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We present a hybrid simulation method which allows one to study the dynamical evolution of
self-assembling (co)polymer solutions in the presence of hydrodynamic interactions. The method
combines an established dynamic density functional theory for polymers that accounts for the non-
local character of chain dynamics at the level of the Rouse model, the external potential dynamics
(EPD) model, with an established Navier-Stokes solver, the Lattice Boltzmann (LB) method. We
apply the method to study the self-assembly of nanoparticles and vesicles in two-dimensional copoly-
mer solutions in a typical microchannel Poiseuille flow profile. The simulations start from fully mixed
systems which are suddenly quenched below the spinodal line. In order to isolate effects caused by
walls, we use a reverse Poiseuille flow geometry with periodic boundary conditions. We identify
three stages of self assembly, i.e., initial spinodal decomposition, particle nucleation, and particle
growth (ripening). We find that (i) In the presence of shear, the nucleation of droplets is delayed
by an amount roughly proportional to the shear rate, (ii) Shear flow greatly increases the rates of
particle fusions, (iii) in later stages of self-assembly, stronger shear flows may induce irreversible
shape transformation via finger formation, in particular in vesicle systems. The combination of
these effects lead to an accumulation of particles close to the center of the Poiseuille flow profile,
and the polymeric matter has a double peak distribution centered around the flow maximum.

I. INTRODUCTION

The study of inhomogeneous polymer systems is a
central research field in materials science1,2. In partic-
ular, systems of diblock copolymers have been studied
intensely in the last decades as they exhibit interesting
morphologies on the mesoscale3,4. Theoretical investiga-
tions, numerical studies and computer simulations have
led to a good understanding of polymer melts of diblock
copolymers and their phase behavior5–10.

Specifically, the self-assembly of copolymers in solu-
tions has received increasing interest in the last years.
Depending on the polymer structure in copolymer sys-
tems, mesoscale structures like lamellae, micelles, vesi-
cles or even more complex structures may assemble11–15.
Such structures occur in nature and have an important
function in cells16, and they have a variety of potential
applications in (bio)technology, e.g. for encapsulation
and transport17.

Modeling the self-assembly of such structures on
mesoscales is non-trivial and requires coarse-graining
techniques18. Whereas the self-assembly of single small
vesicles from surfactant solutions can be studied by clas-
sical all-atom molecular dynamics (MD)19, this is not
feasible for larger systems. Simulations of the sponta-
neous self-assembly of surfactant vesicles have resorted
to coarse-grained MD20, Brownian dynamics (BD)21–23,
dynamic Monte Carlo (MC)24–28, dissipative particle
dynamics29 and hybrid MD/multiparticle collision dy-
namics (MPCD)30. DPD has also been used to investi-
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gate polymersomes31–34, however, these studies were re-
stricted to rather short polymers. On the other side of the
spectrum, field-based methods such as density functional
theory35,36 and self consistent field theory37,38 are power-
ful tools to study self-organizing inhomogeneous polymer
systems. Dynamic extensions of these field models15,39–42

have given useful insight into the mechanisms of nanopar-
ticle self assembly in polymeric systems14,43–47. How-
ever, including fluid flow and hydrodynamic interactions
in such studies has remained a challenge.

A number of studies have considered the behavior of
vesicles in external flows such as Poiseuille flow or shear
flow. They have typically focussed on the deformations
of droplets and vesicles in shear flow48–55 and on lift-
ing forces that determine their lateral position in the
channel56–60. Most of them were based on a particle de-
scription, where the droplets/vesicles are treated as in-
dividual (possibly deformable) objects, and they did not
address self-assembly.

Other authors have studied the self-assembly of block
copolymer melts under shear61–63. In agreement with re-
cent dissipative particle dynamics (DPD) simulations64,
they found that the shear flow induces morphological re-
arrangements and favors cylindrical structures that are
parallel to the flow64. In these studies, the flow field
was imposed and the feedback effect of self-assembly on
the instantaneous flow profile was neglected, i.e., hy-
drodynamic interactions were ignored. However, it is
well known that hydrodynamic interactions can influence
structure formation in soft matter quite dramatically65,
the kinetics is often accelerated and kinetic traps can be
avoided15,66,67. To account for such effects, one must use
a simulation method that couples, in both directions, the
field-based description of the free energy in complex flu-
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ids with a hydrodynamic description of fluid flow in a
consistent manner.

One such method was recently developed by Zhang and
two of us15. Unfortunately, the dynamical model did not
properly account for the connectivity of the polymers,
i.e., monomers were treated as if they moved indepen-
dently from one another. As a result, kinetic pathways
of vesicle self-assembly were observed in simulations that
are suppressed in reality. For example, block copoly-
mer vesicles in solutions easily merged by fusion in the
simulations15, whereas fusions are very rare in reality and
in simulations that use a more realistic, albeit purely dif-
fusive dynamical model14,45,46.

In the present study, we propose a hybrid simulation
method that combines a nonlocal model for the poly-
mer diffusion, the so-called external potential dynam-
ics (EPD) model40, with the Lattice Boltzmann (LB)
method for fluid dynamics68. With this new method we
investigate the assembly of mesoscale structures, namely
internally structured droplets and vesicles, in a shear flow
in the form of two opposite Poiseuille flows.

At equilibrium, several pathways of vesicle forma-
tion have been reported from simulations14,27,29,33,46 and
experiments27,69–72. Here, we focus on the nucleation-
and-growth pathway which has been observed at low
polymer concentration in field-based simulations14,46,
DPD33 and experiments70,71. We study the effect of
Poiseuille flow on nucleation and ripening of the droplets
and vesicles, and on the distribution of polymeric matter
across the channel.

By using EPD, which approximates non-local Rouse
dynamics (chains move as a whole), we expect to ob-
tain more realistic results for the kinetic pathways of self-
assembly, which allows us to identify relevant metastable
states. Such transient states could be stabilized, e.g., by
crosslinking ”on the fly”. Hence simulations based on the
new method not only give insights into the mechanisms of
self-assembly under conditions far from equilibrium, but
may also help to design experimental strategies for mak-
ing novel types of nanoparticles which do not correspond
to stable equilibrium structures.

The rest of the paper is organized as follows. In Sec. II,
we explain the phyiscal background of our new method
and how it is implemented. Then we present results of
the assembly of droplets and vesicles in polymer solutions
in a closed system in Sec. III and in Poiseuille flow in Sec.
IV, focussing on nucleation in Sec. IV A and on ripening
in Sec. IV B. Our results are summarized in Sec. V.

II. SIMULATION MODEL AND METHOD

We consider diblock A:B copolymers with A-fraction
qA, immersed in an explicit solvent S. The copolymers
are modeled by Gaussian chains.

The system is treated within polymer density func-
tional theory, hence the free energy is written as a
functional of the dimensionless local composition fields

ΦI(r) of species I with I = A,B, S for A-monomers, B-
monomers, and solvent particles, respectively. The com-
position fields ΦI are normalized such that the actual
number density is given by ΦI/v with the average parti-
cle volume v (which is taken to be identical for monomers
A,B and solvent). The free energy is then written as
F [Φ] = F [Φ]/(βv) (β = 1/kBT is the Boltzmann con-
stant) with37,46

F [Φ] = −Φ̄SV ln (QS/V Φ̄S)− Φ̄P
N
V ln (QPN/V Φ̄P )

+

∫
dr
[ 1

2

∑
I,J 6=I

χIJΦIΦJ (1)

−
∑
I

ωIΦI +
κH
2

(
∑
I

ΦI − 1)2
]
.

Here, N denotes the number of segments per chain, Φ̄P
and Φ̄S are the average volume fractions of polymer and
solvent, QP and QS are the partition function for a single
polymer chain and the solvent, and the ωI represent aux-
iliary ”potential” fields which would generate the same
composition fields {ΦJ(r)} in a reference system of non-
interacting polymers. The last term in Eq. (1) ensures
that

∑
I ΦI ≈ 1 everywhere. For reasons of numerical

stability we allow for small deviations and introduce a
finite Helfand parameter κH . The most important con-
trol parameters are the Flory-Huggins parameters χIJ ,
which control the interaction strength between different
species.

