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Introduction

Fractional flow reserve (FFR) has been generally accepted 
as the gold standard for detecting functional significance of 
intermediate coronary stenoses [3]. It is defined as the max-
imum achievable myocardial blood flow in the presence of 
a coronary stenosis divided by normal maximum flow. FFR 
can be derived from ((Pa – ∆P)/Pa) using aortic pressure, 
Pa, and the pressure drop ΔP along the lesion measured 
during invasive coronary angiography under hyperemic 
flow condition [10, 17]. Although FFR-guided Percutane-
ous Coronary Intervention (PCI) significantly improves 
the clinical outcome and reduces the mortality rate of mul-
tivessel coronary artery disease (CAD) compared with 
angiography-guided intervention [3], practical drawbacks 
of measuring FFR including its invasive nature, cost, and 
the need to induce hyperemia, have limited its clinical 
applications [9]. As such, virtual FFR (vFFR) has sought 
to replace invasive FFR for physiological assessment of 
severity of intermediate coronary lesion in arteries. Virtual 
FFR utilizes computational fluid dynamics (CFD) to com-
pute the hemodynamics on a reconstructed patient-specific 
coronary artery model using either coronary angiography, 
intravascular ultrasound or optical coherence tomography. 
The data is used to compute FFR without a pressure guide-
wire [11]. However, the optimal approach of CFD simula-
tions for the computation of vFFR is still under considera-
tion. Although pulsatile flow is considered to be the most 
accurate model to simulate coronary blood flow in circula-
tion, the computational expense with regards to time and 
hardware requirements restricts its clinical applicability. 
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Steady-state CFD simulation has been considered to be a 
more practical approach given that it requires much less 
computational time. Tu et  al. [13] and Poon et  al. [12] 
have shown close agreement in the vFFR results between 
steady and pulsatile flows. However, this result might not 
be applicable for more complex geometry model beyond 
a single segmental stenosis. Li et al. [7] have investigated 
hemodynamics of the outgoing flow through side coronary 
branches and stated that true anatomical tree model that 
takes into account the flow through side branches must be 
used for accurate computational fluid dynamics analysis in 
coronary artery. However, the hemodynamic interaction 
between serial coronary stenoses within a single coronary 
artery, which is commonly present [8], has not yet been 
assessed. The presence of serial stenoses increases the dif-
ficulties in assessing the hemodynamic significance of each 
lesion that may have an effect on PCI decision.

As mentioned above, the knowledge of pressure drop 
over stenosis is required to calculate the FFR. It is thus 
important to investigate the pressure drop performance 
in stenotic coronary artery to assist in vFFR calculations. 
Young et  al. [17] examined the relationship between the 
flow velocity and pressure drop across one single stenosis. 
They have derived an equation connecting the severity of 
a stenosis, mean flow velocity and the corresponding pres-
sure drop. However, the predicted pressure drop is only 
valid for a single coronary lesion. Pijls et  al. [10] investi-
gated the hemodynamic change in the presence of several 
stenoses within one artery. They confirmed that the hemo-
dynamic significance of each stenosis is influenced by other 
stenoses and emphasised the importance of using pressure 
drop to evaluate the hemodynamic significance of each 
lesion. However, the relationship of flow–pressure over 
serial stenoses remains to be investigated. Having a clear 
understanding of the flow–pressure relation in a coronary 
artery with multiple plaques will essentially help assess the 
difficulties in the generation of hyperemic flow for vFFR 
calculations.

This study aims to investigate the flow–pressure relation-
ship in multiple sequential stenoses coronary artery. Both 
high fidelity experimental and CFD methodologies will be 
used on an idealised serial stenotic coronary artery model. 
A realistic physiological pulsatile and steady-state veloc-
ity profiles are applied to evaluate if there is any difference 
between data obtained using pulsatile and steady state inlet 

conditions if only the average quantity is of interest. The 
study provides a suggestion of the optimal approach for 
vFFR calculations.

