic

expression in the BrainSpan atlas correlates inversely with

the burden of deleterious de novo mutations identified by

exome sequencing in autism, schizophrenia, or intellectual

disability (Uddin et al. 2014). For genes mutated in autism,

the inverse relationship was found to be strongest in prenatal

orbital frontal cortex, highlighting the value of the BrainS-

pan atlas to associate genetic variation with specific brain

regions and developmental stages. Dahlin et al. (2009)

developed a custom score (expression factor) of gene

expression in themouse brain based on the ISH images of the

Allen Mouse Brain Atlas. They computed the mean and the

standard deviation of the expression factor to assess the

global expression and heterogeneity of solute carrier genes,

respectively. To deal with the qualitative ISH-based

expression data from theAllenMouseBrainAtlas, Roth et al.

(2013) used a non-parametric representation of the data

(using ranks instead of the raw expression values) to study

the relationship between genes associated with grooming

behavior in mice and 12 major brain structures.

Most of the studies analyzing gene expression in the

brain focused on scores describing the expression of a gene

or a gene set within each brain region of interest. Liu et al.

(2014) proposed a characterization of the stratified

expression pattern of sonic hedgehog (Shh), a classical

signal molecule required for pattern formation along the

dorsal–ventral axis, and its receptor Ptch1. Using a com-

bination of differential expression, transcription factor

motif analysis, and CHIP-seq, they identified the role of

Gata3, Fox2, and their downstream targets in pattern for-

mation in the early mouse brain. These results illustrate the

power of characterizing complex expression patterns across

the brain rather than solely summarizing the expression of

each gene within individual brain regions.

Box1 | Gene Sets

Complex biological functions and disorders usually involve

several rather than a single gene. Gene sets are groups of genes

that share common biological functions and that can be defined

either based on prior knowledge (e.g. about biochemical

pathways or diseases) or experimental data (e.g. transcription

factor targets identified using CHIP-seq). Gene set databases

organize existing knowledge about these groups of genes by

arranging them in sets that are associated with a functional term,

such as a pathway name or a transcription factor that regulates

the genes. Gene sets can be classified into 5 types:

Gene Ontology (GO)

The Gene Ontology project (Ashburner et al. 2000) developed

three hierarchically structured vocabularies (ontologies) that

describe gene products in terms of their associated biological

processes, cellular components and molecular functions. Genes

annotated with the same GO term(s) constitute a gene set.

Biological Pathways

Biological pathways are networks of molecular interactions

underlying biological processes. Pathway databases, such as

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Ogata

et al. 1999) and REACTOME (Croft et al. 2014), catalog

physical entities (proteins and other macromolecules, small

molecules, complexes of these entities and post-translationally

modified forms of them), their subcellular locations and the

transformations they can undergo (biochemical reaction,

association to form a complex and translocation from one

cellular compartment to another).

Transcription

Transcription databases include information on regulation of genes

by transcription factors (TFs) binding to the DNA, or post-

transcriptional regulation by microRNA binding to the mRNA.

Determining these physical interactions can be done either in

silico using computational inference (motif enrichment analysis)

or using experimental data (such as CHIP-seq and microRNA

binding data). For the motif enrichment analysis, position weight
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matrices (PWMs) from databases TRANSFAC (Matys et al.

2006) and JASPER (Portales-Casamar et al. 2010) can be used to

scan the promoters of genes in the region around the

transcription factor start site (TSS). CHIP-seq data, such as the

large collection of experiments from the Encyclopedia of DNA

Elements (ENCODE) project (Bernstein et al. 2012b) and the

Roadmap Epigenomics consortium (Consortium 2015a), is used

to identify genes targeted by the TFs. Similarly, microRNA

targets can be extracted from databases such as TargetScan

(Lewis et al. 2003).

Cell-type markers

Cell type-specific transcriptional data provide a very rich source of

cell type marker genes. Genes are identified as a cell type marker

if they are up-regulated in one cell population compared to other

cell populations. Several studies have used microarrays and

RNA-seq to profile the transcriptome of a number of neuronal

cell types (Cahoy et al. 2008; Zhang et al. 2014). Recently,

studies are using single-cell sequencing to precisely capture the

transcriptome of individual neuronal cells (Darmanis et al. 2015;

Zeisel et al. 2015).

Disease

Genes can be grouped into sets based on their association to the

same diseases. Public databases, such as OMIM (2015a) and

DisGeNet (Pinero et al. 2015), contains curated information

from literature and public sources on gene-disease association.

Another source to obtain disease-related gene sets is by

identifying genes harboring variants identified using GWAS

(Simón-Sánchez and Singleton 2008; Welter et al. 2014),

exome-sequencing (2015b), or whole-genome sequencing.

Identifying genes with localized expression patterns

The complexity of the brain implies that genes are involved

in more than one function and that their function is region-

or cell-type-specific. Neuronal cell types have been clas-

sically defined using cell morphology, electrophysiological

and connectivity properties. Similarly, classical neu-

roanatomy identifies regions based on their cyto-, myelo-,

or chemo-architecture. Genomic transcriptome measure-

ments provide an alternative route to define functional cell

types and brain regions based on their genetic makeup.

Several studies have analyzed the ISH-based gene

expression images of theAllenMouseBrainAtlas to identify

cell-type-specific genes and genes with localized gene

expression. Loerch et al. (2008) studied the localization of

age-related gene expression changes in different neuronal

cell types in themouse and human brains. At the brain region

level, David and Eddy (2009) developed ALLENMINER, a

tool that searches theAllenMouseBrainAtlas for geneswith

a specific expression pattern in a user-defined brain region.

At a finer scale, Kirsch et al. (2012) described an approach to

identify genes with a localized expression pattern in a

specific layer of the mouse cerebellum. They represented

each ISH image (gene) using a histogram of local binary

patterns (LBP) at multiple-scales. Predicting the localization

of gene activity to each of the four cerebellar layers is done

using two-level classification. First, they used a support

vector machine (SVM) classifier to assign a cerebellar layer

to each image and then used multiple-instance learning

(MIL) to combine the resulting image classification into gene

classification. Similarly, to identify cell-type specific genes,

Li et al. (2014) used scale-invariant feature transform (SIFT)

features of the ISH images. They further classified genes,

using a supervised learning approach (regularized learning),

based on their expression in different brain cell types. Zeng

et al. (2015) compared two models to extract features from

the ISH images of the developing mouse brain atlas to train a

classification model to annotate gene expression patterns in

brain structures. In one approach, they used SIFT features

and the bag-of-words approach to represent the expression of

each gene across the entire brain. In addition, they used a

transfer learning approach by training a deep convolutional

neural network on natural images to extract useful features

from the ISH images. Their results show a superior perfor-

mance for the deep convolutional neural network, indicating

the applicability of transfer learning from natural to bio-

logical images (Zeng et al. 2015).

Ramsden et al. (2015) studied the molecular components

underlying the neural circuits encoding spatial positioning

and orientation in the medial entorhinal cortex (MEC). They

developed a computational pipeline for automated registra-

tion and analysis of ISH images of the Allen Mouse Brain

Atlas at laminar resolution. They showed that while very few

genes are uniquely expressed in the MEC, differential gene

expression defines its borders with neighboring brain struc-

tures, and its laminar and dorso-ventral organization. Their

analysis identifies ion channel-, cell adhesion- and synapse-

related genes as candidates for functional differentiation of

MEC layers and for encoding of spatial information at dif-

ferent scales along the dorso-ventral axis of the MEC.

