
 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/58768 holds various files of this Leiden University 
dissertation 
 
Author: Helmerhorst, H.J.F. 
Title: The effects of oxygen in critical illness 
Issue Date: 2017-10-04 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/58768
https://openaccess.leidenuniv.nl/handle/1887/1�


HENDRIK J.F. HELMERHORST

H
E
N
D
R
IK
 J.F

. H
E
L
M
E
R
H
O
R
S
T

T
H
E
 E
F
F
E
C
T
S
 O
F
 O
X
Y
G
E
N
 IN

 C
R
IT
IC
A
L
 IL
L
N
E
S
S

THE EFFECTS OF 
OXYGEN IN CRITICAL ILLNESS

THE EFFECTS OF 
OXYGEN IN CRITICAL ILLNESS

THE EFFECTS OF 
OXYGEN IN CRITICAL ILLNESS





T H E  E F F E C T S  O F  OX YG E N  I N  C R I T I C A L  I L L N E S S

Hendrik J.F. Helmerhorst



Layout and printing: Off Page, Amsterdam

Cover scene: Magnesium and copper burning under a pure oxygen flame

Cover design by: Magda Jurewicz, Hendrik Helmerhorst

Cover photos by: Drey Anthony Pavlov, MD

ISBN: 978-94-6182-821-7

Copyright © 2017 H.J.F. Helmerhorst

No part of this thesis may be reproduced or transmitted in any form or by any means, without the prior 

permission of the author.

The research described in this thesis was supported by an unrestricted grant from the Netherlands Organization 

for Health Research and Development (ZonMw).

Printing of this thesis was financially supported by Getinge, Vygon, ChipSoft and the University of Leiden.

Hendrik J.F. Helmerhorst was supported by the European Society of Intensive Care Medicine – Young 

Investigator Award.



T H E  E F F E C T S  O F  OX YG E N  I N  C R I T I C A L  I L L N E S S

Proefschrift

Ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker,

volgens besluit van het College voor Promoties

te verdedigen op 4 oktober 2017

klokke 16:15

door

Hendrik Jeroen Frans Helmerhorst

geboren te Amsterdam

in 1986



P R O M OT I E C O M M I S S I E

Promotores: Prof. Dr. E. de Jonge

 Prof. Dr. M.J. Schultz  Universiteit van Amsterdam

Copromotor:  Dr. D.J. van Westerloo

Promotiecommissie: Prof. Dr. A. Dahan

 Prof. Dr. N.F. de Keizer  Universiteit van Amsterdam

 Prof. Dr. T. van der Poll  Universiteit van Amsterdam

 Prof. Dr. R.A.E.M. Tollenaar

 Dr. M.S. Arbous

 Dr. D.C.J.J. Bergmans  Universiteit Maastricht



TA B L E  O F  C O N T E N T S
Chapter 1 General introduction 7

PA RT  I  PAT H O P H Y S I O LO G I C A L  A N D  P R E C L I N I C A L  C O N C E P T S   1 5

Chapter 2 Bench-to-bedside review: the effects of hyperoxia during critical illness 17

Chapter 3 Hyperoxia provokes a time- and dose-dependent inflammatory response in  39 

 mechanically ventilated mice, irrespective of tidal volumes

PA RT  I I  C L I N I C A L  E F F E C T S  A N D  A S S O C I AT E D  O U TC O M E S  5 7

Chapter 4 Hemodynamic effects of short-term hyperoxia after coronary artery  59 

 bypass grafting

Chapter 5 Associations of arterial carbon dioxide and arterial oxygen concentrations with  75 

 hospital mortality after resuscitation from cardiac arrest

Chapter 6 Association between arterial hyperoxia and outcome in subsets of critical illness:  93 

 a systematic review, meta-analysis and meta-regression of cohort studies

Chapter 6a To the editor: Association between hyperoxia and mortality after cardiac arrest 115

Chapter 6b The authors reply 121

Chapter 7 Metrics of arterial hyperoxia and associated outcomes in critical care 127

PA RT  I I I  OX YG E N  M A N AG E M E N T  A N D  P R E V E N T I V E  S T R AT E G I E S   1 4 5

Chapter 8 Self-reported attitudes versus actual practice of oxygen therapy by  147 

 ICU physicians and nurses

Chapter 9 Effectiveness and clinical outcomes of a two-step implementation of  163 

 conservative oxygenation targets in critically ill patients: a before and after trial

Chapter 9a To the editor: Oxygen as an essential medicine: under- and over-treatment of  181 

  hypoxemia in low- and high-income nations

Chapter 9b The authors reply 187

Chapter 10 General discussion and summary 193

Appendix  Nederlandse samenvatting 203

Curriculum vitae 207

Portfolio 208

List of publications 209

Dankwoord 211





G E N E R A L  I N T R O D U C T I O N1



A B S T R AC T

In this thesis we explore the pathophysiological and preclinical concepts underlying the effects 

of supraphysiological oxygenation (part 1), assess the clinical effects of hyperoxia in critical care 

(part 2) and investigate preventive strategies in oxygen management by promoting conservative 

oxygenation in the intensive care unit (part 3).

Thesis
The Effects of Oxygen in Critical Illness

Part 2
Clinical Effects and 

Associated Outcomes

Part 3
Oxygen Management and 

Preventive Strategies

Part 1
Pathophysiological and 

Preclinical Concepts

Chapter 2
Chapter 3

Chapter 4
Chapter 5
Chapter 6
Chapter 7

Chapter 8
Chapter 9

Chapter 10
General Discussion and Summary

Chapter 1
General Introduction and Thesis Outline
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S U B J E C T  A N D  S U S P E C T:  OX YG E N

Owing to its indispensable nature, oxygen may the most appealing element in life and among 

the most important components for therapy in critical care. It is the basis for aerobic cell 

metabolism and a prerequisite for life by fueling the mitochondria and supplying energy to the body. 

Supplemental oxygen is routinely administered in emergency situations and has life-saving potential 

in critically ill patients. Therefore it is a cornerstone in the treatment of patients in the intensive care 

unit. However, Swiss-born Renaissance physician and father of toxicology, Paracelcus noted: “Alle 

Dinge sind Gift, und nichts ist ohne Gift. Allein die Dosis macht, daß ein Ding kein Gift ist”. In free 

interpretation: the dose makes the poison. This accounts for many aspects in medicine, but it may 

also be well applicable to the essential oxygen molecule. Following the independent discovery of 

oxygen by the chemists Scheele, Priestley and Lavoisier between 1772 and 1775, Joseph Priestley was 

the first to suggest that dephlogisticated air (oxygen) may also have adverse effects.

As a deficiency in the amount of oxygen in the tissues (hypoxia) is a feared complication for 

all patients, oxygen therapy is universally applied when impaired oxygen delivery to vital organs 

is suspected or anticipated. Under these circumstances, hypoxia is aggressively prevented by 

clinicians, but oxygen may also exert harmful effects, when it is administered in supraphysiological 

doses (hyperoxia). 

Hyperoxia can be defined as a state where oxygen administration exceeds the concentrations 

in ambient air (21%) or where the achieved oxygen levels of arterial blood are higher than in 

spontaneously breathing healthy subjects at sea level (supraphysiological). In order to prevent 

or counteract hazardous hypoxic episodes, oxygen is usually administered using nasal cannulas, 

face masks or mechanical ventilators under the paradigm “the more, the merrier”. The effects 

of supplemental oxygen are monitored by measuring the oxygen saturation in circulating red 

blood cells using red and infrared light (pulse oximetry). In general, this is a very useful method to 

roughly estimate the current oxygenation status of the patient, but its interpretation is limited in 

several situations and clinicians do not fully rely on this measurement. Importantly, pulse oximetry 

is characterized by a ceiling effect in which complete saturation (100%) of the oxygen carrying 

molecule (hemoglobin) is indicated but a further increase in the partial pressure of oxygen in 

the arterial blood (PaO
2
) is still possible. In addition, saturation levels below 70% are determined 

by extrapolation as pulse oximeters are not calibrated for extremely low saturations. Actual 

oxygenation is therefore more accurately assessed by arterial blood gas (ABG) measurements 

for which intermittent sampling and analysis by clinical laboratories or point-of-care devices is 

required. Such repeated measurements are time consuming, whereas pulse oximetry is a non-

invasive method allowing for continuous monitoring at the bedside. Both techniques are used 

concurrently in the intensive care unit (ICU) in order to provide a continuous estimation of 

the arterial oxygenation. When supranormal oxygen levels are achieved, the pulse oximeter usually 

indicates 100% oxyhemoglobin saturation, but the severity and exact degree of hyperoxia can 

only be assessed with delay by determining the actual partial pressure of arterial oxygen using 

ABG analysis. Hence, because an excess of oxygen is difficult to monitor on a continuous basis and 

oxygen is generally administered in a liberal manner, arterial hyperoxia is frequently encountered in 

the intensive care unit (ICU) (1-3). 
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F R I E N D  A N D  F O E

A high fraction of inspired oxygen (FiO
2
) is highly effective in promoting the oxygen content of 

arterial blood during specific emergency settings. In case of injured lungs or when the oxygen 

uptake or carrying capacity is impaired, high FiO
2
 levels may be necessary to preserve adequate 

oxygenation. However, hyperoxia may contribute to pulmonary inflammation, edema and tissue 

injury (biotrauma) in concurrence with the potential side effects of positive airway pressures 

(barotrauma) and volumes (volutrauma) applied by mechanical ventilation, also known as ventilator-

induced lung injury (4, 5). When the lungs are relatively healthy, supplemental oxygen typically 

leads to increased and supranormal PaO
2
 levels. Arterial hyperoxia induces vasoconstriction in most 

vascular beds which can be beneficial during vasodilatory shock but may also impose risk when 

organ perfusion is impaired. Furthermore, arterial hyperoxia has been associated with poor clinical 

outcomes in several cohort studies. A causal relationship has been questioned, but hyperoxia does 

have a strong potential to induce hemodynamic changes, lung injury and oxygen toxicity (6-12). 

Oxygen toxicity by free radicals is a well-established condition since the pioneering efforts of 

Lorrain Smith and Paul Bert in its discovery in the late 19th century (13). The description historically 

includes deleterious effects on the central nervous system and pulmonary intoxication. Oxygen free 

radicals are commonly referred to as reactive oxygen species (ROS) and are versatile molecules with 

an important role in cell signaling and homeostasis. ROS are formed during aerobic metabolism but 

physiological levels may be exceeded during environmental stress or when supplemental oxygen 

is administered. Critical illness may be viewed as an important environmental stressor and a typical 

setting for inadequate levels of ROS. When antioxidant systems are insufficient, supplemental 

oxygen can cause accumulation of oxygen radicals and may initiate or perpetuate oxygen 

toxicity. These potential side-effects of supplemental oxygen are pertinent to divers (14), pilots 

and premature infants (15, 16) but are of special concern in mechanically ventilated and oxygen 

supported critically ill patients (17).

T R I A L  A N D  E R R O R

The effects of oxygen have been comprehensively studied in experimental animal models but data 

from clinical trials in the intensive care unit are scarce. Compelling evidence on the time- and dose-

response relationship between arterial hyperoxia, physiological parameters and clinical outcomes 

of critically ill subgroups is lacking. Strikingly, oxygenation guidelines are available for only a limited 

number of subgroups, and these are not easily extrapolated to universal recommendations. This 

may lead to a suboptimal treatment policy in the intensive care unit as long as safe target ranges are 

not exactly known. Consequently, clinicians find themselves in a quandary during oxygen therapy 

when pursuing physiological PaO
2
 ranges and achieve adequate oxygenation in their patients.

E V I D E N C E  A N D  S E T T L E M E N T

In this thesis, we aimed to expand on the available evidence and fill in crucial knowledge gaps 

regarding oxygen therapy in the intensive care unit.
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Considering the beneficial but also harmful effects, oxygen can be regarded as a molecule 

yielding two competing harms, as a double-edged sword, a Janus face, and a representation of Dr. 

Jekyll and Mr. Hyde. Therefore, an essential research question regarding oxygen therapy emerges: 

the more oxygen the better or can there be too much of a good thing and may less be more? 

In this matter, conservative oxygen therapy has been proposed as a therapeutic strategy in 

which both hypoxia and hyperoxia are actively and concomitantly prevented. In contrast to liberal 

oxygen administration the rationale is to prevent harm by iatrogenic hyperoxia, while preserving 

adequate tissue oxygenation. However, the feasibility and effectiveness of such strategies have not 

been studied and the effects on clinical outcomes remain to be determined. 

Hence, the aims of this thesis were to

1. assess preclinical effects and summarize the pathophysiological characteristics of hyperoxia;

2. review previous clinical findings and evaluate the epidemiology of hyperoxia in critical care;

3. assess the time- and dose-response effects in specific ICU populations and explore preventive 

therapeutic strategies.
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O U T L I N E  O F  T H E  T H E S I S

The general purpose of this thesis is to investigate the pathophysiology and epidemiology of 

hyperoxia in critical illness and explore strategies for prevention of oxygen toxicity in the intensive 

care unit. 

 – In Chapter 2, we give an introduction to the pathophysiological concepts of oxygen toxicity and 

review the literature for recent experimental, translational and clinical data, and further discuss 

the implications for therapy.

 – In Chapter 3, we investigate the time- and dose response effects of supplemental oxygen in an 

experimental mouse model using hyperoxic mechanical ventilation.

 – In Chapter 4, we explore the acute hemodynamic and microcirculatory changes during 

increased oxygen supply in mechanically ventilated patients in the intensive care unit after 

coronary artery bypass grafting surgery 

 – In Chapter 5, we describe the independent and combined effects of the partial pressures of 

both arterial carbon dioxide and arterial oxygen in a multicenter cohort of patients admitted to 

Dutch intensive care units after cardiac arrest.

 – In Chapter 6, we systematically review the literature for cohort studies comparing arterial 

hyperoxia to normoxia in critically ill adults and performed a meta-analysis and meta-regression 

of the results.

 – In Chapter 7, we evaluate previously used and newly constructed metrics of arterial hyperoxia 

and systematically assess their association with clinical outcomes in different subgroups in 

the intensive care unit.

 – In Chapter 8, we identify the common beliefs and self-reported attitudes of critical care 

physicians and nurses on oxygenation targets and compared this with actual treatment of 

patients in three tertiary care intensive care units in the Netherlands.

 – In Chapter 9, we study the feasibility, effectiveness and clinical outcomes of a two-step 

implementation of conservative oxygenation targets in the same three intensive care units.

 – In Chapter 10, we discuss the benefits and possible harms of oxygen therapy during critical 

illness, review the current evidence and summarize the findings of the present thesis.