Methodology

Geometry

Figure  1 shows the schematic diagram of a diseased cor-
onary artery with multiple stenoses in series. To simplify 
analysis, the diseased coronary artery is modeled as a rigid 
axisymmetric cylindrical tube with axisymmetric narrow-
ing. The diseased coronary model has a segment length of 
40 and 3 mm reference diameter, D, which corresponds to 
the normal diameter of most relevant coronary arteries in 
general. We considered three coronary stenoses in series, 
each lesion has a length of 10 mm that is typically required 
for interrogation of the functional significance of coronary 
stenoses. The diameters of stenosis (DOS), from proximal 
to distal, are D1 = 2  mm (non-obstructive stenosis that is 
unlikely to cause ischemia.), D2 = 1.5 mm (the typical ste-
nosis for interrogation of the functional significance of 
coronary stenoses.) and D3 = 1 mm (the severe stenosis that 
will be stented without FFR assessment.), respectively. A 
further 10 mm segment is added to both proximal and dis-
tal ends of the coronary model.

Experiment configuration

The experimental setup is shown in Fig. 2. It consists of the 
following components: (1) flowmeter (ELITE Series Corio-
lis Flow meter, CMF050M), (2) water reservoir, (3) fluid 
pump (Ismatec, BVP-Z), (4) settling chamber, (5) pressure 
transducers (GE Druck—UNIK5000 series), (6) 3D printed 
multiple stenosis model (Objet Eden260VS, Stratasys) and 
(7) data acquisition board (DT9832, Data Translation). 
The data acquisition board acquires data from the pressure 
transducers and the flow meter at a sampling rate of 2 kHz. 
The stenosis model is approximately 1.2  m from the exit 
of the settling chamber to ensure a fully developed lami-
nar Womersley velocity profile. The pulsatile waveform, as 
shown in Fig.  3, obtained from Huo and Kassab [5] was 
decomposed using Fast Fourier Transform. The input sig-
nal is reconstructed using the first 10 Fourier modes and 

Fig. 1   An idealized three-dimensional axisymmetric coronary artery 
model with multiple coronary lesions in series. Diameters of stenosis 
(DOS) from left to right are: D1 = 2  mm, D2 = 1.5  mm and D3 = 

1 mm, respectively. Pressure measurements are taken at the locations 
P1, P2, P3 and P4



1085Int J Cardiovasc Imaging (2017) 33:1083–1088	

1 3

is proven to accurately represent the waveform considered. 
This corresponding waveform is later discretised into a 
voltage–time signal with 800 samples and entered into the 
Ismatec pump through data acquisition board, with an in-
house written m-file in MATLAB 2014a (MathWorks Inc., 
Natick, Massachusetts, USA). The flowmeter and the pres-
sure transducers have a measurement error of ± 2 and ± 1% 
respectively. Two pressure transducers are used to measure 
the pressure difference at any two locations (P1 to P4 as 
indicated in Fig. 1). The fluid used in the experiments is a 
mixture of 50% glycerine and 50% distilled water to obtain 
a viscosity of μ = 0.004 Pa s to match that of blood. The 
model used in the experiment is scaled up twice that of the 
simulations (i.e. the diameter is 6  mm). The mean Reyn-
olds numbers is matched with the simulations to ensure that 
similar flow physics is obtained between the experiments 
and simulations.

Computational fluid dynamics

We employed an identical waveform as the in-vitro setup 
for the CFD studies. To minimize computational effort and 
disturbance at the inlet, a Womersley velocity profile [16] 
with the mean flow rate Q = 84.8, 127.2, 169.6, 212.1, and 
254.5 ml/min was prescribed at the inlet (see Fig. 3, only 
waveforms with mean flow rate Q1 = 254.5, Q2 = 169.6 
and Q3 = 84.8  ml/min are plotted). The lowest flow rate 
selected corresponds to reported resting blood flow rate 
while the highest mimics hyperemic flow. Outlet pres-
sure and wall boundary conditions were specified as zero. 
Outflow (fully developed flow) condition was applied at 
the outlets, whereas non-slip condition was applied at the 
lumen wall.

Numerical simulations of pulsatile flow through a series 
of stenoses artery model were performed in the commercial 
software ANSYS FLUENT 15.0 (ANSYS, Inc.) by solving 
the incompressible Navier–Stokes equations:

Equations (1) and (2) were implemented in each cell and 
nonlinear partial differential equations were solved simulta-
neously. Blood was modeled as incompressible Newtonian 
fluid. A blood density of ρ = 1060 kg/m3 and viscosity μ = 
0.0035 Pa s were applied. The SIMPLE pressure–velocity 
coupling method was used. Second order scheme was cho-
sen for the pressure discretization and second order upwind 
scheme for the momentum equations. The residual error 
convergence threshold was set as 0.00001. For the unsteady 
simulations, 300 time instances were saved in each cycle.