Finally, they reveal laminar organization of genes related to

disease pathology and suggest that a high metabolic demand

predisposes layer II to neurodegenerative pathology.

Spatial and temporal gene co-expression

Genes with similar expression patterns over a set of sam-

ples are said to be co-expressed and are more likely to be

involved in the same biological processes (guilt by asso-

ciation) (Stuart et al. 2003). Applying the same approach to

brain transcriptomes can identify co-expressed genes based

on their spatial and/or temporal expression across the brain.

This can serve as a powerful tool to characterize genes with

respect to their context-specific functions. In addition, co-

expression has been used to assess the quality of RNA-seq

data, such as the BrainSpan atlas, by modeling the effects

of noise within observed co-expression (Ballouz and Gillis

2016a).
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Box 2 | Dimensionality reduction

The high dimensionality of transcriptomes, and other biological data

(e.g. proteomes, epigenomes, etc.), provides a challenge for

visualization as well as for selecting informative features for

clustering and classification. Dimensionality-reduction

approaches aim at finding a smaller number of features that can

adequately represent the original high dimensional data in a lower

dimensional space. The conventional principal component

analysis (PCA) is the most commonly used dimensionality

reduction method. Despite its utility, PCA can only capture linear

rather than non-linear relationships, which are inherent in many

biological applications. Several non-linear dimensionality

reduction techniques have been proposed (e.g. Isomap

(Tenenbaum et al. 2000)), see (Lee and Verleysen 2005) for an

extensive review. The t-distributed stochastic neighbor

embedding (t- SNE) method (Maaten and Hinton 2008) has been

widely used to visualize biological data in two dimensions by

preserving both the global and local relationships between the data

points in the high-dimensional space (Saadatpour et al. 2015).

Several similarity/distance measurements have been

used to characterize the similarity in spatial/temporal

expression patterns between a pair of genes. Of these,

correlation-based measures are mostly used to assess gene

co-expression patterns across the brain. NeuroBlast is a

search tool developed by the Allen Institute for Brain

Sciences to identify genes with a similar 3D spatial

expression to that of a gene of interest in a given

anatomical region, based on Pearson correlation (Hawry-

lycz et al. 2011). Figure 3a shows an example of the

obtained correlations of estrogen receptor alpha (Esr1) in

the mouse hypothalamus. The ISH sections in Fig. 3b show

that correlation can effectively be used to identify genes’

functional association with Esr1. For example, the top

correlated gene to Esr1 in the hypothalamus is insulin

receptor substrate 4 (Irs4), a target gene of Esr1 associated

with sex-specific behavior (Xu et al. 2012). NeuroBlast was

Fig. 3 Spatial gene co-expression in the mouse brain. a Expression

energy profiles of voxels in the hypothalamus region of the mouse

brain using the same linear ordering. The estrogen receptor alpha

(Esr1) gene shows high expression in the hypothalamus. The

expression patterns of Irs4 and Ngb are highly correlated with that

of Esr1 (R = 0.79 and R = 0.64, respectively). On the other hand, the

expression pattern of Ltb is not correlated with that of Esr1

(R = 8.01 9 10-4). Correlation is calculated using Pearson correla-

tion. b Esr1 and its highly correlated genes (Irs4 and Ngb) are highly

expressed in the hypothalamus (red arrow), while Ltb is not
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used to identify genes with a similar expression profile to

Wnt3a, a ligand in the Wnt signaling pathway, in the

developing mouse brain and identified eight Wnt signaling

genes among the top correlated genes (Thompson et al.

2014). Using Spearman correlation coefficient, French

et al. analyzed gene-pairs with positive and negative co-

expression in the mouse brain. By focusing on genes with a

strong negative correlation, they showed that variation in

gene expression in the adult normal mouse brain can be

explained as reflecting regional variation in glia to neuron

ratios, and is correlated with degree of connectivity and

location in the brain along the anterior–posterior axis

(French et al. 2011). Tan et al. (2013) extended the analysis

to the adult human brain and identified conserved co-ex-

pression patterns between the mouse and the human brain.

To characterize the role of SNCA, a gene harboring a

causative mutation for Parkinson’s disease, Liscovitch and

French (2014) analyzed the co-expression relationships of

SNCA in the adult and developing human brain. They

identified a negative spatial co-expression between SNCA

and interferon-gamma signaling genes in the normal brain

and a positive co-expression in post-mortem samples from

Parkinson’s patients, suggesting an immune-modulatory

role of SNCA that may provide insight into neurodegen-

eration. Another example is given by Bernier et al. (2014),

in which the developing human, macaque, and mouse brain

atlases were used to analyze the expression and co-ex-

pression patterns of CHD8, one of the key autism-

associated genes. Their analysis showed that CHD8 was

expressed throughout cortical and sub-cortical structures at

the early prenatal ages and that expression decreased

through development. In addition, they showed a signifi-

cant enrichment of autism-candidate genes among genes

with correlated temporal patterns to CHD8 in the BrainS-

pan atlas.

Gene co-expression can serve as a very powerful tool for

in silico prediction and prioritization of disease genes, by

identifying genes with similar expression pattern to known

disease genes. Piro et al. (2010) described a candidate gene

prioritization method using the Allen Mouse Brain Atlas.

They showed that the spatial gene-expression patterns can

be successfully exploited for the prediction of gene–phe-

notype associations by applying their method to the case of

X-linked mental retardation. By extending their methods to

the human brain atlas, they showed that spatially mapped

gene expression data from the human brain can be

employed to predict candidate genes for Febrile seizures

(FEB) and genetic epilepsy with febrile seizures plus

(GEFS?) (Piro et al. 2011). Both examples illustrate the

power of using computational approaches to prioritize

disease genes before carrying out empirical analysis in the

lab.

In measuring gene co-expression, correlation-based

methods are not specific to spatially mapped expression

data and do not fully model the complexity of the brain

transcriptomes. To identify gene-pairs with similar

Box 3 | Clustering

Clustering is the unsupervised learning process of identifying distinct groups of objects (clusters) in a dataset (Duda et al. 2000). There are two

main types of clustering: hierarchical and partitional. Hierarchical clustering algorithms start by calculating all the pair-wise similarities

between samples and then building a dendrogram by iteratively grouping the most similar sample pairs. By cutting the tree at an appropriate

height, the samples are grouped into clusters. On the other hand, partitional clustering optimizes the number of simple models to fit the data.

Examples of partitional clustering include k-means, Gaussian mixture models (GMMs), density-based clustering, and graph-based methods.

In order to cluster the samples hierarchically, all the pair-wise similarities between sample Si and Sj are calculated. Samples are then grouped

iteratively based on the calculated similarities (grouping the most similar first). Once the full dendrogram is built, a cut-off (dashed line) is used

to group samples into groups. For k-means we set the number of clusters based on the data heatmap. K-means groups samples by minimizing the

within-cluster sum of square distances between each point in the cluster and the cluster center.
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expression patterns in the adult mouse brain based on the

ISH images, Liu et al. (2007) compared three image sim-

ilarity metrics: a naı̈ve pixel-wise metric, an adjusted pixel-

wise metric, and a histogram- row-column (HRC) metric.

