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SUMMARY

Dendritic cell (DC) activation by Toll-like receptor
(TLR)agonistscauses rapidglycolytic reprogramming
that is required tomeet themetabolicdemandsof their
immune activation. Recent efforts in the field have
identified an important role for extracellular glucose
sourcing to support DC activation. However, the con-
tributions of intracellular glucose stores to these pro-
cesses have not been well characterized. We demon-
strate that DCs possess intracellular glycogen stores
and that cell-intrinsic glycogen metabolism supports
the early effector functions of TLR-activated DCs.
Inhibition of glycogenolysis significantly attenuates
TLR-mediated DC maturation and impairs their
ability to initiate lymphocyte activation. We further
report that DCs exhibit functional compartmentaliza-
tionofglucose- andglycogen-derivedcarbons,where
these substrates preferentially contribute to distinct
metabolic pathways. This work provides novel in-
sights into nutrient homeostasis in DCs, demon-
strating that differential utilization of glycogen and
glucose metabolism regulates their optimal immune
function.

INTRODUCTION

Dendritic cells (DCs) are canonical ‘‘professional antigen pre-

senting cells’’ of the immune system and play a central role in

coordinating both innate and adaptive immune responses (Ban-

chereau and Steinman, 1998; Lee and Iwasaki, 2007; Lipscomb

and Masten, 2002). DCs recognize microbial pathogens and

other inflammatory stimuli through the expression of innate im-

mune receptors including the Toll-like receptor (TLR) family

(Akira and Takeda, 2004; Amati et al., 2006; Barton and Medzhi-

tov, 2002). DC activation by TLR signaling initiates a complex set

of transcriptional and translational events that are characterized

by the upregulation of surface co-stimulatory molecule expres-
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sion, inflammatory cytokine secretion, and the ability to stimulate

T lymphocytes via antigen presentation by major histocompati-

bility (MHC) molecules.

TLR stimulation initiates a shift in DC metabolism character-

ized by upregulation of aerobic glycolysis, which plays a vital

role in supporting the immune effector function and survival of

both human and mouse DCs (Amiel et al., 2012, 2014; Everts

et al., 2012; Krawczyk et al., 2010). Rapid glycolysis induction

supports the metabolic requirements associated with the high

levels of protein synthesis that contribute to DC immune activity.

The TLR-mediated ‘‘glycolytic burst’’ drives de novo fatty acid

synthesis via glucose-dependent citratemetabolism, which sup-

ports the synthesis and secretion of inflammatory cytokines

(Amiel et al., 2014; Rehman et al., 2013). Interrupting the

glucose-to-citrate pathway significantly impairs DC maturation,

cytokine secretion, and T cell stimulatory capacity (Amiel et al.,

2014; Everts et al., 2012; Krawczyk et al., 2010).

Immune cells are thought to primarily support activation-asso-

ciated glycolysis via increased expression of glucose trans-

porters (Everts and Pearce, 2014; Fox et al., 2005; Pearce and

Everts, 2015; Pearce and Pearce, 2013). Consistent with this,

the role of the inducible glucose transporter, GLUT1, in regu-

lating activation-associated glucose flux in both myeloid and

lymphoid immune cells has been a major focus in the field (Free-

merman et al., 2014; Macintyre et al., 2014). In DCs, however,

GLUT1 upregulation occurs several hours after TLR stimulation,

while TLR-mediated glycolytic reprogramming happens within

minutes of activation. Thus, the source of glucose supporting

the earliest events in DC activation, namely whether glucose is

sourced from the extracellular environment or from intracellular

pools, has not been fully defined.We propose that the DCs utilize

intracellular glycogen reserves to fuel their metabolic needs

during early immune activation and that glycogen metabolism

is required by these cells to initiate proper immune effector

responses.

Glycogen, a large branch-chained glucose polymer, has been

extensively characterized in hepatocytes, muscle cells, and

neuronal tissue where it serves as an intracellular carbon reser-

voir (Adeva-Andany et al., 2016; Roach et al., 2012; Voet et al.,

2013). Cells in the liver, muscle, and brain express tissue-

specific enzymes for glycogen synthase (GYS) and glycogen
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phosphorylase (PYG), the rate-limiting enzymes of glycogen syn-

thesis and breakdown, respectively. Cells in these tissues store

glucose in the form of glycogen to be utilized according to their

specific metabolic demands (Adeva-Andany et al., 2016; Roach

et al., 2012; Voet et al., 2013). During glycogenolysis, PYG iso-

zymes break down glycogen into glucose-1-phosphate (G1P),

which is subsequently converted into glucose-6-phosphate

(G6P) and can serve as a direct substrate for further catabolism

via glycolysis. In this manner, glycogen-storing cells, such as

those in muscle and brain tissue, can maintain intracellular

glycogen reserves for cell-intrinsic metabolic requirements

(Adeva-Andany et al., 2016; Voet et al., 2013). The significance

of cell-intrinsic glycogen metabolism in immune cells has not

been well characterized.

We demonstrate that DCs express specific isoforms of en-

zymes essential for glycogen synthesis and breakdown and

that these cells require glycogenmetabolism to support their im-

mune function. Although the presence of glycogen in DCs has

been previously implicated (Maroof et al., 2005), the direct

role for glycogen in DC metabolism and immune function has

not been described. We propose that DCs use intracellular

glycogen reserves to support early glycolytic metabolism

that accompanies their activation. We show that disruption of

glycogen metabolism significantly impairs DC maturation and

immune effector function, particularly at early stages of activa-

tion and in glucose-restricted conditions. We further show that

glycogen-derived carbons preferentially contribute to the TCA-

dependent citrate pool compared to glucose catabolized directly

by the cell. These findings elucidate a novel metabolic regulatory

pathway in DCs and provide new insights into energy and

nutrient homeostasis in these cells in support of their immune

activation.