The composition fields ΦI propagate according to a
convection diffusion equation

∂tΦI = −∇ · jDI −∇ · (v ΦI) =: (∂tΦI)
D + (∂tΦI)

C (2)

(superscripts D,C refer to the diffusion and convection,
respectively), where v is the velocity of the hydrodynamic
flow field. We take the flow field to be the same for
all components (in contrast to two-fluid models such as
Ref.73). For the first term, the diffusive part, we adopt an
adiabatic approximation, according to which the charac-
teristic time scales of internal chain relaxations are much
smaller than the relevant diffusive time scales of the sys-
tem. Hence chains are taken to diffuse as a whole and
the diffusive current jDI has the form (originally derived
by Maurits et al. )40:

jDI (r) = −DI

∑
J

∫
dr′PIJ(r, r′)∇r′

δF

δΦJ(r′)
, (3)

Here, DI denotes the diffusion coefficient of species I,
and the two-body correlator is given by40

PIJ(r, r′) = − δΦI(r)

δωJ(r′)
. (4)

To avoid the explicit evaluation of the two-body corre-
lator, we adopt the EPD approximation of Maurits et
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al.40 and assume that ∇rPIJ(r, r′) = −∇r′PIJ(r, r′),
which is definitely true in a homogeneous system with
PIJ(r, r′) = PIJ(r − r′). Then the diffusive part of Eq.
(2) (the first term on the r.h.s.) can conveniently be
rewritten as a local equation for the ”external potentials”
ωI

40,46. More specifically, we exploit the fact that there
exists a unique relation between ΦJ and ωJ , hence the
time evolution equation (2) can equivalently be written
as an equation for ωI , i.e., ∂tωI = (∂tωI)

D + (∂tωI)
C

with [
∂tωI(r)

]D
= −DI∇2 δF

δΦI
. (5)

In our previous work (Zhang et al.15), we have used

a much simpler Ansatz for the diffusive flow, jDI =
−DIΦI(r)∇ δF

δΦI(r) (local dynamics). This describes a sit-

uation where monomers move independently from each
other. The present nonlocal model accounts for the fact
that monomers in a chain move cooperatively. It should
be noted that in systems containing sharp interfaces,
the EPD approximation may produce artefacts com-
pared to explicit particle simulations and more sophis-
ticated schemes must be used (S. Qi et al., manuscript
in preparation). At weak segregations, however, a sys-
tematic study by Reister and Müller has showed that the
EPD simulation scheme is superior to the local dynamics
scheme and could reproduce the time evolution of struc-
ture factors in reference particle simulations on polymer
demixing at a quantitative level41,74.

In practice, the composition fields Φ are calculated
from the auxiliary potentials ω as follows37,41: One in-
troduces partial partition functions g(r, s), which fulfill
the modified diffusion equations

∂sg(r, s) = R2
G∆g(r, s)−Nω(r, s)g(s, r) (6)

∂sg
′(r, s) = R2

G∆g′(r, s)−Nω(r, s)g′(s, r) (7)

Here s ∈ [0 : 1] parametrizes the position within a chain,
the function ω(r, s) is equal to ωA(r) for s < qA, and
to ωB(r) otherwise, and RG is the gyration radius of
one chain. We solve these equations numerically using a
pseudo-spectral method introduced by Tzeremes et al.75

g(r, s+ ds) = exp

[
−Nω(r, s+ ds)

2
ds

]
exp

[
R2
G ∆ ds

]
(8)

× exp

[
−Nω(r, s)

2
ds

]
g(r, s).

The exp [∆ ds]-part is evaluated in Fourier space (here ∆
is the Laplacian), and the other part is evaluated in real
space.

The polymer densities are calculated by integrating the

partial partition functions over s:

ΦA(r) =
V Φ̄P
QP

∫ qA

0

ds g(r, s)g′(r, 1− s) (9)

ΦB(r) =
V Φ̄P
QP

∫ 1

qA

ds g(r, s)g′(r, 1− s) (10)

ΦS(r) =
V Φ̄S
QS

exp [−ωS(r)], (11)

where the densities are normalized by the partition func-
tions QP =

∫
dr g(r, 1) and QS =

∫
dr exp [−ωS(r)].

The full convection-diffusion equation (2) is solved by
a simple Euler-forward scheme with alternating convec-
tion and diffusion steps. The convection steps are most
conveniently performed in terms of the composition fields
Φ, and the diffusion steps in terms of the auxiliary fields
ω (via Eq. (5)). The calculation of φ from ω via Eqs. (6)-
(11) is straightforward. The calculation of ω from Φ is
done iteratively with the conjugate gradients method76.

The fluid dynamics is modeled with a D2Q9 Lattice
Boltzmann (LB) environment68,77, which is based on a
set of discrete velocities ci, and a lattice with lattice sites
r, populated by a number of fluid particles ni(r) with
velocities ci. The local mass density of the fluid ρ and
the flow velocity v are then calculated as ρ =

∑
i ni and

ρv =
∑
i nici. The populations ni are propagated with

a streaming and a collision step according to

ni(r + ci∆t, t+ ∆t) = ni(r, t) + ∆i(r, t). (12)

In our implementation, we use a multi-relaxation time
LB algorithm78,79. Since our dynamical model is a mean-
field model and thermal fluctuations are not included in
the convection-diffusion equation (2), we also do not ther-
malize the LB modes for consistency.

The thermodynamically driven diffusive flow of the
polymers in solution induces fluid flow. To account for
this effect, the Navier Stokes equations for a Newtonian
fluid have to be extended, either by including an ad-
ditional stress term of the form ∇σ̃ or, equivalently, a
corresponding bulk force term f. We choose the second
variant15 and write the flow equation in the form

ρ (∂tv + v · ∇v) = f−∇p+∇σ′. (13)

where σ′ denotes the viscous stress tensor of a Newto-
nian fluid and p is the pressure. To implement the force
coupling in the LB scheme, we follow Ref.79 and extend
the collision operator by adding a force contribution

∆′′i = aci
[

∆t

c2s
fαciα +

∆t

2c4s
Σαβ

(
ciαciβ − c2sδαβ

)]
(14)

with

Σαβ =
1

2
(1 + γs)

[
vαfβ + vβfα −

2

3
vγfγδαβ

]
(15)

+
1

3
(1 + γb) vγfγδαβ ,
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where the prefactors aci are the weight factors of the
D2Q9 model68, cs = ∆x/∆t

√
3 is the speed of sound, ∆x

and ∆t are the lattice constant and the LB time step,
and γs, γb are the relaxation parameters of the multi-
relaxation LB algorithm, which set the shear and bulk
viscosity, η and ηB , via80

η =
∆tρc2s

2

1 + γs
1− γs

, ηB =
∆tρc2s
d

1 + γb
1− γb

, (16)

where d is the spatial dimension.
The mechanical force density field f in Eq. (13), which

is to be coupled to LB, is transmitted to the fluid by
the monomer segments or solvent particles and should
be identical to the force driving the diffusive monomer
currents. However, the adiabatic approximation, Eq. (3),
creates some ambiguity. From a thermodynamic point of
view, the force density should be evaluated directly from
the free energy according to42,81 fTD =

∑
I f

TD

I with

fTD

I (r) = − 1

βv
ΦI ∇

δF

δΦI
. (17)

This thermodynamic force drives the local diffusive mo-
tion of monomers on very short time scales. In the adia-
batic approximation, however, monomers of a chain are
taken to move together. Rapid internal chain motions
are averaged out, and chains move as a whole, like rigid
bodies, driven by the total thermodynamic force act-
ing on each chain. Comparing Eq. (3) with the relation
jDI /v = βDIfI between forces and currents, one finds that
this corresponds to an independent monomer motion in
an effective force field feff =

∑
I f

eff

I with

feffI (r) = − 1

βv

∑
J

∫
dr′PIJ(r, r′)∇r′

δF

δΦJ
(r′), (18)

In a mechanically consistent model, the force entering
(13) should thus be given by the effective force, Eq.
(18), which is the thermodynamic force averaged over
the gyration radius. In the present work, we choose
this second, mechanically consistent type of force cou-
pling. Similarly, we disregard solenoidal part of fI(r) in
Eq. (18), since solenoidal contributions to fI ∝ jDI have
no effect on the convection-diffusion dynamics, Eq. (2).
In Appendix A, we show that the force fields fI are in
fact purely irrotational within the EPD approximation
∇rPIJ(r, r′) = −∇r′PIJ(r, r′) and in particular in ho-
mogeneous fluids.

In practice, the force fields are evaluated as follows. We
reconstruct the irrotational part of fI from the change in
the composition field resulting from the diffusion step.[

δΦI(r, t)
]D

=
[
ΦI(r, t)−ΦI(r, t− δt)

]D
= −vβDI∇ · fI(r, t)δt (19)

After Fourier transformation (k-space), we obtain an ex-
plicit expression for the force

f̂I(k, t) =
1

βv

[
δΦ̂I(k, t)

]D
DIδt

ik

|k|2
(20)

This completes the formulation of our model. The dif-
fusive dynamics of the polymer composition fields is cou-
pled to the fluid flow via the force f =

∑
I fI in the

Navier-Stokes equations, Eq. (13), and the fluid flow is
coupled to the polymer dynamics via the convection term
in the convection-diffusion equation, Eq. (2). We note
that these are the only two couplings between the com-
position fields and the flow fields in the model. In par-
ticular, we do not impose a strict relation between the
number densities and the mass density. Instead, the to-
tal number density

∑
I ΦI and the mass density ρ are

approximately kept constant by separate compressibil-
ity terms. This represents an approximation which can
be applied in fluids that are roughly incompressible, and
where the local mass density is roughly independent of
the local composition. A flow chart of the simulation
algorithm and additional explanations are given in Ap-
pendix C.