They showed that HRC performs better than voxel-based

methods, indicating the superiority of methods that capture

the local structure in spatially mapped data. Miazaki and

Costa (2012) used Voronoi diagrams to measure the sim-

ilarity of the density distribution between gene expressions

in the adult mouse brain. Inspired by computer vision

algorithms, Liscovitch et al. (2013) used the similarity of

scale-invariant feature transform (SIFT) descriptors of the

ISH images of the mouse brain to predict the gene ontology

(GO) labels of genes.

Gene co-expression networks

As we have shown, the guilt by association paradigm has

been successfully employed to identify pairs of spatially

co-expressed genes sharing a neuronal function, based on

various similarity measures. To extend the co-expression

analysis of gene-pairs, clustering and network-based

approaches can be used to identify molecular interaction

networks of a group of genes that signal through similar

pathways, share common regulatory elements, or are

involved in the same biological process. Co-expression

networks avoid the problem of relying on prior knowledge,

such as protein–protein interactions and pathway infor-

mation, which are valuable but incomplete. Gene co-ex-

pression networks have heavily been used to identify

disrupted molecular mechanisms in cancer (Chuang et al.

2007; Yang et al. 2014) and aging (van den Akker et al.

2014).

Hierarchical clustering is a widely used unsupervised

approach to identify groups of co-expressed genes across

a set of samples. Using hierarchical clustering, Gofflot

et al. (2007) identified the functional networks of nuclear

receptors based on their global expression across different

regions of the mouse brain. By focusing on subsets of

brain structures involved in specialized behavioral func-

tions, such as feeding and memory, they elucidated links

between nuclear receptors and these specialized brain

functions that were initially undetected in a global anal-

ysis. Dahlin et al. (2009) used hierarchical clustering to

explore potential functional relatedness of the solute

carrier genes and anatomic association with brain

microstructures.

Box 4 | Classification

Classification is a supervised learning process of labeling unseen objects (test set) given a set of labeled objects (training set) (Duda et al. 2000).

Classification approaches can be divided into Bayesian methods and prediction error minimization methods. The former group is based on

Bayesian decision theory and uses statistical inference to find the best class for a given object. Bayesian methods can be further divided into

parametric classifiers (e.g nearest-mean classifier and Hidden Markov Model) and non-parametric classifiers (e.g. Parzen window or k-nearest

neighbor classifier). Alternatively, classifiers can be designed to minimize a measure of the prediction error. Well-known classifiers in this

category include regression classifiers (e.g. Lasso regression), support vector machines, decision trees and artificial neural networks. Neural

networks (in particular Deep Learning), have become very successful in solving problems in a wide range of applications, including

bioinformatics (Xiong et al. 2014; Alipanahi et al. 2015; Engelhardt and Brown 2015).

A low dimensional embedding of the samples is generated using two features (genes). A Baysian Classifier assigns each sample to one of the two

classes (Diseases or Healthy) based on statistical inference. A prediction error-minimization classifier updates the classification boundary

(dashed line) based on the prediction error and terminates when a certain criterion is met.
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Another approach to unsupervised clustering is to use

gene co-expression relationships to construct a co-expres-

sion network where nodes are genes and edges represent

the similarity of the expression profile of those genes.

Weighted gene co-expression network analysis (WGCNA)

(Zhang and Horvath 2005) is a commonly used method to

construct modules of co-regulated genes based on the

topological overlap between genes in a weighted co-ex-

pression network. WGCNA has widely been used to

identify transcription networks in the mammalian brain.

Oldham et al. (2006) demonstrated the first utility of

WGCNA to examine the conservation of co-expression

networks between the human and chimpanzee brains. They

found that module conservation in cerebral cortex is sig-

nificantly weaker than module conservation in sub-cortical

brain regions, which is in line with evolutionary hierar-

chies. WGCNA has been applied to identify modules of co-

regulated genes in the developing and adult human brain

transcriptomes (Kang et al. 2011; Hawrylycz et al. 2012),

the developing rhesus monkey brain (Miller et al. 2013),

the developing mouse brain (Thompson et al. 2014), and

the prenatal human cortex (Miller et al. 2014a), see Fig. 3b.

The methods provide a valuable insight into the molecular

organization of the brain by identifying modules reflecting

primary neural cell types and molecular functions. For

example, modules constructed based on the prenatal human

cortex correspond to cortical layers and age, while no areal

patterning was observed (Miller et al. 2014a). In addition,

WGCNA was used to identify a set of 32 functionally and

anatomically distinct modules of genes with highly repro-

ducible gene expression patterns across six human brains

(Hawrylycz et al. 2015). There are numerous technical

considerations to considere while constructing co-expres-

sion networks that go beyond the scope of this review

(Allen et al. 2012; Ballouz et al. 2015). To analyze regional

specificity of co-expression networks in the adult human

brain, Myers et al. (2015) analyzed the modularity of a

given gene set in region-specific co-expression networks.

The developed method was used to compare networks that

are constructed using expression data from a large sample

size, but coarse neuroanatomical data set (Gibbs et al.

2010) to region-specific networks derived from the Allen

Human Brain Atlas.

Box 5 | Co-expression Measurements

Gene co-expression is widely used for functional annotation,

pathway analysis, and the reconstruction of gene regulatory

networks. Co-expression measurements assess the similarity

between a pair of gene expression profiles by detecting bivariate

associations between them. These co-expression measurements

can be summarized in five categories (Kumari et al. 2012; Allen

et al. 2012; Song et al. 2012; Wang et al. 2014):

Correlation

The most widely used co-expression measure is Pearson

correlation, due to its straightforward conceptual interpretation

and computational efficiency. However, Pearson correlation can

only capture linear relationships between variables.

Alternatively, Spearman correlation is a nonparametric measure

of non-linear associations. Other correlation-based methods

include Renyi correlation, Kendall rank correlation, and bi-

weight mid-correlation.

Partial correlation

Partial correlation is used to measure direct relationships between

a pair of variables, excluding indirect relationships. Based on

Gaussian graphical models, partial correlations infer conditional

dependency as the non-zero entries in the precision matrix (the

inverse of the covariance matrix).

Mutual-Information

Mutual information-based methods measure general statistical

dependence between two variables. Based on information

theory, mutual information does not assume monotonic

relationships and hence can capture non-linear dependencies.

Other measures

Euclidian distance; Cosine similarity; Kullback-Leibler

divergence; Hoeffding’s D, distance covariance, and

probabilistic measures (as used in Baysian networks).

Co-expression of disease-related genes

Complex neuropsychiatric and neurological disorders

involve dysregulation of multiple genes, each conferring a

small but incremental risk, which potentially converge in

deregulated biological pathways or cellular functions.

Using genome-wide association studies (GWAS), exome

sequencing, and whole-genome sequencing (WGS), hun-

dreds of variants have been linked to complex neurological

disorders, such as autism (Iossifov et al. 2012; Neale et al.