P a r t  I

PAT H O P H Y S I O LO G I C A L  A N D  
P R E C L I N I C A L  C O N C E P T S 





Crit Care. 2015 Aug 17;19:284

doi: 10.1186/s13054-015-0996-4

B E N C H -TO - B E D S I D E  R E V I E W :  
T H E  E F F E C T S  O F  H Y P E R OX I A 

D U R I N G  C R I T I C A L  I L L N E S S

Hendrik J.F. Helmerhorst, Marcus J. Schultz,  

Peter H.J. van der Voort, Evert de Jonge, David J. van Westerloo

2



A B S T R AC T

Oxygen administration is uniformly used in emergency and intensive care medicine and has 

life-saving potential in critical conditions. However, excessive oxygenation also has deleterious 

properties in various pathophysiological processes and consequently both clinical and translational 

studies investigating hyperoxia during critical illness have gained increasing interest. Reactive 

oxygen species (ROS) are notorious by-products of hyperoxia and play a pivotal role in cell 

signaling pathways. The effects are diverse but when the homeostatic balance is disturbed, 

ROS typically conserve a vicious cycle of tissue injury, characterized by cell damage, cell death 

and inflammation. The most prominent symptoms in the abundantly exposed lungs include 

tracheobronchitis, pulmonary edema, and respiratory failure. In addition, absorption atelectasis 

results as a physiological phenomenon with increasing levels of inspiratory oxygen. Hyperoxia-

induced vasoconstriction can be beneficial during vasodilatory shock but hemodynamic changes 

may also impose risk when organ perfusion is impaired. In this context, oxygen may be recognized 

as a multifaceted agent, a modifiable risk factor and a feasible target for intervention. Although 

most clinical outcomes are still under extensive investigation, careful titration of oxygen supply is 

warranted in order to secure adequate tissue oxygenation while preventing hyperoxic harm.



BEN
C

H
-TO

-BED
SID

E REV
IEW

: TH
E EFFEC

TS O
F H

Y
PERO

X
IA

 D
U

RIN
G

 C
RITIC

A
L ILLN

ESS

2

19

I N T R O D U C T I O N

Oxygen is a vital element in human survival and plays a major role in a diverse range of biological 

and physiological processes. In medical practice, it is among the most universally used agents 

for the treatment of critically ill patients (1) and part of the routine treatment in acute shock 

and emergency medicine (2). In order to ensure sufficient oxygenation, oxygen therapy during 

mechanical ventilation, anesthesia and resuscitation usually exceeds physiological levels. However, 

Renaissance physician Paracelsus noted: “nothing is without poison – the poison is in the dose”. 

This accounts for many aspects in medicine, but it may also be well applicable to the oxygen 

molecule (3). The concept of oxygen toxicity has been described in the late 19th century following 

the pioneering efforts of Lorrain Smith and Paul Bert, but it was not until a century later that 

the effects of hyperoxia were increasingly studied. Although several lines of evidence indicate 

that hyperoxia may be harmful, robust interventional studies are still limited. In order to develop 

adequate recommendations for optimal oxygen levels it is important to extend our current 

understandings of hyperoxia-induced injury. The aim of this review is to provide a comprehensive 

overview of the effects of hyperoxia from the bench and the bedside. The first part will focus on 

established insights and recent experimental and translational advances; the latter part addresses 

pathophysiological concepts, clinical studies and implications for therapy.

Pathogenesis from the benchside

Reactive oxygen species

Reactive oxygen species (ROS) are versatile molecules that can be essential in the regulation of 

intracellular signaling pathways and in host defense (4). However, ROS have also repeatedly been 

postulated to be of major significance in tissue damage, organ dysfunction and clinical disease. 

When referring to oxygen toxicity, it is frequently assumed that it is not oxygen itself that exerts 

toxic effects but merely the ROS that are generated as an undesirable byproduct of adenosine 

triphosphate synthesis during aerobic cellular metabolism. The implications for the lungs are 

probably the most prominent as lung tissue is continuously and abundantly exposed to oxygen 

and its byproducts. In physiological circumstances, ROS are formed in the electron transport 

chain during proton transport across the inner mitochondrial membrane. Mitochondrial oxidative 

phosphorylation is the most important source of oxygen species, but ROS may also be generated 

in response to exogenous stimuli, such as microbes, cytokines and xenobiotics (5). Antioxidant 

tasks are accomplished by enzymes as catalases, glutathione peroxidases, thioredoxins and 

peroxyredoxins. These enzymes use electron donors in order to avoid the intermediate formation 

of the hydroxyl radical (OH∙), which is a strongly reactive oxidant. In this process superoxide 

dismutase (SOD) is an important antioxidant enzyme as it efficiently reduces the concentration 

of the superoxide anion (O
2
∙–), by facilitating its rapid conversion in hydrogen peroxide (H

2
O

2
) or 

oxygen (O
2
). In general, ROS generation from mitochondria increases with oxygen tension and 

is dependent on the clinical balance between the underlying condition and oxygen supply (6). 

In response to bacterial invasion neutrophils can also produce large amounts of ROS that may 

initially be beneficial in the host defense against several pathogens. Fortunately, the lungs are 
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principally well protected against oxygen toxicity by adequate intra- and extracellular antioxidant 

activity. Beside this physiological activity, additional antioxidants can be recruited in the epithelial 

lining fluid (7). However, when the production of ROS exceeds the limits of counteraction by 

antioxidant responses, ROS concentrations reach inadequate levels and a cellular state of oxidative 

stress manifests. Oxidative stress refers to the imbalance caused by increased ROS formation or 

deficient oxidant suppressors (8). When antioxidant systems are insufficient during critical illness 

and mechanical ventilation, supplemental oxygen can cause accumulation of oxygen radicals and 

may initiate or perpetuate oxygen toxicity. Moreover, ROS control can be markedly influenced by 

ageing, genetic factors and pharmacochemical agents (6). 

Cell death

When the delicate homeostatic balance is disturbed, oxidative stress leads to damage of nucleic acids, 

proteins and lipids, resulting in cell death by both apoptotic and necrotic pathways (9). Necrosis is 

characterized by incomplete apoptosis and supported by integrity loss of the cell membrane and 

cytoplasmic swelling. Programmed cell death by apoptosis can be achieved through extrinsic or 

intrinsic pathways, concomitantly. The extrinsic pathway is triggered by extracellular signals that 

stimulate intracellular apoptotic cascades after binding the cell membrane. The intrinsic apoptotic 

pathway is initiated by increased mitochondrial ROS formation. Subsequently, the opening of 

transition pores is facilitated making the outer mitochondrial membrane more permeable for pro-

apoptotic components. These components can then pass to the cytoplasm and induce a state of 

intracellular stress. When this occurs in both endothelial and epithelial cells, lytic damage and cell 

death contribute to interstitial pulmonary edema and impaired gas exchange by means of alveolar 

collapse and disintegration of the alveolar-capillary barrier.

Cell damage and inflammatory pathways

In addition to direct cell death by necrosis or apoptosis, cellular disruption caused by hyperoxia 

and ROS has been shown to release endogenous damage-associated molecular pattern molecules 

(DAMPs) that alert the innate immune system (10-12). DAMPs, or alarmins, are cell fragments 

released during cellular dysfunction and sterile injury and act as pleiotropic modulators of 

inflammation. During oxidative stress, mitochondrial damage is a pivotal cause of extracellular 

hazardous content including both free radicals and DAMPs. As they resemble bacterial DNA, 

circulating mitochondrial DAMPs are efficiently recognized by pattern recognition receptors and 

activate polymorphonuclear neutrophils (PMNs). Subsequently, PMNs release interleukins and 

contribute to a sterile inflammatory reaction and, ultimately, neutrophil-mediated organ injury. In 

response to hyperoxia-mediated ROS production, resident lung cells initiate the release of various 

cytokines. Chemotactic factors orchestrate the inflammatory response by attracting inflammatory 

cells to the pulmonary compartment. Recruited neutrophils and monocytes are in turn significant 

sources of additional ROS, conserving a vicious cycle leading to further tissue damage (Fig. 1). 

Under enduring conditions of injury to pulmonary epithelium and increasing alveolar 

permeability, cytokines can translocate from the alveolar space to the systemic circulation, creating 
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Figure 1. Vicious cycle of hyperoxia induced cell injury. 

AP, activator protein; DAMP, damage-associated molecular pattern molecules; H
2
O

2
, hydrogen peroxide; 

IFN, interferon gamma; IL, interleukin; MAPK, mitogen-activated protein kinase; NADPH, nicotinamide 

adenine dinucleotide phosphate; NF-κB, nuclear factor kappa B; NLR, nodlike receptor; Nrf2, nuclear factor-2 

erythroid related factor-2; O
2
, oxygen; O

2
 ∙−, superoxide; OH∙, hydroxyl radical; ONOO−, peroxynitrite; PMN, 

polymorphonuclear neutrophil; RAGE, receptor for advanced glycation end products; ROS, reactive oxygen 

species; TLR, Toll-like receptor; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor.
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a systemic inflammatory response, in which cytokines are efficiently activated and phagocytosis 

by alveolar macrophages is hampered (13). Cytokine concentrations decrease after long-term 

exposure, suggesting that a fast upregulation of inflammatory action is followed by a gradual 

impairment of the innate immune system (14). Besides mitochondrial damage, the inflammatory 

actions of oxygen are importantly modulated by the hypoxia-inducible transcription factor 

(HIF) (15, 16). HIF-1α is thought to be upregulated during relative changes in oxygenation and 

accordingly responds to normoxia as a relative hypoxic state directly after hyperoxia. Through this 

mechanism, intermittent hyperoxia may trigger a paradoxical phenomenon in which the genetic 

expression of inflammatory mediators and erythropoietin (EPO) is stimulated in the absence of true  

tissue hypoxia (17).

Animal studies

Principal insights in hyperoxia-induced mechanisms have been obtained from experimental 

models. The first animal studies documented structural morphologic and biochemical changes 

in the lungs of a wide variety of animal species that were exposed to hyperoxia (18). Pioneering 

studies using conscious dogs postulated that normobaric hyperoxia decreased metabolic rate and 

altered hemodynamics (19, 20). These findings were subsequently reproduced in primates in whom 

progressive pulmonary injury, interstitial edema and inflammatory activation were observed (21). 

In later experiments, biochemical effects of ROS and interventional targets on the molecular level 

were more intensively studied in spontaneously breathing animals in hyperoxic environments and 

showed both detrimental and protective potential (22-26). Recent experiments were performed in 

mechanically ventilated rodents, rabbits and pigs mimicking the clinical environment of critically 

ill patients (27-31). In this context, the interaction between injurious ventilation and concurrent 

hyperoxia was shown to transcend lung injury by alveolar distention alone (22, 32-35). However, 

studies in mechanically ventilated animals are usually restricted to short exposure periods (32, 

34-38), even though hyperoxia may induce time-dependent inflammation (23). In order to improve 

our understanding of the impact of long-term exposure to both mechanical ventilation and 

hyperoxia, future studies involving mechanical ventilation of longer duration and with clinically 

relevant settings are essential for a robust representation of the ICU environment.

Pathogenesis from the bedside

Hyperoxia induced tissue injury 

Under normobaric circumstances, the side-effects of oxygen are initially restricted to the lungs. 

However, when hyperoxia manifests for prolonged periods or under hyperbaric conditions, other 

organs are concurrently at risk as more oxygen is dissolved in plasma (6). The amount of dissolved 

oxygen will readily increase at partial pressures of arterial oxygen (PaO
2
) exceeding 100 mmHg. 

Oxyhemoglobin saturation is nearly complete when PaO
2
 approaches this level and the carrying 

capacity of hemoglobin is therefore quickly overcharged with increasing fractions of inspired 

oxygen (FiO
2
). 

The harmful effects depend on underlying conditions, duration and degree of the hyperoxic 

exposure. Rigid thresholds where harm exceeds the perceived benefits are not exactly known and 
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may vary between subgroups (39). Most pathophysiological changes originate rapidly and are 

rather universal effects, but the effects of hyperoxia are assumed to be time- and dose-dependent 

(40). In general, excessive oxygen supply causes absorption atelectasis by displacement of alveolar 

nitrogen. The progressive washout of nitrogen coincides with the abundant presence of oxygen in 

the alveoli which, driven by a steep pressure gradient, rapidly diffuses into the mixed venous blood. 

As a result, the alveolar volume is markedly reduced and leads to increased ventilation/perfusion 

mismatch by (partial) alveolar collapse and impaired gas exchange, which can be attenuated 

by applying positive end-expiratory pressure (PEEP) (41). Impaired mucociliary clearance by 

hyperoxia further contributes to obstructive atelectasis and altered surfactant metabolism 

facilitates adhesive atelectasis through alveolar instability and collapse. Several lines of evidence 

indicate further effects of breathing high oxygen levels in animals and healthy subjects (1, 42), but 

evidence of pulmonary toxicity in a clinical scenario is limited (43). The pathological features of 

this condition are commonly referred to as the Lorrain Smith effect (44) and are characterized by 

tracheobronchitis, which can be accompanied by pleuritic pain, bronchial irritation, cough and sore 

throat. Symptoms may spread from the upper airways into the lungs where diffuse alveolar damage 

manifests and contributes to edema, vascular leakage, arteriolar thickening, pulmonary fibrosis and 

emphysema, reflected by progressive paradoxical hypoxia, dyspnea and tachypnea. Additionally, 

prolonged hyperoxic exposure alters the microbial flora in the upper airways and further increases 

the risk of secondary infections and lethality. Notably, these pulmonary effects are often in addition 

to the primary (e.g. pneumonia) and secondary lung injury (e.g. ventilator-induced lung injury), 

which are accompanied by inflammatory responses. 

The central nervous system is typically the first to reveal symptoms from excessive ROS 

formation. The spectrum of neurological symptoms is referred to as the Paul Bert effect and ranges 

from nausea, dizziness and headache to vision disturbances (retinal damage), neuropathies, 

paralysis and convulsions (1). 

Vascular effects of hyperoxia have been well documented and may have both harmful and 

beneficial effects. Arterial hyperoxia increases the systemic vascular resistance and induces 

vasoconstriction, which may impair organ perfusion, especially in the cerebral and coronary 

region (45-47). Accompanying cardiovascular alterations result from even short term exposure 

and include a decrease in heart rate, stroke volume and cardiac output (48). However, hyperoxia 

is not a universal vasoconstrictor in all vascular regions and blood flow may be redistributed to 

the hepatosplanchnic circulation in septic shock (1, 49). Alternatively, the administration of oxygen 

promotes hemodynamic stabilization during vasodilatory shock, decreases intracranial pressure by 

cerebral vasoconstriction and preserves tissue oxygenation during hemodilution (2, 50). 