Our mean-field scheme does not include thermal fluc-
tuations. Formally, they can be included as in Ref.15 by
adding Gaussian noise terms in the convection-diffusion
equation (2) and in the Navier-Stokes equations (13),
which satisfy the fluctuation-dissipation theorem. The
noise in the hydrodynamic equations can be implemented
in the Lattice Boltzmann framework as described in
Refs.15,79. The thermodynamically consistent implemen-
tation of noise in the convection diffusion equation within
the EPD approximation, however, is not trivial and re-
quires special efforts41. One can mimick the disordering
effect of thermal noise by adding a simplified noise term
that just guarantees mass conservation, but violates the
fluctuation dissipation theorem46. However, such an ap-
proximation should only be used to study the mostly de-
terministic time evolution of a non-equilibrium systems
in the mean-field regime, where the exact structure of
the noise does not matter too much. It is not suitable for
studying equilibrium distributions and thermally driven
processes.

In the next sections, we apply our method to study
particle self-assembly in closed systems and in shear flow.
These calculations are done in two dimensions. This al-
lows us to cover a large range of shear rates with good
statistics (many independent simulation runs), and to
study large systems over long times in order to inves-
tigate flow-induced shape deformations in late stages of
self-assembly. In principle, however, the method is not
restricted to two dimensions. In three dimensions, the
D2Q9 LB scheme must be replaced by a threedimensional
scheme such as the D3Q19 scheme68.

III. PARTICLE SELF-ASSEMBLY IN CLOSED
SYSTEMS

We first consider the self-assembly of copolymeric
droplets and vesicles in closed systems without external
flows. We choose the units of length, time, and mass such
that the radius of gyration RG, the diffusion coefficient of
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the solvent DS , and the mass of the solvent mS are unity,
which gives the time unit τ = R2

G/DS . Furthermore, we
set the shear and bulk viscosity to η = ηB = 1R2

G/τ · ρ
and take the masses of particles to be equal for all species,
hence the mass density is ρ = mS/v. The parame-
ter combination 1/(βv) (with the Boltzmann factor β)
would set the noise level in a simulation that includes
fluctuations15. At the mean-field level considered here,
where fluctuations are neglected, the parameters v and β
do not enter the results. Hence we do not need to specify
them here.

To isolate the effect of hydrodynamics, we choose the
other model parameters according to a previous study
by He et al.46, i.e., N = 17 with a length fraction qA =
0.882 of (hydrophobic) A-monomers, DA,B = DS/N ,
Φ̄P = 0.1, and the interaction parameters κH = 1.176,
χAB = 1.05, χAS = 1.20. Two values of Flory-Huggins
parameters χBS are considered, namely χBS = 0.75,
which leads to systems of droplets, and χBS = −0.15,
which leads to the assembly of vesicles14,46. As the
droplets in the first case show structural resemblance
to micelles, we will call these particles micelle-shaped
droplets and refer to the first case as ”droplet systems”.
Systems of the second kind will be called ”vesicle sys-
tems”.

The grid spacing ∆x is chosen RG/3 both for the LB
part and the solution of the convection-diffusion equa-
tion, and the timestep is set to ∆t = 0.002τ . The time
step determines the ”lattice velocity” c = ∆x/∆t in the
LB system, which is proportional to the speed of sound
cs, and must hence be chosen small enough that the pro-
cesses of interest are slow compared to c. In our system,
we have Rg/c ≈ 0.006τ , which is much shorter than the
time scale of diffusion, R2

g/DS = 1τ .
The system size is chosen 50RG × 50RG with periodic

boundary conditions. The simulation runs start from
a perfectly mixed system, which is homogeneous except
for a very small random noise which varies from system
to system. Apart from this small initial inhomogeneity,
there is no further source of noise. Thermal fluctuations
are not included, and the simulation runs are completely
deterministic. This choice of system setup allows us to
make a precise comparison of the evolution of a config-
uration with and without hydrodynamics, i.e., with and
without coupling to the LB simulation.

Following Ref.46, we introduce a quantity which quan-
tifies the mixing of solvent and polymers:

σ(t) =
1

V

∫
dr|ΦP (r, t)− Φ̄P |, (21)

where V is the volume of the system and ΦP = ΦA + ΦB
the volume fraction of polymers. The state σ = 0 cor-
responds to a perfectly mixed system, and increasing σ
signalizes segregation. 1 shows a typical time evolution
σ(t) in systems set up as described above. At the begin-
ning, the system decomposes slowly from an initially al-
most perfectly mixed state. The speed of the segregation
process increases until the system reaches a ”nucleation

0 2000 4000 6000
0.00

0.05

0.10

0.15

Time/τ

σ

no LB
LB

0 2000 4000 6000
0.00

0.05

0.10

0.15

Time/τ

σ

no LB
LB

FIG. 1. Evolution of σ with time t (units τ) in a system with
hydrodynamics (dashed red curve: EPD convection-diffusion
equation coupled to LB simulation), and a corresponding sys-
tem (same initial conditions) without hydrodynamics (full
blue curve: pure EPD simulation). Left: droplet system
(χBS = 0.75), right: vesicle system (χBS = −0.15)

0 2000 4000 6000
0.0

0.5

1.0

1.5

Time/τ

σ
∆
/
1
0
−

3

0 2000 4000 6000
0.0

0.2

0.4

0.6

0.8

1.0

Time/τ

σ
∆
/
1
0
−

3

0.01

−0.01

FIG. 2. Evolution of σ∆ with time t (left, units τ) in droplet
systems (χBS = 0.75, top) and vesicle systems (χBS = −0.15,
bottom) with corresponding difference snapshots of ΦLB

P (r)−
ΦNLB

P (r) (right) at t = 2000τ in the droplet system and t =
3000τ in the vesicle system. The values of the difference are
confined to a very narrow regime between from −0.01 (blue)
and 0.01 (beige).

stage”, at which σ shows a sudden increase. Finally σ sat-
urates, which denotes the ripening stage. In agreement
with the results from He et al.46, we find that nucleation
takes place much earlier in systems with χBS = 0.75,
where the final structures are micelle-shaped droplets,
compared to systems with χBS = −0.15, where vesicles
can emerge.

We have also analyzed how the number of particles
changes with time after the initial nucleation stage (data
not shown). Both in the systems with and without hy-
drodynamics, it remains roughly constant in the vesicles
systems with χBS = −0.15, and decreases in the droplet
systems with χBS = 0.75. In the latter case, large par-
ticles are found to grow at the expense of smaller ones
until some of the smaller ones completely dissolved. Fu-
sions of particles are never observed, neither in systems
without nor with hydrodynamics.
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In 1, the curves of σ(t) for systems with hydrodynamic
interactions (where the EPD simulation is coupled to a
LB simulation) and without (no coupling) are practi-
cally indistinguishable. To further quantify the influence
of hydrodynamics on self-assembly, we have examined
the polymer structure factor at different times (data not
shown). However, in the time range covered by the simu-
lation, the structure factors of systems with and without
hydrodynamic coupling were practically identical. Hence
we introduce another, more sensitive quantity σ∆, which
allows to elucidate local effects of hydrodynamic flows.
It integrates over the local absolute difference of the di-
mensionless polymer distribution ΦLBP (r) in systems with
coupled LB simulation, and the corresponding distribu-
tion ΦNLBP in systems without LB coupling (but identical
initial conditions) and is defined as

σ∆ =
1

V

∫
dr|ΦLBP (r)− ΦNLBP (r)|. (22)

Results for an example of a droplet and vesicle system are
shown in 2. Over all, σ∆ is very small (of order 10−3). It
starts at zero and then exhibits a first peak up to around
0.001 around the time where nucleation sets in. Then,
σ∆ decreases to values below 0.0005 and levels off, but
may occasionally show further peaks which correspond
to singular events. For example, the second peak in 2,
top, coincides with the dissolution of a droplet.

The local difference plots on the right side of 2 give
further insight into the effect of hydrodynamics on phase
separation. In the droplet system, the larger droplets are
surrounded by beige coronae and the smaller systems by
blue coronae, indicating that the growth of large droplets
and the shrinking of smaller droplets is slightly acceler-
ated in the presence of hydrodynamics. A more quanti-
tative analysis of difference plots such as 2 showed that
fluid dynamics generates a speedup of the order of one
percent. This is much less than in our previous study
using local dynamics15, and in a recent study of self-
assembly of small molecules67. Hence, we conclude that
hydrodynamic flows have no significant effect on struc-
ture formation in our polymer solutions. The flow fields
generated by the polymer diffusion seem to be too small
to have large feedback effects on the polymer concentra-
tion fields.

As already mentioned earlier, the self-assembly of vesi-
cles in the absence of hydrodynamic flows had been stud-
ied earlier by He et al.46 using nonlocal, cooperative dy-
namics, and by Zhang et al.15 using local dynamics. Our
results here agree with those of He et al.46, who found
that fusion of particles is suppressed once the particles
have reorganized themselves internally such that they are
surrounded by a hydrophilic corona of B-monomers. In
contrast, Zhang et al.15 did observe particle fusion events,
hence the corona seems to affect the kinetics only if the
monomers move cooperatively.

Zhang et al.15 also studied the effect of hydrodynamic
interactions and found that self-assembly was accelerated

particularly in the late stages. The main effect seemed to
be the acceleration of fusion events. Our present results
show that hydrodynamic flows have only a very small ef-
fect on the kinetics of particle assembly, if particle fusion
is kinetically suppressed.