2012; O’Roak et al. 2012; Sanders et al. 2012; Dong et al.

2014; De Rubeis et al. 2014), schizophrenia (Fromer et al.

2014; Ripke et al. 2014), Migraine (Freilinger et al. 2012),

and Alzheimer’s (Bettens et al. 2013; Zhang et al. 2013).

With the increasing numbers of samples included in these

studies, the number of variants associated to each disease is

set to increase (Krumm et al. 2014). Gene co-expression

networks provide a framework to identify the underlying

molecular mechanisms on which these variants converge.

Ben-David and Shifman (2012b) analyzed co-expression

networks of genes affected by common and rare variants in

autism using WGCNA. Menashe et al. (2013) used the

cosine similarity of expression profiles to build a co-ex-

pression network of autism-related genes in the mouse

brain. Both studies provide an important link between gene

networks associated with autism and specific brain regions.

However, for neurodevelopmental disorders, such as aut-

ism and schizophrenia, it is more beneficial to study when

and where implicated genes are expressed during brain

development. Gulsuner et al. (2013) studied the
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transcriptional co-expression of genes harboring de novo

mutations in schizophrenia patients using the BrainSpan

atlas of the Developing Human Brain. Parikshak et al.

(2013) used WGCNA to identify modules of co-expressed

genes during human brain development using the BrainS-

pan atlas. They identified modules with significant

enrichment in autism-related genes (Fig. 4). Willsey et al.

(2013) used the BrainSpan atlas to generate co-expression

networks around nine genes harboring recurrent de novo

loss-of-function mutations in autism probands. Mahfouz

et al. (2015b) used a combination of differential expression

and genome-wide co-expression analysis to identify shared

pathways among autism-related genes. To assess the

functional convergence of distinct sets of genetic variants,

Ballouz and Gillis (2016b) analyzed the connectivity of

autism-candidate genes within a co-expression network

constructed from the BrainSpan atlas. Their results show

that gene sets with a higher proportion of burden genes

exhibit higher interconnectivity, indicating stronger func-

tional associations.

Using gene co-expression networks to study relation-

ships between disease-related genes is a valuable approach

to understand disease mechanisms. In addition, using net-

works facilitates the integration of different types of

interactions between genes, including but not limited to:

co-expression, protein–protein interactions, and literature-

based interactions. This can be very useful to our under-

standing of the etiologies of complex neurological diseases

at different levels. In a recent study, Hormozdiari et al.

(2015) integrated gene co-expression based on the

BrainSpan atlas and PPI networks to identify networks of

genes related to autism and intellectual disability. For a

review on using gene networks to investigate the molecular

mechanisms underlying neurological disorders, we refer to

Gaiteri et al. (2014) and Parikshak et al. (2015).

Box 6 | Co-expression Networks

Gene co-expression networks provide a framework to uncover the

molecular mechanisms underlying biological processes based on

gene expression data. A co-expression network consists of nodes

to represent genes and edges to encode the co-expression

between two genes. A weighted network is a network in which

the edges have continuous values to indicate the strength of co-

expression. Networks with binary edges (an edge either exists or

Fig. 4 Gene co-expression

networks. a Module M13 of co-

expressed genes from Parikshak

et al. (2013) (reprinted from

Parikshak et al. Parikshak et al.

2013, Copyright (2016), with

permission from Elsevier.). The

shown module is significantly

enriched in autism-related

genes. The shown network

comprises the top 200

connected genes (highest

correlation) and their top 1000

connections in the subnetwork

(also ordered on correlation).

Genes are labeled if they are

members of relevant gene sets.

b Pattern of gene expression of

genes in the shown module is

summarized using the first

principal component

(eigengene). The red line

indicates birth. c Gene Ontology
terms enriched in the shown

module. The blue bars indicate

relative enrichment compared to

all cortex-expressed genes in

terms of Z score. The red line

indicates Z = 2
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not) are termed binary networks. Analysis of co-expression

networks can be summarized in four main steps:

Network Construction

The first step in building a co-expression network is to construct a

similarity matrix, by quantifying the similarity between the

expression profiles of each pair of genes (i.e. co-expression).

Several methods to measure gene co-expression are discussed in

Box 5. For non-regularized estimations of co-expression, all off-

diagonal elements of this similarity matrix will be nonzero. We

can take these similarities as edge weights in the network, but

that will give a fully connected network (each gene is connected

to each gene). An additional step can be to threshold the

similarity matrix, either to prune edges, or to binarize (absent/

present) the similarities to obtain an adjacency matrix. In the

latter case, pairs of genes with co-expression values above a

threshold will be connected in a binary network. In the weighted

gene co-expression network analysis (WGCNA) framework the

similarity matrix undergoes a power transformation and a weight

diffusion step, to optimize the topological properties and

stability of the network (Zhang and Horvath 2005).

Network Characterization

The obtained networks can be analyzed in a number of ways.

Topological measures characterize the structure of the network,

and quantify the importance of genes in their network context.

These measures have been extended to weighted networks

(Zhang and Horvath 2005), and can capture topology on

different levels of scale (Hulsman et al. 2014). Sets of networks

can also be aligned and compared (Przulj 2007; Hayashida and

Akutsu 2010; Fionda 2011). Network comparison can be used

either to assess changes between different conditions, or to

replicate a network in an independent dataset for validity

assessment.

Module Identification

To interpret a network, it can be divided into sub-networks, or

gene modules. To do this, the network edges are often treated as

similarities in a clustering approach (see Box 3). Alternatively,

graph properties, such as topological overlap or modularity, can

be used to divide a network into modules (Blondel et al. 2008).

Module Characterization

Finally, modules can be characterized using a wide range of

approaches. The expression profile of genes within the same

module can be summarized using the average or the first

principle component (also called eigengene (Oldham et al.

2006)). Alternatively, one can characterize a module according

to its hub genes: the genes with the largest number of

connections within the module. Another option is to assess the

association of a module to external data by testing statistical

enrichment in various gene sets (see Box 1 for different types of

gene sets). In addition, modules can be characterized based on

changes between conditions (e.g. health and disease) in their

summary statistics (average expression profile), their topological

measures (inter-connectivity), or the number of differentially-

expressed genes they include.

Analyzing genetic signature of brain regions

Spatially mapped gene expression data allow for the

exploration of neuroanatomy from a molecular point of

view. Individual genes with spatially differential expres-

sion have long been used to define the structural

organization of the brain and to break it down into regions

and sub-regions. Genes have also been used to identify

different classes of neuronal cell types. Studying the ‘‘ge-

netic signature’’ of different brain regions can be useful for

a multitude of applications. Spatially mapped gene

expression data allow for the analysis of the similarity

between brain regions in terms of their expression profiles.

Regions sharing an expression profile are likely to be

involved in the same neuronal functions or be part of the

same neuronal circuit. Moreover, studying the expression

profiles of functionally and anatomically connected struc-

tures provides valuable insights into the molecular basis of

brain connectivity.

Spatial and temporal similarity of regional gene

expression patterns

Each of the Allen Brain Atlases assigns a spatial location

and a time point to each sample, allowing the exploration

of the structural organization of the brain based on spatial

and temporal similarities between different brain regions

across the expression of thousands of genes. The Anatomic

Gene Expression Atlas (AGEA) is a Web-based tool to

calculate voxel-wise correlations based on gene expression

in the adult and developing mouse brain atlases (Ng et al.