Clinical studies

Critical care

Recent studies assessing the clinical effects of arterial hyperoxia or normobaric supplemental 

oxygen in critical care are listed in Table 1.
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As highlighted in recent meta-analyses (88, 89), the effects on major clinical end points 

are conflicting and may be partially explained by heterogeneous methodology and subgroup 

differences in critically ill patients. Pooled effect estimates favoring normoxia are quite consistent 

but the harmful effects were previously shown to be impacted by the definition of hyperoxia and 

may be more pertinent to specific subgroups and at specific moments of admission. 

It is well-established that the use of higher FiO
2
 can lead to progressive hypercapnia during 

a state of chronic compensated respiratory acidosis and serious adverse outcomes have been 

shown in acute exacerbations of chronic obstructive pulmonary disease (COPD) or asthma (54-56). 

Likewise, high fractions of oxygen in the inspired air and arterial blood have been associated with 

increased mortality in mechanically ventilated patients (52).

Owing to a striking lack of robust clinical trials, a causal relationship is still uncertain and both 

the magnitude and direction of the associations depend on the adjustment for illness severity 

scores, FiO
2
 and other confounders (51, 52). Future randomized controlled studies are urgently 

needed to definitively elucidate the causal effects of oxygenation targets and derangements on 

clinical outcomes of critically ill patients.

Excessive oxygenation may be most intensively studied after resuscitation from cardiac arrest 

as both the vascular alterations and the ischemia and reperfusion injury are hypothesized to be 

hazardous (90). In a dose-dependent manner, hyperoxia has been linked to worse outcome in 

these patients. (58, 60-62). The adverse association was not systematically reproduced, possibly 

due to heterogeneity in study methods (57, 59, 64, 66, 67, 91). The only randomized controlled trial in 

the postresuscitation period found that 30% oxygen ventilation was not worse in comparison with 

100% oxygen, but the study was underpowered to detect significant differences (63). In view of all 

recent data, supplemental oxygen administration during resuscitation still appears desirable, while 

hyperoxia should be avoided in the post-resuscitation phase and saturation should be targeted  

at 94–96% (90, 92).

A large number of both experimental and clinical studies have primed pediatricians with great 

awareness of the risks of hyperoxia. For neonatal resuscitation, the routine use of 100% oxygen 

has been abandoned after numerous associations with myocardial, neurologic and kidney injury, 

retinopathy, inflammation and increased mortality (93, 94). However, strict adherence to lower 

target ranges of oxygen saturation among preterm infants did not significantly reduce disability or 

deaths (95). Results from a prospective large-scale meta-analysis investigating the most appropriate 

level of oxygenation for extremely preterm neonates suggested that functional oxyhemoglobin 

saturation (SpO
2
) should be targeted at 90-95% in the postnatal period (96).

Hyperoxia-induced vasoconstriction poses a major concern in the management of acute 

coronary syndromes and guidelines increasingly suggest a restriction of supplementary oxygen to 

only those at increased risk for hypoxia (97). Indeed, oxygen therapy has not been shown to be 

beneficial after acute myocardial infarction and may even be harmful causing a marked reduction 

in coronary blood flow and myocardial oxygen consumption (98, 99). The vasoconstriction caused 

by hyperoxia may be of special concern in the acute setting before reperfusion. The AVOID trial 

aimed to definitively qualify the role of supplemental oxygen in acute myocardial infarction (70) 

and found increased myocardial injury, recurrent myocardial infarction, cardiac arrhythmia and 



BEN
C

H
-TO

-BED
SID

E REV
IEW

: TH
E EFFEC

TS O
F H

Y
PERO

X
IA

 D
U

RIN
G

 C
RITIC

A
L ILLN

ESS

2

29

infarct size at six months (100). In contrast, a smaller trial observed a beneficial effect of 30-40% 

oxygen inhalation over controls both during occlusion and reperfusion (72). Hemodynamic effects 

may also be pertinent to patients with acute ischemic stroke, who do not appear to benefit from 

increased survival after prolonged treatment with oxygen (82, 84). 

Despite the theoretical benefit of decreasing intracranial pressure through cerebral 

vasoconstriction, hyperoxia has repeatedly been associated with delayed cerebral ischemia 

and increased cerebral excitotoxicity after cerebrovascular incidents (77, 80, 81). Interestingly, 

the synergistic combination of hyperbaric and normobaric hyperoxia was recently found to have 

potential therapeutic efficacy in severe traumatic brain injury (101). However, observational data in 

patients with traumatic brain injury, ischemic stroke, subarachnoid or intracerebral hemorrhage, 

remain equivocal (74-76, 78, 79, 86). 

Perioperative care

Liberal oxygen supply is usually accepted in perioperative care, in order to avoid potentially life-

threatening consequences of hypoxia during surgery. Further effects of perioperative hyperoxia 

have been comprehensively summarized in meta-analyses, enrolling over 7,000 patients, and 

generally showed a reduced risk of surgical site infections and postoperative nausea, without 

luxation of postoperative atelectasis (102, 103). However, risks may outweigh benefits in specific 

age groups (39) and different subsets. This was recently highlighted in patients undergoing cancer 

surgery where 80% oxygen supply in the perioperative setting showed a significantly increased 

long-term all-cause mortality compared with those randomized to 30% (104).

Implications for therapy

Several therapeutic options that limit the harmful effects of hyperoxia can be contemplated, but 

prevention of excessive oxygenation is likely to be the most effective strategy. A rational approach 

may be a more conservative administration strategy in which oxygen is titrated to a lower tolerable 

level in order to prevent iatrogenic harm while preserving adequate tissue oxygenation. Recently, 

a pilot interventional study showed that conservative oxygen therapy in mechanically ventilated 

patients in the intensive care unit (ICU) can be feasible and free of adverse outcomes, while 

decreasing excess oxygen exposure (53). Importantly, when the risks for severe tissue hypoxia are 

pronounced, ample oxygen supply remains vital and should be started immediately to increase 

oxygen delivery and preserve tissue oxygenation. Also, oxygen may aid hemodynamic stabilization, 

decrease intracranial pressure and can be used to stimulate erythropoietin and increase 

hemoglobin, when using intermittent hyperoxia as a paradoxical trigger for HIF expression.

Experimental interventions to decrease harm from hyperoxia are targeted at numerous steps in 

the pathway of ROS-induced damage. The primary source for intervention in the oxidative cycle is 

inhibition of oxidant generation, either quantitatively or qualitatively. Bleomycin and amiodarone 

are well-known originators of drug-induced pulmonary disease and should be avoided to 

minimize preventable ROS formation (105, 106). Limiting the exposure to other exogenous stimuli 

or preventing electron leakage in the electron transport chain may protect the mitochondria, 
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but this strategy proves cumbersome in actual practice. Although the clinical applicability has 

been questioned due to little or no preventative or therapeutic effect, the supply of antioxidant 

enzymes may be a potentially feasible approach to facilitate the conversion, avoid the intermediate 

formation, and reduce the concentration of strongly reactive oxidants. However, some of these 

antioxidants may actually have pro-oxidant properties depending on their concentration and 

interaction with other molecules. The neutralizing effect of antioxidants may also not be sufficient 

to secure metabolic stability, even when secondary inflammation is mitigated. Finally, oxidant 

scavenging can shift the balance towards harm when the role of oxidants in cell signaling pathways 

is suppressed (107).

As an alternative, pathways of cell integrity, cell death, and inflammation may be targeted to 

reduce further damage and enhance the defense against oxygen radicals. Experimental research 

suggests protective effects through modulation of protein kinases (108, 109) and transcription 

factors (110-113). Moreover, numerous preclinical studies have demonstrated that manipulation of 

chemokines, cytokines (13, 114), growth factors (115), receptors (116-118) and DAMPs (11, 12, 119) may 

limit hyperoxia induced injury, but these targets all remain to be evaluated at the bedside.

C O N C L U S I O N

Although oxygen remains of life-saving importance in critical care, accumulating evidence 

has demonstrated the prominent role of hyperoxia and the consequent formation of reactive 

oxygen species in the pathogenesis of several life-threatening diseases. The toxic effects of 

supraphysiological oxygen concentrations are driven by cell damage, cell death and inflammation. 

These aspects are of special concern in the pulmonary compartment, where absorption atelectasis 

impairs respiratory function at high inspiratory oxygen levels. The cerebral and coronary circulations 

are at specific risk when vascular alterations manifest. Long-term exposure to hyperoxia impairs 

the innate immune response and increases susceptibility to infectious complications and tissue injury. 

Given that critically ill patients are prone for inflammation, cardiovascular instability and depleted 

antioxidant mechanisms, the most rational practice may be to supply oxygen conservatively and 

titrate the therapy carefully to the patient’s needs. However, our understanding of oxygen toxicity 

is limited in humans and conflicting findings hamper the constitution of compelling guidelines. 

Further research is warranted to study hyperoxia induced effects in clinical practice, to elucidate 

time- and dose-response relationships, and to provide evidence-based oxygenation targets and 

interventions through robust clinical trials.
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A B S T R AC T

Background

Mechanical ventilation and hyperoxia have the potential to independently promote lung injury and 

inflammation. Our purpose was to study both time- and dose-dependent effects of supplemental 

oxygen in an experimental model of mechanically ventilated mice.

Methods

Healthy male C57Bl/6J mice, aged 9–10 weeks, were intraperitoneally anesthetized and randomly 

assigned to the mechanically ventilated group or the control group. In total, 100 mice were 

tracheotomized and mechanically ventilated for either 8 or 12 hours after allocation to different 

settings for the applied fractions of inspired oxygen (FiO
2
, 30%, 50% or 90%) and tidal volumes 

(7.5 ml/kg or 15 ml/kg). After euthanisation arterial blood, bronchoalveolar lavage fluid (BALf) and 

tissues were collected for analyses.

Results

Mechanical ventilation significantly increased the lung injury score (P<0.05), mean protein content 

(P<0.001) and the mean number of cells (P<0.01), including neutrophils in BALf (P<0.001). In mice 

ventilated for 12 hours, a significant increase in TNF-α, IFN-γ, IL-1β, IL-10, and MCP-1 (P<0.01) was 

observed with 90% FiO
2
, whereas IL-6 showed a decreasing trend (P for trend = 0.03) across FiO

2
 

groups. KC, MIP-2, and sRAGE were similar between FiO
2
 groups. HMGB-1 was significantly higher 

in BALf of mechanically ventilated mice compared to controls and showed a gradual increase in 

expression with increasing FiO
2
. Cytokine and chemokine levels in BALf did not markedly differ 

between FiO
2
 groups after 8 hours of ventilation. Differences between the tidal volume groups were 

small and did not appear to significantly interact with the oxygen levels.

Conclusions

We demonstrated a severe vascular leakage and a pro-inflammatory pulmonary response in 

mechanically ventilated mice, which was enhanced by severe hyperoxia and longer duration of 

mechanical ventilation. Prolonged ventilation with high oxygen concentrations induced a time-

dependent immune response characterized by elevated levels of neutrophils, cytokines and 

chemokines in the pulmonary compartment.
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I N T R O D U C T I O N

Supplemental oxygen administration is essential to enhance survival in respiratory impaired 

and mechanically ventilated patients. Inspiratory fractions of oxygen (FiO
2
) typically exceed 

concentrations of atmospheric air and are frequently applied for prolonged periods during 

mechanical ventilation in patients suffering from severe respiratory distress. However, both 

mechanical ventilation and hyperoxia can promote lung injury and induce adverse effects through 

diverse mechanisms. Clinical studies have retrospectively shown associations between arterial 

hyperoxia and poor outcomes during specific cardiovascular, neurological, respiratory and 

traumatic events (1-4). Accumulating evidence indicates a U-shaped survival curve of critically 

ill and mechanically ventilated patients in relation to arterial oxygen levels in the first 24 hours  

of admission (5-8).

Impaired lung function may be caused by the adverse hemodynamic effects that are mainly 

imputed to direct vasoconstrictive actions of high oxygen concentrations, and atelectasis which 

may be aggravated by local and systemic inflammatory responses. These responses have repeatedly 

been documented in rodents following hyperoxic exposure in inhalation chambers (9-15). Although 

hyperoxia has been suggested to induce time-dependent inflammatory responses (10), studies 

in animals are usually restricted to periods of up to 6 hours of mechanical ventilation, limiting its 

clinical applicability (16-19). Furthermore, the interaction between mechanical ventilation and 

concurrent hyperoxia may transcend lung injury by alveolar distention alone (9, 17, 20-22). Given 

that oxygen therapy cannot altogether be avoided, we aimed to increase knowledge on the host 

response to different levels of oxygen. Hypothesizing that hyperoxia induces a dose-dependent 

gradual inflammatory response that may be aggravated by prolonged periods of mechanical 

ventilation, our purpose was to induce hyperoxia in mice and study both time- and dose-dependent 

inflammation effects of supplemental oxygen during prolonged ventilatory support with protective 

and injurious tidal volumes.

M E T H O D S

The Animal Care and Use Committee of the Academic Medical Center of the University of 

Amsterdam, the Netherlands approved the study protocol in accordance with applicable research 

and ethical protocols. Animal procedures were performed in consistence with Institutional 

Standards for Care and Use of Laboratory Animals.

Animals

Healthy male C57Bl/6J mice were obtained from Charles River (Maastricht, the Netherlands) 

and housed in a temperature- and light-controlled room. The animals were acclimatized at 

the animal facility for at least seven days and had free access to rodent chow and water. Animal 

welfare was warranted throughout the experiment (23). Conscious animals were injected twice for 

intraperitoneal prehydration and anesthesia induction. Thereafter, mice were regularly checked 

on pain stimuli and discomfort. The titration scheme for adequate anesthesia was determined in  

pilot experiments. 
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Design

At baseline, 109 mice aged 9–10 weeks (20–28 g) were intraperitoneally prehydrated with a bolus 

of 1 ml normal saline and randomly assigned to the mechanical ventilation (MV) group (n=100) or 

the control group (n=9). All mice in the MV group were randomized to subgroups (n = 8–9 per 

subgroup) by allocating different settings for the applied fractions of inspired oxygen (FiO
2
 = 30%, 

50% or 90%), tidal volumes (TV = 7.5 ml/kg or 15 ml/kg) and MV duration (8 or 12 hours). The control 

group mice were spread over multiple days along with the instrumentation of the MV groups during 

the whole experimental period.

