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Prediction of hemorrhagic transformation
after experimental ischemic stroke
using MRI-based algorithms
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Abstract

Estimation of hemorrhagic transformation (HT) risk is crucial for treatment decision–making after acute ischemic stroke.

We aimed to determine the accuracy of multiparametric MRI-based predictive algorithms in calculating probability of HT

after stroke. Spontaneously, hypertensive rats were subjected to embolic stroke and, after 3 h treated with tissue

plasminogen activator (Group I: n¼ 6) or vehicle (Group II: n¼ 7). Brain MRI measurements of T2, T2*, diffusion,

perfusion, and blood–brain barrier permeability were obtained at 2, 24, and 168 h post-stroke. Generalized linear

model and random forest (RF) predictive algorithms were developed to calculate the probability of HT and infarction

from acute MRI data. Validation against seven-day outcome on MRI and histology revealed that highest accuracy of

hemorrhage prediction was achieved with a RF-based model that included spatial brain features (Group I: area under the

receiver-operating characteristic curve (AUC)¼ 0.85� 0.14; Group II: AUC¼ 0.89� 0.09), with significant improvement

over perfusion- or permeability-based thresholding methods. However, overlap between predicted and actual tissue

outcome was significantly lower for hemorrhage prediction models (maximum Dice’s Similarity Index

(DSI)¼ 0.20� 0.06) than for infarct prediction models (maximum DSI¼ 0.81� 0.06). Multiparametric MRI-based pre-

dictive algorithms enable early identification of post-ischemic tissue at risk of HT and may contribute to improved

treatment decision-making after acute ischemic stroke.
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Introduction

Despite its effectiveness in improving clinical outcome
in acute ischemic stroke patients, application of
thrombolytic therapy with tissue plasminogen activator
(tPA) or by mechanical thrombectomy is limited by
strict guidelines, because of increased risk of hemor-
rhagic transformation (HT) beyond the 4.5 or 6-h
therapeutic time windows of tPA or thrombectomy,
respectively.1–3 Nevertheless, some patients may still
benefit from thrombolysis even well beyond 4.5–6 h
after stroke onset.2,3 Individualized assessment criteria
evaluating the risk of developing HT are therefore war-
ranted for efficient inclusion or exclusion of patients for
thrombolytic treatment.

Neuroimaging, and especially MRI, has shown to be
effective in identifying tissue at risk of infarction.4

Additionally, diffusion- and perfusion-weighted MRI
may inform on risk of HT. Substantial reduction in
tissue water diffusion,5 large initial lesion volume on
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diffusion-weighted MRI,5,6 large area of perfusion
loss,7 and regions with very low cerebral blood
volume (CBV)8,9 have all been proposed as indicators
of increased risk of HT. In addition, early parenchymal
signal enhancement on T1-weighted MR images after
injection of gadolinium-containing contrast agent, indi-
cative of increased blood-brain barrier (BBB) perme-
ability, may provide an early sign of HT.10–15

Nevertheless, as a single measure, none of these MRI-
based indices has been shown to be able to reliably
identify tissue at risk of HT prior to thrombolytic
treatment.8,12

Voxel-wise algorithms that integrate different meas-
ures of ischemic pathophysiology may improve early
identification of tissue likely to undergo HT. Previous
studies have demonstrated that this approach effect-
ively allows calculation of probability of infarction at
a voxel level.4 Yet, the potential of predictive algo-
rithms to signify tissue at risk of HT has not been
evaluated. Hence, this study aimed to determine the
efficacy of advanced prediction algorithms based on
multiple MRI parameters to estimate risk of HT in
ischemic stroke following reperfusion. To that aim,
probability of HT and infarction was calculated from
acute multiparametric MRI after embolic ischemic
stroke in spontaneously hypertensive rats, which we
compared against follow-up tissue outcome after tPA
or vehicle treatment.

Materials and methods

Animal model

Data involved retrospective analyses of stroke animals
used for a blinded thrombolytic treatment study
(unpublished data). All animal procedures were
approved by the animal ethical and experimental care
committee of the University Medical Center Utrecht
and Utrecht University, followed the guidelines of the
European Union’s Council Directive, and were per-
formed in accordance with the ARRIVE (Animal
Research: Reporting In Vivo Experiments) guidelines.
Male spontaneously hypertensive rats (280–330 g) were
subjected to right-sided embolic middle cerebral artery
occlusion (MCAo) as previously described.16 In brief,
rats were endotracheally intubated and mechanically
ventilated with 2% isoflurane in air:O2 (1:2). Animals
received subcutaneous injections of gentamicin
(5mg/kg) as antibiotic, and 2.5ml glucose solution
(2.5% in saline) to prevent dehydration. During all pro-
cedures core temperature was kept at 37.5� 0.5�C with
a temperature-controlled heating pad. To induce
thromboembolic stroke, the right carotid artery was
exposed by a ventral incision in the neck and a modified
catheter was advanced into the internal carotid artery

towards the origin of the middle cerebral artery
(MCA).16,17 A homologous (25mm long, 24-h old)
blood clot was slowly injected followed by removal of
the catheter. The wound was closed and animals were
directly prepared for MRI (see below). After MCAo
and the first MRI session, animals were immediately
treated with an intravenous infusion of vehicle
(n¼ 10, Group I) or 10mg/kg tPA (Activase�; concen-
trated to 3mg/ml) (n¼ 10, Group II), of which 10%
was administered as a bolus, followed by continuous
infusion of the remaining 90% over 30min.