IV. PARTICLE SELF-ASSEMBLY IN
POISEUILLE FLOW

Next we investigate the effect of shear flow on the ki-
netics of self-assembly. We mimick an experimental sit-
uation where micelle-shaped droplets and vesicles self-
assemble in thin channels, e.g., in a microfluidic device.
However, we are not interested in boundary effects here.
To eliminate them, we follow Refs.82,83 and create a sys-
tem of opposite Poiseuille flows with periodic boundary
conditions (reverse Poiseuille flow). This is done by ap-
plying a bulk force of the form

fx(y) =

{
−f0 y < Ly/2

+f0 y ≥ Ly/2
(23)

in x-direction to the fluid. The theoretical prediction
for the resulting velocity field (from the Navier Stokes
equations) is:

vx(y) = − f0

2η

(
y − Ly

2

)(∣∣∣∣y − Ly
2

∣∣∣∣− Ly
2

)
(24)

Here Ly denotes the y-size of the system and η is the

shear viscosity. The resulting shear rate γ̇ = ∂vx
∂y is a

linear function in y with the form

γ̇ =
f0

2η

(
Ly
2
− 2

∣∣∣∣y − Ly
2

∣∣∣∣) (25)

In the following, forces will be given in units of f∗ =
ρRGτ

−2. The amplitude of the force field in our simu-
lations ranges from f0 = 1 · 10−5f∗ to f0 = 1 · 10−3f∗.
With these forces, we reach Reynolds numbers up to 2
and stay in the regime of low Reynolds numbers. More-
over, the shear rate is sufficiently small that real poly-
mers with radius of gyration RG and diffusion constant
DP would not deform, which provides a justification for
our adiabatic approximation. (Real polymers with Rouse

time τR = 2
π2

R2
G

DP
would have Weissenberg numbers be-

low Wi = τRγ̇ < 0.04 in our shear flows, and polymer
deformations become important for Wi > 1.384.)

We will refer to systems with f0 < 3·10−5f∗ as ”weakly
sheared”, systems with 3 · 10−5f∗ ≤ f0 ≤ 3 · 10−4f∗ as
”moderately sheared”, and even higher f0 as ”strongly
sheared”. The model parameters and the initial simula-
tion setup are the same as in the previous section. We
will again compare ”droplet systems” with χBS = 0.75
with ”vesicle systems” with χBS = −0.15 and use simu-
lation boxes of size 50RG × 50RG. For bulk forces up to
f0 = 5 · 10−5f∗, we average over 100 independent runs



7

0 2 4 6 8 10

1.4

1.6

1.8

2.0

2.2

2.4

f0/10−4f∗

n
p
/
1
0
−
3
R

−
2

G

0 2 4 6 8
3.0

3.5

4.0

4.5

5.0

f0/10−4f∗

n
p
/
1
0
−
3
R

−
2

G

FIG. 3. Maximum average particle density during the self-
assembly process vs. bulk driving force f0 in units of f∗.
Left: vesicle systems (χBS = −0.15), right: droplet systems
(χBS = 0.75)

per parameter set and otherwise, over 50 runs. The sys-
tems were initialized with the flow field defined by Eq.
(24). Hence the force field just has to conserve the flow
field during the simulation run.

We will first discuss the initial stage of self-assembly
where the first nuclei appear (nucleation stage, Sec.
IV A), then analyze the effect of shear on the ripening
stage (Sec. IV B), examine the development of the par-
ticle shapes (Sec. IV C) and the characteristic relaxation
times (Sec. IV D), and finally study the lateral migration
of particles and/or polymeric matter across the channel
(Sec. IV E).

A. Nucleation Stage

We begin with investigating the first stage of parti-
cle assembly, where nuclei initially form. We call this
stage ”nucleation stage”, even though the process of self-
assembly is deterministic in our system and not driven by
random thermal fluctuations (which are not included in
our mean-field treatment). As discussed in earlier work,
the nuclei formation is triggered by spinodal decomposi-
tion in this case46,85. During an initial ”incubation time”,
spinodal concentration fluctuations build up until they
become large enough that nuclei start to form through-
out the system almost simultaneously. Here we study
how the number of these nuclei depends on the strength
of the shear flow. Thus we count the number of par-
ticles right after the nucleation stage, where ”particles”
are defined as connected clusters of lattice sites with local
polymer volume fractions above ΦP ≥ 0.5. Specifically,
we determine the particle density np, i.e., the average
number of particles per system divided by the system
size. The results are shown as a function of f0 in 3.

Small shear flows have little influence on the densi-
ties of nuclei. If the force amplitude f0 exceeds a cer-
tain threshold f0,c, the particle densities start to de-
crease significantly with increasing f0. The threshold is
much smaller in the ”vesicle systems” with χBS = −0.15
(f0,c ∼ 1 · 10−4f∗) than in the ”droplet systems” with
χBS = 0.75 (f0,c ∼ 2.5 ·10−4f∗). Thus, the nucleation of
compact particles made of hydrophobic polymers is less
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FIG. 4. Scatter plot of nucleation events (in all simulations)
in the coordinate plane of time vs. y (y = 0 corresponds to the
center of the Poiseuille flow – see the flow profiles in the outer
right column) for examples of weakly sheared systems (top),
moderately sheared systems (middle), and strongly sheared
systems (bottom) with bulk force amplitudes f0 as indicated.
Left column: vesicle systems (χBS = −0.15), right column:
droplet systems (χBS = 0.75).

affected by shear flow than the nucleation of more open
particles made of polymers that also contain strongly hy-
drophilic blocks.

Next we examine the distribution of nucleation events
across the channel (in the y-direction perpendicular to
the flow). 4 shows scatter plots of nucleation events in
the plane of time vs. y-coordinate relative to the cen-
ter of the Poiseuille flow (denoted y = 0) for different
force amplitudes f0 and our two choices of χBS . Here
nucleation events in the upper and lower regions of the
simulation box with opposite Poiseuille flows are shown
together in one graph. For small f0, nucleation events
are distributed evenly across the channel. For larger f0,
nucleation preferably takes place in the area of lowest
shear rate close to y = 0. 5 shows examples of simu-
lation snapshots (polymer density plots) for weak and
strong shear flow right after the nucleation stage. In the
case of strong shear flow, the nuclei are close to the center
of the Poiseuille flow. In systems with weak shear flow,
no such preference can be observed.

4 also shows that nucleation events are more focussed
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FIG. 5. Polymer density plot right after the nucleation stage
at t = 700τ in droplet systems (χBS = 0.75) and force ampli-
tude f0 = 1 ·10−5f∗ (left snapshot) and f0 = 8 ·10−4f∗ (right
snapshot). Corresponding flow profile is shown on the right.

at the center of the flow in vesicle systems (left) than
in droplet systems (right). Let us consider, for example,
the histogram of nucleation events in vesicle systems at
force amplitude f0 = 2 · 10−4f∗, which features a broad
peak at the center and almost no counts at positions
|y| > 7RG. To reach a similar level of focussing in the
micellar systems, one has to increase the force amplitude
by roughly a factor of four up to f0 ∼ 8 · 10−4f∗. Hence
droplets can also assemble in regions of higher local shear,
whereas for vesicles this is unlikely.

Below we will see that the polymer composition profile
in the y-direction changes during the ripening stage and
a double-peak structure emerges at late times. During
the nucleation stage, this structure cannot yet be seen.

Next we examine the distribution of nucleation events
in time. Already 4 shows clearly that the nucleation stage
is delayed if the shear flow is increased. Furthermore,
the width of the distribution of the nucleation events in
time is much broader in the vesicle systems than in the
droplet systems. To quantify this observation, we fit the
distribution of nucleation events in time by a Gaussian
distribution. The fit matches the data quite well, espe-
cially in systems with higher force amplitudes f0, where
we get reduced χ2 values of the order 1-5. The first mo-
ment of the Gaussian gives the characteristic time of the
nucleation stage and is shown as a function of f0 in 6.
Both in vesicle and droplet systems, the nucleation stage
is shifted to later times if shear flow is applied. The shift
first increases with f0 and then saturates at large f0, due
to the fact that nucleation events are confined to the low-
shear center of the flow profile at such force amplitudes.