Experimental procedures have been described in detail previously (24, 25). One hour after 

prehydration, mice assigned to the MV groups (n=8–9 per group), were anesthetized with 

a 0.15-0.21 ml intraperitoneal bolus of 126 mg/kg ketamine (Eurovet Animal Health BV, Bladel, 

the Netherlands), 0.1 mg/kg dexmedetomidine 0.5 mg/ml (Elanca Animal Health, Houten, 

the Netherlands), 0.5 mg/kg atropine sulfate (Centrafarm BV, Etten-Leur, the Netherlands) and 5 

ml/kg 0.9% saline. Maintenance anesthesia was injected hourly through an intraperitoneal catheter 

(PE 10 tubing, BD, Breda, the Netherlands) and consisted of 36 mg/kg ketamine, 0.02 mg/kg 

dexmedetomidine, 0.075 mg/kg atropine sulfate and 9.45 ml/kg 0.65% saline. A 1:5 mix of 0.65% 

saline and 8.4% sodium bicarbonate was intraperitoneally administered through the catheter every 

30 minutes in order to compensate for fluid loss and maintain physiological bicarbonate levels 

(25). Body temperature was strictly controlled between 36.5 and 37.5°C. Systolic blood pressure and 

heart rate were noninvasively measured using a murine tail pressure cuff with pulse transducer and 

monitored on a data acquisition system (LabChart, ADInstruments Ltd, Oxford, United Kingdom). 

Tidal volumes were monitored using a calibrated pneumotachometer (tracheal cannula OD=1.3 mm, 

PTM type 378/0.9, HSE-Harvard Apparatus GmbH, March-Hugstetten, Germany) and respiration 

data acquisition software (BDAS, HSE-Harvard Apparatus GmbH). 

Anesthetized mice were tracheotomized and a Y-tube connector (OD 1.0 mm, ID 0.6 mm) 

was surgically inserted in the trachea and fixed above the carina. Subsequently, animals were 

placed on a heating plate in supine position and connected to the ventilator (Babylog 8000 plus, 

Dräger Medical, Lübeck, Germany). Ventilator settings were pre-determined in pilot experiments 

and targeted at normal acid-base balance (24). Ventilators were pressure-controlled and set to 

deliver low tidal volumes (LTV, 7.5 ml/kg) or high tidal volumes (HTV, 15 ml/kg). In both ventilation 

strategies, positive end-expiratory pressure (PEEP) levels were set at 3 cmH
2
O and the inspiration 

to expiration ratio at 1:2.8. Respiratory rates were controlled at 160 (LTV) or 52 (HTV) breaths per 

minute. Recruitment maneuvers were performed every 30 (LTV) or 60 (HTV) minutes by means of 

inspiratory holds with a pressure of 20 mbar during 5 seconds. 

Immediately after randomization, ventilators were adjusted to the assigned settings by 

an independent biotechnician. Inspiratory pressures were adjusted and regulated to achieve 

appropriate TV throughout the experiment. At the end of the experiment ventilated mice 

were euthanized by withdrawing blood from the carotid artery. Researchers were blinded for 

administered FiO
2
 levels during the experimental procedures. The allocation code of randomization 

was supplied by the time all data and assay results were collected.
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Measurements

After euthanisation arterial blood was collected in heparin-coated syringes and used for blood gas 

analysis (Rapidpoint 405, Siemens Healthcare, Tarrytown, NY, USA). Lungs were resected en bloc 

and the right lung was instilled with normal saline (3x 0.5 mL) to obtain bronchoalveolar lavage 

fluid (BALf), which was used for automated cell counting (Z2 Beckman Coulter Counter, Brea, USA). 

Differential counts were performed on Giemsa stained cytospin slides. BALf was centrifuged and 

the supernatant was stored at -80°C for assessment of protein levels and cytokines. The left lung 

was weighed and thereafter fixed in 4% formalin and embedded in paraffin. Lung sections were 

stained with hematoxylin eosin (H&E) to analyze lung histopathology. A dedicated pathologist 

determined the histopathological lung injury score on a nominal scale by the sum of the score 

for four pathologic parameters: edema, haemorrhage, interstititial cell infiltration and hyaline 

membranes as described previously (24). Relative lung weight, expressed as lung weight corrected 

for total body weight at baseline, was used as surrogate for lung tissue edema.

Cytokines (IL-1β, IL-6, IL-10, MCP-1, MIP-2, KC, TNF-α, IFN-γ) were measured in BALf by Luminex 

(Merck Millipore Chemicals BV, Amsterdam, The Netherlands). High mobility group box 1 (HMGB-1, 

IBL International BV, Amersfoort, The Netherlands) and the soluble receptor for advanced 

glycation end products (sRAGE, R&D Systems, Abingdon, UK) were determined by enzyme-linked 

immunosorbent assays (ELISA) according to the manufacturer’s protocols. Total protein levels were 

determined in serum and BALf (Oz Biosciences, Marseille, France), using bovine serum albumin  

as reference.

The right lung was used for total RNA isolation from tissue homogenates (RNA-Bee, Tel-Test 

Inc, Bio-Connect BV, Huissen, the Netherlands), first-strand cDNA synthesis (SuperScript Choice 

System, Life Technologies, Breda, the Netherlands) and real-time quantitative PCR (TNF-α, IL-6, 

MMP-12, MCP-1, TF, PAI-1), using β-actin as a housekeeping gene reference, were performed on 

a LightCycler 480 (Roche, Almere, the Netherlands) of the Leiden Genome Technology Center 

(Leiden, The Netherlands) as described previously (26). 

Statistical analysis

The partial pressure of arterial oxygen (PaO
2
) at the end of the experiment was defined as the primary 

outcome. Inflammatory markers and markers of lung injury were assessed as secondary outcomes. 

Based on previous pilot results and with a group size of 8 animals per group the Wilcoxon ranksum 

test ensures 80% power using a two sided significance level of 0.05 to detect an estimated effect 

size of 1.85 that the observed parameter differs between groups. With an anticipated dropout rate 

of one per group, nine animals were initially assigned to each group. Differences between study 

groups were tested with one-way analysis of variance or Kruskal Wallis as appropriate. Cuzick’s test 

was used to test for trends across different FiO
2
 groups. Statistical analyses were performed using R 

version 3.2.1 (R Foundation for Statistical Computing, Vienna, Austria) and STATA/SE 10.1 (StataCorp 

LP, College Station, TX, USA).
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R E S U LT S

All mice survived mechanical ventilation with the applied settings in a volume-targeted approach 

(Table 1). Median systolic blood pressures decreased gradually during 8 or 12 hours of mechanical 

ventilation 145 mmHg to 90 mmHg) and were slightly higher in the 90% FiO
2
 group (Table 1, 

Additional file 1 Figure S1). Heart rates and body temperatures remained stable throughout 

the experiment.

Oxygenation and ventilation

The partial pressure of oxygen in the carotid arterial blood at the end of mechanical ventilation was 

distinctly higher with increasing fractions of supplied oxygen (P<0.001, Fig. 1a). PaCO
2
 was in general 

lower for the HTV groups, but did not show a trend across FiO
2
 groups (Fig. 1b). The PaO

2
/FiO

2
 ratio 

decreased for mechanically ventilated mice in comparison to controls and was markedly higher for 

HTV groups after 12 hours of mechanical ventilation (Fig. 1c). Dynamic lung compliance decreased 

gradually over the study interval for all study groups but the decrease was nearly complete after 

three hours of mechanical ventilation and was larger for the HTV groups (Fig. 1d).

Markers of lung injury

Mechanical ventilation significantly increased the lung injury score (Fig. 2a, 1.6-fold at 8 hours, 

P<0.01; and 1.5-fold at 12 hours, P<0.05), mean protein content (Fig. 2b, 2.6-fold at 8 hours, 

P<0.001; and 2.2-fold at 12 hours, P<0.001) and the mean number of cells (Fig. 2c, 1.7-fold at 8 

hours, P<0.01; and 2.0-fold at 12 hours, P<0.001), including neutrophils in BALf (Fig. 2d, 132-fold 

at 8 hours,  P<0.001; and 180-fold at 12 hours, P<0.001), demonstrating vascular leakage and 

inflammation as a result of mechanical ventilation even at relatively low hyperoxic conditions of 

30% FiO
2
 and low tidal volumes. Increased hyperoxia up to 90% FiO

2 
did not further increase protein 

content or the total number of cells in BALf, but showed an increased trend in the percentage of 

neutrophils towards higher FiO
2
 levels (P for trend = 0.03). Histopathology showed a decrease in 

Table 1. Ventilation and hemodynamic parameters

8h 12h

30% 50% 90% 30% 50% 90%

LTV

 TV (µl) 181 (0) 182 (0) 179 (0) 176 (0) 178 (1) 176 (0)

 P
insp

 (mbar) 13 (0) 14 (0) 12 (0) 12 (0) 13 (0) 12 (0)

 SBP (mmHg) 116 (7) 128 (7) 123 (5) 103 (4) 102 (5) 112 (4)

HTV

 TV (µl) 351 (0) 379 (1) 372 (1) 366 (2) 371 (1) 360 (1)

 P
insp

 (mbar) 20 (0) 21 (0) 20 (0) 20 (0) 20 (0) 20 (0)

 SBP (mmHg) 114 (6) 136 (8) 124 (7) 104 (4) 110 (6) 113 (5)

Data are means ±SD. TV, tidal volume; P
insp

, inspiratory pressure; SBP, systolic blood pressure. All indicated parameters 

were measured hourly.



H
Y

PERO
X

IA
 PRO

V
O

K
ES A

 TIM
E- A

N
D

 D
O

SE-D
EPEN

D
EN

T IN
FLA

M
M

A
TO

RY
 RESPO

N
SE

3

45

air restraint, suggesting progressive alveolar collapse, with higher oxygen levels (Additional file 1 

Figure S2), but this was not translated in a significant difference in the lung injury score between  

the different FiO
2
 groups (Fig. 2a).

Figure 1. Arterial oxygenation and ventilation parameters. 

Data are means ±SEM. Arterial oxygenation in carotid blood (1a, upper left panel), arterial carbon dioxide in 

carotid blood (1b, upper right panel), PaO
2
/FiO

2
 ratio (1c, lower left panel) and dynamic compliance (1d, lower 

right panel). Facets within the panels represent mechanical ventilation time. Different colors represent different 

tidal volume groups and different transparency levels represent different FiO
2
 groups. 0h, no mechanical 

ventilation time (control group); 8h, 8 hours of mechanical ventilation; 12h, 12 hours of mechanical ventilation. 

LTV, low tidal volumes; HTV, high tidal volumes. Dynamic lung compliance (tidal volume size / (peak inspiratory 

pressure – PEEP) was measured hourly. PaO
2
 and PaCO

2
 were measured once in the arterial blood gas sample 

taken from the carotid artery at the end of the experiment.
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Markers of inflammation

Cytokine and chemokine levels in BALf increased at 8 and 12 hours after mechanical ventilation, but 

did not markedly differ between FiO
2
 groups at 8 hours of ventilation (P for trend > 0.05, Additional 

file 1 Figure S3). In mice ventilated for 12 hours, a significantly increasing trend in TNF-α, IFN-γ, IL-1β, 

IL-10, and MCP-1 (Fig. 3, P for trend < 0.01) was observed with increasing FiO
2
, whereas IL-6 showed 

a decreasing trend (P for trend = 0.03). KC, MIP-2, and sRAGE were similar between FiO
2
 groups. 

HMGB-1 was significantly higher in BALf of mechanically ventilated mice compared to controls and 

Figure 2. Markers of lung injury in BALf after indicated study interval. 

Data are means ±SEM. Lung injury score (2a, upper left panel), total protein content (2b, upper right panel), 

total cell counts (2c, lower left panel) and proportion of neutrophils (2d, lower right panel) in BALf obtained 

after the study interval. Facets within the panels represent mechanical ventilation time. Different colors 

represent different tidal volume groups and different transparency levels represent different FiO
2
 groups. 

0h, no mechanical ventilation time (control group); 8h, 8 hours of mechanical ventilation; 12h, 12 hours of 

mechanical ventilation. LTV, low tidal volumes; HTV, high tidal volumes.
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showed a gradual increase in expression with increasing FiO
2
. Almost no differences in cytokine and 

chemokine levels in the BALf were observed between the 30% and 50% oxygen groups. 

Differences between the tidal volume groups were small (Additional file 1 Figure S4) and did 

not appear to significantly interact with the oxygen levels (P>0.50 for the interaction term for each 

inflammatory mediator, except for IL-6, P=0.03). Inflammatory markers were also measured at 12 

hours of mechanical ventilation in the serum and are shown in Additional file 1 Figure S5.

The RNA expression of selected markers showed an increased relative expression of TNF-α, IL-6, 

and MCP-1 in lung homogenate of mice that were mechanically ventilated with high tidal volumes 

compared to controls (Additional file 1 Figure S6)

D I S C U S S I O N

In this experimental study, we demonstrated a severe vascular leakage and a pro-inflammatory 

pulmonary response in mechanically ventilated mice, which was enhanced by severe hyperoxia and 

longer duration of mechanical ventilation. Prolonged ventilation with high oxygen concentrations 

induced a time-dependent immune response characterized by elevated levels of neutrophils, 

cytokines and chemokines in the pulmonary compartment.

Although most studies in mechanically ventilated animals are restricted to short exposure 

periods, recent experiments in mechanically ventilated rodents, rabbits, and pigs, mimicking 

the clinical environment of critically ill patients, showed that hyperoxia serves as an important 

cofactor in acute lung injury, bacterial dissemination, progression of multiple system organ 

dysfunction and lethality (13-15), but can also improve organ function and attenuate tissue apoptosis 

during shock (27). In our study, divergent effects were observed in the expression of selected 

inflammatory markers across the experimental groups, which may be explained by the complex 

kinetics and dynamics of the immune response due to the concurrent exposure to anesthesia, 

mechanical ventilation and hyperoxia. Interaction between pro- and anti-inflammatory cytokines 

may contribute to the differences in cytokine levels in the experimental groups. Rapid upregulation 

of TNF-α was seen even in the acute phase reaction after induction of anesthesia in control mice. 

Cytokine concentrations may decrease after long-term hyperoxic exposure and a fast upregulation 

of inflammatory action can be followed by a gradual impairment or suppression of the innate 

immune system (28), which may in turn make the lung more susceptible to injury and infection. 

Differences in cytokine levels between the FiO
2
 groups were relatively mild. We observed a strong 

inflammatory effect at very high oxygen concentrations (FiO
2
 90%) while the increase from 30% 

to 50% did not make a large difference. Indeed, 50% of inspired oxygen may not be as detrimental 

as 90% as evidenced by the clear increase in neutrophils and most cytokines during 90% oxygen 

administration, which was also described in other studies (29-32). In addition, ventilation with 

30% may actually be a model of relative tissue hypoxia in mice following progressive lung injury 

during the experiment, although this was not reflected by the PaO
2
 levels. Comparison with control 

groups suggests that mechanical ventilation itself was very harmful, possibly not allowing additional 

damage by increasing oxidative stress. Both hypoxia and hyperoxia may induce oxidative stress and 

relative changes in hyperoxia may trigger upregulation of the hypoxia inducible factor (HIF) (33).
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Furthermore, damage associated molecular pattern (DAMP) molecules play a key role 

in the inflammatory response to injury and have been suggested to modulate the effects of 

hyperoxia and oxidative stress (34, 35). In this matter, HMGB-1 has been described as the archetypal 

chemokine that is upregulated by the innate immune system in response to cell stress (36). We also 

observed increased levels of this protein in the lungs of mechanically ventilated mice, particularly 

after concurrent exposure to high FiO
2
. The overall protein content did not significantly increase 

with severe hyperoxia, but this interpretation may be limited as we did not correct the protein in 

BALf for urea (epithelial lining fluid). The expression of most cytokines in BALf was not essentially 

different than in the serum, which may be a result of extended duration of mechanical ventilation 

causing systemic inflammation. In line with previous experiments the presence of cytokines with 

short term ventilation was definitely more pronounced in the pulmonary compartment compared 

to circulating blood of rodents (25, 37).