2009). To show the value of using the similarity of gene

expression patterns to study anatomical organization, Dong

et al. (2009) used AGEA to identify three distinct func-

tional domains in the CA1 region of the mouse hip-

pocampus. Hawrylycz et al. (2010) used AGEA to show

that a consistent expression-based organization of areal

patterning in the mouse cortex exists when clustered on a

laminar basis. Using a combination of voxel–voxel simi-

larities in gene expression (AGEA) and gene–gene simi-

larities in expression patterns (NeuroBlast), Wagner et al.

(2016) identified transcriptional markers of the mouse

habenula as well as its subnuclear organization. In contrast

to methods identifying regional markers by analyzing one

gene at a time (Ramsden et al. 2015), using correlations

between voxels (AGEA) and genes (NeuroBlast) simulta-

neously, such as (Dong et al. 2009; Wagner et al. 2016),

reveals the transcriptomic–anatomic organization of brain

areas.

Voxel correlation maps, such as those obtained by

AGEA, can be used to cluster the mouse brain voxels into

regions with similar gene expression profile. To analyze

whether anatomically delineated regions, as defined clas-

sically, can also be distinguished based on their expression

profile, Bohland et al. (2010) clustered the adult mouse

brain voxels based on the similarity of their expression

profiles. Using k-means clustering, they showed that their

parcellations are quantitatively similar to the classically

defined neuroanatomical atlas. These results show that the
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spatially mapped gene expression data can be very valuable

in identifying the molecular basis of brain organization.

Similarly, Goel et al. (2014) used a combination of

dimensionality reduction and spectral clustering to inves-

tigate the correspondence between spatial clusters of gene

expression and human brain anatomy.

To identify which genes are responsible for brain orga-

nization, Ko et al. (2013) used a similar approach to cluster

brain voxels based on their expression of gene markers of

different cell types. Their results show that the neu-

roanatomical boundarieswithin amouse brain can be defined

by the clustering of only 170 neuron-specific genes. To

identify the driving mechanism of spatial co-expression of

genes in the brain, Grange et al. (2014) modeled co-ex-

pression patterns based on the spatial distribution of under-

lying cell types. Their model can be used to estimate cell-

type specific maps of the mouse brain and to identify brain

regions based on their genetic signatures. The model pro-

posed in (Grange et al. 2014) was used to estimate the sim-

ilarity between the expression profiles of two cliques of two

cliques of co-expressed autism genes (Menashe et al. 2013)

and the spatial distribution of cell types (Grange et al. 2015).

The temporal dynamics of gene expression patterns of

brain regions, throughout brain development, have been

considered in several studies. To understand gene expres-

sion specialization of mouse brain regions during devel-

opment, Liscovitch and Chechik (2013) assessed the

dissimilarities between brain regions based on gene

expression and how these changeover time. Their results

suggest an hourglass pattern, with high dissimilarity early

in development that decreases to reach a minimum at birth

after which it increases again. Using differential expression

among regions of the human cortex at each development

stage, Pletikos et al. (2014) also reported a highly similar

temporal hourglass pattern of dissimilarity between brain

regions. Another study by Mahfouz et al. (2014) analyzed

the similarity between gene expression patterns of brain

regions during human development. Using a network-

based approach, they characterized the topology of the

connectivity network of autism-related genes across

development.

Gene expression and brain connectivity

Another way to study brain organization and function is to

consider brain connectivity. Brain connectivity has been

linked to many neurological disorders, such as ischemic

stroke, autism, and schizophrenia. The relationship

between gene expression and neuronal connectivity has

long been studied in model organisms, such as

Caenorhabditis elegans, to identify genes involved in

synaptogenesis and axon guidance (Varadan et al. 2006;

Kaufman et al. 2006; Baruch et al. 2008).

Zaldivar and Krichmar (2013) used the Allen mouse

brain atlas to study the expression patterns of neurotrans-

mitters in the brain. Since the expression of a transmitter

must be coupled with the expression of appropriate

receptors in the postsynaptic target, they have also ana-

lyzed the expression of receptors in target regions. This

study shows that known neurobiological concepts can be

seen back in the Allen brain atlas. To take it one step

further, French and Pavlidis (2011) and Wolf et al. (2011)

analyzed the relationship between gene expression simi-

larity of brain regions and their connectivity. Both studies

used the Allen mouse brain atlas to calculate the similarity

in gene expression between different regions and the neural

connectivity data of the rat brain from the Brain Archi-

tecture Management System (BAMS) (Bota and Swanson

2010). Genes involved in brain development and neu-

rodevelopmental disorders, such as autism, showed strong

correlations with anatomical connectivity patterns.

With the recent availability of the Allen mouse con-

nectivity atlas, it has become possible to study the rela-

tionship between gene expression and brain connectivity

within the same species. Rubinov et al. (2015) used a

multivariate dimensionality reduction approach, partial

least squares, to explore the association between gene

expression and connectivity in the mouse brain. Rather

than assessing the correlation between the gene expression

similarity and connectivity, Ji et al. (2014) and Fakhry and

Ji (2014) set out to predict connectivity based on gene

expression patterns. By analyzing highly connected regions

(i.e., hubs) in the mouse brain, Fulcher and Fornito (2016)

showed that these hubs are more likely to interconnect with

each other and are more likely to be transcriptionally

similar. More interestingly, the genes with the highest

contribution to the transcriptional similarity between hubs

are involved in regulating the synthesis and metabolism of

ATP, which is the primary energy source for neural

activity.

Integrating gene expression and brain imaging data

The anatomical locations of samples in the Allen Human

Brain Atlas have been indicated in the MRI scans of each

of the six donor brains. These scans have been mapped to

the Montreal Neurological Institute (MNI) standardized

coordinate space, allowing for easy integration with other

imaging studies. Rizzo et al. (2014) tested the predictive

power of mRNA transcription maps extracted from the

Allen Human Brain Atlas to predict in vivo protein dis-

tributions acquired using positron emission tomography

(PET) imaging. By analyzing genes involved in two neu-

rotransmission systems with different regulatory mecha-

nisms, they showed that in vivo protein distributions can be

predicted from mRNA transcription maps when expression
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is being regulated translationally instead of posttranscrip-

tionally. In another study, mRNA data from the Allen

Human Brain Atlas were used to estimate the specific and

non-displaceable components of PET radioligands for brain

receptors, such as Serotonin 5-HT1A receptor; HTR1A

(Veronese et al. 2016). Because many receptors are

expressed across the whole brain, identifying a reference

region that is devoid of the receptor requires pharmaco-

logical blockade. The method proposed by Veronese et al.

estimates the specific and non-displaceable components of

radioligand uptake based on the correlation between the

abundance of the receptor gene transcript (using data from

the Allen Human Brain Atlas) and the PET measurements

of the expressed protein, without the need for blocking

drugs.