Looking at 4 more closely, it is apparent that the time
and y-coordinate of nucleation events are correlated. For
weak shear flow, nucleation is homogeneous in y. For
moderate shear flow, the scatter plots have some resem-
blance with arrowheads pointing in the direction of small
times, i.e., nucleation events first take place close to the
center of the Poiseuille flow, and then become increas-
ingly likely in areas with higher local shear stress. To
discuss these correlations more quantitatively, we calcu-
late the correlation coefficient of the coordinates (t, y) of
nucleation events, defined as

ct,y =
〈(t− 〈t〉)(|y| − 〈|y|〉)〉√
〈(t− 〈t〉)2〉〈(|y| − 〈|y|〉)2〉

(26)
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FIG. 6. Time of the nucleation stage as a function of force
amplitude f0 in units of f∗. Left: vesicle systems (χBS =
−0.15), right: droplet systems (χBS = 0.75)
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FIG. 7. Correlation coefficient of time and y-coordinate of
nucleation events as a function of force amplitude f0 in units
of f∗. Blue: vesicle systems (χBS = −0.15), red: droplet
systems (χBS = 0.75)

Here, 〈...〉 denotes the statistical average. ct,y is equal
to 1 if t and y are perfectly correlated and zero if there
is no correlation. 7 shows the results as a function of
force amplitude f0. We find that the time and position
of nucleation events in Poiseuille flow are uncorrelated for
small shear flows, but they become correlated as the force
amplitude f0 increases. In practice, this means that the
distribution of nucleations gradually broadens with time
(see 4). The correlation for vesicle systems and droplet
systems is comparable.

We can also use our simulation data to investigate the
relation between the local shear rate of nucleation and the
local delay time. To this end, we bin the histograms in
4 in the y-direction and determine the mean delay time
as a function of the local shear rate, for all considered
force amplitudes f0, in the vesicle and droplet systems.
The results are combined in 8. Especially for larger shear
rates and in the vesicle systems, the data roughly collapse
on a single almost straight line, i.e., the local nucleation
time is roughly a linear function of the local shear rate.
At low shear rates, the data spread out due to the ef-
fect of lateral polymer diffusion. In the droplet systems
where the effect of local shear on the nucleation time is
much weaker, the collapse is less clear. Nevertheless, the
local shear and the local nucleation time are still strongly
correlated.

These findings are consistent with experimental stud-
ies on spinodal decomposition and structure formation
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indicated (in units of f∗) in vesicle systems with χBS = −0.15
(left) and droplet systems with χBS = 0.75 (right).

in polymer mixtures in Couette flows86–88. Here, it was
found that applying shear flows has a similar effect on the
length and time scales of spinodal decomposition than
shifting the spinodal line towards lower temperatures88.
If we adopt this interpretation, it follows that local shear
effectively shifts our system closer to the spinodal line,
which in turn increases the characteristic time scale of
spinodal decomposition89 and hence the ”incubation”
time for nucleation46.

In sum, we find that shear flow significantly affects the
droplet and vesicle self-assembly in the nucleation stage.
It affects both the time frame and the preferred loca-
tion of nucleation events. The central observation is that
nucleation is delayed in the presence of shear. This ob-
servation can account for all findings reported here at a
qualitative level: Due to the shear-dependent delay, nu-
cleation events are unevenly distributed in Poiseuille flow.
They first emerge in regions of low shear stress (the cen-
ter of the flow profile), and then gradually also populate
regions with higher local stress. At the same time, the
existing nuclei grow by incorporating copolymers from
solution. The process stops when the remaining level
of free copolymers is so low that no further nucleation
events take place. If the force amplitude is strong, the nu-
cleation stage is completed before any nucleation events
have taken place in the outer regions of the profile. As
a result, strongly sheared systems contain fewer nuclei
than weakly sheared systems ( 3) and their nuclei are
concentrated around the center of the profile (4). These
effects are more pronounced in vesicle systems than in
droplet systems.

B. Ripening stage: Evolution of particle number

After the initial nucleation stage, the particle number
remains constant or decreases steadily. We will now focus
on the evolution of the particle number in this second,
”ripening” stage. We first consider the droplet systems

with χBS = 0.75 (9). In these systems, a ripening pro-
cess reminiscent of classical Ostwald ripening takes place:
Large particles tend to grow at the cost of smaller ones,
since they have an energetically more favorable surface
to volume ratio. The equilibrium state in these systems
(close systems without flows) is a single phase separated
droplet in solution. Already in the absence of shear, the
system evolves slowly towards this final state.

If shear flow is applied, the particle number decreases
more rapidly. A closer inspection shows that this is not
due to an acceleration of ripening, but due to particle
fusions. As discussed in Sec. III, fusion is suppressed in
fluids at rest. Under the influence of shear, fusion events
become possible. An example is shown in 10.

To analyze the ratio of particle fusions and particle
dissolutions as a function of shear strength, we must de-
fine criteria that distinguish between two types of event –
particle traces getting lost due to particle dissolution or
due to fusion. This is done as follows: First, we exploit
the fact that only particles close to each other can fuse.
Therefore, one criterion for a fusion event is that two
particles i and j with a distance less than a threshold dij
must vanish at the same time. The threshold is chosen
dij = 2.5(Ri+Rj), where Ri,j is the radius of a spherical
particle with the same polymer content as particle i, j,
and the factor 2.5 accounts for the fact that particles may
be deformed in shear flow.

In some rare cases it may happen that the sizes of two
fusion partners are so different, that only one of them
vanishes and the other one remains nearly unaffected.
To distinguish between fusion and dissolution of particles
in such cases, we apply the second criterion that only
those events are counted as fusion, where the vanishing
particles have an area larger than 3.3 R2

G. If a particle
has an area below this threshold before disappearing, we
assume that it has dissolved.

Using these criteria, we have determined the fusion
and dissolution events in droplet systems (χBS = 0.75)
at low and moderate shear rates. The results are shown
in 11. We find that the number of particle dissolutions
is almost independent of f0. In contrast, the number
of particle fusions increases with f0 and dominates for
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FIG. 9. Average particle number density in droplet systems
(χBS = 0.75) as a function of time in units of τ for different
force amplitudes f0 as indicated (units f∗).
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FIG. 10. Series of snapshots in a droplet system (χBS =
0.75) with force amplitude f0 = 2 ·10−4f∗ at times t = 3350τ ,
t = 3450τ and t = 3550τ , showing the fusion of two particles
with almost equal size (see blue arrows). Right panel indicates
the shape of the flow profile.

f0 > 5 · 10−5f∗. In systems with moderate shear, it is
3-4 times larger than the number of particle dissolutions.

Next we examine the evolution of the number of par-
ticles in the vesicle system (χBS = −0.15). The results
are shown in 12. In contrast to the droplet system, ripen-
ing is not observed in these systems (as already noted in
Ref.46). In the absence of shear, the particle number
does not change with time. Under the influence of shear,
it decreases, and this is the result of particle fusions.

As discussed earlier and in Ref.46, fusion of micelle-
shaped droplets and vesicles is prevented in fluids at
rest by the hydrophilic corona surrounding the particles.
Shear distorts the particles and disrupts the corona, and
as a result, fusion becomes possible. We find that even
weak shear flows can deform particles significantly. This
will be discussed in the next section.

C. Particle Shape

Next we consider the influence of shear on the shapes of
particles. In our systems with our model parameters, iso-
lated particles at equilibrium tend to be perfectly round.
In systems with more than one particle, the particles in-
fluence and deform each other even without getting into
contact. In this section, we study how the particle shapes
change if the particles are exposed to external shear flow.

The shape of a particle can be characterized by the
tensor of gyration90. As the polymer distributions inside
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FIG. 11. Average number of fusions (blue) and average num-
ber of particle dissolutions per system (red) as function of f0

(units f∗) in droplet systems (χBS = 0.75).
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FIG. 12. Average particle number density in vesicle systems
(χBS = −0.15) as a function of time in units of τ for different
force amplitudes f0 (units f∗).

a particle are not perfectly uniform in our case, we weight
the distances between the different lattice sites i and j,
which belong to a particle, with their polymer densities
ΦP (ri) and ΦP (rj):

Gnm =
1

2N 2

∑
i

∑
j

ΦP (ri)ΦP (rj)(rin − rjn)(rim − rjm)

(27)
Here, N denotes the polymer content of the particle, and
the sum runs over all lattice sites i, j with ΦP (ri,j) ≥ 0.5.
By diagonalizing the tensor one obtains the eigenvalues
λ− and λ+, from which the acircularity c and the radius
of gyration R can be derived,

c = λ+ − λ−, R =
√
λ+ + λ− (28)

Here, we will consider the relative acircularity, defined
as90:

crel =
c2

R4
(29)

The relative acircularity is zero for perfectly circular par-
ticles and one if the long axis is infinitely longer than the
short axis. Thus, it can be interpreted as the level of the
particle deformation in shear flow, and used to charac-
terize both droplets and vesicles.

In weakly sheared droplet systems (13 top, f0 < 3 ·
10−5f∗), the relative acircularity first increases and then
drops again. It reaches a maximum during the nucleation
stage. This is because freshly nucleated particles cannot
grow isotropically if they are close to each other, hence
they deform slightly. At later times, they gradually drift
away from each other and become more spherical, which
lowers the relative circularity again. At the lowest force
amplitude, f0 = 1 · 10−5f∗, the final relative acircularity
of the particles stays at a very low level. Thus we can
conclude that weak shear flow has no significant effect
on the shape of droplets in systems where the A- and B-
monomers are both strongly solvophobic. At moderate
shear, the relative acircularity becomes more pronounced
and the shape of the curve changes (13 top, f0 > 3 ·
10−5f∗). After an initial relatively rapid increase in the
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FIG. 13. Average relative acircularity of particles as a func-
tion of time (units τ) in droplet systems with χBS = 0.75
(top) and vesicle systems with χBS = −0.15 (bottom) for
different force amplitudes f0 (units f∗) as indicated.

nucleation stage, crel continues to grow more slowly at
later times.