Our study and others generated conflicting data regarding the inflammatory response after 

hyperoxic ventilation describing both pro- (15, 17, 38, 39) and anti-inflammatory (40, 41) responses. 

Kiers et al. recently demonstrated that, in the absence of systemic inflammation, short-term 

hyperoxia without mechanical ventilation does not result in increased levels of inflammatory 

cytokines, neutrophil phagocytosis nor ROS generation in both mice and healthy volunteers 

(42). In the present study, the expression of inflammatory markers was shown to be divergent 

after mechanical ventilation and with increasing FiO
2
, which is consistent with previous research 

(16). Bailey et al. concluded that prolonged mechanical ventilation of healthy rat lungs with 

a physiological strategy can contribute to the inflammatory response and cause alterations to 

pulmonary surfactant (43). Lung injury due to continuous hyperoxic exposure has also been shown 

to be dose-dependent in rats (12, 15). 

Some clinical scenarios may dictate non-protective ventilation, both with high pressures and 

high levels of inspired oxygen in patients with heavily injured lungs. However, it is not exactly 

known whether this combination works synergistically in causing lung injury. Our data do not 

imply such an ‘add-on effect’, but the discrepancy with a previous study (20) may be explained 

by the use of lower tidal volumes in our study. It is also possible that the extended duration of 

mechanical ventilation alone was enough to cause ventilator-induced lung injury (VILI) without 

an additional effect of tidal volume size. An alternative explanation may be that lower respiratory 

rates compensated for high tidal volumes, while higher respiratory rates increased the risk of lung 

Figure 3. Inflammatory mediators in BALf in controls and after 12h of mechanical ventilation. 
Cytokine and chemokine levels in BALf obtained after 12 hours of mechanical ventilation. Data 
are means ±SEM. Facets within the panels represent mechanical ventilation time. Different colors 
represent different tidal volume groups and different transparency levels represent different FiO

2
 

groups. 0h, no mechanical ventilation time (control group); 12h, 12 hours of mechanical ventilation. 
LTV, low tidal volumes; HTV, high tidal volumes. Cuzick’s P for trend in increasing oxygen levels at 
12 hours of mechanical ventilation: IL-1β, <0.001; MIP-2, 0.27; IL-6, 0.03; KC, 0.22; IL-10, 0.001; MCP-1, 
<0.001; TNF-α, 0.001; IFN-γ, 0.001; sRAGE, 0.11; HMGB-1, 0.001. * P for trend <0.05; ** P for trend 
<0.01; *** P for trend <0.001.
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injury in the lower tidal volume groups. Also, some of the deleterious properties of hyperoxia may 

be overcome by applying PEEP, as it may counteract alveolar collapse from progressive nitrogen 

washout and mitigate the effects of atelectrauma (44). 

In our study, lung injury scores did not reveal any histopathological difference between 

study groups. However, in previous work using a high tidal volume strategy with zero PEEP, total 

histopathology scores were shown to be higher compared to low tidal volumes and 3 cmH
2
O PEEP 

with a marginal additive effect of ventilation duration (24). This was in accordance with a study 

reporting that pre-exposure to hyperoxia increases the susceptibility to VILI before initiation of 

mechanical ventilation (22). Others documented that short-term exposure to levels of oxygen up 

to 100% does not increase the changes in respiratory system mechanics induced by mechanical 

ventilation (16). The progressive airway collapse and inflammation with increasing FiO
2
 may not 

have been severe enough to induce histopathological changes and affect lung function in our 

model. The striking heterogeneity that exists between experimental studies may be explained by 

differences in subjects (e.g. species, strains, genetical modification, age, sex), and exposure (e.g. 

pre-exposure, severity, duration, anesthesia, ventilation).

Although the experiments were performed according to the high standards for methodological 

quality of animal research (45), several limitations may apply to our experimental procedures. 

The lavage technique of the lungs may induce subtle differences in the dilution of returned fluid, 

although saline injection volumes were standardized. Storage of biological specimens was secured 

according to high quality protocols. Our analyses were restricted to specific features of injurious 

ventilation and hyperoxia, yet other underlying mechanisms affecting reactive oxygen species 

and mitochondrial damage have not been considered. Other covariates such as PaCO
2
 may have 

influenced the results, even though this cannot be seen separate from ventilation settings and 

was inherent to adjusting tidal volumes and FiO
2
. Furthermore, low respiratory rates, especially in 

the LTV group, are subphysiological for mice and may cause relative hypercapnia.

The experimental setting may hamper translation of study results to the clinical setting. Indeed, 

smaller species, such as mice have different lung mechanics and immune reactions than humans 

(46, 47). Healthy mice may also respond differently than critically ill patients, especially in case 

of injured lungs prior to the start of mechanical ventilation. Interestingly, moderate hyperoxia in 

mechanically ventilated patients without severe respiratory failure does not appear to increase 

systemic or pulmonary inflammation (48).

Further, the C57Bl/6J type mice that we used are the most widely used strain of mice for 

experimental research, but have been shown to carry a spontaneous mutation, which can result 

in mitochondrial redox abnormalities and may influence the functionality of the hyperoxia defense 

(49).

Strengths of this study include the prolonged duration of mechanical ventilation which may 

be representative of the intensive care unit (ICU) setting, where hyperoxia acts as a second hit on 

top of VILI. Indeed, we showed that the immune response was considerably stronger at 12 hours of 

mechanical ventilation compared to 8 hours, which may imply that models applying mechanical 

ventilation for extended duration more accurately reflect the underlying mechanisms and 

long-term effects. Demonstrable lung injury may follow the inflammatory response even later than 
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after 12 hours of hyperoxic mechanical ventilation. As such, our results further accentuate that we 

should limit the exposure to supraphysiological oxygen levels from excessive oxygen supply when 

prolonged periods of mechanical ventilation are anticipated. 

C O N C L U S I O N

Prolonged experimental hyperoxic mechanical ventilation was associated with a significant 

inflammatory response in the lung as evidenced by an influx of neutrophils in the pulmonary 

compartment and upregulation of specific inflammatory markers, which was not directly translated 

into extensive tissue lung injury or a change in lung compliance. The present experimental data may 

aid to determine optimal ventilator strategies in mechanically ventilated patients, but the dynamics 

and kinetics of hyperoxic ventilation need further exploration in order to characterize the long 

term effects and investigate protective measures. 
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L I S T  O F  A B B R E V I AT I O N S

BALf, bronchoalveolar lavage fluid; DAMP, damage associated molecular pattern; ELISA, enzyme-

linked immunosorbent assays; FiO
2
, fraction of inspired oxygen; HIF, hypoxia inducible factor; 

HMGB-1, high mobility group box-1; HTV, high tidal volume; ICU, intensive care unit; IFN-γ, 

Interferon-γ; IL-1β, Interleukin-1β; IL-6, Interleukin-6; IL-10, Interleukin-10; KC, Kupffer Cell; LTV, 

low tidal volume; MCP-1, Monocyte Chemoattractant Protein-1; MIP-2, Macrophage Inflammatory 

Protein-2; MV, mechanical ventilation; PaCO
2
, partial pressure of arterial carbon dioxide; PaO

2
, 

partial pressure of arterial oxygen; PEEP, positive end-expiratory pressure; sRAGE, soluble Receptor 

for Advanced Glycation End products; TNF-α, Tumor Necrosis Factor-α; TV, tidal volume; VILI, 

ventilator-induced lung injury
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Additional file 1. https://static-content.springer.com/esm/art%3A10.1186%2Fs40635-017-0142-5/MediaObjects 

/40635_2017_142_MOESM1_ESM.docx. Figure S1. Mean systolic blood pressure over the study interval. Figure 

S2. Microscopic histopathology of representative mouse lung sections after 12 h of mechanical ventilation (H&E 

staining, ×10 magnification). Figure S3. Inflammatory mediators in BALf after 8  h of mechanical ventilation. 

Figure S4. Inflammatory mediators in BALf after study interval by tidal volume size. Figure S5. Inflammatory 

mediators in serum after 12  h of mechanical ventilation. Figure S6. Relative RNA expression of inflammatory 

markers in lung homogenate after 12  h of mice that were mechanically ventilated with high tidal volumes 

compared to controls.

O N L I N E  S U P P L E M E N T

For the online supplement (Additional file 1), please use the following weblink, or scan  

the QR-code with your mobile device
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A B S T R AC T

Background

Although oxygen is generally administered in a liberal manner in the perioperative setting, 

the effects of oxygen administration on dynamic cardiovascular parameters, filling status and 

cerebral perfusion have not been fully unraveled. Our aim was to study the acute hemodynamic 

and microcirculatory changes before, during and after arterial hyperoxia in mechanically ventilated 

patients after coronary artery bypass grafting (CABG) surgery. 

Methods

This was a single-center physiological study in a tertiary care ICU in the Netherlands. Twenty-two 

patients scheduled for ICU admission after elective CABG were enrolled in the study between 

September 2014 and September 2015.

In the ICU, patients were exposed to a fraction of inspired oxygen (FiO
2
) of 90% allowing a 15-

minutes wash-in period. Various hemodynamic parameters were measured using direct pressure 

signals and continuous arterial waveform analysis at three sequential time points: before, during 

and after hyperoxia.

Results

During a 15-minutes exposure to a fraction of inspired oxygen (FiO
2
) of 90%, the partial pressure of 

arterial oxygen (PaO
2
)

 
and arterial oxygen saturation (SaO

2
) were significantly higher. The systemic 

resistance increased (P<0.0001), without altering the heart rate. Stroke volume variation and pulse 

pressure variation decreased slightly. The cardiac output did not significantly decrease (P=0.08). 

Mean systemic filling pressure and arterial critical closing pressure increased (P<0.01), whereas 

the percentage of perfused microcirculatory vessels decreased (P<0.01). Other microcirculatory 

parameters and cerebral blood flow velocity showed only slight changes.

Conclusions

We found that short-term hyperoxia affects hemodynamics in ICU patients after CABG. This was 

translated in several changes in central circulatory variables, but had only slight effects on cardiac 

output, cerebral blood flow and the microcirculation.

Clinical trial registration

Netherlands Trial Register: NTR5064
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B AC KG R O U N D

During and after coronary artery bypass grafting (CABG), patients are supported with mechanical 

ventilation and supplemental oxygen. Despite its lifesaving characteristics and key role in 

the treatment of vasodilatory shock, oxygen therapy may harbor considerable risks given 

the relationship between prolonged hyperoxia, lung injury and adverse outcome (1-5). The effects 

of supplemental oxygen may be even more pertinent during cardiovascular events considering 

the direct effects of high arterial oxygen concentrations on the vascular tone (6, 7). Arterial 

hyperoxia has the potential to alter hemodynamics and has been associated with adverse outcomes 

and mortality after cardiac arrest, myocardial infarction, stroke, brain injury and during mechanical 

ventilation (8-14), yet not during cardiopulmonary bypass (15, 16). It is well established that high 

oxygen concentrations induce vasoconstriction and increase the resistance of the systemic 

circulation. However, the effects on vital parameters may be diverse and the venous and arterial 

aspects of the circulation have not been clearly distinguished in previous studies. Furthermore, 

the microcirculation may react differently than systemic hemodynamics (17).

Achieving hemodynamic stabilization is an important clinical prerequisite for early extubation 

and dismissal from the intensive care unit (ICU) after cardiothoracic surgery. Any intervention 

that influences hemodynamics and blood flow to the bypassed myocardial territories may impact 

functional recovery and requires optimal fine-tuning to achieve the best outcome. Although 

oxygen is generally administered in a liberal manner in the perioperative setting, the unraveling 

of the effects of oxygen administration on dynamic cardiovascular parameters, filling status and 

cerebral perfusion may provide novel insights in the pathophysiological mechanisms involved in 

hyperoxic exposure. Our aim was to study the acute hemodynamic and microcirculatory changes 

during increased oxygen supply in mechanically ventilated ICU patients after CABG surgery. 

M E T H O D S

Participants

Adult patients with symptomatic coronary artery disease without recent myocardial infarction 

scheduled for ICU admission after coronary artery bypass surgery were screened for eligibility. 

Patients with congestive heart failure, severe arrhythmias, intracardiac shunts, extensive peripheral 

arterial occlusive disease, symptomatic pulmonary disease, aortic aneurysm and/or significant 

valvular disease were not considered for inclusion. Patients with signs of severe hemodynamic 

instability (e.g., rapid changes in vascular resistance, use of inotropic agents) during ICU admission 

were excluded. Study approval was granted by the local medical ethics committee (LUMC P14.046), 

and all patients signed informed consent. The study was registered with the Netherlands Trial 

Register, number NTR5064, registration date February 2015.

Measurements

Anesthesia during surgery was maintained with propofol and sufentanil. Ventilation was adjusted 

to achieve normocapnia. FiO
2
 was 40%, and a positive end-expiratory pressure of 5 cm H

2
O 

was applied. Directly after surgery, patients were admitted to the ICU and received standard 
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postoperative care. Continuous infusion of propofol and sufentanil was maintained for all patients, 

and no bolus medications (fluids, vasoactive or sedative agents) were administered.

Mean arterial blood pressure (MAP) was measured via a 20-G radial arterial catheter inserted by 

Seldinger technique. Central venous pressure (CVP) was measured with a central venous catheter 

inserted in the right internal jugular vein (MultiCath venous catheter, Vigon GmbH & Co, Aachen, 

Germany). Pressure transducers (PX600F, Edwards Lifesciences) for the arterial and central venous 

signals were referenced to the intersection of the anterior axillary line and the fifth intercostal 

space. The airway pressure was measured at the entrance of the endotracheal tube and balanced at 

zero level against ambient air. Standard electrocardiogram leads were used to monitor heart rate. 

Body temperature was measured using a rectal temperature probe.

Beat-to-beat values of cardiac output (CO), stroke volume, stroke volume variation (SVV), 

pulse pressure variation (PPV) and heart rate (HR) were obtained by Modelflow using continuous 

arterial waveform analysis as previously described (18, 19). Hemodynamics were also monitored by 

the LiDCOplus monitor (LiDCO Group Plc., London, UK).