Postoperative care included subcutaneous injections
(directly and 8 h post-surgery) of 0.03mg/kg buprenor-
phine for pain relief (Temgesic�, Ricket & Colman,
Kingston-Upon-Hill, UK) and glucose (2.5%) in
2.5ml saline (directly and 24-h post-surgery). Animals
were socially housed according to a 12-h lights-on
lights-off protocol. During the three subsequent days
after stroke, Ringer’s lactate (0–1ml, depending on
amount of weight loss) was daily administered to com-
pensate for excessive weight loss.

MRI of tissue status

MRI was conducted on a 4.7 T animal MR system
(Agilent, Palo Alto, CA, USA). A 90mm diameter in-
house developed Helmholtz volume coil was used for
radiofrequency excitation, and a 25 mm diameter
inductively coupled surface coil for signal reception.

MR imaging was conducted immediately after MCA
occlusion, and again at 1 – to determine (re)perfusion
status – and seven days – to determine outcome – after
stroke. During MRI, animals were restrained in a
MR-compatible holder with earplugs and a tooth-
holder, and continuously mechanically ventilated with
2% isoflurane in air:O2 (2:1). Body temperature and
expired CO2 were monitored and kept within physio-
logical range.

For all MRI acquisitions, the field-of-view (FOV) was
fixed to 32� 32mm2, with a slice thickness of 1mm.
The MRI protocol consisted of multiple spin-echo T2-
weighted images (repetition time (TR) 3600ms; echo
time (TE) 12–144ms; data matrix size 256� 128� 19)
and multiple gradient-echo T2*-weighted images (TR
1400ms; TE 7–70ms; data matrix size 256� 128� 19)
acquired for reconstruction of quantitative T2 maps and
T2* maps by non-linear least square fitting using a
Levenberg–Marquardt algorithm according to

SðTEÞ ¼ S0 e�TE=T2ð�Þ
� �

with S0 as the estimated proton density.18 To ensure
adequate fitting, we only included voxels with goodness
of fit measures, expressed by R2, equal or above 0.95
for further analysis.
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Maps of the apparent diffusion coefficient (ADC)
were acquired after fitting the full tensor of the diffu-
sion matrix obtained by diffusion-weighted 8-shot echo
planar imaging (EPI) (TR 3500ms; TE 38.5ms;
b-values 0 and 1428 s/mm2; six diffusion-weighted dir-
ections; data matrix size 128� 128� 19).18 Dynamic
susceptibility contrast-enhanced (DSC) MRI was
acquired using gradient echo EPI (TR 330ms; TE
25ms; data matrix size 64� 64� 5) in combination
with an intravenous bolus injection of 0.35mmol/kg
gadobutrol (Gadovist�, Schering, The Netherlands).
Maps of CBF, CBV, mean transit time (MTT), and
time-to-maximum contrast agent arrival (Tmax) were
subsequently acquired by circular deconvolution
of the tissue concentration curves with an arterial
reference curve obtained from the contralateral hemi-
sphere.19 T1-weighted images (gradient echo; TR
160ms; TE 4ms; data matrix size 256� 128� 19)
were acquired to assess blood–brain barrier integrity.
T1-weighted images were acquired every 2.73min from
just before, up to 35min after gadobutrol injection.
T1-weighted images were then used to calculate quan-
titative T1 maps using

SðTRÞ ¼ S0 1� e�TR=T1
� �

e�TE=T
�
2

with S0 as the estimated proton density obtained from
the T2 mapping routine, and T �2 as calculated from
the T �2 mapping routine. To compensate for differ-
ences in gain and reconstruction settings of the T1-
weighted versus T2- and T �2-weighted acquisitions,
an extra scaling factor of 16.5 was used to achieve
T1 in normal ranges.20 R1 (1/T1) maps were subse-
quently used for estimation of the blood-to-brain
transfer constant (Ki) and distribution space of intra-
vascular Gd-shifted protons (Vp) using the Patlak
matrix analysis of compartmental dynamics with a
plasma concentration estimate from the sagittal
sinus (four voxels).21,22