Another promising research direction is the integration

of data from the Allen Human Brain Atlas into fMRI

studies to better understand the molecular mechanisms

underlying functional connectivity in the human brain. One

of the earliest efforts to link neuroimaging data and gene

expression data in the human brain is presented by Goel

et al. (2014). They explored whether structurally connected

regions, those connected by white matter tracts determined

by MR diffusion tensor imaging, have similar gene

expression patterns as observed in rodents (French and

Pavlidis 2011; Wolf et al. 2011). Despite finding no sig-

nificant association between pair-wise connectivity and

gene expression similarity, their results indicate that the

overall connectivity of the brain is influenced by the

underlying gene expression patterns. A large-scale analysis

of the association between several cognitive phenomena

and their underlying molecular mechanisms has been car-

ried out in Fox et al. (2014). The study makes use of

Neurosynth (Yarkoni et al. 2011), a framework to auto-

matically synthesize brain-wide functional activation maps

of cognitive tasks and psychological states based on pub-

lished fMRI studies. By quantifying the spatial similarity

between the expression patterns of all genes and several

psychological topics, they demonstrated the ability to

replicate known gene-cognition associations, such as

between dopamine and reward. They further used their

analysis to pinpoint previously unknown associations that

can serve as a guide for researchers towards testable hy-

potheses about the genetic etiology of complex cognitive

tasks. Cioli et al. (2014) used the Allen Human Brain Atlas

to characterize the molecular differences between two sets

of cortical functional networks. Using discriminant corre-

spondence analysis, they predicted to which set of func-

tional networks a cortical region belongs based on its gene

expression profile. Richardi et al. (2015) showed that

functionally connected regions, defined by a synchronized

activity as measured by fMRI, are similar in their gene

expression patterns compared with disconnected regions.

Furthermore, they identified a set of genes underlying the

relationship between correlated gene expression and func-

tional networks, and through GO analysis, they found that

these genes are significantly enriched for ion channels.

Similarly, Wang et al. (2015) used a region-specific mea-

surement of brain activity based on fMRI to identify genes

that correlate with brain activity in the default mode net-

work that is brain regions with coherent fMRI signal

fluctuations at the resting state. The correlated genes were

enriched in neurons as well as genes down-regulated in

autism. By analyzing the relationship between genes with

consistent expression patterns across individuals and rest-

ing-state functional connectivity data from the Human

Connectome Project, Hawrylycz et al. (2015) suggested

that functional circuits are linked to conserved gene

expression patterns across the cortex. Krienen et al. (2016)

analyzed the association between corticocortical functional

networks and the co-expression patterns of 19 genes

uniquely enriched in the supragranular layers of the human

cerebral cortex, in contrast to mice. The resulting strong

association of major functional cortical classes (sen-

sory/motor, paralimbic, or associational) supports the

hypothesis that this unique molecular signatures of the

human upper cortical layers underlie long-distance cortic-

ocortical connections, distinguishing humans from rodents.

To extend this analysis, Vértes et al. used partial least

squares (Rubinov et al. 2015) to identify the transcriptional

signatures associated with topological parameters of fMRI

networks indicating whether cortical regions are involved

in long- or short-distance connections (Vértes et al. 2016).

They showed that the transcriptional profiles of hub regions

are, indeed, enriched in genes specific to supragranular

layers as well as genes involved in oxidative metabolism

and mitochondria, supporting the high cost associated with

long-distance connections.

In contrast to the aforementioned studies on integrating

functional activation maps of the human brain with gene

expression patterns, fewer studies analyzed the link

between structural changes in MRI scans and patterns of

gene expression. Whitaker et al. (2016) used MRI to study

maturation of human brain structures by quantifying

changes in cortical thickness and myelination throughout

adolescence. To understand the molecular mechanisms

underlying changes in cortical thickness and myelination at

different brain regions, they analyzed the relationship

between these MRI markers and gene expression patterns

from the Allen Human Brain Atlas. Using a multivariate

dimensionality reduction technique (partial least squares),

they identified associations between the expression patterns

of all genes (*20,000) and four MRI-based variables.

Peng et al. (2016) investigated whether the relationships

among cortical regions can be explained from genetic

factors using genotype data from twins and unrelated
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individuals. In addition, they reported high concordance

between inter-regional genetic correlations (based on

genotype) and the inter-regional similarity of expression

profiles using data from the Allen Human Brain Atlas,

further confirming the genetic basis of cortical patterning.

With the increasing interest in linking neuroimaging data to

gene expression data, Rizzo et al. (2016) developed

MENGA (Multimodal Environment for Neuroimaging and

Genomic Analysis), which is a framework to integrate

neuroimaging data from various modalities, such as PET

and MRI, to gene expression patterns from the Allen

Human Brain Atlas. MENGA was evaluated by analyzing

the correlation between image data from different modal-

ities focusing on the serotonin and the dopamine systems as

well as myelin in brain tissue.

Romme et al. (2016) extended the study of associations

between brain wiring and the underlying transcriptional

signatures of connected regions to examine the role of

genes in connectivity disruptions observed in schizophrenia

patients. Using cross-correlation analysis of expression

profiles of SCZ risk genes, identified using GWAS, and

diffusion-weighted MRI, they found a strong association

between the expression of the risk genes and regional

macroscale dysconnectivity in schizophrenia patients. Valli

et al. (2016) used the expression profiles of the glucocor-

ticoid and mineralocorticoid receptors across the human

brain to analyze the relationship between cortisol levels

and gray-matter volume in individuals with ultra-high risk

for psychosis. By assuming that the relationship between

gray-matter volume and cortisol levels likely occurs in

brain areas with high expression of cortisol receptor genes,

they used an adaptive threshold to identify significant

associations. These results further highlight the value of

studying associations of alternations observed in brain

images and the underlying transcriptional profile of the

affected areas to uncover disease mechanisms as well as to

identify new disease genes.

Studying brain organization using dimensionality

reduction methods

An alternative approach to analyze the relationship

between gene expression and neuroanatomy is dimen-

sionality reduction (Box 2). Mapping high-dimensional

data in two dimensions allows for the exploration of how

gene expression patterns relate to brain organization. Ji

(2013) used t-distributed stochastic neighborhood embed-

ding (t-SNE) to map the Allen developing mouse brain

atlas and showed that t-SNE clearly outperforms PCA. The

results show that clustering voxels in the low-dimensional

space is more consistent with neuroanatomy than in the

original space. Mahfouz et al. (2015a) used a computa-

tionally efficient implementation of t-SNE, named Barnes-

Hut-SNE, to map the sagittal and coronal adult mouse atlas

and the brain transcriptome of the six human donors

(Fig. 5). They quantitatively showed that BH-SNE maps

are superior in their separation of neuroanatomical regions

in comparison to PCA and MDS. Similarly, dimensionality

reduction approaches can be used to analyze the gene–gene

relationships. A low-dimensional embedding of genes in

which distances represent similarity of the spatial and/or

temporal expression profile of genes across the brain can be

very informative.