RESULTS AND DISCUSSION

DCs Express Glycogen Metabolic Machinery and Utilize
Cell-Intrinsic Glycogen Metabolism upon Activation
TLR stimulation drives DCs to undergo glycolytic reprogramming

in order to meet cellular anabolic demands associated with

activation (Amiel et al., 2014; Krawczyk et al., 2010). We per-

formed a nutrient screening assay using single-carbon-source

defined media and found that DCs can catabolize both short-

and long-chain glucose polymers (Figure 1A). The ability of DCs

to generate NADH from glycogen (Figure 1A) is of particular inter-

est given its role as the predominant form of glucose macromol-

ecule storage in normal physiology. While cells are unlikely to

encounter extracellular glycogen in vivo, these assays demon-

strate that DCs exhibit the capability to catabolize glycogen and

are likely to express the key enzymes of glycogen metabolism.

We analyzed mRNA levels of glycogen phosphorylase (PYG)

and glycogen synthase (GYS), the rate-limiting enzymes of

glycogen breakdown and synthesis pathways, respectively in

DCs. Glycogenolysis is executed by three different tissue-spe-

cific PYG isozymes in mice and humans: PYGL in the liver,

PYGM in muscle, and PYGB in brain tissue. Glycogen synthesis

is controlled by two different tissue-specific GYS isozymes:

GYS1 in muscles and other peripheral tissue, and GYS2 in the

liver. Both mRNA and protein analysis in mouse bone marrow-

derived DCs (BMDCs) (Figures 1B and 1C) and human mono-
cyte-dervived DCs (moDCs) (Figure 1D) showed that DCs ex-

press PYGL and GYS1 isozymes. These enzymes were not

appreciably regulated following 6 hr stimulation with LPS (Fig-

ures 1C and 1D). Detection of intracellular glycogen in freshly

isolated human CD14+ monocytes and CD1a+ dendritic cells

(Figure 1E) indicates a physiological role for glycogen in these

cells. Unactivated DCs contain intracellular glycogen pools that

are fully depleted when cells are cultured in glucose-free media

(Figure 1F) and partially depleted by LPS stimulation in BMDCs

(Figure 1G) and moDCs (Figure 1H). TEM images of BMDCs

show distinct glycogen deposits by tannic acid stain that are ab-

sent in cells grown without glucose (Figure 1I) (Afzelius, 1992).

To validate the efficacy and specificity of the PYG inhibitor,

CP91149 (CP), we incubated BMDCs with CP in the nutrient

screening assay (as in Figure 1A) and assessed inhibition of

glucose or glycogen catabolism. Glycogen-dependent NADH

levels were fully attenuated in the presence of CP, while

glucose-dependent NADH levels were unaffected (Figure 1J),

demonstrating the specificity of this inhibitor. PYG inhibition

caused a reduction in basal glycolysis rates in unactivated

BMDCs (Figure 1K), indicating that DCs utilize intracellular

glycogen to support basal glycolytic demands. Importantly, the

effect of glycolysis inhibitor 2-deoxyglucose (2DG) was non-

redundant with CP, showing that free glucose and intracellular

glycogen stores make distinct contributions to DC metabolism

(Figure 1K).

PYG Inhibition Impacts DC Survival in Hypoglycemic
Conditions
Glycogen metabolism supports cancer cell growth, proliferation,

and cellular lifespan (Favaro et al., 2012). We tested the effect of

PYG inhibition on the survival of BMDCs at early (6 hr) and late

(24 hr) time points after LPS activation. PYG inhibition resulted

in modest increases in cell death at early time points under

low-glucose conditions (Figure 2A). This phenotype was

increased after 24 hr of inhibition (Figure 2B). In contrast, the

viability of human moDCs was not impacted at all glucose con-

centrations tested (Figure 2C).

Glycogen Metabolism Preferentially Supports Early DC
Maturation
TLR-driven early glycolytic burst is a metabolic hallmark of acti-

vated DCs (O’Neill, 2014), and both lymphoid and myeloid cells

depend heavily on extracellular glucose for glycolysis-depen-

dent effector responses (Everts et al., 2012; Krawczyk et al.,

2010; Pearce and Pearce, 2013; Pearce et al., 2009). This may

pose a limitation on the abundance of glucose in highly inflamed

tissues and secondary lymphoid organs where DCs likely

experience nutrient competition with proliferating lymphocytes

(Lawless et al., 2017). We hypothesized that glycogen meta-

bolism supports early TLR-mediated glycolysis and activation

in DCs by providing an intracellular source of glucose carbons.

We examined the surface expression of CD40 and CD86 in

BMDCs stimulated with LPS for 6 and 24 hr in the presence or

absence of PYG inhibitor over a range of glucose concentrations

representing both hyper- and hypoglycemic states. CD40 and

CD86 expression was attenuated by CP treatment (Figures 2D

and S1A), with a more pronounced effect at 6 hr and in hypogly-

cemic conditions (Figures 2D and S1A). PYG inhibition with an
Cell Metabolism 26, 558–567, September 5, 2017 559
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Figure 1. DCs Utilize Intracellular Glycogen Metabolism upon LPS Stimulation

(A) BMDCswere cultured in the indicated substrates as the sole nutrient sources andmeasured for ability to produce NADH as described in STARMethods. Data

indicate relative NADH production at 6 hr normalized to no carbon source controls, n = 3.

(B) Relative mRNA expression of PYG and GYS isoforms in naive BMDCs.

(C and D) PYGL, GYS1, and b-actin protein expression in unactivated and 6 hr LPS-stimulated BMDCs (C) and 24 hr LPS-stimulated moDCs (D).

(E–H) Intracellular glycogen levels of human peripheral blood CD14+ monocytes and CD1a+ DCs (E), untreated BMDCs cultured overnight ± glucose (F), and

BMDCs (G) and moDCs (H) stimulated ± LPS in 5 mM glucose (n = 3–6, mean ± SD, Student’s t test, *p < 0.05, **p = 0.0021, nd = not detected). Glycogen levels

were normalized to 105 cells.

(I) TEM images of unactivated BMDCs in 5 mM glucose (left) and 0 mM glucose (right), with arrows indicating intracellular glycogen deposits identified by tannic

acid staining.

(J) NADH levels over time in BMDCs cultured in glucose or glycogen containing media (as in A) ± CP (n = 4, mean ± SD, ***p < 0.0001).