Histological assessment of intracerebral hemorrhage

Immediately after the final MRI session, animals were
sacrificed and brains were extracted for assessment of
extravascular blood disposition and scoring of hemor-
rhage degree. Animals were intraperitoneally injected
with an overdose of pentobarbital followed by intracar-
dial perfusion with cooled saline. Brains were extracted,
cooled, and cut in 2mm slices. Subsequently, slices were
placed in ice cold PBS and covered with a glass slide to
allow for photography. Photographs were taken on a
1mm grid, using a digital color camera (Moticam2300,
Motic, Germany) attached to binocular microscope.
Digital images were then transferred to a separate
workstation for visual assessment of extravascular

blood disposition. Presence of hemorrhage was scored
visually on five consecutive slices using a four-point
scale based on presence of no hemorrhage (NH); punc-
tuate petechial hemorrhage, i.e. small extravascular
blood spots (HI-1); confluent petechial hemorrhage,
i.e. several clustered extravascular blood spots or red-
dish parenchyma (HI-2); and parenchymal hematoma,
i.e. clear parenchymal space occupying blood occupy-
ing blood mass (PH).23

Image processing and analysis

T2, ADC, perfusion parameter, and BBB index maps
were spatially aligned and normalized using non-linear
registration as previously described.24 Mean contralat-
eral gray matter values were calculated from four
consecutive slices after exclusion of signal from cere-
brospinal fluid. Infarcted tissue on post-stroke day 7
was automatically identified as voxels with T2 values
at least two standard deviations (2s) higher than
mean contralateral gray matter values. Perfusion and
BBB abnormalities at the acute stage were similarly
identified on MTT and Ki maps, respectively.
Abnormalities on ADC, CBV and CBF maps were
defined as 2s lower than mean contralateral gray
matter values. Hemispheric lesion fractions were calcu-
lated by dividing the lesion volume by the volume of the
ipsilateral hemisphere.24

Hemorrhagic areas, characterized by clear focal
hypointense signal compared to surrounding ipsilateral
and homologous contralateral brain tissue with normal
signal intensity, were outlined by two experienced
researchers (I.T.: >6 years of experience in neurobiol-
ogy; R.D: >20 years of experience in neuroimaging).
Manual outlines were created on the third echo image
of the in vivo T2*-weighted MRI dataset (which
allowed most straightforward depiction of hemorrhages
with distinguishable contrast). Post mortem histo-
logical data were used as reference to confirm presence
of hemorrhage and to prevent inclusion of non-hemor-
rhage-related susceptibility artifacts.

Predictive modeling

MRI-based predictive algorithms can calculate, based
on training data, an optimized set of rules that map a
relation of samples from the acutely acquired images to
a class that represents either ultimately affected tissue
or a class that represents non-affected tissue.
Subsequently, this set of rules can be used to estimate
the probability of pathology (e.g. HT or infarction)
(Poutcome¼P(outcomejx1,..,xm))) from newly introduced
samples. Here, tissue outcome was predicted using stat-
istical algorithms that relate acutely acquired normal-
ized MRI parameters (x¼ {rT2, rADC, rCBF, rCBV,
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rMTT, rTmax, rKi, rVp}) and possibly additional pos-
itional properties, i.e. the predictive features, to corres-
ponding ultimate tissue status on follow-up MRI.

The features of the training sets were presented to a
previously introduced parametric generalized linear
model (GLM)25 and a non-parametric random forest
(RF) algorithm to estimate the probability of tissue
injury at follow-up (Poutcome).

24 GLM calculates the
probability of tissue injury using a logistic function:

Poutcome ¼
1

1þ e��ðxÞ

in which �(x) is a linear link function that defines the
relationship of M MRI parameters to tissue outcome at
follow-up

�ðxÞ ¼
XM
j¼1

�jTxj þ �

in which � describes the weights of each MRI param-
eter, and � the bias or intercept of the linear function.
Coefficients � and � can be estimated using an iterative
reweighted least squares fitting.25 RF is an ensemble
algorithm that generates an aggregate result based on
the predictions of multiple predictive algorithms. RF is
a bootstrap aggregating approach in which multiple
classification and regression trees (CART) are created
by a randomized tree-building algorithm. During train-
ing, decision trees are grown from equally sized but
modified subsets of the original training dataset.
Further classification robustness is achieved by con-
sidering only a random subsample of the total available
predictive features for node splitting. This also provides
feature importance calculation, i.e. ranking features in
their degree of contribution to the prediction. The
aggregate result of the algorithm is achieved by normal-
ized majority vote over the multiple decision trees.
Further details on RF and feature importance calcula-
tion can be found elsewhere.26

Details on operational parameter optimization of
the algorithms can be found in the Supplementary data.