(1)�

(
��

�t
+ � ⋅ ∇�

)
= −∇P + ∇� ⋅ (∇� + ∇�T ),

(2)∇ ⋅ � = 0.

Fig. 2   Experimental setup: pulsatile flow for multiple stenosis. (1) 
flow meter; (2) reservoir; (3) Ismatec pump; (4) settling chamber; (5) 
Omega pressure transducer; (6) 3D printed phantom multiple stenosis 
model

Fig. 3   The physiological pulsatile inlet velocity boundary conditions 
with mean flow rate Q1 = 254.5, Q2 = 169.6 and Q3 = 84.8 ml/min
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Results

As shown in Fig.  3, the pulsatile waveform prescribed in 
the experiments and numerical simulations are in good 
agreement with each other for different flow rates. Figure 4 
shows the pressure drop with flow rate change as a result of 
presence of multiple sequential stenoses across one coro-
nary vessel. The results were generated under both pul-
satile and steady inlet boundary conditions in the experi-
ments. The pressure drop was measured between one, two 
and three lesions, respectively. The details of experimen-
tal measurements are displayed in Tables 1 and 2. As the 
results shown, a positive correlation between pressure drop 
and flow rate regardless the location of the pressure drop 
measurements is observed. Also, at the same flow rate, 
increasing the amount of stenoses between the pressure 
drop measurements can result in a higher pressure drop. 
The results follow the same trend as mentioned before in 
both steady and pulsatile flows. Meanwhile, it is found that 
the results in both steady and pulsatile are generally close 
to each other at each flow rate. Figure 5 displays the pres-
sure drops measured over three stenoses in both experi-
ments and numerical simulations. The CFD results were 

obtained in the pulsatile flow only. The experimental and 
CFD results are in good agreement at each flow rate with 
only approximately 5% difference as indicated in Fig. 5.

Discussion

The results reveal a strong linear correlation between the 
pressure drop and flow rate regardless the amount of sten-
oses across which the measurements of pressure drop were 
taken under both pulsatile and steady inlet boundary con-
ditions. However, the slope of the line indicates that pres-
sure drop increases with the number of stenoses. Likewise, 
present CFD results are highly in line with the experiment 
results. Meanwhile, the results in Figs. 4 and 5 have shown 
that the difference between the steady and pulsatile flows 
are negligible with the pressure drop generated from pul-
satile flow only slightly higher than the steady flow results.

The linear relationship between pressure drop and flow 
rate of multiple sequential stenoses within one coronary 
artery implies the simplicity of hyperemic flow production 
in vFFR calculation that enlightens the clinical applicabil-
ity of vFFR. Being able to estimate the hyperemic flow is 
important for the calculations of vFFR as it allows one to 
mimic the realistic circumstance for invasive fractional flow 
reserve measurement. Flanigan et al. [4] have stated in their 
study that the pressure drop along stenosis in pulsatile flow 
is contributed by three mechanisms: laminar friction loss, 
turbulence generated in the post-stenotic diverging section 
and inertial forces due to pulsation. This relationship can 
be characterized by the following governing equation [17]:

in which Kv, Kt and Ku are experimentally derived friction, 
turbulence and pulsation coefficients to represent their pro-
portional contribution to ΔP, ρ = mass density, V = flow 
velocity in the unobstructed vessel, μ = viscosity, A1 = 
cross-sectional area of stenosis, A0 = cross-sectional area 
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Fig. 4   The pressure drop measured across different numbers of ste-
nosis in the vessel with flow rate change in experiments; ΔP12: the 
pressure drop between the first stenosis and the inlet, ΔP13 : the pres-
sure drop between the first two stenoses and the inlet, ΔP14: the pres-
sure drop between the inlet and the outlet. The experimental error 
bars are ±5%

Table 1   Pressure drop over multiple sequential stenoses in the vessel 
for the steady flow

Velocity(m/s) Flowrate 
(ml/min)

ΔP12 (Pa) ΔP13 (Pa) ΔP14 (Pa)

0.2 84.8 174 360 2216
0.3 127.2 255 708 3897
0.4 169.6 337 1150 5819
0.5 212.1 447 1700 7975
0.6 254.5 548 2124 10,240
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of unobstructed artery of diameter D and L = length along 
the pressure drop measurements.