(K) Basal ECAR of resting BMDCs treated with CP, 2DG, or both (treatment introduced at dotted line); representative of at least three replicates.
alternative inhibitor, DAB, at 6 hr after stimulation gave similar

outcomes (Figure S1B). Reduced CD40 and CD86 expression

was observed both in BMDCs starved of intracellular sugar (Fig-

ure 2E) and in moDCs inhibited by CP (Figure 2F), further sug-
560 Cell Metabolism 26, 558–567, September 5, 2017
gesting a role for glycogen pools in sustaining DC maturation.

In addition, PYG-targeted siRNA was used to silence PYG

expression in moDCs. As mRNA expression data indicated

that both PYGB and PYGL isoenzymes are expressed in human
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moDCs (Figure S1C), both isoforms were silenced simulta-

neously in moDCs using targeted siRNA (Figure S1D). Genetic

silencing of PYG in moDCs resulted in attenuation of LPS-

induced expression of maturation markers (Figure 2G).

While the importance of GLUT1 has been conclusively delin-

eated in both myeloid and lymphoid immune cells (Amiel et al.,

2014; Freemerman et al., 2014; Macintyre et al., 2014; Wieman

et al., 2007), the kinetics of GLUT1 regulation do not account

for the acute glycolytic reprogramming that occurs in activated

DCs. GLUT1 upregulation in activated DCs is not detected

before 6 hr of LPS stimulation (Figure S1E), which correlates

with the finding that extracellular glucose is depleted only after

6 hr of stimulation (Figure 2H). To confirm that the cells are less

dependent on imported glucose for early activation, we as-

sessed DC maturation at 6 and 24 hr after LPS stimulation while

blocking GLUT1 activity with inhibitor STF31 (Figures 2I and

S1F). In contrast to PYG inhibition, GLUT1 inhibition had a

significant impact on the maturation at 24 hr but not 6hrs

after activation. These data provide strong evidence that cell-

intrinsic glycogen metabolism plays a central role in driving DC

maturation, particularly during early time points and in glucose-

restricting conditions.

PYG Inhibition Impacts DC Immune Effector Function
Blocking glycolysis in TLR-activated DCs impairs their ability to

produce inflammatory cytokines and stimulate T cells (Amiel

et al., 2014; Krawczyk et al., 2010). We tested whether these re-

sponses are also affected by PYG inhibition. Intracellular cyto-

kine staining for TNF-a and IL-12 after 4 hr of LPS stimulation

showed that PYG inhibition attenuates inflammatory cytokine

production, with a larger effect in low-glucose conditions (Fig-

ures 3A, 3B, and S2A). Multiplex cytokine analysis of LPS-stim-

ulated DCs showed reduced pro-inflammatory cytokines and

chemokine production in PYG-inhibited cells compared to con-

trols in both BMDCs (Figure 3C) and moDCs (Figure 3D). CP did

not globally impact all LPS-mediated protein production as other

cytokines were unaffected (Figures S2B and S2C). siRNA-medi-

ated knockdown of PYG expression in moDCs recapitulated the

inhibitor data, as LPS-driven IL-12 production was attenuated in

PYG-silenced moDCs (Figure 3E).

To examine the ability of DCs to take up and process antigens,

we stimulated BMDCs with LPS plus OVA-AF488 or OVA-DQ for

3 hr (Figure 3F). OVA-AF488 allows tracking of antigen uptake,

while OVA-DQ only fluoresces upon antigen uptake and pro-

cessing. PYG-inhibited DCs showed reduced antigen uptake

regardless of LPS stimulation (Figure 3F), while antigen process-

ing was unexpectedly enhanced by PYG inhibition. We next

tested the effect of PYG inhibition or silencing on DC ability to
Figure 2. Glycogen Metabolism Supports Survival and Early Maturatio
(A and B) 7AAD viability staining of BMDCs stimulated with LPS ± CP for 6 hr (A

(C) 7AAD viability staining of moDCs stimulated with LPS ± CP for 24 hr.

(D) BMDCs were stimulated for 6 and 24 hr and analyzed for CD40 and CD86 su

(E) CD40 and CD86 expression of BMDCs stimulated for 6 hr in free glucose me

(F) CD86 and HLA-DR expression of moDCs stimulated with LPS ± CP for 24 hr

(G) CD86 and HLA-DR surface expression of 24 hr LPS-stimulated moDCs silen

(H) Glucose measurements from supernatant of BMDCs stimulated with LPS for

(I) CD40 and CD86 surface expression of BMDCs stimulated ± GLUT1-inhibitor i

(A–F, H–I) n = 3–6, mean ± SD, two-way ANOVA with Tukey’s post-test; *p % 0.

(G) n = 5, paired t test; *p = 0.04, **p = 0.0093.
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stimulate CD4+ T cells. PYG-inhibited BMDCs exhibited signifi-

cantly reduced capacity to stimulate T cells (Figures 3G and

3H). PYG-silenced moDCs exhibited similar impairments in

CD4+ T cell stimulation (Figure 3I). These data demonstrate

that cell-intrinsic glycogenmetabolism contributes to the regula-

tion of the multifaceted dimensions of DC immune effector

function.

Glycogen-Derived Carbons Fuel Both Glycolytic
Reprogramming and Mitochondrial Respiration in
Activated DCs
We proposed that glycogen-derived glucose drives early glyco-

lytic flux in TLR-activated DCs prior to GLUT1 upregulation. To

test this, we performed a real-time extracellular flux analysis on

BMDCs and moDCs. LPS-driven glycolytic burst was signifi-

cantly attenuated by PYG inhibition in both BMDCs (Figures 4A

and S3A) and moDCs (Figure 4B). We further tested whether

cell-intrinsic glycogen metabolism also contributes to mitochon-

drial respiration during early activation. Concomitant with

glycolysis reduction, PYG inhibition attenuated the oxygen con-

sumption rate (OCR) in BMDCs regardless of activation (Fig-

ure 4C). These data suggest that pre-existing glycogen pools

contribute metabolic substrates for mitochondrial respiration.