To evaluate the accuracy of calculating the probabil-
ity of HT or infarction acutely post-stroke, various
training sets were used to develop the different types
of predictive algorithms. For HT prediction, we created
a training set containing data from tPA-treated spon-
taneously hypertensive rats (Group II), which are prone
to develop hemorrhage. GLM- and RF-based algo-
rithms were trained using acute multiparametric MRI
compared against regions of intracerebral hemorrhage
on post-stroke day 7 T2*-weighted images to create a
hemorrhage prediction model (hemorrhage prediction
models A and B, respectively). To determine

improvement of prediction accuracy, training sets of
algorithms similar to hemorrhage prediction models
A and B were extended with additional spatial inform-
ative features of the brain (hemorrhage prediction
models C and D; Figure 1).

To evaluate the accuracy of the hemorrhage predict-
ive algorithms, both treatment groups were used to
compare the estimated HT probability to the T2*-
derived hemorrhage region. Evaluation in the training
set (i.e. tPA-treated animals) was conducted using
leave-one-out cross-validation. This procedure prevents

Figure 1. Depiction of spatial features included in hemorrhage

prediction models C and D, and infarct prediction models A and

B. Distance (in mm) to brain border (a), and distance to the

ipsilateral temporal cortex (b) were used as positional features,

effectively operating as penalty terms to reduce false positives in

the contralateral hemisphere. Gradient images as derived from

acute parametric maps (here for example ADC (c)) calculated

along the x, y, and z direction (d, e and f, respectively) operated

as extra contrast features.
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prediction bias by repeatedly withholding one animal
from the training set for evaluation while using the
remaining animals for training.4 Evaluations in the
test group were based on an aggregate model calculated
from the training group as a whole.

To determine whether the models’ accuracy to pre-
dict HT was dependent on the underlying data or on
the specific algorithm, we compared their performance
with similar prediction models that were trained to
predict infarction. Based on the best performing hem-
orrhage prediction model (i.e. Model D (see Results)),
an RF-based infarct prediction model that included
MRI parameters and spatial brain features was trained
with data from vehicle-treated animals (i.e. Group I),
representing unimpeded infarction development (infarct
prediction model A). Since infarct volumes were much
larger than hemorrhage volumes, we also tested the
infarct prediction model with a restricted number of
voxels; equaling the number of voxels (i.e. 1200) used
in the hemorrhage prediction models (infarct prediction
model B). Evaluation of infarct prediction performance
was conducted similarly to that of the hemorrhage pre-
diction models, except that Group I (i.e. vehicle-treated
animals) was used for training, and infarction probabil-
ities were compared against infarcted tissue measured on
post-stroke day 7 T2 maps.

For evaluation of prediction accuracy, probability
maps were iteratively thresholded in step values of
1% ranging from 0 to 100%, and at each threshold,
the voxels with correct and incorrect predictions of
tissue pathology (i.e. hemorrhage or infarction) – true
positives (TP) and false positives (FP), respectively –
and absence of tissue pathology – true negatives (TN)
and false negatives (FN), respectively – were calculated.
This allowed calculation of model sensitivity

snc ¼
TP

TPþ FN

and specificity

spc ¼
TN

TNþ FP
:

Subsequently, sensitivity and 1-specificity were used
for receiver-operating characteristic (ROC) statistics.
Quantitative comparisons were provided by calculating
the area-under-the-curve of the ROC (AUC). At a fixed
probability threshold of 50% (i.e. the likelihood of
developing hemorrhage or infarction is more than
50%), the Youden’s index (J) – defined as sensitiv-
ityþ specificity� 1– was calculated to assess the overall
performance of the algorithms in classifying affected
tissue.27 J¼ 0 indicates a low diagnostic value, whereas
J¼ 1 indicates a perfect diagnosis. Dice’s similarity

index (DSI)24,28 was calculated to express the overlap
of predicted hemorrhagic or infarcting tissue and tissue
that actually hemorrhaged or infarcted at follow-up,
defined as

DSI ¼
2 � TP

2 � TPþ FPþ FN

The accuracy of the predicted values was assessed
using the root mean square error defined as

RMSE ¼
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

ð yi � piÞ
2

vuut

in which N represents the total number of voxels, yi the
actual outcome at voxel I, and pi the prediction. DSI,
AUC, and J aim at maximizing values (towards 1),
RMSE aims at minimizing values (towards 0). All pre-
dictive models and subsequent analysis were imple-
mented and conducted in R (http://r-project.org).29

Data analysis and statistics

Predicted lesion volumes, expressed as volumetric frac-
tion of the ipsilateral hemisphere (predicted hemi-
spheric lesion fraction), were calculated from GLM-
or RF-based estimation of probability of hemorrhage
or infarction exceeding 50%.