In the vesicle systems, shear flow is found to have a pro-
nounced effect on crel of particles for all considered shear
rates, and crel keeps increasing steadily at late times even
in the system with lowest shear (f0 = 1 · 10−5f∗). Hence
particles in vesicle systems can be deformed much more
easily than particles in droplet systems. We will now
analyze this in more detail.

One quantity that clearly influences the relative de-
formability of a particle is its size. Here we will examine
the particle area, which we define as the area covered by a
particle (interiors of hollow particles excluded), and cal-
culate it according to a procedure described in Appendix
B. The average particle area is much larger in vesicle sys-
tems than in droplet systems. One might suspect that
this is the main reason for their higher deformability. To
investigate this possibility, we have constructed scatter
plots of particle size vs. relative particle acircularity for
fixed (late) simulation time and force amplitude f0. Two
examples are shown in 14. Each symbol corresponds to
one particle in either a droplet or a vesicle system. In
addition, we distinguish between hollow and filled parti-
cles in the vesicle systems. For reasons that will become
clear below, we will refer to the latter ones as ”rods”.

In systems with small or moderate f0, the regions in
the area-acircularity plane where certain particles ex-
ist and regions where they apparently cannot exist are
clearly separated. If particles are very small, the range
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FIG. 14. Scatter plot of particle characteristics in the plane
of particle area (units R2

g) vs. relative acircularity in vesi-
cle systems with χBS = −0.15 (green: rods, blue: vesicles)
and droplet systems with χBS = 0.75 (red: micelle-shaped
droplets) at time t = 6000τ for force amplitude f0 = 1·10−5f∗

(top) and f0 = 5 · 10−5f∗ (bottom). The inset shows snap-
shots from corresponding simulations at χBS = −0.15 (top)
and χBS = 0.75 (bottom)

of accessible acircularities is generally very limited, i.e.,
they remain close to spherical. This observation is in
good agreement with early work on fluid droplets im-
mersed in another fluid91. For larger particle areas, the
diagram displays a steep transition, beyond which the
acircularity limit is close to one. This limit is reached by
a special class of particles in the vesicle systems, which
differ from regular vesicles in that they do not enclose
solvent (green triangles in 14), indicating that they cor-
respond to elongated micelles (see also the snapshots in
14). In three dimensions, they could correspond to either
wormlike or disklike micelles. Experimental observations
suggest that shear flows with uniform shear rate can in-
duce shape transformations from vesicles into wormlike
micelles55. Therefore, we will call these elongated struc-
tures ”rods” hereafter.

The other categories of particles (red spheres and blue
diamonds) have much lower acircularity. A very small
number of symbols lie outside the domain of typically ”al-
lowed” acircularities. They correspond to particles that
have just emerged from a fusion event and are still highly
non-circular. At later times, they relax and become cir-
cular again. Interestingly, the accessible range of acircu-
larities for vesicles is smaller than that for droplets with
comparable area. Hence, contrary to expectations, we
find that vesicles show more resistance to deformations
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FIG. 15. Same as 14 for force amplitude f0 = 3 · 10−4f∗

at time t = 3000τ for droplet systems (χBS = 0.75) and
t = 4500τ for vesicle systems (χBS = −0.15).

than micelle-shaped droplets. Nevertheless, the total rel-
ative acircularity of particles is higher for vesicle systems
than for droplet systems (13) due to the contribution of
the rods.

The acircularity limits for vesicles and micelle-shaped
droplets are found to depend strongly on the force am-
plitude f0. If f0 is very small, as in 14 (top), all particles
except the rods are close to spherical. If f0 is moder-
ate, as in 14 (bottom), the particles can deform more
strongly. Moreover, vesicles may develop ”fingers” (see
the snapshots in 14 (bottom)). For large shear flows, i.e.,
large f0, there are almost no limitations on acircularity
(15). Only very small particles remain circular.

We should note that 15 differs from 14 in that it does
not show the size-acircularity distribution at the end of
a simulation, but at an earlier time where the average
acircularity still evolves strongly with time, especially in
the vesicle system. This is because at later times, more
and more vesicles turn into rod particles via an inter-
mediate state of vesicles with fingers (see inset of 15),
such that there are no vesicles left for the analysis. The
rod particles then simply maximize the relative acircu-
larity. Similar shape transformations of vesicles are also
observed at lower shear rates.

To analyze this more quantitatively, we will now focus
on the vesicle systems and investigate the fraction of vesi-
cles with respect to the total number of particles (vesicles
and rods) as a function of time. The data are shown in
16. In weakly sheared systems (f0 ≤ 3 · 10−5f∗), the
fraction of vesicles in the system rises monotonically and
reaches a plateau at late times at around 0.6. A small
increase of the shear rate shifts the plateau to slightly
lower values, but does not destroy it. Once formed, most
vesicles hence tend to remain vesicular. However, this is
no longer true in moderately or strongly sheared system.
Here, the fraction of vesicles reaches a peak shortly after
the nucleation stage, whose height may even exceed the
value of 0.6 reached in the weakly sheared systems: Since
the number of nuclei is reduced in the presence of shear
flow (see Sec. IV A), particles grow larger and are more
likely to turn into vesicles. At later times, the fraction of
vesicles drops. This is because the existing vesicles first
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FIG. 16. Vesicle fraction in systems with χBS = −0.15 vs.
time (in units of τ) for different force amplitudes f0 (in units
of f∗) as indicated. The total number of particles entering
this statistics is about 200 for f0 ≥ 1 · 10−4f∗ and 400 for
f0 ≤ 5 · 10−5f∗.

develop fingers and then eventually turn into rodlike par-
ticles. For even more strongly sheared systems (data not
shown), the height of the maximum decreases and the
rate with which vesicles disappear increases further.

Thus we conclude that in the vesicle system, the par-
ticle assembly in Poiseuille flow proceeds in three stages:
(i) Nuclei form. (ii) Nuclei grow and turn into vesicles,
much like in the closed system without flow46. (iii) Vesi-
cles may develop fingers which then grow and may even-
tually transform the vesicle into a rod. The rate at which
such fingers appear increases with increasing shear rate.
However, fingering was observed for all shear rates, even
(rarely) in the most weakly sheared systems. At the end
of an infinitely long simulation, strongly sheared systems
will presumably only contain rods. At finite times, one
has a mixture of droplets, vesicles, and rods.

D. Characteristic relaxation times

The deformability of particles in shear flow should de-
pend on their relaxation time τd, which sets the relevant
mesoscopic timescale in the system. More specifically, we
expect that shear flow starts to have a significant effect on
particles once the dimensionless shear rate, τdγ̇, becomes
of order unity. Assuming that τd increases with particle
size, this would explain why larger particles deform more
easily than smaller particles. To test this assumption,
we will now examine the characteristic relaxation times
τd of the self-assembled particles in our systems. They
were measured by taking configurations of moderately
sheared systems, stopping the flow in an instant, and
letting the particles relax. The relaxation of the acircu-
larity with time was then fitted to a single exponential,
c(t) = c0 exp(−t/τd).

We begin with discussing the droplet systems with
χBS = 0.75. For large particles, the data for c(t) are
mostly well-described by a single exponential law. In
some cases, the fit fails (see 17), in which case the data
are not included in the further analysis. Small particles
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FIG. 17. Top: relaxation parameter λd (in units of 1/τ) in
droplet systems (χBS = 0.75) obtained from exponential fits
to the time evolution of the particle acircularity after suddenly
stopping a Poiseuille flow, as a function of particle area (units
R2

g). Red: power law fit, blue: points used in the power law
fit, green: points not used for the fit. Bottom: example for
a good fit (left) and bad fit (right). Symbols show data, red
lines show fitted exponential.

generally show a more complex relaxation behavior due
to the fact that their size also varies with time and they
sometimes even dissolve.

Specifically, we only consider particles that exceed a
minimum area and whose relaxation times can be fitted
well enough that the uncertainty of λd = 1/τd in the ex-
ponential fit is less than 2 percent. A selection of such
points is shown in 17 (top) for the droplet system and an
initial force amplitude of f0 = 3·10−4f∗. For comparison,
the green symbols show the fit values for particles that do
not fulfill the selection criteria. The double logarithmic
plot in 17 suggests that the relaxation time τd = 1/λd
increases algebraically as a function of particle area. Fit-
ting the data to a power law of the form τd = τ0

d (A/R2
G)b

(where A is the particle area), we obtain the fit param-
eters τ0

d and b shown in I. The values for the relaxation
time are almost independent of f0 (they increases slightly
for larger f0), and scale approximately as τd ∼ A3/2, or

τd ∼ R3
d, where Rd ∼

√
A is the equivalent particle ra-

dius. Hence, τd indeed increases with Rd as expected. In-
serting the data from I for particles of radius Rd ∼ 5RG,
we find that the relaxation time should be in the range
of τd ∼ 1000τ . For such particles, the regime τdγ̇ ∼ 1 is
reached at force amplitudes f0 ∼ 10−4f∗, in the regime
that we call ”moderate”.