Consistent with this, PYG inhibition accelerates LPS-mediated

ATP depletion during early activation in a time-dependent

manner (Figure 4D). The synergistic effect of combined CP and

ATP-synthase inhibitor oligomycin in reducing ATP production

(Figure 4E) indicates that glycogen catabolism contributes to

both cytosolic andmitochondrial ATP generation. These findings

indicate the intriguing possibility that there may be distinct roles

for glucose and glycogen-derived carbon molecules in DC

metabolism.

Since PYG inhibition resulted in reduced intracellular ATP

levels (Figures 4D and 4E), we assessed the effect of PYG inhibi-

tion on the activation of AMPK, a key metabolic sensor of intra-

cellular nutrient and ATP levels (Hardie et al., 2012). PYG inhibi-

tion resulted in increased phosphorylation of AMPK (Figure S3B),

which is reported to antagonize BMDC activation (Krawczyk

et al., 2010). This is consistent with reports showing that inhibi-

tion of glycolysis induces compensatory activation of AMPK

(Wang et al., 2011; Wu et al., 2015). However, PYG inhibition

had no impact on LPS-mediated GLUT1 upregulation (Fig-

ure S3C), suggesting that AMPK regulation of glucose transport

is not a significant mechanism at play in our model. Neverthe-

less, LKB1 deficient BMDCs, which are incapable of activating

AMPK, show decreased sensitivity to PYG inhibition during

maturation at normal glucose concentrations, suggesting

that AMPK compensatory activation during PYG inhibition
n of TLR-Activated DCs
) and 24 hr (B) at 5 mM glucose.

rface expression.

dium with and without glucose starvation.

in 5 mM glucose.

ced with control (scrambled) or PYG-targeted siRNA.

3, 6, and 24 hr.

n normal glucose for 6 and 24 hr.

05, ***p = 0.0006, ****p < 0.0001.
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Figure 3. PYG Inhibition Attenuates Immune Effector Functions of DC

(A) Intracellular staining of TNF-a and IL-12 of BMDCs stimulated with LPS for 4 hr in 5 mM glucose.

(B) Intracellular staining of TNF-a and IL-12 of BMDCs stimulated with LPS for 4 hr in 5, 2.5, and 0 mM glucose.

(C and D) Multiplex panels of cytokine and chemokine measurements from the supernatant of BMDCs (C) andmoDCs (D) activated with LPS for 6 hr. Dotted lines

represent unstimulated levels.

(E) Relative IL-12 production by moDCs LPS-stimulated for 24 hr transfected with control or PYG-targeted siRNA.

(F) BMDCs treated with LPS ± CP plus OVA-AF488 or OVA-DQ for 3 hr and analyzed by flow cytometry for antigen uptake and processing.

(G) BMDCs were pulsed for 6 hr with indicated treatments and subsequently co-cultured with CFSE-labeled OT-II T cells. CFSE dilution was measured on day 3

post co-culture.

(H) Measurements of proliferation of OT-II T cells (from G) stimulated by BMDCs pre-treated with indicated conditions.

(I) siRNA transfected moDCs were co-cultured with CellTrace Violet-labeled human naive CD4+T cells for 4 days. Data were normalized to scrambled siRNA.

Proliferation was measured after 4 days.

(A–I) n = 3–5, mean ± SD. (B and F) Two-way ANOVA Tukey’s post-test. (C–E, H, and I) Student’s t test; *p % 0.05, **p < 0.001, ***p = 0.0004, ****p < 0.0001.
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Figure 4. Glycogen-Derived Carbons Fuel Early Glycolytic Reprogramming and Mitochondrial Respiration in Activated DCs

(A and B) Real-time changes in ECAR of BMDCs (A) and moDCs (B).

(C) Real-time changes in OCR of BMDCs.

For (A)–(C), treatments were introduced at dotted lines (first injection: second injection).

(D and E) ATP levels of BMDCs in 30 min intervals (D) and at 2 hr (E) after stimulation with indicated treatments.

(F) BMDCs cultured and differentiated in 13C6-glucose were switched to normal glucose at the time of stimulation with LPS ± CP for 1 and 3 hr, and 13C-labeled

metabolites were detected by LC-MS spectrometry.

(G) Inverse metabolomics of (F), where BMDCs were differentiated in normal 12C-glucose and switched to 13C6-glucose at the time of stimulation with LPS ± CP

for 3 and 6 hr.

Data represent n = 4, mean ± SD; (A and B) paired Student’s t test; (D–G) n = 5, two-way ANOVA, Tukey’s post-test. *p < 0.05, **p < 0.005, ***p < 0.0005,

****p < 0.0001.

(F and G) Statistical significance of each color * represents color-coded 13C6 or black * for
12C groups. White bars indicate l2C-glucose, and all color bars denote

13C6-glucose.
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may be involved in regulating maturation in these conditions

(Figure S3D).

Previous work has demonstrated that glucose consumed by

activated DCs enters the TCA cycle to generate citrate, which

is preferentially translocated from the mitochondria into the

cytosol via the citrate shuttle to support de novo fatty acid syn-

thesis. This process is linked to ER and Golgi membrane expan-

sion, which is hypothesized to enhance the production of

effector molecules central to DC activation (Amiel et al., 2014;

Rehman et al., 2013). To examine the role of glycogenolysis in

citrate metabolism explicitly, we performed metabolic tracing

experiments in which BMDCs were differentiated in 13C-labeled

glucose to label all intracellular metabolites. Cells were subse-

quently switched to normal glucose at the time of LPS stimula-

tion in the presence or absence of CP for 1 and 3 hr. As previ-

ously published, LPS stimulation induces substantial metabolic

flux through glycolysis and TCA citrate production (Everts

et al., 2014 and data not shown). PYG inhibition significantly

reduced 13C-labeled citrate while no statistically significant

impact on hexose phosphate, pyruvate, lactate, and post-citrate

metabolites fumarate and malate was observed (Figures 4F and

S3E). Hexose phosphate refers to any 6-carbon sugar since our

metabolite tracing approach could not distinguish individual

sugars among this group. These data indicate that intracellular

glycogen reserves preferentially support the generation of citrate

following LPS stimulation.