ROC analysis was extended by thresholding of brain
tissue with lowered CBV or ADC from 2s up to 5s
(steps of 0.5s) below mean contralateral values.
Thresholded maps were subsequently summed and nor-
malized by the number of thresholds used. Sensitivity
and specificity, J, and DSI were calculated at the set
threshold of 2s. A similar strategy was applied for Ki

with values above threshold (from 2s from contralat-
eral mean value).

MRI parameters and prediction performance meas-
ures were statistically analyzed with repeated measures
ANOVA and post hoc false discovery rate (FDR)
detection. Probability of hemorrhage or infarction
was evaluated with a Wilcoxon rank sum test followed
with post hoc FDR detection.

Results

Animal model

Out of 20 animals, two animals (Group I, n¼ 1; Group
II, n¼ 1) developed subarachnoid hemorrhage and five
animals (Group I, n¼ 2; Group II, n¼ 3) did not dis-
play cerebral hypoperfusion at the first MRI time-
point. These animals were excluded from this study.
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All but 3 (Group I, n¼ 1; Group II, n¼ 2) of the
remaining 13 animals, showed signs of reperfusion,
i.e. more than 40% increase in CBF from the acute to
the 24-h time-point. At day 7, intracerebral hemorrhage
was histologically scored as NH (Group I, n¼ 1), HI-1
(Group I, n¼ 4; Group II, n¼ 3), HI-2 (Group II,
n¼ 2), or PH (Group I, n¼ 2; Group II, n¼ 1).

MRI of tissue status

Figure 2 shows maps of acute ADC, CBF, CBV, MTT,
and Ki from rats prior to vehicle or tPA treatment.
Follow-up imaging revealed infarcted tissue (as charac-
terized by prolonged T2) and hemorrhagic tissue
(as characterized by reduced T2*-weighted signal inten-
sity). Acute tissue perfusion and diffusion indices in
subsequently infarcted and hemorrhagic areas were
significantly different from contralateral values, except
for CBV in hemorrhagic regions (Supplementary
Figure 1). Ki and Vp in infarcting or hemorrhagic
areas were not statistically different from values in
contralateral tissue. Tmax was significantly longer in
subsequently hemorrhagic areas than in infarcting
areas.

Hemispheric hemorrhagic volume fractions were
0.04� 0.04 in Group I and 0.05� 0.02 in Group II,
while hemispheric infarct volume fractions were
0.42� 0.10 (Group I) and 0.40� 0.10 (Group II), at
seven days after stroke. Hemispheric volume fractions
of acutely lowered CBV had similar sizes as subsequent
hemorrhagic volumes (0.08� 0.11 (Group I) and
0.04� 0.04 (Group II)), whereas hemispheric volume
fractions with elevated Ki or lowered ADC and CBF
were somewhat larger (Group I: 0.14� 0.07 (Ki),
0.29� 0.14 (ADC) and 0.21� 0.19 (CBF); Group II:

0.15� 0.09 (Ki), 0.35� 0.13 (ADC) and 0.20� 0.12
(CBF)).

Predictive modeling – Hemorrhage

Thresholding of the volumes with abnormal ADC,
CBV, and Ki revealed overlap with areas with subse-
quent HT (Figure 3). AUC, J, and sensitivity were
highest for ADC-based thresholding (Table 1).
However, CBV- and Ki-based thresholding resulted in
highest specificity values. Voxel-wise hemorrhage pre-
diction predictive models mostly improved prediction
accuracies as compared to the thresholding approaches.
Figure 3 shows that hemorrhage prediction models A
and B – trained using MRI parameters from tPA-trea-
ted animals (Group II) – were able to identify tissue
that subsequently hemorrhaged; however, GLM-based
Model A also assigned increased probability values to
contralateral regions without HT, which was also
observed for the thresholding methods. Inclusion of
spatial brain features in hemorrhage prediction
models C and D improved specificity of hemorrhage
predictions. However, only RF-based Model D demon-
strated accurate ipsilateral specificity of predicted hem-
orrhagic area, which largely matched with actual
intracerebral hemorrhage at follow-up. Table 1 shows
that incorporation of spatial brain features in RF-based
Model D resulted in increased AUC and reduced
RMSE. Despite these high classification scores, actual
overlap between the predicted hemorrhagic area and
the area that truly hemorrhaged (expressed by DSI)
was relatively low for all tested models.