Perspective on the future of computational analysis
of brain transcriptomes

Brain transcriptome atlases are no cell-type-specific

The identification of the molecular profile of the different

cell types in the brain, their connectivity patterns, and their

electrophysiological properties is crucial to our under-

standing of the functional organization of the brain. Despite

the valuable information provided by the brain transcrip-

tomes, these resources remain limited in their ability to

quantify cell-type-specific expression of genes. New tech-

nologies targeting specific cell populations, such as viral,

optogenetic and single-cell sequencing approaches, will

allow us to better characterize cell types and their role in

brain function. So far, these techniques are limited in their

scalability and computational methods still provide a fea-

sible alternative approach. Using spatial clustering of gene

expression patterns of cell-type-specific genes in the adult

mouse, Ko et al. (2013) showed that astrocytes and

oligodendrocytes differ between brain regions, but these

regional differences in expression are less pronounced than

differences in neuronal composition. Similarly, Grange

et al. (2014) proposed a model to estimate cell-type-

specific maps of the mouse brain. Kuhn et al. (2011)

developed a method to analyze brain samples of varying

cellular composition. Their method detected myelin-related

abnormalities in brain samples from Huntington’s disease

patients, which was not detected using standard differential

expression. These examples illustrate the power of com-

putational models in untangling the complex composition

of the different cell types in the brain.

With the recent advances in single-cell mRNA

sequencing, it has become feasible to measure the

expression of thousands of genes and their variability

between different cell types (Shapiro et al. 2013). In

addition, single-cell sequencing has indicated that neurons

from small cortical regions come from different clones

with distinct somatic mutations (Lodato et al. 2015).

Understanding how these different clones of neurons con-

tribute to the aggregated gene expression from a specific
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brain region will be of great interest to understand the role

of mutations in neurological disorders. The vast amount of

data generated by these projects illustrates the importance

of computational methods that can identify distinct groups

of cells with a common functional role (Pettit et al. 2014;

Grün et al. 2015).

Limited resolution of brain transcriptomes

There are several limitations associated with the current

spatial and temporal brain transcriptomes. Despite their

unprecedented spatial and temporal resolution, human

brain transcriptomes are still of low resolution with *1000

samples per brain. This relatively low resolution presents a

fundamental limitation, especially when integration with

imaging-based data (e.g., MRI or PET) is considered. The

ISH-based mouse transcriptomes offer a much higher res-

olution. Although the original ISH data provide a near-

cellular resolution (*1 lm), the genome-wide data regis-

tered to the common 3D space offer a much lower reso-

lution (*200 lm). Several studies used re-registration of a

limited set of the high-resolution ISH images from the

Allen Mouse Brain atlas to acquire genome-wide data at a

higher resolution. The aforementioned study by (Ko et al.

2013) found more transcriptionally distinct brain regions

than a previous study (Bohland et al. 2010), mainly due to

the usage of cell-type specific genes. However, Ko et al.

have also realigned the ISH images of the mouse brain atlas

and performed their analysis on a higher resolution grid

(100 lm). Ramsden et al. (2015) used non-linear registra-

tion to realign the ISH data of the mouse. By analyzing

genome-wide data at a resolution of 10 lm, they were able

to identify genes whose expression pattern delineates the

borders and layers of the medial entorhinal cortex.

There is still need for more generic approaches to map

spatially mapped gene expression data (from ISH experi-

ments) generated at different labs to the standard 3D space

of the Allen Reference Atlas. Tools, such as BrainAligner

(Peng et al. 2011), are available for analyzing Drosophila

melanogaster neural expression patterns. The availability

of similar tools for the mouse and human brain can enor-

mously enhance our understanding of disease molecular

mechanisms by allowing researchers to map their own data

to the same space.

Current atlases focus only on protein-coding mRNA

Most of the atlases profiling the mammalian brain tran-

scriptome and its relationship to brain development and

function have mainly focused on profiling the expression of

protein-coding mRNA. These atlases mostly provided

limited or no information about other RNA species, such as

non-coding RNA (ncRNA) and microRNA (miRNA),

despite their recognized role in brain development and

neurological disorders (Ponjavic et al. 2009; Qureshi and

Mehler 2012). Using the Allen Mouse Brain Atlas, long

ncRNAs showed regionally enriched expression patterns,

such as those observed for protein-coding mRNAs (Mercer

et al. 2008), further supporting their functional role in the

brain. By profiling the developmental transcriptome of the

neocortex using deep sequencing, Fertuzinhos et al. defined

the dynamics of mRNA, miRNA, and ncRNA across the

different layers of the mouse cortex (Fertuzinhos et al.

2014). The BrainSpan atlas provides the most compre-

hensive map of miRNA expression in the developing

human brain. Ziats and Rennert (2013) used the BrainSpan

miRNA data to define a pattern of increased inter-regional

expression differences of miRNA through development,

Fig. 5 Dimensionality reduction of brain transcriptomes. Samples

from brain transcriptomes can be embedded in a low-dimensional

space by means of dimensionality reduction methods. a 2D embed-

ding of *60,000 voxels from the Allen Mouse Brain Atlas. b 2D

embedding of *3700 samples from the six donors in the Allen

Human Brain Atlas. Both embeddings were generated using Barnes-

Hut t-SNE. In both maps, colors correspond to anatomical regions of

the mouse and human brain. Data from Mahfouz et al. (2015a)
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potentially driving regional specialization. Moreover, tar-

gets of differentially expressed miRNAs were mostly

related to transcriptional regulation and neurodevelop-

mental disorders, highlighting the importance of studying

miRNAs as potential biomarkers. Additional measurement

of ncRNAs and miRNAs as well as a detailed analysis of

their role in gene regulatory networks can help our

understanding of their relationship to genes related to

neurodevelopmental disorders.

Integrating brain transcriptomes and other neuro-

omics data sets

Advances in high-throughput molecular profiling have

facilitated acquiring various omics data sets spanning a

wide spectrum of cellular processes. For instance, the rapid

developments in next-generation sequencing (NGS) tech-

nology enabled genome-wide measurement of genomic,

transcriptomic, and epigenomic data of brain tissues. While

transcriptomes provide detailed information on the abun-

dance of RNA, epigenomic features, such as histone

modifications, methylation, and chromatin interactions,

describe the underlying mechanisms of distinct cell-speci-

fic transcriptomes. Moreover, most disease-related variants

are in the non-coding regulatory regions of the genome,

making epigenomic studies crucial to uncover a larger

proportion of the genetic contribution to complex traits

than can be explained by coding variants alone. Increas-

ingly, studies are gathering data across different platforms

from a wide range of tissues and cell types to uncover

mechanisms underlying complex phenotypes and disease.

The Encyclopedia of DNA Elements (ENCODE) (Bern-

stein et al. 2012a) and the Roadmap Epigenome project

(Consortium 2015a) have profiled the epigenome of several

tissues and cell types, while the Genotype Tissue Expres-

sion project (GTEx) (Lonsdale 2013) is generating geno-

type and gene expression data from 25 unique human

tissues, including 13 brain regions. In addition, The Cancer

Genome Atlas project (TCGA) (Weinstein et al. 2013) and

the International Cancer Genome Consortium (ICGC)

(Hudson et al. 2010) provide comprehensive genomic and

transcriptomic and epigenomic data from multiple cancer

types. However, most of these studies have profiled sam-

ples from cancer cell lines or normal cells from non-brain

tissues due to limitations specific to the brain, such as the

requirement of large amount of genomic material and the

high heterogeneity of cell types within the same sample

(Shin et al. 2014). Recently, the isolation of more homo-

geneous samples from the brain as well as developments in

single-cell analysis is greatly advancing the field of neu-

roepigenomics (Maze et al. 2014; Shin et al. 2014). For

example, efforts have been made to map the brain

methylome (Illingworth et al. 2015) and to identify cis-

regulatory elements across brain regions (Vermunt et al.