The formula reveals that the linear relationship between 
pressure drop and flow rate is attributed predominately by 
the friction loss term. It has been specified in [4] that signif-
icant pressure drop only occurs when the critical area of the 
lumen has been met, which is between 70 and 90% of area 
reduction depending on the flow rate, according to the vivo 
and vitro results in [4]. Passing the critical threshold value 
means a significant amount of turbulent energy generated 
in the lesion are dissipated in the post-stenotic region that 
dominates the change of pressure proportional to the square 
of flow rate. In our model, the maximum area reduction 
in the third stenosis is 89% and may not satisfy the criti-
cal area condition. The influence of turbulent energy losses 
is hence restricted. In addition, cumulative effects of serial 
stenoses can be equivalent to an elongated length of the 
artery contributing to an increase of friction coefficient in 
Eq. (3). Accordingly, the gradient of flow–pressure relation 
increases with an incremental amount of stenoses between 
the locations for pressure measurements as observed in 
Fig. 4.

The investigation in steady and pulsatile flows has fur-
ther demonstrated that it is possible to obtain respect-
able accurate vFFR calculation with steady-state flow. The 

velocity gradient of the pulsatile flow characterized by 
Womersley number,

is only 1.93 in this study. The Womersley number is rela-
tively small in comparison with that of other parts of car-
diovascular system (ascending Aorta − 13.2, carotid artery 
− 4.4, etc. [2]) that implies minor effects of the pulsation 
of a physiological cardiac cycle on the pressure drop. The 
study suggests that using steady flow is an optimal compu-
tational method of vFFR as it can speed up the calculation 
to a great extent without compromising the accuracy.

The comparison between CFD and experimental results 
sheds light on the accuracy, sensitivity and reliability of 
modelling vFFR in multiple sequential stenoses coronary 
artery. Likewise, the applicability of using steady-state 
flow and simplified hyperemic flow modelling indicates the 
possibility and reliability of fast vFFR computations that 
significantly reduces the computational time without com-
promising the accuracy. Accordingly, this will increase the 
utility of vFFR in the clinic.

This study is limited by the idealized geometry model. 
Lesions with more complex morphology might lead to 
more flow turbulence, altering the pressure–flow relation. 
In addition, we did not study very tight lesions where more 
pressure drops might be expected due to a greater likeli-
hood of laminar–turbulent transition in the post-stenotic 
region. Finally, our CFD simulations ignored the elastic 
property of vessel wall and the dynamic courses of lumen 
geometry of coronary artery during heartbeat. Thus, the 
linear relation between flow and pressure drop as observed 
in this study might not completely represent the in-vivo sit-
uation. Earlier studies have modeled the compliance vessel 
using fluid structure interaction formulation [1] and inves-
tigated in experiments the elastic material property [15]. 
Future in vivo studies using patient-specific artery models 
that incorporate the compliance characteristic of the artery 
wall and more complex lesion morphology might pro-
vide further insights. Nevertheless, simplified approaches 
for fast computation of vFFR in vivo have been proposed 
recently and early validations showed promising results 
[13, 18].

Conclusion

A linear correlation between pressure drop measured over 
multiple sequential stenoses and flow rate was observed. 
CFD analysis was validated to have a good agreement 
with experimental results that shed light on the accuracy 
of the vFFR calculation. Meanwhile, steady flow has been 
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Table 2   Pressure drop over multiple sequential stenoses in the vessel 
for the pulsatile flow

Velocity(m/s) Flowrate 
(ml/min)

ΔP12 (Pa) ΔP13 (Pa) ΔP14 (Pa)

0.2 84.8 181 694 2465
0.3 127.2 269 989 4017
0.4 169.6 351 1351 5848
0.5 212.1 452 1764 8131
0.6 254.5 529 2392 10,486

Fig. 5   The pressure drop across the entire vessel generated from both 
experimental and numerical studies
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demonstrated as a reliable replacement of pulsatile flow for 
vFFR calculation as it shortens the duration of computa-
tion while yields the respectful accuracy. The conclusions 
drawn from the study have further enlightened the clinical 
applicability of vFFR.
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