Figure 4 shows how assigned local hemorrhagic
probability values differ between regions with TP, FP,
TN, FN for hemorrhage. Assessment of prediction

Figure 2. Images of coronal slices of a rat brain from the vehicle-treated (upper row) and tPA-treated group (lower row). Acute (2 h

post-stroke; before treatment) maps of diffusion (ADC), perfusion (CBF, CBV and MTT), and BBB permeability (Ki) indicate tissue

abnormality as a result of ischemia (lowered diffusion, reduced perfusion and occasionally increased BBB leakage). Follow-up MRI and

histology after seven days displayed infarcted tissue (characterized by prolonged T2) (red ellipses) and intracerebral hemorrhage

(characterized by reduced T2*-weighted signal intensity (blue ellipses), and parenchymal blood accumulation).
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Figure 3. Maps of acute ADC, CBF, CBV, and Ki (panel A), with corresponding seven days post-stroke T2*-weighted images and

histological tissue sections (panel D) of vehicle- (Group I) and tPA-treated rats (Group II). Thresholded maps were voxel-wise

summed and normalized between 0 and 100%, and overlaid on seven day follow-up T2 maps (panel B). Thresholding of abnormal CBV

showed most specific matching with subsequent hemorrhagic regions, as compared to Ki- and ADC-based thresholding. Of the

predictive models, hemorrhage prediction model D (RF-based), which included MRI parameters as well as spatial brain features,

demonstrated most optimal matching with ultimately hemorrhagic areas. Hemorrhagic probabilities above 50% are overlaid on seven

day follow-up T2 maps (panel C).

Table 1. Hemorrhage prediction accuracy for ADC, CBV, and Ki thresholding, and hemorrhage prediction models A–D.

Model Group AUC J Sensitivity Specificity DSI RMSE

ADC(thres) I 0.75� 0.11z 0.51� 0.21 0.64� 0.24z§ 0.86� 0.05§ 0.13� 0.07 N/A

II 0.75� 0.11z§ 0.54� 0.11z§ 0.70� 0.12z§ 0.83� 0.09 0.18� 0.07 N/A

CBV(thres) I 0.65� 0.14 0.29� 0.28 0.33� 0.31y 0.96� 0.05y 0.13� 0.12 N/A

II 0.54� 0.06y 0.09� 0.11y 0.11� 0.12y 0.99� 0.01 0.11� 0.11 N/A

Ki(thres) I 0.51� 0.03y 0.02� 0.07 0.11� 0.07y 0.92� 0.02 0.04� 0.04 N/A

II 0.53� 0.07y 0.05� 0.14y 0.17� 0.20y 0.88� 0.07 0.05� 0.06 N/A

Model A I 0.79� 0.16z 0.47� 0.29 0.69� 0.32z 0.78� 0.06z§ 0.11� 0.05 0.42� 0.06

II 0.83� 0.07z§ 0.51� 0.12z§ 0.80� 0.21z§ 0.70� 0.11 0.18� 0.07 0.47� 0.10

Model B I 0.77� 0.20 0.37� 0.29 0.67� 0.33z 0.70� 0.08zþ §jj 0.13� 0.05 0.45� 0.06

II 0.83� 0.07zy§jj 0.59� 0.08z§ 0.80� 0.18§ 0.70� 0.14 0.20� 0.06* 0.44� 0.12

Model C I 0.86� 0.08z 0.51� 0.26 0.71� 0.30z 0.80� 0.05z§ 0.10� 0.05 0.41� 0.05

II 0.90� 0.02zy§ 0.65� 0.24§ 0.86� 0.30z§ 0.78� 0.08 0.17� 0.06 0.42� 0.09

Model D I 0.85� 0.14z 0.53� 0.30 0.67� 0.35z 0.86� 0.06 0.12� 0.05 0.36� 0.06

II 0.89� 0.09zy§ 0.62� 0.24§ 0.76� 0.32§ 0.84� 0.09 0.19� 0.04* 0.36� 0.10

*P< 0.05 versus Group I; yP< 0.05 versus ADC(thres); zP< 0.05 versus Ki(thres); §P< 0.05 versus CBV(thres); jjP< 0.05 versus model D; N/A: not

applicable.
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specificity demonstrated that probability values of TP
regions were significantly increased over values in FN
and TN regions for hemorrhage prediction models C
and D. Significantly higher probability values in TP
regions as compared to FP regions were observed in

Group I for hemorrhage prediction model C
(P< 0.05), and in Group II for hemorrhage prediction
model D (P< 0.05). In Group I, probability values in
TN regions were significantly different from probability
values in FN regions for hemorrhage prediction model
C (P< 0.05).

In the animal without follow-up hemorrhage, the
area with acutely predicted HT was minor
(Supplementary Figure 2). Model D-calculated hemor-
rhagic probability of the 50%-thresholded area in this
animal was substantially lower than the mean probabil-
ity in all other animals (56� 6% vs. 75� 6%, P< 0.01).
Nevertheless, predictive models generally overestimated
the tissue at risk of hemorrhage (P< 0.05 compared to
ultimate hemorrhagic volume). Model D-based 50%-
thresholded probability maps showed a smaller degree
of overestimation (50%-thresholded volume fraction:
Group I: 0.29� 0.12 (P¼ 0.01); Group II: 0.33� 0.17
(P¼ 0.07)) than Model C-based maps (Group I:
0.39� 0.08; Group II: 0.46� 0.15).