Glutamine can also serve as an important carbon source for

the TCA cycle. However, the findings that nearly the entire gluta-

mine pool is derived from 12C-labeled sources (Figure S3F) and

that CP has very little effect on glutamine levels (Figure S3F) sug-

gest that glutamine metabolism is not directly impacted by PYG

inhibition. This is further supported by observations that (1) CP

attenuates the maturation of BMDCs stimulated in the presence

or absence of glutamine (Figure S3G) and (2) glutaminolysis in-

hibitor DON has no significant impact on glycolytic burst or

OCR (Figure S3H).

To identify the role of glycogenmetabolism in regulating extra-

cellular glucose flux, the reverse metabolomics experiment was

performed in which BMDCs differentiated in normal glucose

were switched to 13C-glucose at the time of LPS activation and

analyzed at 3 and 6 hr post stimulation (Figure 4G). PYG inhibi-

tion minimally affected the 13C-glucose contribution to cyto-

plasmic hexose phosphate, lactate, and pyruvate, while it

severely attenuated both 12C- and 13C-glucose contributions

to citrate production (Figure 4G).

The metabolite tracing data are consistent with previously

publishedwork (Everts et al., 2014) in which extracellular glucose

contributes heavily to cytoplasmic glycolytic metabolites and

citrate production from the TCA cycle (Figures 4F and 4G). How-

ever, these data also uncover two previously unappreciated

aspects of glucosemetabolism in DCs: (1) glycogen-derived car-

bons from basal glycogen stores (CP-sensitive 13C metabolites

in Figure 4F) preferentially support initial glycolytic intermediates

and citrate synthesis; (2) a significant amount of glucose im-

ported from the extracellular environment gets rapidly converted

into glycogen (CP-sensitive 13C metabolites in Figure 4G). The

finding that extracellular 13C-glucose incorporation into citrate

(Figure 4G), succinate, fumarate, and malate (Figure S3I) is sen-

sitive to PYG inhibition suggests that a significant portion of
extracellular glucose destined for mitochondrial oxidation is

metabolically routed via a glycogen-dependent pathway during

DC activation. The routing of glucose carbons via a rapid

sequence of glycogen synthesis and glycogenolysis is charac-

teristic of a metabolic pathway described in astrocytes andmus-

cle cells as the ‘‘glycogen shunt’’ (Shulman et al., 2001; Shulman

and Rothman, 2001). Our metabolic profiling studies support a

model where glucose processing in TLR-stimulated DCs un-

dergoes three functionally distinct pathways: (1) the catabolism

of pre-activation intracellular glycogen stores; (2) the catabolism

of imported glucose directly; (3) the incorporation of imported

glucose into synthesis and breakdown of glycogen via the

glycogen shunt (modeled in Figure S4).

While the glycogen shunt is clearly inefficient from an ener-

getic perspective, others have argued that glycogen breakdown

and synthesis may occur in separate spatial pools within brain

and muscle cells to fuel rapid bursts of metabolic activity

required in these cells that override the total energetic cost of

this process (Calder and Geddes, 1992; Elsner et al., 2002;

Obel et al., 2012). DCsmay employ a similar strategy of compart-

mentalized glycogen metabolism in order to fuel early immune

activation. However, how this occurs and how it may be regu-

lated in DCs remains an important question. Precedent for

distinct and parallel sugar metabolism has been previously re-

ported, whereby granulocyte phagocytic capability is driven by

glycogen-derived carbons, while their chemotaxis is fueled by

catabolism of free glucose carbons (Weisdorf et al., 1982). We

propose that the source of carbons in activated DCs, namely

whether it is glucose or glycogen derived,may dictate differential

functional responses. We speculate that spatial compartmental-

ization of these processes in the cytoplasmmay be an important

component of how glycogen metabolism is regulated.

While glycogen metabolism has been previously implicated in

myeloid cells of the immune system (Maroof et al., 2005; Scott,

1968; Weisdorf et al., 1982; Yunis and Arimura, 1964, 1966), the

role of glycogen metabolism in specific immune effector func-

tions of DCs has not been previously defined. We show here a

definitive role for glycogen metabolism in regulating immune

effector functions of both human and mouse DCs. We further

demonstrate that glucose- andglycogen-derivedcarbonsexhibit

distinctmetabolic fates, aphenomenon thatwesuspect is notDC

specific and likely occurs in other cells that utilize cell-intrinsic

glycogen metabolism. Ongoing studies are focused on elabo-

rating the mechanistic details of how glycogen-dependent

compartmentalization ofmetabolic pathways occurs in response

to different immune stimuli. With a growing interest in under-

standing how metabolic regulation controls the functional

effector responses of immune cells, this work delineates an intri-

cate and novel layer of complexity to how metabolic pathways

operate at a subcellular level, which may be exploited in cell-

based therapeutic applications in the future.
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PE-Cyanine Anti-mouse TNF-a (Clone: MP6-XT22) eBiosciences Cat#25-7321-80; RRID: AB_11042471

APC Anti-mouse IL-12 (Clone: C15.6) BioLegend Cat#505205; RRID: AB_315369

Miltenyi human CD14 beads Miltenyi Cat#130-050-201; RRID: AB_2665482

Miltenyi mouse CD4 beads (L3T4) Miltenyi Cat#130-049-201

Pacific Blue anti-mouse CD4 (Clone: GK1.5) BioLegend Cat#100427; RRID: AB_493646

FITC anti-human CD1a (Clone: HI 149) BioLegend Cat#300103; RRID: AB_314017

APC anti-human CD40 (Clone: 5C3) BioLegend Cat#334309; RRID: AB_2075792

Pacific Blue anti-human CD86 (Clone: IT2.2) BioLegend Cat#305417; RRID: AB_493662

PE HLA-DR (Clone: L24.3) BioLegend Cat#307605; RRID: AB_314683

FITC Mouse Anti-human CD86 (Clone 2331) BD Biosciences Cat#555657; RRID: AB_396012