In vesicle systems the determination of a law for the
relaxation time is much more difficult, since the two dif-
ferent types of particles, vesicles and rods, show different

behaviour. In addition, vesicles develop fingers, which is
an irreversible shape transformation. The dominant re-
laxation process for rods is the restoration of the equilib-
rium thickness, and for deformed vesicles, the restoration
of the circular shape. For vesicles with fingers, one has
a superposition of both. Due to the diversity of particle
shapes, the results for the relaxation of the acircularity
c (data not shown) do not follow a clear trend, except
that larger particles tend to have longer relaxation times
than smaller ones. The relaxation times of particles with
size Rd ∼ 3 − 5RG in vesicle systems (χBS = −0.15)
range from values around τd ∼ 1000 − 4000τ , which is
comparable to the relaxation times in droplet systems.

In the literature, the deformability of particles is
often described in terms of the so-called capillary
number49–51,56,91 Ca, which depends on the shear rate,
the viscosity inside the particle, the radius, and the in-
terfacial tension. Here, the particles were so small that
an interpretation in terms of Ca was not possible.

E. Lateral Migration of Polymeric Matter in
Poiseuille Flow

Finally in this section, we discuss the distribution of
polymeric matter in the Poiseuille flow. Right after the
nucleation stage, the polymer distribution basically re-
flects the distribution of nucleation events discussed in
Sec. IV A, and it has a single maximum in the region of
lowest shear. Later, the polymer particles redistribute
within the flow profile.

To analyze this effect, we introduce a quantity Y P2 ,
which can be interpreted as the normalized variance of
the polymer distribution in the direction perpendicular
to the flow under the idealized assumption that the poly-
mers are symmetrically distributed around y = 0.

Y P2 =

√√√√√∫ Ly/2

−Ly/2
dy y2ΦP (y)

Φ̄P
∫ Ly/2

−Ly/2
dy y2

, (30)

Here, Y P2 has been normalized such that a value of
one corresponds to a uniform distribution, values above
one correspond to situations where the polymeric matter
preferably stays away from the center of the Poiseuille
flow, and values below one indicate that the polymeric
matter is focussed near the center. Results for the time
evolution of this quantity are shown in 18. Both in vesicle
and droplet systems, the polymeric matter is distributed
uniformly across the systems in the initial stage prior to

TABLE I. Fit parameters for τd(A) = τ0
d · Ab for droplet

systems (χBS = 0.75)

f0 [f∗] 1 · 10−4 2 · 10−4 3 · 10−4

b 1.50± 0.06 1.60± 0.05 1.63± 0.04
τ0
d [τ ] 6.0± 2.2 4.6± 1.3 4.1± 0.9
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FIG. 18. Y P
2 as defined in Eq. (30) vs. time (in units of τ)

in vesicle systems (top: χBS = −0.15) and droplet systems
(bottom: χBS = 0.75) for different force amplitudes f0 (units
f∗) as indicated.

the first nucleation events. As nucleation sets in, Y P2
starts to deviate from unity.

We first examine the behavior for vesicle systems (18,
top). For weak shear rates, Y P2 stays close to one at all
times. For moderate shear rates, it drops down rapidly,
until it reaches a shallow minimum. The level of the min-
imum decreases with increasing shear rates. Its position,
t ∼ 2000−3000τ , roughly corresponds to the time where
the vesicle fraction is largest according to 16, suggesting
that the subsequent very slight increase of Y P2 is asso-
ciated with the disruption of vesicles. Finally, at strong
shear rates, Y P2 initially drops sharply and then saturates
at a value around 0.6, which no longer depends on the
strength of the shear force. In droplet systems (18, bot-
tom), the initial drop of Y P2 at intermediate and strong
shear rates is steeper than in the vesicle systems, almost
instantaneous, and it ends in a sharp crossover to a sec-
ond regime where Y P2 continues to decrease more slowly.
A minimum is not encountered.

19 shows actual monomer density profiles shortly af-
ter the nucleation stage (left) and at late times (right)
for two different shear rates (top and bottom) both for
vesicle and droplet systems (green and red lines). At a
qualitative level, the behavior of vesicle and droplet sys-
tems is similar: Shortly after the nucleation stage, the
profiles feature a single peak close to the center of the
profile. At later times, a symmetric double peak struc-
ture emerges.

We will now discuss the origin of this twin peak struc-
ture in more detail. We first focus on the droplet systems.
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FIG. 19. Polymer composition profile in y direction for
vesicle systems (green: χBS = −0.15) and droplet systems
(red: χBS = 0.75) at force amplitude f0 = 2 · 10−4f∗ (top)
and f0 = 4 · 10−4f∗ (middle) shortly after the nucleation
stage (left: t = 700τ for droplet systems and t = 2200τ
for vesicle systems) and during the ripening stage (right:
t = 6000τ). Bottom: Snapshots of a typical fusion process
in a droplet system (χBS = 0.75) at f0 = 2 · 10−4f∗ and
times t = {1500τ, 1900τ, 2800τ, 4000τ, 6000τ}

Here, the monomer density distribution at late times is
governed by the interplay of ripening and particle fu-
sions. The ripening is driven by the competition of bulk
and surface energy, hence spherical particles at the center
of the flow should grow at the expense of more elongated
particles in the outskirts of the profile. This effect thus
focusses matter to the center of the profile. However, it
must be small, since the particle dissolution rate depends
only weakly on the shear in the system according to 11.
On the other hand, particle fusions typically drive mat-
ter away from the center of flow, as demonstrated in 19,
bottom. As discussed in Sec. IV B, shear enables fusion
events. Hence the center of mass of two fusing particles
will typically be located at a region of shear, y 6= 0, and
the fusion event will drag matter to the periphery from
the particle which is closer to the center.

In vesicle systems, the main mechanism responsible for
the development of the characteristic twin-peak struc-
ture is the fingering instability which transforms the vesi-
cles into rodlike particles as described in Sec. IV C. This
mechanism leads to a net transfer of polymeric matter
from the vesicle in the flow maximum towards its ”fin-
gers” outside the flow maximum. The alignment of the
newly developed rods in the shear flow also contributes
to the focussing of polymeric matter at some distance to
the flow maximum.

The lateral drift and the equilibrium position of parti-
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cles or droplets in Poiseuille flow has already been subject
to many studies. In most of these studies, the droplets
were introduced as a separate fluid, which did not mix
with the solvent54,56,57,60 and had a conserved volume
and in some cases even a conserved surface area. There-
fore, hydrodynamic boundaries played an important role.
Even more importantly, the systems under consideration
also contained walls, which played a crucial role for the
lateral migration behavior of the droplets.

In our example we deliberately eliminated the effect of
walls and did not impose special hydrodynamic bound-
aries between particle and fluid. The particle is consid-
ered a part of the fluid, it has the same viscosity, and
its only effect on the fluid dynamics is to impose sur-
face forces generated by the solvent-particle interfaces.
This allows us to extract the pure effect of the kinetics
of self-assembly on the lateral distribution of particles.
The observed lateral drifts are caused by the remodelling
of polymeric matter, which is driven by the free energy
landscape and guided by the non-local diffusive dynam-
ics of the polymers. This kind of particle deformation
and reformation of polymeric matter has already been
observed before in simulations of polymer solutions or
melts under shear flow61,62 or in nanotubes64.

V. DISCUSSION AND CONCLUSIONS

The two main messages of the present paper can be
summarized as follows:

First, we have presented a new mesoscale simulation
method for polymer solutions, which couples a field-based
dynamical model for diffusive polymer motion with a
nonlocal mobility function accounting for the chain con-
nectivity with a Lattice-Boltzmann scheme describing
the hydrodynamic flows. It extends a method proposed
previously by Zhang et al.11, which relied on a local dy-
namics assumption (monomers move independently). We
have shown that the new model reproduces experimen-
tal observations such as the absence of vesicle fusions in
closed systems. In previous simulations based on local
dynamics11, fusions had been much too frequent.

The method allows us to study the dynamic evolution
of inhomogeneous polymer systems on length scales in
the range of ∼ 10 nanometers to micrometers and on
time scales in the range of microseconds up to millisec-
onds. For example, in the present study, we can map the
simulation units for length and time, RG and τ , to real
SI-units by mapping the radius of gyration of polymers
(typically of order RG ∼ 10nm) and the diffusion con-
stant of polymers in solution (typically of order Dp ∼
10−6cm2/s), giving the time unit τ = R2

G/NDP ∼ 0.1µs.
Hence we simulated systems of size around 0.5 microme-
ters over a time of around 0.5 milliseconds.

Second, we have used our method to study the effect
of shear flow on the self-assembly of droplets or vesicles
after a sudden quench from a homogeneous copolymer
solution. We have shown in Sec. IV that shear flow can

be used to manipulate and control self-assembly in var-
ious ways. In the following we recapitulate and discuss
mainly those aspects that may turn out relevant in par-
ticle design.