Predictive modeling – Infarction

Figure 5 shows examples of prediction of infarction in a
vehicle-treated and a tPA-treated animal. Table 2 lists
prediction accuracies measured for infarct prediction
models A and B (trained using MRI parameters from
vehicle-treated animals (Group I)). Both models were
equally accurate in predicting infarction with signifi-
cantly higher DSI values compared to the hemorrhage
prediction models (Group I: P< 0.01; Group II:
P< 0.01).

Discussion

We aimed to determine the accuracy of MRI-based
voxel-wise predictive algorithms to identify tissue at

Figure 5. Maps of ADC, CBF, CBV, Ki, and calculated infarction probabilities (from Infarct Prediction Models A and B) in rat brain

acutely after unilateral stroke, and follow-up T2 map at day 7 for a vehicle- (Group I) and tPA-treated animal (Group II). Infarct

prediction models (RF model based on MRI parameters and spatial features) were trained with inclusion of all infarcted voxels (Model

A), or a reduced number of samples (i.e. 1200 voxels; Model B) comparable to the hemorrhage prediction models. The area of

predicted infarction corresponded well with the actual ultimate infarct, with high similarity between the two models.

Figure 4. Assigned local hemorrhagic probability values of

hemorrhage prediction models C and D in regions with TP,

FP, TN, FN for hemorrhage in Group I and Group II rats

(meanþ standard deviation). Mean calculated hemorrhagic

probability in TP regions was significantly higher than that in FP

regions in Group I for hemorrhagic prediction model C and in

Group II for hemorrhagic prediction model D, whereas mean

hemorrhagic probability in TN regions was significantly lower in

Model C-based predictions for Group I. *P< 0.05, TP versus FP.

yP< 0.05, TN versus FN.
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risk of developing secondary hemorrhage after acute
ischemic stroke. In an established animal model of
stroke with reperfusion-induced HT, we found that
individualized maps of hemorrhagic probability can
be effectively obtained from a combination of MRI
parameters, with highest accuracy when calculated
with an RF-based supervised algorithm.

Assessment of the risk of HT in individual acute
stroke patients may aid in pre-treatment decision-
making and post-treatment monitoring to minimize det-
rimental effects of thrombolytic therapy. Earlier studies
heralded the use of MRI as a potential tool for elucidat-
ing tissue at risk of hemorrhage. For example, very low
CBV within the area of diffusion abnormality8,9 or other
voxel-wise combinations of abnormal ADC with T1sat

30

have been associated with increased likelihood of hem-
orrhage after acute ischemic stroke. In these studies, via-
bility thresholds were calculated to determine tissue
outcome, subsequently generating discrete tissue theme
maps depicting tissue at risk. Our study extends on these
findings by: (1) including multiple (more than 2) MRI-
based parameters of perfusion and tissue status, as well
as spatial brain features; (2) ruling out assumptions on
viability thresholds; and (3) calculating a probabilistic
rather than discrete output.

Previously, supervised MRI-based prediction meth-
ods have been successfully employed to calculate prob-
ability of tissue infarction after acute clinical or
experimental stroke.4 In the current study, we used
GLM- and RF-based predictive algorithms, and
attained a high accuracy in predicting tissue infarction
in a stroke model with spontaneously hypertensive ani-
mals. Importantly, reduction of the training data sam-
ples (i.e. image voxels) to a number comparable to the
sample size in the hemorrhage prediction models did
not significantly affect prediction accuracy. This reflects
the potential of these models for the prediction of HT
in cases where the size (i.e. voxel numbers) of available
HT is substantially small. Although the accuracy of HT
prediction was not as high as for infarction prediction,
the multiparametric MRI-based algorithms improved
the accuracy of prediction of HT regions over thresh-
olding of single indices like Ki or CBV. Particularly for
RF-based models, specificity of the prediction
improved with inclusion of spatial brain features that

guided voxel-wise classification. This has also been
observed in a study where spatial lesion distribution
maps increased accuracy of prediction of tissue infarc-
tion.31 However, infarct distribution depends on many
factors, such as vascular occlusion site, type of occlu-
sion, and duration of occlusion, which may be challen-
ging to derive a priori in clinical practice. Therefore, we
employed more general spatial features, such as dis-
tance from the brain border or distance from the tem-
poral cortex, which can be unbiasedly derived from
each individual subject.

Our results showed differences in distribution of
probability values between GLM- and RF-based pre-
dictive algorithms. This may imply possibilities for risk-
based differentiation of regions that will eventually
hemorrhage versus those that may not, similar to
what we have recently reported for multiparametric
MRI-based infarct prediction models, where differences
in assigned risk values may inform on tissue salvage-
ability.24 Yet, further experimentations are warranted
to corroborate these observations. These studies should
overcome the limitations of the current study and
should include larger sample sizes (to minimize effects
of individual variations) with sufficient differentiation
between various hemorrhagic subtypes (including clin-
ically relevant PH).