Human FC receptor Binding Inhibitor eBiosciences Cat#14-9161

APC Mouse Anti-human CD40 (Clone 5C3) BD Biosciences Cat#555591; RRID: AB_398607

APC Mouse Anti-human HLA-DR-eF780 eBiosciences Cat#47-9956; RRID: AB_1963604

V450 Mouse Anti-human CD80 (Clone: L307.4) BD Biosciences Cat#560442; RRID: AB_1645583

FITC Mouse Anti-human CD4 (Clone: RTA-T4) BD Biosciences Cat#555346; RRID: AB_395751

APC Mouse Anti-human CD3 (Clone: SK7) BD Biosciences Cat#641397; RRID: AB_1645731

ELISA ab: Purified Rat Anti-human IL-12p70 BD Biosciences Cat#555065; RRID: AB_395680

ELISA ab: Biotin Mouse Anti-human IL-12p40/p70 BD Biosciences Cat#554660; RRID: AB_395495

Human Naive Pan T cell isolation kit Miltenyi Cat#130-097-095

Human CD8 Microbeads Miltenyi Cat#130-045-201

Biological Samples

Human Peripheral blood LeucoPak CVPH Medical Center Blood

Bank, Plattsburg, NY

N/A

Chemicals, Peptides, and Recombinant Proteins

Endotoxin free LPS (Escherichia coli Serotype O) InvivoGen Cat#tlrl-eblps

Glycogen from Bovine Liver Sigma Aldrich Cat#G0885-5G; CAS: 9005-79-2

CP-91149 Selleckhem Cat#S2717

1,4-Dideoxy-1,4-imino-D-arabinitol hydrochloride (DAB) Santa Cruz Cat#220553; CAS 100991-92-2

STF31-glut1 inhibitor Tocris Biosciences Cat#4484; CAS 724741-75-7

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

D-Glucose-13C6 Sigma Aldrich Cat#389374

Golgi plug: Protein Transport Inhibitor BD Biosciences Cat#51-2301KZ

Recombinant murine GM-CSF Peprotech Cat#315-03

7-AAD BD PharMingen Cat#51-68981E

Recombinant Human GM-CSF Peprotech Cat#300-03

Recombinant Human IL-4 Peprotech Cat#200-04

Taqman Fast Advanced Master Mix Applied Biosystems Cat#4444557

OVA-AF 488 Molecular Probes Cat# O-34781

OVA-DQ Molecular Probes Cat# D-12053

Biolog Inc redox dye mix MA Biolog Cat#NC0781517

CellTrace Violet Thermo Fisher Cat#C34557

StrepAvidin Poly HRP Sanquin M1942

DON (6-diazo-5-oxo-L-norleucine) Sigma Aldrich D2141

Critical Commercial Assays

Glucose Assay Eton Biosciences Cat#SKU120003400

Glycogen Assay Hydrolysis Enzyme Biovision K646-100-5

Seahorse Bioassay Agilent Technologies Cat#102416

ATP Determination Kit Invitrogen Cat#A22066

iScript cDNA synthesis Kit Biorad Cat#170-8891

RNeasy Mini Kit QIAGEN Cat#74104

Mouse Cytokine Magnetic 20-Plex Panel Invitrogen Cat#LMC0006M

Human Cytokine Magnetic 30-Plex Panel Invitrogen Cat#LHC6003M

PM-M1 Panel: Phenotype Microarrays Biolog Cat#13101

Experimental Models: Organisms/Strains

C57/Bl6J Jackson Laboratory N/A

B6.Cg-Tg (TcraTcrb)425Cbn/J Jackson Laboratory N/A

Software and Algorithms

FlowJo Software TreeStar N/A

Prism V 7.0 Graphpad Prism N/A

Other

Neon Transfection System Invivogen MPK5000

PYGL human siRNAs Dharmacon M-009569-02-0005 5

PYGB human siRNAs Dharmacon M-009587-01-0005 5

pygl Taqman Gene Expression Assay primer Thermo Fisher Mm01289790-m1

pygm Taqman Gene Expression Assay primer Thermo Fisher Mm00478582-m1

gys1 Taqman Gene Expression Assay primer Thermo Fisher Mm01962575 s1

gys2 Taqman Gene Expression Assay primer Thermo Fisher Mm01267381-g1
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Eyal Amiel

(eamiel@uvm.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse Models
The University of Vermont’s Animal Facility is a barrier facility housing only mice. All animals are housed in autoclaved Lab Products

microisolator cages on ventilated racks and handled using aseptic technique in laminar flowwork stations and are providedwith ster-

ile water and irradiated rodent chow (Lab Diets Isopro RMH 3000). Mice are maintained in a pathogen free environment at a constant

temperature and humidity, with 12-hour light and 12-hour dark cycle. Personnel wear shoe covers, isolation gowns, masks, bouffant
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and exam gloves. In addition, animal husbandry personnel wear dedicated scrubs and footwear. Health monitoring of colony and

sentinel animals is performed quarterly. The University’s program of animal care has been fully-accredited by AAALAC, International

for over 25 years. OT-II (B6.Cg-Tg (TcraTcrb)425Cbn/J and C57/Bl6J mice mice were purchased from Jackson Laboratory and were

maintained at the University of Vermont animals care facility under protocols approved by Institutional Animal Care and Use Com-

mittee. Formost experiments, adult mice (2-6months of age) were used.Mouse experiments include data frombothmale and female

mice, however the specific sex distribution for each individual experiment was not explicitly tracked. Itgaxcre LKB1fl/fl mice PubMed:

21124450were housed and bred at the LUMC, Leiden, Netherlands, under SPF conditions. All animal experiments were performed in

accordance with local government regulations, and the EU Directive 2010/63EU and Recommendation 2007/526/EC regarding the

protection of animals used for experimental and other scientific purposes and approved by the CCD, animal license number

AVD116002015253.