Before starting the protocol, the mechanical ventilation in volume-controlled mode was 

switched to airway pressure release ventilation (APRV), with settings adjusted to achieve the same 

minute ventilation, which allows for external control of the ventilator (Evita 4, Dräger AG, Lübeck, 

Germany). A computer program was used to control the ventilator as described previously (20). 

During the study interval, all patients were hemodynamically stable and ventilator settings, sedation 

and vasoactive therapy remained unchanged.

At least three videos of ten sequences (40 frames each) visualizing different sites of 

the sublingual microcirculation were recorded per patient per time point by the same dedicated 

researcher using sidestream dark field (SDF) imaging with the MicroScan Video Microscope 

(MicroVision Medical BV, Amsterdam, The Netherlands). The three best quality videos from 

representative multiple site imaging were analyzed, and calculated parameters were averaged. 

Previously suggested key points for optimal image acquisition were considered, and maximal 

efforts were undertaken to avoid pressure artifacts and eliminate secretions (21). SDF imaging data 

were recorded and analyzed using real-time quality feedback on adequate focus, contrast and 

stability with GlycoCheck (GlycoCheck BV, Maastricht, The Netherlands), as described previously 

(22). The GlycoCheck software automatically calculates the perfused boundary region (PBR), 

which is a previously validated dimension of the permeable part of the endothelial glycocalyx 

that does allow red blood cell penetration (23, 24). The red blood cell (RBC) filling percentage is 

calculated an estimate for microvascular perfusion. Recorded videos were also imported for offline 

analysis in Automated Vascular Analysis (AVA) software 4.1 (MicroVision Medical BV). The software 

automatically separates outcome parameters for large (mostly venules) or small (mostly capillaries) 

vessels using a diameter cutoff value of 20 µm. Total vessel density (TVD), perfused vessel density 

(PVD), valid vessel density (VVD) and De Backer Score were calculated as measures of microvascular 

vessel density; the percentage of perfused vessels (%PV) was calculated as the number of vessels 

continuously perfused divided by the total number of vessels of the same type. The heterogeneity 

index was defined as the difference between maximal and minimal proportions of perfused vessels 

evaluated at each visualized area divided by the mean value of the areas (25).
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Blood flow velocity (BFV) in the right middle cerebral artery (MCA) was measured at an insonation 

depth of 50–52 mm by transcranial Doppler (TCD) monitoring using a Pioneer TC 4040. When 

the optimal TCD signal was achieved, a 2-MHz TCD transducer probe was fixed over the temporal 

window using an adjustable headset (Marc 500, Spencer Technologies, Nicolet Biomedical).

Experimental procedure

Approximately one hour after ICU admission the experimental procedures were initiated. All 

measurements were performed with patients in supine position at three sequential time points: 

pre-intervention, during intervention and post-intervention. Before the intervention (T1), FiO
2
 

was titrated to a level targeting a partial pressure of arterial oxygen (PaO
2
) between 67.5 mmHg (9 

kPa) and 82.5 mmHg (11 kPa) and a complete set of hemodynamic measurements was performed. 

The intervention (T2) commenced by increasing the FiO
2
 to 90% and after a 15-min wash-in period, 

all hemodynamic measurements were repeated. Thereafter (T3), the FiO
2
 was decreased by 

targeting baseline PaO
2
 levels, and after 15-min wash-out period, the final control measurements 

were completed. Before, during and after the intervention, arterial blood gas samples were analyzed 

to determine arterial oxygenation.

Four 12-second inspiratory hold maneuvers were applied using ventilator plateau pressures of 

5, 15, 25 and 35 cm H
2
O as previously reported (20). Each successive inspiratory hold was performed 

when the initial hemodynamic steady state was reestablished. When the plateau pressure increases, 

CVP increases concomitantly, whereas CO and MAP decrease with a short delay, reaching a steady 

state at 7–10 s after inflation. From these steady state measurements, a venous return curve was 

constructed by fitting a linear regression line through four values of CVP and CO. The extrapolated 

value at zero flow is the mean systemic filling pressure (P
msf

). Similarly, the ventricular output curve 

was fitted through the values of MAP and CO, where the regression line crosses the zero flow 

intercept at the critical closing pressure (P
cc

) (19).

The resistance of the systemic circulation (R
sys

) was calculated as the ratio of the pressure 

difference between MAP and mean CVP, and CO. The resistance at the arterial and venous side of 

the circulation was also separately calculated as resistance for ventricular output R
vo

 = (MAP – P
cc

)/

CO and resistance for venous return R
vr

 = (P
msf

 – CVP)/CO (26).

Statistical analysis:

As this was an exploratory physiological intervention study studying multiple hemodynamic 

parameters we did not specifically rely on sample size calculation for one single outcome. 

The intervention (T2, hyperoxia) and post-intervention measurements (T3, normoxia), were 

compared to baseline (T1, normoxia) measurements, using a paired t-tests or Wilcoxon signed rank 

test, depending on the underlying distribution. 

Multivariate linear mixed models with random effects per patient were used to compare 

the exposure (T2) with the non-exposure (T1 and T3) measurements, to account for within-subject 

correlation and were adjusted for age, temperature, the administered dose of propofol and 

norepinephrine, and the achieved levels of arterial carbon dioxide (PaCO
2
) and hemoglobin (Hb).
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To account for multiple testing, the indicated levels of statistical significance were lowered 

to 0.01. All statistical analyses were conducted using R version 3.2.1 (R Foundation for Statistical 

Computing, Vienna, Austria). 

R E S U LT S

Patients were screened for eligibility from September 2014 until September 2015. Four patients were 

excluded due to severe postoperative hemodynamic or respiratory instability in the ICU. Baseline 

characteristics of the twenty-two included patients are listed in Table 1. All participating patients 

were free of surgical complications, fully recovered from anesthesia within 8 h after surgery and 

were discharged from the ICU on the first postoperative day. During the experimental procedure, 

all patients received a glucose 2.5% in 0.45% saline solution at 84 ml/h, propofol (range 200-400 

mg h-1) and sufentanil (range 5-25 µg h-1). Two patients additionally received norepinephrine (0.02 

and 0.04 µg kg-1 min-1) at a constant rate in order to keep the blood pressure in a similar range 

(MAP higher than 65 mmHg) as the other included patients during the experimental procedure. 

This was accounted for in the multivariate linear mixed model, and excluding these patients did not 

materially change the magnitude or direction of our univariate findings.

Table 1. Patient characteristics

Characteristics All patients (n = 22)

Descriptive characteristics

 Age (year) 63 (59–66)

 Male/female (n) 17/5

 BMI (kg/m2) 26 (25–29)

 Body temperature (ºC) 37 (36–37)

 APACHE IV 40 (33–61)

 SAPS II 28 (24–32)

Surgical characteristics

 Perfusion time (min) 105 (91–121)

 Clamp time (min) 73 (63–82)

ICU ventilator settings

 P
insp

 (cm H
2
O) 18 (16–19)

 V
T
 (ml) 585 (484–650)

 PEEP (cm H
2
O) 5 (5–5)

 Respiratory rate (breaths min-1) 12 (12–14)

ICU medication

 Propofol (mg h-1) 250 (200–288)

 Sufentanil (µg h-1) 10 (6–10)

 Norepinephrine (µg kg-1 min-1) 0 (0–0), range 0–0.04

Data are medians (interquartile range), unless stated otherwise

BMI, body mass index; APACHE, Acute Physiology and Chronic Health Evaluation score; SAPS, Simplified Acute 

Physiology Score; P
insp

, inspiratory pressure; V
T
, tidal volume; PEEP, positive end-expiratory pressure
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Arterial blood gas parameters

Arterial blood gas values at the three different time points are shown in Table 2. PaO
2
 levels pre- and 

post-hyperoxia matched well with the targeted levels. Also, pre- and post-hyperoxia arterial oxygen 

saturation (SaO
2
) was similar. During hyperoxia PaO

2 
and SaO

2
 were significantly higher.

PaCO
2
 decreased over time, whereas hemoglobin, hematocrit, glucose and lactate levels did 

not change.

Hemodynamic parameters

Hemodynamic values at the three different time points are shown in Table 3. After starting 

the intervention with 90% oxygen supply, R
sys

 increased (P<0.0001), without altering the heart rate. 

SVV and PPV decreased slightly. CO did not significantly decrease (P=0.08).

During the hyperoxia period P
msf

 and the slope of the venous return curve (Slope
vrc

) increased 

(Fig. 1). P
cc

 increased, whereas the slope of the left ventricular output curve (Slope
voc

) did not 

change. R
sys

 and R
vr

 increased because of the higher MAP and P
msf

 at constant CO. R
vo

 did not change 

because MAP and P
cc

 increased similarly. 

We did not find any reduction in cerebral blood flow and only slight shifts in microcirculatory 

scores were noted. The percentage of perfused vessels decreased during hyperoxia (P=0.01). No 

changes in vascular density were detected for either large or small vessels.

The results were virtually unchanged when multivariate mixed models were used (Table 3).

D I S C U S S I O N

In this single-center physiological intervention study, we found that a 15-min exposure to hyperoxia 

affects hemodynamics in ICU patients after CABG. This was translated in several changes in central 

Table 2. Variables of arterial blood gas analyses during different time periods

Variable
T1 T2 T3

Pre Hyperoxia Post

 FiO
2
 (%) 25 (21–30) 90 (90–90) 21 (21–25)

Arterial blood gas analysesa

 SaO
2
 (%) 94.9 (1.9) 99.0 (0.3)*** 95.7 (1.8)

 PaO
2
 (mmHg) 83.5 (12.2) 390.2 (93.2)*** 87.8 (21.5)

 PaCO
2
 (mmHg) 39.8 (8.1) 36.0 (7.9)** 34.5 (8.7)***

 Hb (mmol L-1) 7.2 (0.8) 7.4 (0.7) 7.4 (0.8)

 Ht (L L-1) 0.34 (0.04) 0.35 (0.03) 0.35 (0.04)

 Glucose (mmol L-1) 7.5 (1.6) 7.4 (1.7) 7.7 (1.8)

 Lactate (mmol L-1) 1.25 (0.38) 1.20 (0.40) 1.25 (0.34)

FiO2,fraction of inspired oxygen; SaO
2
, arterial oxygen saturation; PaO

2
, partial pressure of arterial oxygen; PaCO

2
, 

partial pressure of arterial carbon dioxide; Hb, hemoglobin; Ht, hematocrit. 

Data are means (SD). For FiO
2
, medians (interquartile range) are provided.

* P<0.01, ** P<0.001, ***P<0.0001 for paired comparison between indicated outcome and baseline (T1)
a Arterial blood gas samples analyzed prior to the start of hemodynamic measurement
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Figure 1. Venous return and ventricular output curves by arterial oxygenation status. 

Relationship between cardiac output (CO) and central venous pressure (CVP) in a venous return curve and 

between CO and mean arterial blood pressure (MAP) in a ventricular output curve for the averaged patient 

(Table 3). At zero blood flow mean systemic filling pressure (P
msf

) and critical closing pressure (P
cc

) are indicated. 

Venous return curves and ventricular output curves for arterial normoxia (solid line) and hyperoxia (dashed 

line) are given

circulatory variables and in the percentage of perfused microcirculatory vessels, but showed no 

alterations in cardiac output and cerebral blood flow.

The circulation of blood can be described by either the CO or the venous return. As only blood 

returning to the heart can be pumped out in the systemic circulation, venous return should always 

equal CO. Major determinants of CO are preload, contractility and afterload. During hyperoxia, 

left ventricular afterload clearly increased. The absence of a measurable decrease in CO may be 

explained by a concomitant increase in preload. Indeed, we found higher CVP during hyperoxia. 

The alternative explanation, i.e., increased contractility, is unlikely as we found no increase in 

the slope of the cardiac output curve during hyperoxia.

The circulation can also be described by the venous return to the heart, which is driven by P
msf

 

– CVP. During hyperoxia P
msf

 increased more than CVP. However, this did not lead to an increase of 

venous return due to the simultaneous increase in venous resistance.

Vasoconstriction may be the key driver of most if not all effects of hyperoxia on hemodynamics. 

Not only does it increase blood pressure, afterload and venous resistance, it also leads to a shift 

of blood from unstressed to stressed volume, as indicated by increases in P
msf

 and CVP. We also 

observed an increase in P
cc

 by hyperoxia. P
cc

 is a theoretical pressure defined by dynamic pressure 

flow-relations and represents the arterial pressure, below which conceptually no flow will be 

possible. It is a combined estimate representing all vascular circuits. Theoretically, P
cc

 is the sum 
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of arterial wall tension and the pressure surrounding the blood vessel. P
cc

 may differ importantly 

between different vessels, and measured P
cc

 is an average value for the complete vasculature. An 

increase in P
cc

 may be especially relevant in certain disease states such as increased intracranial 

pressure and abdominal compartment syndrome with high pressures surrounding the vessels. In 

both situations, P
cc

 is markedly elevated. For example, intracerebral blood flow will decrease to zero 

when arterial blood pressure is lower than the critical closing pressure of the brain and beyond 

the limits of cerebral autoregulation. In such states, vasoconstriction, by either vasoactive drugs 

or hyperoxia, may have either beneficial effects by increasing blood pressure or harmful effects by 

increasing arterial wall tone and thereby P
cc.

In our study, we could not show a reduction in perfusion of the brain by hyperoxia. Similarly, 

in a previous report perfusion changes at all oxygen levels were relatively small (27, 28). It should 

be noted that all these studies were performed in situations with normal intracranial pressure. In 

situations with intracranial hypertension, such as in traumatic brain injury, we cannot rule out that 

a further increase of P
cc

 by hyperoxia will decrease the pressure difference between P
a 
and P

cc
 which 

can lead to a lower perfusion and possible ischemia of the brain.

Comparing our findings with earlier studies on the effects of hyperoxia on hemodynamics, 

the cardiac output fall was less than in healthy volunteers (29) and the decrease in the percentage 

of perfused vessels of the microcirculation was also in a different order of magnitude than 

previously observed (30). Recognizing the perfused boundary region of microcirculatory vessels 

as a surrogate measure for the dimension of the glycocalyx, we could not detect any hyperoxia-

induced alterations. Considering the effects on the venous system, more pronounced effects are 

to be expected in the smaller vessels compared to larger vessels. As a limited number of arterioles 

are present in the sublingual mucosa, where capillaries and venules are more abundant, only slight 

changes were anticipated in the analyzed microcirculation when high oxygen levels are applied.

Study differences may be largely explained by the use of anesthesia and mechanical ventilation 

as both affect hemodynamics and anesthesia also induces a considerable decrease in stressed 

volume. Furthermore, even in the presence of healthy lungs, both mechanical ventilation and 

bypass surgery may inflict an inflammatory response which can modify the effects of hyperoxic 

ventilation on the circulation in comparison with healthy subjects. Remaining differences may be 

clarified by the short exposure time in our procedures, although no further increase in PaO
2
 was to 

be expected from a longer exposure and therefore a steady state in hemodynamics was assumed.