(i) Particle number and particle size. Poiseuille flow
was found to affect the final number of particles in two
ways. First, shear flow increases the ”nucleation time”,
i.e. , the characteristic time when the first nuclei emerge
after the quench. During the narrow time window of
the ”nucleation stage” (which ends when most copoly-
mers from solution have been consumed), nucleation is
therefore mostly restricted to the central low-shear part
of the Poiseuille flow profile. As a result, fewer particles
are nucleated in strong Poiseuille flow than in unsheared
systems. A second effect of shear flow effect which fur-
ther reduces the particle number at later times is the en-
hanced rate of particle fusions. Whereas particle fusions
are almost fully suppressed in the absence of shear, they
become possible and sometimes even dominate over par-
ticle dissolutions in the presence of shear. Hence sheared
systems contain fewer particles than closed systems.

This has consequences for the size of the self-assembled
particles. At given copolymer volume fraction, the aver-
age particle size is inversely proportional to the number
of particles. Hence the average size of self-assembled par-
ticles should increase with the shear rate if self-assembly
takes place in Poiseuille flow, due to the fact that fewer
particles are nucleated and they merge more easily.

It should be noted that in reality, the size of nanoparti-
cles that are assembled in microreactors is often found to
decrease with increasing flow rate92. The reason is that
the quench rate in microreactor setups is gradual and
coupled to the flow rate – for example, a microfluidic de-
vice may be used to mix a component into a (co)polymer
solution, which induces (co)polymer aggregation. In such
cases, the flow rate controls the particle size also via the
quench rate85,93, and as a result, particle sizes are smaller
at larger flow rate.

Hence the influence of shear on the particle size de-
pends on the experimental conditions. However, we can
generally conclude that shear rates can be used to control
the size of particles via a variety of (sometimes compet-
ing) mechanisms.

(ii) Shape transformations. Under shear, both
micelle-shaped droplets and vesicles elongate. The elon-
gation disappears if the flow is stopped, and the par-
ticles become spherical again. However, irreversible
shape changes were also observed. In particular, vesi-
cles were found to develop fingering instabilities and to
turn into rod micelles at late times. Such irreversible
shape changes under shear could be used to design par-
ticle structures that cannot be assembled under equilib-
rium conditions.

(iii) Distribution of particles in Poiseuille flow. We
found that self-assembled particles tend to be distributed
in a twin peak structure around the center of the
Poiseuille flow profile. This can be used to design particle
distributions through inhomogeneous shear flows.
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Outlook. It should be noted that all the results pre-
sented in the present paper were obtained in two dimen-
sional simulations. Some of the results are presumably
also valid in three dimensions. For example, we expect
that the emergence of nuclei after a sudden quench is
still delayed in the presence of shear, and that particle
fusions are still facilitated by shear. In other respect, the
scenario in three dimensions can be expected to be quite
different. In particular, we can expect a much richer
spectrum of irreversible shape transitions under shear.
According to recent studies of vesicles in Poiseuille flow
one might expect parachutes or, in case the vesicles are
not in the flow maximum, slipper shapes56,57. In strong
shear flows it seems likely, that, according to61–64, fin-
gers will develop and lead to long rods as in two dimen-
sions. Hence an extension of our study to three dimen-
sions should be promising.

In real micro- and nanochannels, the presence of side
walls also significantly affects both the self-assembly and
the flow effects. The present study was deliberately set
up to eliminate confinement effects and focus on the effect
of a spatially varying shear flow. In reality, the interplay
of flow and confinement should provide even more possi-
bilities to design optimal flow geometries for nanoparticle
synthesis. Mesoscale simulation methods such as the one
proposed here should be useful to develop and assess such
designs.
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Appendix A: Rotation of the force field

In this appendix, we show that the force field fI(r)
defined by Eq. (18) is indeed irrotational within the EPD
approximation. Starting from Eq. (18), the rotation of
the force field can be calculated according to

∇r × fI(r) = −∇r ×
∑
J

∫
dr′PIJ(r, r′)∇r′µJ(r′)

=
∑
J

∫
dr′∇r′PIJ(r, r′)×∇r′µJ(r′)

Here, we have used the EPD approximation
∇rPIJ(r, r′) = −∇r′PIJ(r, r′)40. From95 and40 we

know the explicit form of the two-body correlator.

PIJ(r, r′) =
∑
s,s′

Pss′(r, r
′)δKsIδ

K
s′J

=
∑
s,s′

n〈δ(r−Rs)δ(r
′ −Rs′)〉δKsIδKs′J

=
∑
s,s′

n

∫
V N

dR1...dRNΨδ(r−Rs)δ(r
′ −Rs′)δ

K
sIδ

K
s′J

Here, s and s′ denote the index of the chain segment and
Rs is the position of monomer s and ψ the single chain
distribution function. Hence we obtain

∇r × fI(r)

=
∑
J

εijk

∫
dr′
(
∂′iPIJ(r, r′)

)(
∂′jµJ(r′)

)
êkδ

K
sIδ

K
s′J

=
∑
J

εijk
∑
s,s′

∫
V N

dR1...dRNΨδ(r−Rs)

×
∫

dr′
(
∂′iδ(r

′ −Rs′)
)(
∂′jµJ(r′)

)
δKsIδ

K
s′J êk

Now, we can apply partial integration to obtain

∇r × fI(r) = −
∑
J

εijk
∑
s,s′

∫
V N

dR1...dRNΨδ(r−Rs)

×
∫

dr′δ(r′ −Rs′)
(
∂′i∂
′
jµJ(r′)

)
δKsIδ

K
s′J êk

= −
∑
J

∫
dr′εijkPIJ(r, r′)

(
∂′i∂
′
jµJ(r′)

)
= −

∑
J

∫
dr′PIJ(r, r′)(∇×∇µJ(r′)) = 0

Appendix B: Determination of the particle area

In Sec. IV C we introduced the particle area. Here, we
explain briefly how it is determined from a composition
distribution on a grid. First, we classify every lattice site
with a polymer content of ΦP ≥ 0.5 as a particle site.
The contribution of particle sites to the total particle size
depend on their local environment. Particle sites which
are fully surrounded by particle sites count as one, the
others count partially as illustrated in 20. We emphasize
that the particle area describes the area covered by the
polymers of the particle, and not its polymer content.

Appendix C: Implementation of the simulation
method

The simulation method combines two algorithms,
which run in parallel and pass information to each other
when ever needed. The work flow of the code is illus-
trated in the flow chart in 21. Here we use the short
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FIG. 20. Weight factors A with which a particle site (the
central site) contributes to the total particle area for different
local environments. Particle sites are shown in grey, ”empty”
sites (with polymer content ΦP < 0.5 are shown in white.

cut notation ω and Φ for the set of fields ωI ,ΦI (with
I = A,B, S), and P for PIJ . The operations (red boxes)
are divided into an EPD and a LB column. The EPD col-
umn shows the evolution of the polymer-related fields Φ
and ω, and the LB column the evolution of the fluid-
related fields ρ (mass density) and v (fluid velocity).
The dashed black lines show the work flow within each
columns and mark the communication points. The blue
boxes show the status of the fields at the beginning and
end of a time step, and at selected intermediate states.
The continuous red arrow indicates the serial processing
of the single operations in our actual simulation program.

Four aspects in 21 need to be explained in more detail:

• (1) The auxiliary convection step of ω is introduced
in order to avoid a pinning of polymeric structures
in cases where the fluid flow is so small that the
changes of ω associated with the convection of Φ
are below the accuracy threshold of the iteration
loop (10−8 in our simulations, see below).

• (2) φ̃
g

and the desired φ̃ are considered equal if√
1
V

∫
dr(φ̃− φ̃

g
)2 < Ntr, where Ntr = 1 · 10−8 in

all simulation runs.

• (3) To estimate ω̃g, the Fletcher-Reaves algorithm76

has been used.

• In the diffusion step, the current jD is calculated
from the δF/δΦ as evaluated at the intermediate

values of the composition field φ̃. Alternatively,
one could also evaluate δF/δΦ at the original val-

ues φ̃(t). The resulting algorithm would have the
same order (order one) as the present one. We have
not compared the two algorithms. It will also be
interesting to test more sophisticated, e.g., semi-
implicit schemes.

EPD LB

φ(t), ω(t) ρ(t), v(t)

LB Stream
according
to Eq. 12

ρ̃(t), ṽ(t)φ̃=φ−∇·(ṽφ)∆t

ω̃g =ω−ṽ·∇ω∆t

Conj. Gradients:
Estimate ω̃g(φ̃) (3)

φ̃
g
= φ̃?(2)

φ̃(t), ω̃(t)

ω̃g → φ̃
g
(ω̃g)

(Eq. 8 - 11)

ω(t+∆t)→φ(t+∆t)

(Eq. 8 - 11)

ω(t+∆t) =
ω̃(t)−D∇2 δF

δφ̃
I

∆t

Calc. Force
(Eq. 20)

LB Collision
(Eq. 14 and 15)
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Diffusion Step
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FIG. 21. Flow chart diagram of the simulation program (one
time step). See text for the comments (1,2,3) and for further
explanation.
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