METHOD DETAILS

Mouse DC Culture and Activation
Bone marrow-derived DCs (BMDCs) were generated as follows: BM cells were flushed from femurs of 9-18-week-old mice and the

cells were differentiated in GM-CSF (20ng/mL; Peprotech) in complete DC medium (CDCM), comprised of RPMI1640, 10% FCS,

2mM L-glutamine, 1IU/mL Pen-Strep, 1mM beta-mercaptoethanol, for 7 days, with a medium change every 2 days. On day 7,

DCs were washed in CDCM and cultured at 2x10^5 cells per 200 mL of media alone, STF31 (12.5 mM), CP91149 (75-100 mM),

DAB (1mM), LPS (100ng/mL), LPS plus STF31 or CP91149, or DAB, or OVA (from whole egg white) at indicated time points. Where

appropriate, DCs were stimulated in CDCM containing 0mM, 1.25mM, 2.5mM, or 5mM glucose.

Glucose Starvation Experiment
BMDCs were starved for glucose overnight, with a non-starved group as a control. On the next day, DCs from both groups were

washed with sugar free RPMI and stimulated with LPS in glucose free medium ± CP for 6hours. CD40 and CD86 expression was

analyzed by Flow cytometry.

Human DC Culture and Activation
Humanmonocyte-derived DCs (moDCs) were differentiated from peripheral blood monocytes as follows: Blood filters from de-iden-

tified blood donors were provided by CVPH Medical Center Blood Bank in Plattsburgh, NY. Filters were reverse-flushed in

sterile PBS, and PBMCs were prepared by Ficoll-Paque (density gradient of 1.0772) centrifugal separation using LSM media

(MP biochemical; Fisher). Resulting monocytes were enriched using CD14 positive selection beads per manufacturer instructions

(Miltenyi Bioscience) and cultured in complete DC medium (CDCM) supplemented with human recombinant GM-CSF (20ng/mL)

plus human recombinant IL-4 (20ng/mL) (Peprotech) for 7 days. On day 7, moDC were harvested, stimulated as indicated, and

analyzed by FACS for maturation and by multiplex panels (Life Technologies) for cytokine production.

Quantitative Real-time PCR of pygl, pygm, gys1, and gys2 Expression
RNAwas isolated with an RNAeasy Kit (QIAGEN) and cDNAwas synthesized with an iScript cDNA Synthesis Kit (Biorad). pygl, pygm,

gys1, gys2, and slc2a1 Taqman primer probes (Applied Bioscience system) and AB7500 sequence detection system or QuantStudio

3.0 were used for relative mRNA expression. mRNA relative quantitative values were calculated based on 2(-DDCT) and normalized

to untreated samples.

Glycogen Phosphorylase Knockdown by siRNA Transfection of moDC
For knockdown of glycogen phosphorylase isoforms, moDCs were generated as mentioned above. At day 4 of the culture, the cells

were harvested, washed with PBS, brought to a concentration of 1x10^6 cells / 100 mL resuspension buffer, and finally, transfected

by electroporation with either 10 nManti-PGYL siRNA in combination with 10 nM anti-PYGB siRNA or 20 nM scrambled siRNA (Dhar-

macon). Electroporation was performed using a Neon Transfection System (Invivogen) with the following settings: 1600 V, 20 ms and

one pulse. Immediately after electroporation, 1x10^6 cells were taken up in 5mL 10%HI-FCS basal media, containing no antibiotics,

and plated at 200 cells / mL. The next morning, the media was re-supplemented with penicillin, streptomycin, rGM-CSF and rIL-4. At

day 6, the cells were harvested, stimulated as indicated, and analyzed by FACS for maturation and by ELISA for cytokine production.

Silencing efficiency was determined by qPCR on 6 day-old cells. The transfection efficiency was routinely greater than 80%.

Antigen Uptake, Processing, and In-Vitro T Cell Responses
BMDCs were stimulated ± LPS with OVA-AF488 (5 mg/mL) and OVA-DQ (5 mg/mL) for antigen uptake and processing, respectively.

For in vitro T cell responses, T cells were generated using mouse CD4 positive selection beads from spleens of 6-10-week-old trans-

genic OT-II mice and age-matchedWild-type B6mice. BMDCswere pulsed with whole Ovalbumin protein (OVA), extracted from egg

white, and LPS in the presence or absence of CP for 6 hours, washed 3 times, and co-culturedwith CFSE-labeled OT-II T cells at a 1:5

ratio for 72 hours. T cell proliferation (CFSE dilution) was analyzed by flow cytometry.
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For alloreaction studies of siRNA transfected moDC, the cells were washed 2 times, and co-cultured with CellTrace Violet-labeled

human naive CD4+ T cells, whichwere isolated using a naive pan T cell isolation kit (Miltenyi) followed by negative selection usingCD8

MicroBeads (Miltenyi), at a 1:4 ratio for 4 days. T cell proliferation was analyzed by flow cytometry.

Metabolism Assays
Extracellular glucose and intracellular glycogen levels were measured with a Glucose assay kit (Eton Biosciences) and a Glycogen

assay kit (Biovision), respectively. For Biolog assays, (Metabolic phenotypic screening assays), IFM-1 reagent, BiologMA redox dye,

and Biolog plates were purchased from Biolog Inc. Fully differentiated BMDC were plated overnight at 50,000 cells per well in spec-

ified nutrient sources in basal MC-0 medium (IFM1 media with 5%FCS, 0.3mM L-glutamine, 100I/U Pen Strep). 20 mL of Biolog MA

dye was added to each well the next morning. The assays weremeasured at 592 nm absorbance as indicated. Data were normalized

to the readings at time 0. Extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were measured with Metabolic

Flux Analyzer (Seahorse Bioscience, North Billerica, MA 24XP and/or 96XP). ATP concentrations were measured with an ATP Deter-

mination Kit (Invitrogen) according to the manufacturer’s instructions.

BMDC Cultures and Activation for Metabolomics
For metabolomics tracing in Figure 4F, BMDCs were differentiated in 13C6-glucose containing CDCM. On day 7, the cells were

switched to 12C6-glucose medium, with LPS and LPS+CP added at the time of media switch and stimulated for 1 and 3 hours. At

each time point, cells were harvested, counted, pelleted, and frozen for the UHPLC-MLS metabolomics processing below. For in-

verse metabolomics in Figure 4G, BMDCs normally differentiated in regular CDCM were switched to 13C6-glucose medium at the

time of stimulation, with and without CP for 3 and 6 hours. Cells were harvested and processed as above. Supernatant from the

6 hour stimulation groups was collected for Multiplex Cytokine analysis.