Despite the high prediction accuracies of our
models, the actual overlap of the predicted hemorrhagic
region and the region that actually hemorrhaged was
relatively low. Although regions with predicted HT
resided in close proximity to ultimately hemorrhagic
areas (as reflected by measures of specificity and sensi-
tivity), all tested prediction methods overestimated the
tissue at risk of hemorrhage. Previous studies reported
on a ‘‘compelling’’ correspondence between areas of
projected HT and the actual hemorrhage, but did not
effectually quantify the exact spatial correspond-
ence.8,9,11 Indefinite matching between early imaging
markers and subsequent hemorrhagic development
has also been observed by others, reporting an insignifi-
cant correspondence of early contrast-induced signal
enhancement with subsequent HT.32,33 Our study
particularly focused on relatively gross hemorrhages
identified as a local signal intensity reduction
on T2*-weighted images, caused by the magnetic

Table 2. Prediction accuracy measures for infarct prediction models A and B.

Model Group AUC J Sensitivity Specificity DSI RMSE

Model A I 0.94� 0.02 0.74� 0.09 0.84� 0.11 0.90� 0.02 0.81� 0.06 0.29� 0.02

II 0.92� 0.08 0.70� 0.22 0.84� 0.11 0.87� 0.02 0.76� 0.18 0.31� 0.02

Model B I 0.94� 0.02 0.73� 0.09 0.83� 0.22 0.90� 0.02 0.81� 0.06 0.31� 0.01

II 0.91� 0.09 0.70� 0.23 0.84� 0.23 0.86� 0.02 0.75� 0.19 0.33� 0.02
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susceptibility effect of deoxygenated blood, histologi-
cally verified from clear blood accumulation on post-
mortem brain sections acquired directly after the final
MRI session. Mild or microscopic hemorrhage may
have remained undetected especially when obscured
by edema-associated T2 prolongation.

10

The development of HT is strongly associated with
increased permeability of the BBB.34 MRI of early
parenchymal enhancement as a result of leakage of
contrast agent over the BBB has been shown to be pre-
dictive of development of HT in animal stroke
models10,11 and human stroke patients.12–14 Yet in the
current study, increased extravasation, reflected by
elevated Ki, was only occasionally observed and was
not necessarily associated with the hemorrhagic area.
Our study aimed at identifying tissue likely to develop
HT within a short, acute time-window of less than 3-h
post-stroke, which may have been too early for progres-
sion of significantly elevated BBB permeability.34

Furthermore, low perfusion, particularly in regions
with severe CBV reductions (i.e. with increased risk of
HT), may have restricted local contrast agent arrival
despite potential presence of leaky vessels. Likewise,
other studies have also reported limitations of the
accuracy of BBB permeability measurements to predict
successive hemorrhage.11,32

Although our study involved a relatively small
sample size, our findings demonstrated an increased
sensitivity in predicting areas at risk of post-stroke
HT with voxel-wise multiparametric MRI-based
prediction models as compared to single modality pre-
dictions. This further extends the potential of these
models, which have been successfully applied to predict
tissue at risk of infarction4,24 and to identify tissue
amenable for reperfusion therapy,16,24 to inform on
potential adverse effects of thrombolytic treatment
after stroke. Whereas previous studies particularly
focused on a single imaging marker for prediction of
HT,8,9,12–14,32 the current study employed computa-
tional models that combine information from multiple
markers in a single probabilistic index. The resultant
tissue theme maps may provide a straightforwardly
interpretable alternative to manifold multifactorial
images, with assigned index levels that make no
assumptions on possible viability thresholds.
Multiparametric MRI protocols, comparable to what
we used in our preclinical study, are readily available
on clinical scanners. Yet, requirement of multiple par-
ameters in prediction models may imply a limitation for
use within the time-critical phase of acute clinical
stroke. However, technological developments that
speed up acquisition and processing of multiparametric
MRI data, for example by faster scanning protocols,35

concurrent calculation of hemodynamic indices and
BBB permeability from dynamic susceptibility

contract-enhanced MRI,36 or combined T2 and ADC
mapping from multi-echo diffusion-weighted ima-
ging,37 may facilitate use in clinical practice within the
near future. Furthermore, improvements that enable
differentiation between different hemorrhage subtypes,
including symptomatic and asymptomatic intracerebral
hemorrhage, would increase the diagnostic potential of
prediction models. Clearly, further research is needed
to establish the potential of these algorithms in clinical
practice, where they may contribute assessments in
which careful identification of presence and location
of risk of hemorrhage can be critical for safe and effect-
ive intervention in acute ischemic stroke patients.
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