The increase in stressed volume and P
msf

 by hyperoxia mimics the effects of administering a fluid 

bolus, yet without increasing the R
vr

. It is well known that the effects of extra fluids on CO are most 

pronounced in situations with underfilling of the vasculature explaining the relative conservation 

of cardiac output during hyperoxia in our postoperative, sedated patients, compared to healthy 

subjects. The effects of hyperoxia closely resemble the effects of norepinephrine and are in 

contrast to the effects of propofol (31, 32). We earlier showed that intravenous administration of 

norepinephrine resulted in increases in R
sys

, R
vr

 and P
msf

. Interestingly, CO increased in some but not 

all patients after norepinephrine (32). An increase in CO was associated with a higher SVV. Thus, it 

appears likely that the effects of a shift from unstressed to stressed volume by vasoconstriction, 

with an increase in P
msf

, is mostly found in patients with vasoplegia and/or a decreased circulating 
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volume. Hence, the effects of hyperoxia on CO are determined by the balance between volume 

recruitment (P
msf

) and change in R
vr

 and baseline heart function, as observed before (32). Although 

our results clearly indicate that hyperoxia increases venous resistance by venous vasoconstriction 

and that left ventricular output resistance (R
vo

) did not change, we must realize that our description 

of the circulation is not complete. We cannot describe the part between the site where P
cc

 exists 

and the site where P
msf

 exists. Therefore, there is a missing part of the circulatory circuit, i.e., 

the distal arterial compartment, where control of the peripheral circulation is performed by  

the pre-capillary sphincters.

A recent study with an alternative cardiac output monitor of the arterial pressure wave showed 

a poor correlation with the thermodilution obtained CO values while changing norepinephrine 

doses (33). However, measurements carried out by our group suggest that the Modelflow technique 

is capable of measuring the effects induced by vasoconstriction in an accurate manner (32), 

suggesting that vasoactive agents may not importantly affect the precision of your technology. This 

was also underlined by the CO values measured by the LiDCOplus monitor that showed a similar 

pattern compared to the Modelflow technique in our study. Furthermore, the determination of P
msf

 

is not dependent on the accuracy of the Modelflow technique. Indeed, extrapolation of the venous 

return curve to flow zero is independent of absolute cardiac output. The ability to follow changes 

in cardiac output within a patient has been clearly demonstrated before (18). We also showed that 

beat-to-beat changes in Modelflow cardiac output follows cardiac output by beat-to-beat analysis 

of electromagnetic probe flow signals (19).

Acknowledging that our findings are to be reproduced in a larger cohort and different clinical 

settings, the following study aspects should be considered. First, the small sample size and 

the specific subgroup of patients do not warrant a broad generalizability for the observed effects. 

Hemodynamics in the current patient group may be affected by the effects of the recent bypass 

and the potential mediators of ischemia reperfusion and inflammation. Other subsets of critically 

ill patients may respond differently than patients in our cohort who were in a relatively stable 

condition before starting study procedures. Two patients received small doses of norepinephrine 

during the experiment to keep the blood pressure in the same order of magnitude as the other 

included patients but showed stable hemodynamics and the dose was not changed throughout 

the experiment. Also, excluding these patients from our analyses showed virtually no change in  

our results.

There may be a time effect in which recovery and stabilization of patients in the ICU after 

surgery may influence hemodynamics. However, assuming that the effect of hyperoxia was 

transient and respecting a 15-min time gap between the two exposures, the carryover effect 

was minimized and each case served as its own control (self-matched) (34). Adjusted changes in 

estimates were based on within-subject comparisons of exposure to hyperoxia with exposure to 

normoxia. Sampling bias was minimized by continuously measuring central circulatory variables, 

which provide a highly accurate representation of the parameters over the time periods. Cerebral 

blood flow, microcirculation and parameters assessed from the inspiratory hold procedures were 

measured intermittently, yet at representative sampling moments during the sequential time points 

and averaged as appropriate.
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Since we could not detect large differences between the outcomes of univariate and 

multivariate statistical models accounting for repeated measurements, the observed effects 

may be predominantly attributed to hyperoxic ventilation, rather than to concomitant changes 

in other parameters. Other covariates that were considered, such as PaCO
2
, are therefore 

not a likely explanation for the hemodynamic changes as seen during the experiment. While 

a short period of supraphysiological arterial oxygenation may disturb the hemodynamic balance, 

the effects of long-term exposure to hyperoxia are still uncertain but may be essential regarding  

patient-centered outcomes.

C O N C L U S I O N S

Short-term hyperoxia after cardiac surgery induces significant alterations in systemic circulation 

mainly by vasoconstriction of both the venous and arterial circulation and an increase of mean 

systemic filling pressure. The increase in stressed volume and systemic filling pressure by hyperoxia 

resembles the effects of administering a fluid bolus or norepinephrine. This may have clinically 

important consequences in critically ill patients when hemodynamic and microcirculatory changes 

are vital, but the effects were not clearly linked to relevant changes in cardiac output and cerebral 

blood flow.

L I S T  O F  A B B R E V I AT I O N S

APACHE, Acute Physiology and Chronic Health Evaluation score; APRV, airway pressure release 

ventilation; AVA, Automated Vascular Analysis; BFV, blood flow velocity; CABG, coronary artery 

bypass grafting; CO, cardiac output; CVP, central venous pressure; ICU, intensive care unit; FiO
2
, 

fraction of inspired oxygen; Hb, hemoglobin; Ht, hematocrit; HR, heart rate; MAP, mean arterial 

pressure; MCA, middle cerebral artery; NTR, Netherlands Trial Register; PaCO
2
, partial pressure of 

arterial carbon dioxide; PaO
2
, partial pressure of arterial oxygen; PBR, perfused boundary region; 

P
cc

, critical closing pressure; PEEP, positive end-expiratory pressure; P
insp

, inspiratory pressure; P
msf

 

, mean systemic filling pressure; PPV, pulse pressure variation; PV, perfused vessels; PVD, perfused 

vessel density; RBC, red blood cell; R
sys

, resistance of the systemic circulation; R
vo

, resistance 

for ventricular output; R
vr

, resistance for venous return;
 
SaO

2
, arterial oxygen saturation; SAPS, 

Simplified Acute Physiology Score; SDF, sidestream dark field; Slope
voc

, slope of ventricular output 

curve; Slope
vrc

, slope of venous return curve; SVV, stroke volume variation; TCD, transcranial 

Doppler; TVD, total vessel density; V
T
, tidal volume; VVD, valid vessel density.
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A B S T R AC T

Introduction

Arterial concentrations of carbon dioxide (PaCO
2
) and oxygen (PaO

2
) during admission to 

the intensive care unit (ICU) may substantially affect organ perfusion and outcome after cardiac 

arrest. Our aim was to investigate the independent and synergistic effects of both parameters on 

hospital mortality.

Methods

This was a cohort study using data from mechanically ventilated cardiac arrest patients in the Dutch 

National Intensive Care Evaluation (NICE) registry between 2007 and 2012. PaCO
2
 and PaO

2
  levels 

from arterial blood gas analyses corresponding to the worst oxygenation in the first 24 h of ICU stay 

were retrieved for analyses. Logistic regression analyses were performed to assess the relationship 

between hospital mortality and both categorized groups and a spline-based transformation of 

the continuous values of PaCO
2
 and PaO

2
.

Results

In total, 5,258 cardiac arrest patients admitted to 82 ICUs in the Netherlands were included. In 

the first 24 h of ICU admission, hypocapnia was encountered in 22%, and hypercapnia in 35% of 

included cases. Hypoxia and hyperoxia were observed in 8% and 3% of the patients, respectively. 

Both PaCO
2
 and PaO

2
 had an independent U-shaped relationship with hospital mortality and after 

adjustment for confounders, hypocapnia and  hypoxia were significant predictors of hospital 

mortality: OR 1.37 (95% CI 1.17–1.61) and OR 1.34 (95% CI 1.08–1.66). A synergistic effect of concurrent 

derangements of PaCO
2
 and PaO

2
 was not observed (P = 0.75).

Conclusions

The effects of aberrant arterial carbon dioxide and arterial oxygen concentrations were 

independently but not synergistically associated with hospital mortality after cardiac arrest.
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I N T R O D U C T I O N

Even after successful resuscitation and return of spontaneous circulation (ROSC), cardiac arrest 

carries a poor prognosis with limited options for treatment (1, 2). In addition to controlling 

temperature after cardiac arrest, optimizing ventilation and oxygenation may improve outcome (3). 

International consensus currently recommends careful monitoring of post-resuscitation ventilation 

for neurological and cardiovascular outcome (4). Indeed, targeting safe levels of carbon dioxide 

and oxygen in arterial blood may limit global ischemic damage and enhance oxygenation and blood 

flow. Aberrant arterial levels have repeatedly been shown to be associated with worse outcome 

after cardiac arrest, but the effects may depend on degree and duration of the (concurrent) 

exposure (5-14). Recently, a large cohort study was performed in 125 intensive care units (ICUs) 

in Australia and New Zealand, which showed that abnormal concentrations of arterial carbon 

dioxide (PaCO
2
) were common after cardiac arrest (15). Compared with normocapnia, hypocapnia 

was independently associated with worse clinical outcomes, whereas hypercapnia was associated 

with a greater likelihood of good outcome. The results were reproduced in a smaller cohort (16) 

and are supported by pediatric (17) and experimental research (18-20). However, ventilation and 

oxygenation are closely related and effects of PaCO
2
 may not be independent from arterial oxygen 

levels (PaO
2
). In this study, we aimed to investigate the separate and combined effects of both 

parameters in a multicenter cohort of patients admitted to Dutch ICUs after cardiac arrest.

M E T H O D S

Data collection

Analyses were performed on patient data retrieved from 82 ICUs of teaching and non-teaching 

hospitals participating in the Dutch National Intensive Care Evaluation (NICE) registry between 

2007 and 2012. The NICE registry is a high quality ICU database, which is subject to multiple quality 

checks and local audits in accordance with applicable research and ethical protocols (21). In brief, 

the registry contains all clinical data required to calculate mortality risk predictions according to, 

among others, the Acute Physiology and Chronic Health Evaluation (APACHE) IV for all consecutive 

ICU patients. The registry does not contain variables determining the cause and circumstances of 

the cardiac arrest and resuscitation. For the analyses, data obtained from routine care and without 

patient identifying information was used and consent was therefore not needed according to 

the Dutch Personal Data Protection Act.

In 2012, approximately 90% of all Dutch ICUs recorded the data for their patients in the registry. In 

accordance with the previously conducted study by Schneider et al. (15), all adult patients admitted 

after out-of-hospital cardiac arrest were included. Abstracted data included demographics, 

comorbidities, arterial blood gas parameters, diagnostic and physiologic information, admission 

source and illness severity score by means of the APACHE IV.

Data extraction

Adult patients admitted to the ICU after out-of-hospital cardiac arrest and cardiopulmonary 

resuscitation, whom were mechanically ventilated at any moment in the first 24 hours of admission, 
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were included. We excluded readmissions, trauma patients, nonventilated patients and records not 

meeting APACHE IV criteria.

As part of the NICE data collection, arterial blood gas (ABG) parameters that were associated 

with the lowest PaO
2
 to FiO

2
 ratio in the first 24h after admission were automatically extracted and 

subsequently used for classification of patients. The APACHE IV score was recalculated (AP4-adj) by 

standardizing the PaCO
2
 and PaO

2
 to fixed normal values (40 mmHg and 80 mmHg, respectively) in 

order to prevent overadjustment of these variables in the multivariate models.

Statistical analysis

Univariate and multivariate logistic generalized estimating equation (GEE) regression models, which 

account for potential correlation of outcome within ICUs, were used to examine the relationship 

between the primary outcome (hospital mortality) and either PaCO
2
 or PaO

2
. The relationship 

of PaCO
2
 and PaO

2
 with mortality were plotted in order to inspect the dose-response curve. 

Considering the nonlinear relationships, the associations were analyzed by modeling each of 

PaCO
2
 and PaO

2
 as a restricted cubic spline and separately in categorized groups (22). PaCO

2
 was 

categorized in three groups, using conventional thresholds (normocapnia: 35-45 mmHg). PaO
2
 

was categorized according to thresholds from previous studies (normoxia: 60-300 mmHg) (5, 7-9, 

23, 24). The individual, joint and interaction effects of two-sided derangements were separately 

investigated, as suggested for cohort studies (25). For a further understanding of the dose-

response relationship in multivariate models, PaO
2
 categories were also reanalysed with alternative 

thresholds derived from observation percentiles or previously used targets (5, 7, 8, 26). Variables 

extracted from the first 24 hours of admission were considered for the multivariate etiological 

model based on clinical relevance and in accordance with a previously used model (15). Considered 

covariates were introduced separately to the univariate models in order to estimate the unadjusted 

effect and included age, gender, AP4-adj, year of admission, admission source, therapeutic 

hypothermia and lowest glucose as a possible proxy-marker of less attentive care (24). Covariates 

were subsequently identified as confounders for the outcome using the 10% change-in-estimate 

method (27). Hence, the final multivariate GEE models consisted of age, lowest glucose, AP4-adj 

and either PaCO
2
 or PaO

2
. Collinearity among the covariates was inspected by estimating Pearson or 

Spearman correlation coefficients as appropriate. Routine temperature correction of arterial blood 

gas results is uncommon in Dutch ICUs and was performed according to the participating site’s 

practice. To account for multiple testing, the statistical significance level for the P-value was set  

at 0.01.

All analyses were conducted using SPSS version 21 (IBM Corp, Armonk, NY, USA) and R version 

3.0.1 (R Foundation for Statistical Computing, Vienna, Austria).

R E S U LT S

Data from 6,496 out-of-hospital cardiac arrest patients and 82 hospitals were extracted from 

the NICE registry and screened for enrollment (Supplemental figure 1). The main reasons for 

exclusion were no mechanical ventilation (n=196), missing valid ABG data (n=379) and not fulfilling 

APACHE IV criteria (n=314).
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Descriptive characteristics of the 5,258 included patients are summarized in Table 1. The median 

age was 66 (IQR 56-76) and patients were predominantly male (69.6%). Median PaCO
2
 was 42 mmHg 

(IQR 36-49) and median PaO
2
 was 92 mmHg (IQR 75-124). Of all patients, 21.6% were classified as 

hypocapnic, 43.5% as normocapnic and 34.9% as hypercapnic. Patients were further classified as 

hypoxic (8%), normoxic (89.3%) or hyperoxic (2.7%). The majority of patients (87.4%) were admitted 

to the ICU from the emergency room of the same hospital. The unadjusted mean APACHE IV score 

was 117.3, with the normocapnia and the normoxia groups showing the lowest mean (P<0.001). 