UHPLC-MS Metabolomics
Frozen cell pellets were extracted at 2e6 cells/mL in ice cold lysis/extraction buffer (methanol:acetonitrile:water 5:3:2). Samples were

agitated at 4�C for 30 min followed by centrifugation at 10,000 g for 10 min at 4�C. Protein and lipid pellets were discarded, and

supernatants were stored at�80�C prior to metabolomic analysis. Ten mL of extracts were injected into an UHPLC system (Vanquish,

Thermo, San Jose, CA, USA) and run on aKinetexC18 column (1503 2.1mm, 1.7 mm–Phenomenex, Torrance, CA, USA) at 250 ml/min

(phase A: Optima H2O, 0.1% formic acid; phase B: acetonitrile, 0.1% formic acid). The autosampler was held at 7�C and the column

compartment at 25�C. The UHPLC system was coupled online with a Q Exactive mass spectrometer (Thermo, Bremen, Germany),

scanning in Full MS mode (2 mscans) at a 70,000 resolution in the 60-900 m/z range in negative and then positive ion mode (separate

runs). Eluate was subjected to electrospray ionization (ESI) with 4 kV spray voltage, 15 sheath gas and 5 auxiliary gas. Metabolite

assignments and isotopologue distributions were determined using the software Maven (Princeton, NJ, USA)1, upon conversion of

.raw files into .mzXML format through MassMatrix (Cleveland, OH, USA). Chromatographic and MS technical stability were assessed

by determining CVs for heavy and light isotopologues in a technical mixture of extract run every 10 injections. Relative quantitation

was performed by exporting the values for integrated peak areas of light metabolites and their isotopologues into Excel (Microsoft,

Redmond, CA, USA) for statistical analysis including t test and ANOVA (significance threshold for p values < 0.05).

Electron Microscopy
Samples were fixed in Karnovsky’s Fixative for 1hr at 4�C, washed in 0.1M Cacodylate Buffer, and post-fixed in 1% OsO4 for 1hr at

4�C followed by an extensive rinse with Cacodylate buffer. Samples were then dehydrated in a graded series of ethanol, and

embedded in Spurr. Sections were cut with a Reichert Ultracut Microtome and stained with toluidine blue. For contrast, 1% tannic

acid was added to the cut sections of the grids for 10 min, followed by 6 min of uranyl acetate and 4 min of lead citrate. Cells were

examined with a JEM1400 transmission electron microscope (JEOL USA).

Immunoblot Analysis
Cell lysates were prepared using 2X NP-40 lysis buffer. 20 mg protein was loaded into each well of a 12.5% polyacrylamide gel, trans-

ferred onto activated nitrocellulose membrane (BioRad). Electrophoretic transfer was performed using Trans-Blot Turbo RTA mini

Nitrocellulose transfer kit. Membranes were blocked in 2%milk in 1xTBST at RT for 1hr, and incubated in indicated antibody at

4�C overnight. Blots were washed 3x in 1xTBST at RT, probed with secondary antibodies at RT for 45-60 min, and washed 3-4x

with 1xTBST. Proteins were visualized by SuperSignal West Pico Chemiluminescent substrate and exposed with GeneXpert System

imager. Trans-Blot Turbo Transfer system and secondary antibodies for western blots were generously provided by Dr. Paula

Deming, Medical Laboratory and Radiation Science Department, UVM.

Flow Cytometry and Cytokine Measurements
The following fluorescently labeled antibodies were used for flow cytometry: anti-CD11c (N418), anti-CD40 (3/23), anti-CD86 (GL1),

IA-b (AF6-120.1), anti-CD1a (HI149), anti-CD40 (5C3), anti-CD86 (IT2.2), anti-TNFa (MP6-XT22), anti-IL-12p40 (C15.6). Stimulated

cells as indicatedwere harvested andwashed in 1%FACS buffer (PBS plus 1%FBS), stainedwith specific antibodies, and incubated

on ice for 30 min. All samples were acquired using a LSRII flow cytometer (BD Biosciences). For intracellular cytokine expression,

cells were activated with indicated treatment groups for a total of 4 hours with an addition of Golgi plug (1:1000) (Biolegend) after
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the first hour of stimulation. For intracellular staining of TNF- a and IL-12 (Biolegend), cells were fixed in 4% Paraformaldehyde, per-

meabilized in 0.2% saponin, and stained with antibodies in FACS buffer (1%FBS in PBS). Samples were analyzed on a BD LSRII flow

cytometer. For cytokine levels of BMDCs and moDCs, supernatants were collected as indicated time points and measured with

Mouse Cytokine Magentic 20-Plex and Human Cytokine Magnetic 30-Plex panels (Life Technologies) per manufacture instructions

using Bio-Plex array suspension system.

QUANTIFICATION AND STATISTICAL ANALYSIS

Throughout the manuscript, ‘‘n’’ refers to independent cell cultures from individual mice or human samples. All the experiments re-

ported in Figure 1 were repeated n = 3-6 mice per condition, with the following detailed n values: Figures 1A–1E and 1I, n = 3; Figures

1F and 1G, n = 6; Figure 1H, n = 4; and Figure 1J, n = 4. The survival and maturation experiments in Figures 2A–2F and S1 were

repeated with n = 6. Intracellular cytokine experiments in Figures 3 and S2 were repeated with n = 4. Multiplex analyses in Figures

3 and S2 were repeated with n = 6. All metabolomics experiments in Figures 4 and S3 were repeated with n = 4, and the seahorse

experiments in Figures 1, 4, and S3 were repeated with n = 3-5. All the siRNA experiments in Figure 2G, 3I, S1C, and S1D were

repeated with n = 5. Data were analyzed with GraphPad Prism software (version 6.0). Samples were analyzed using Student’s

t test, One-way, and Two-way ANOVA where appropriate. ANOVA tests were post-calculated by Tukey’s multiple comparison

test or Sidak test. Results are means +SD as indicated, and statistical values are represented significant when p values were equal

or below 0.05.
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