2014). The PsychENCODE consortium (Akbarian et al.

2015) is an ongoing project to profile neurobiological

epigenetic landscape of the healthy and diseased develop-

ing and adult human brains. For large-scale multi-omics

data sets, systems genomics approaches, which integrate

different genome-wide data types, can minimize false

positive discoveries as well as unravel the molecular

mechanisms underlying the phenotype or disease of inter-

est. Several approaches have been developed to integrate

multi-omics data (Consortium 2015b), clearly illustrating

the added value of collecting multiple omics measurements

from a large number of samples.

Integrating brain transcriptomes and imaging mass

spectroscopy

Over the past few years, imaging mass spectrometry (IMS)

(Caprioli et al. 1997) has emerged as a powerful technique

to capture the spatial distribution of large biomolecules,

such as proteins, peptides, and lipids in biological samples.

Similar to ISH, imaging mass spectroscopy holds great

potential in studying the chemical organization of complex

samples from the brain (Hanrieder et al. 2013). Methods

have been developed to align IMS-based sections of the

mouse brain to histology-based sections from the Allen

Mouse Brain Atlas to anatomically localize biomolecules

within the brain (Abdelmoula et al. 2014; Carreira et al.

2015). However, recently, these methods have been

extended to link protein expression to the expression of the

encoding gene as well as its co-expressed genes based on

the Allen Mouse Brain Atlas (Škrášková et al. 2015). There

is a great potential for applications based on the integration

of ISH-based gene expression and IMS-based protein

expression measurements to help our understanding of

translational mechanisms in the brain. Yet, more complex

modeling of the two data types is needed. Methods

developed to integrate spatially mapped gene and protein

expression data can also be used to study spatial localiza-

tion within the cell using data from the Human Protein

Atlas (Uhlen et al. 2015).

Imaging genetics

In an attempt to better understand gene-disease associa-

tions, researchers are searching for genes that affect

intermediate disease biomarkers. Brain imaging studies can

be used to reveal genetic effects on brain structure, func-

tion, and circuitry, providing valuable mechanistic insights.

Imaging genetics have emerged as a field concerned with

finding associations between genetic variants (typically

SNPs) and imaging-based measurements (Hibar et al.

2011b). Due to the millions of statistical tests that need to
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be performed, stringent statistical thresholds are required to

limit the false discovery rate (Medland et al. 2014).

Recently, the Enhancing Neuro Imaging Genetics through

Meta-Analysis (ENIGMA) consortium (Hibar 2015) ana-

lyzed SNPs associations with the volume of sub-cortical

structures in*30,000 individuals, providing the first large-

scale analysis of the genetic causes of human brain vari-

ability. Several methods have been developed to limit the

number of statistical tests performed in genome-wide,

brain-wide analysis by either exploiting the dependency

between brain voxels and/or testing for associations with

genes or pathways instead of individual variants (Hibar

et al. 2011a). In addition, efforts have been made to jointly

model imaging and genetic observations from Alzheimer’s

Disease Neuroimaging Initiative (ADNI) data (adni.lo-

ni.ucla.edu), using multivariate statistical methods (Wang

et al. 2012; Batmanghelich et al. 2013). These methods

remain computational very expensive, limiting the number

of variables analyzed. Brain transcriptomes can play an

important role in imaging genetics by providing region-

specific information about gene expression that can be used

to prioritize genes and variants for testing. For example,

incorporating spatial gene co-expression of amyloid-related

candidate genes from the Allen Human Brain Atlas as prior

knowledge to their statistical model significantly improved

the prediction of associations between SNPs in the APOE

gene and amyloid deposition measures among cortical

regions (Yan et al. 2014). There is need for more advanced

methods to link genomic measurements which are usually

collected from blood samples to intermediate disease

phenotypes observed in brain images.

Unexplored computational avenues

The multiple dimensions of the brain transcriptomes (ge-

nes, regions, and time) provide a framework to explore

spatio-temporal regulation of gene expression during

development. Clustering the data along one dimension only

yields global patterns of similarity, while in a complex

system, such as the brain, it is always more useful to

identify more localized patterns of correlation. For exam-

ple, the effect of steroid hormones on the brain is highly

region-specific, depending on the availability of target

genes and co-regulators affecting the steroid receptors at

the site of action. Analyzing the region-specific co-ex-

pression relationships of steroid receptors and their coac-

tivators can be used to predict steroid responsiveness and

selective activation of particular circuits with synthetic

ligands (Zalachoras et al. 2013).

Biclustering is a type of technique to simultaneously

identify a subset of genes associated with a subset of

conditions (this can be brain regions and/or time-points),

allowing for the identification of local spatial or temporal

patterns of co-expression. Biclustering has been particu-

larly effective in analyzing time-series expression data

(Goncalves and Madeira 2014). Similarly, applying

biclustering to expression data from the Allen Mouse Brain

Atlas resulted in more GO-enriched clusters than those

obtained by independently clustering genes or regions

(Jagalur et al. 2007). Ji et al. (2013) described a co-clus-

tering method based on graph approximation to explore the

spatio-temporal regulation of gene expression during the

mouse brain development. Yet, they apply biclustering to

each developmental stage independently and do not con-

sider the time-varying nature of the developing mouse

brain data, due to the lack of correspondence between the

voxels across different stages. To fully exploit the multi-

dimensionality of the developing brain transcriptomes,

triclustering methods provide an interesting approach to

identify groups of genes that show spatial and temporal co-

expression (Tchagang et al. 2012). Recently, Jung et al.

(2015) used three-component analysis to identify genes

associated with aging by analyzing longitudinal gene

expression, methylation, and histone modification data of

human skin fibroblasts. Their three-component analysis

represents an integrative approach to jointly model tem-

poral changes in different data types. An extension of their

methods to incorporate spatial information available in

brain transcriptomes can lead to a complete approach of

modeling spatial and temporal changes of different omics

data from the brain.

Graphical models (e.g., conditional random fields) are

commonly used for data segmentation using local fea-

tures, especially in computer vision application. The

Roadmap Epigenome project has used a Hidden Markov

Model to classify the human genome into chromatin states

based on epigenetic markers (Consortium 2015a). These

models can be used to model the spatial and/or temporal

relationships between genes in brain transcriptome

atlases.

A greater challenge lies in identifying causal relation-

ships rather than associations in gene–gene interactions and

the brain is no exception. Systems biology approaches

provide an interesting avenue to explore causal relation-

ships between genes by means of quantitative modeling.

The resulting mathematical models enable formal analysis

and simulation of complex biological processes (Kolch

et al. 2015). However, inferring causal relationships

between the different variables requires a vast amount data,

limiting their usability to a small number of genes (Lausted

et al. 2014). Hwang et al. (2009) presented a system

approach to analyze genes differentially expressed in the

mouse brain across time in Prion disease. An extension of

such a model to include spatial information on gene

expression can help refine the model as well as associate

disease-related changes to specific brain areas.
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