Groups were relatively balanced in terms of admission source, comorbidities, temperature, glucose 

and non-respiratory markers.

Unadjusted outcome

Table 2 shows the unadjusted mortality rates. Overall, 2,491 (47.4%) patients died in the ICU and 

2,833 (53.9%) died in the hospital. Hospital mortality was highest in the hypocapnia group (58.4%), 

compared with the hypercapnia (56.8%) and normocapnia (49.3%) group (P<0.001). Compared 

with the hyperoxia (57.6%) and normoxia (52.9%) groups, hospital mortality was higher (P<0.001) in 

the hypoxia group (63.6%).

In the univariate logistic regression model, PaCO
2
 was significantly associated with mortality 

(P<0.001). This model was improved when PaO
2
 was added (P<0.001). No interaction effect (arterial 

oxygen by arterial carbon dioxide concentration) on mortality was found (P=0.25). PaO
2
 was also 

univariately associated with hospital mortality (P<0.001).

Adjusted outcomes

Both PaCO
2
 and PaO

2
 showed a curvilinear U-shaped relationship with mortality in adjusted analyses 

(Fig. 1 and 2). 

Odds ratios from multivariate analyses are listed in Table 3. After adjustment for age, lowest 

glucose, AP4-adj and PaO
2
 (splines), hypocapnia showed a significant association with hospital 

mortality (P<0.001), whereas hypercapnia did not. When this model was reanalyzed without 

adjustment for PaO
2
,

 
the results were virtually unchanged (data not shown).

Adjusted for age, lowest glucose, AP4-adj and PaCO
2
 (splines), hypoxia but not hyperoxia was 

found to be associated with hospital mortality in comparison to normoxia (P<0.01). When this model 

was reanalyzed without adjustment for PaCO
2 

the results were not materially different (data not 

shown). When the model was reanalyzed with hyperoxia (>300 mmHg) as reference category, no 

effects on mortality were observed for various oxygenation ranges.

The individual and joint effect estimates for derangements (normal range vs. outside normal 

range) of both parameters are listed in Table 4. Aberrant levels of both PaCO
2
 and PaO

2
 were 

independently associated with hospital mortality (P<0.01). The estimate for the interaction term 

(presence of PaCO
2 

derangement by presence of PaO
2
 derangement) was not significant on 

a multiplicative scale (P=0.75).
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Figure 1. Adjusted probability of in-hospital death by arterial carbon dioxide levels. 

Loess smoothing curve predicted from logistic regression model adjusted for spline functions of age, lowest 

glucose, AP4-adj and PaO
2
. Grey zones represent 95% confidence intervals

Figure 2. Adjusted probability of in-hospital death by arterial oxygen levels. 

Loess smoothing curve predicted from logistic regression model adjusted for spline functions of age, lowest 

glucose, AP4-adj and PaCO
2
. Grey zones represent 95% confidence intervals
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D I S C U S S I O N

In accordance with previous studies, we found that early exposure to both hypo- and hypercapnia 

is common in ICU patients resuscitated from cardiac arrest (15, 16). In contrast, hypoxia and severe 

hyperoxia are uncommon findings early in the ICU stay of Dutch hospitals. Both PaCO
2
 and PaO

2
 had 

a U-shaped relationship with outcome and after adjustment for known confounders, hypocapnia 

and hypoxia were significantly associated with hospital mortality. Hyperoxia was not independently 

associated with higher mortality in comparison with various ranges for normoxia. However, this 

study may lack power to detect significant associations for severe arterial oxygen derangements 

considering the low prevalence in the present cohort.

Our adjusted mortality plots and the categorized results stress the importance of aberrant 

arterial levels after cardiac arrest, but rigid cut-offs for optimal ranges remain to be determined and 

Table 3. Adjusted associations between subgroups and hospital mortality

Group comparison Odds ratio (95% CI) P value

PaCO
2
 groups

 Hypocapnia vs. normocapnia 1.39 (1.18–1.63)a <0.001

 Hypercapnia vs. normocapnia 1.10 (0.95–1.27)a 0.20

 Hypercapnia vs. hypocapnia 0.79 (0.67–0.94)a <0.01

PaO
2
 groups

 Hypoxia vs. normoxia 1.34 (1.08–1.66)b <0.01

 Hyperoxia vs. normoxia 1.13 (0.81–1.57)b 0.46

 Hyperoxia vs. hypoxia 0.85 (0.58–1.24)b 0.39

Alternative PaO
2
 categoriesc

 55-80 vs. >300 mmHg 1.06 (0.76–1.50)b 0.72

 80-102 vs. >300 mmHg 0.90 (0.64–1.27)b 0.55

 102-300 vs. >300 mmHg 0.79 (0.56–1.11)b 0.17

Hypocapnia = PaCO
2
 <35 mmHg; normocapnia = PaCO

2
 35-45 mmHg; hypercapnia = PaCO

2
 >45 mmHg

Hypoxia = PaO
2
 <60 mmHg; normoxia = PaO

2
 60-300 mmHg; hyperoxia = PaO

2
 >300 mmHg 

a Multivariable analysis adjusted for age, lowest glucose, AP4-adj and PaO
2
 (splines)

b Multivariable analysis adjusted for age, lowest glucose, AP4-adj and PaCO
2
 (splines)

c Stratification based on thresholds from ARDSnet oxygenation target (55-80 mmHg), upper threshold of median 

cohort quintile (102 mmHg), and threshold from previous studies (300 mmHg)

Table 4. Associations between derangements and hospital mortality

Variable

Unadjusted odds ratio 

(95% CI)

Adjusted odds ratio 

(95% CI) P value

PaCO
2
 derangement vs. normocapnia 1.38 (1.24–1.54) 1.21 (1.07–1.36)a 0.003

PaO
2 
derangement vs. normoxia 1.45 (1.21–1.74) 1.27 (1.05–1.54)b 0.01

Interaction term - 1.07 (0.71–1.62) 0.75

PaCO
2
 derangement = PaCO

2
 <35 or PaCO

2
 >45 mmHg; normocapnia = PaCO

2
 35-45 mmHg

PaO
2
 derangement = PaO

2
 <60 or PaO

2
 >300 mmHg; normoxia = PaO

2
 60-300 mmHg

a Multivariable analysis adjusted for age, lowest glucose, AP4-adj and PaO
2
 (splines)

b Multivariable analysis adjusted for age, lowest glucose, AP4-adj and PaCO
2
 (splines)
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validated. Increasing mortality rates may be skewed towards extreme PaO
2
 levels in the early phase 

after cardiac arrest. In line, PaCO
2
 levels between 40 and 45 mmHg appear to be favorable shortly 

after ICU admission. The complex U-shape of the survival curves for both parameters may explain 

the heterogeneity in previously observed associations (14). It shows that unfavorable effects cannot 

be consistently captured when the results are stratified by groups based on arbitrary thresholds. 

Indeed, studies assessing arterial hyperoxia with lower thresholds usually failed to show significant 

effects on outcome, whereas higher risks were observed with substantially higher upper limits (5-9). 

The current findings validate the recent calls for caution with hyperoxia in cardiac arrest patients 

only to a limited extent. The prevalence in this cohort shows that hypoxia and hyperoxia are not 

a common concern shortly after cardiac arrest patients are admitted to Dutch ICUs. In the analyses 

of those conditions, the relatively small number of exposed patients increases the probability of 

type 2 errors. Associations are therefore more likely to be consistent with increasing statistical 

power in the studied subgroups. Moreover, reanalyzing the adjusted effects of oxygenation based 

on quintiles did not detect a significant association with mortality (data not shown). Hypothesizing 

that physicians would avoid hypoxia most attentively in the most critically ill patients, hyperoxia 

could be an indirect marker of illness severity or responsive care, and could thereby reflect worse 

outcome. Accordingly, hypoxia and hypocapnia may also be markers of less attentive care or 

prehospital injury.

The absence of a significant interaction effect between PaCO
2
 and PaO

2
 suggests that it is mainly 

the effect of the individual variables that influences mortality in our model than the absolute effect 

by the interaction between the two variables. The effect of PaO
2
 on hospital mortality is therefore 

not likely to differ significantly across strata of PaCO
2
, or vice versa. Further, the effect size did not 

significantly depend on the concurrent presence of aberrant arterial carbon dioxide and arterial 

oxygen levels. Conditions, in which both parameters are concurrently and strongly modified may 

therefore not synergistically increase the risk. However, the univariate associations of PaCO
2
 and 

PaO
2
 were subtly altered when adjusted for each other and both parameters should therefore 

judiciously be considered as possible confounders.

For our analyses, we were restricted to the variables that were collected as part of the NICE 

registry. Our database does not contain prehospital variables, nor does it include all ABG samples 

per admission, but only a single measurement associated with the worst oxygenation in the first 24 

hours. Although this method has not previously been shown to be inferior, the selected data
 
may 

not be the most representative data over the total ICU stay and may therefore misclassify patients. In 

addition, selecting either the first, worst or highest value from arterial blood gas sampling emerges 

as an essential methodological issue for the intended analyses (28). The first measured sample 

may reflect pre-ICU treatment, including oxygen administration in the ambulance and emergency 

department. Early oxygen administration can influence oxidative metabolism, respiratory markers, 

vasoconstrictive status and blood flow (29-31), and may thus be an important predictor of outcome. 

In fact, both highest and lowest systolic blood pressures were significantly higher in the hyperoxia 

groups. Further, hyperoxia frequently coincides with hyperventilation and concurrent hypocapnia 

(32). Interestingly, systemic blood pressures were very similar across the PaCO
2
 subgroups in this 

cohort. PaCO
2
 could yet be an important mediator in vascular effects, cardiopulmonary resuscitation 
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and cerebral perfusion (13, 33). In view of that, the association between hypocapnia and mortality 

may be explained by cerebral vasoconstriction, whereas hypercapnia may be less harmful due to 

increased peripheral tissue oxygenation (34-38).

Although our findings are observational and do not necessarily imply causality, the present 

results are supported by previous results (5, 15). Our findings regarding hyperoxia are in line with 

several recent studies (8, 23, 39), even though conflicting results have been documented (6, 7, 

24, 40). Parts of the heterogeneity in previous findings may be attributed to the adjustment for 

PaCO
2
. Pure oxygen therapy after cardiac arrest has previously been shown to worsen neurological 

outcome in animal models (41) and exposure to hypocapnia and hypercapnia after ROSC has been 

associated with poor neurological function at hospital discharge (16). However, the effects of PaO
2
 

targets on neurological recovery of critically ill patients are still uncertain. 

In contrast to the previous study by Schneider et al. (15), both the unadjusted and adjusted 

association between mortality and hypocapnia were statistically significant. Specific study 

differences may be explained by population and methodological differences. Our multivariate 

model differed slightly and there was less dispersion of the carbon dioxide concentrations in our 

data. Other notable differences between both studies include the substantially lower median PaO
2
 

(92 vs. 106 mmHg), mean FiO
2
 (58 vs. 71%), and marginally lower mean PaCO

2
 (44 vs. 46 mmHg). 

Furthermore, the vast majority of patients in our cohort (80 vs. 40%) reached a temperature lower 

than 34°C during the first 24 hours of ICU admission. Under these conditions, PaCO
2
 and PaO

2
 

progressively decrease with decreasing body temperature and the occurrence of hypocapnia and 

hypoxia may be underestimated with uncorrected ABG levels. However, temperature correction of 

ABG measurements is ambiguous and was not routinely performed in our study, or in the study by 

Schneider et al.

In order to consistently assess the relationship between risk factors and outcome, it is 

important to re-evaluate previously established associations in different populations using robust 

methodology. The modified methodology of the present study provides further insights in 

the independent and combined effects of PaCO
2
 and PaO

2
 and accounts for clustering by hospital, 

interaction effects and model variances. Still, residual confounding by prehospital and Utstein 

variables cannot be ruled out, and derangements may not be isolated risk factors for mortality. 

C O N C L U S I O N S

In this multicenter cohort study, we have studied the survival probability inferred from different 

levels of PaCO
2
 and PaO

2
 in post cardiac arrest patients. Most effects were attenuated after 

adjustment for identified confounders, but hypocapnia and hypoxia were independently associated 

with hospital mortality. The close relationship between both parameters argues for a concurrent 

assessment of the effects and further evaluation of target ranges is warranted.
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A B S T R AC T

Objective

Oxygen is vital during critical illness but hyperoxia may harm patients. Our aim was to systematically 

evaluate the methodology and findings of cohort studies investigating the effects of hyperoxia in 

critically ill adults.

Data Source

A meta-analysis and meta-regression analysis of cohort studies published between 2008 and 2015 

was conducted. Electronic databases of MEDLINE, EMBASE and Web of Science were systematically 

searched for the keywords hyperoxia and mortality or outcome.

Study Selection

Publications assessing the effect of arterial hyperoxia on outcome in critically ill adults (≥18 years) 

admitted to critical care units were eligible. We excluded studies in patients with chronic obstructive 

pulmonary disease (COPD), extracorporeal life support or hyperbaric oxygen therapy and animal 

studies. Due to a lack of data, no studies dedicated to patients with acute lung injury, sepsis, shock 

or multiple trauma could be included.

Data Extraction

Studies were included independent of admission diagnosis and definition of hyperoxia. The primary 

outcome measure was in-hospital mortality and results were stratified for relevant subgroups 

(cardiac arrest, traumatic brain injury, stroke, post cardiac surgery and any mechanical ventilation). 

The effects of arterial oxygenation on functional outcome, long-term mortality and discharge 

parameters were studied as secondary outcomes.

Data Synthesis

Twenty-four studies were included of which five studies were only for a subset of the analyses. 

Nineteen studies were pooled for meta-analyses and showed that arterial hyperoxia during 

admission increases hospital mortality: adjusted odds ratio 1.21 [95% CI 1.08–1.37] (P=0.001). 

Functional outcome measures were diverse and generally showed a more favorable outcome for 

normoxia.

Conclusions

In various subsets of critically ill patients, arterial hyperoxia was associated with poor hospital 

outcome. Considering the substantial heterogeneity of included studies and the lack of a clinical 

definition, more evidence is needed to provide optimal oxygen targets to critical care physicians.
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I N T R O D U C T I O N

Oxygen supply is part of the routine treatment in critically ill patients and one of the most effective 

lifesaving strategies in emergency situations. During acute conditions such as cardiac arrest, 

myocardial ischemia, traumatic brain injury and stroke, oxygen is typically administered in a liberal 

manner in the pre-hospital setting. When patients survive the initial phase of such life-threatening 

diseases, the majority is admitted to the intensive care unit (ICU), mechanically ventilated and 

supported with oxygen. During ICU stay, applied fractions of oxygen (FiO
2
) typically exceed 

accustomed concentrations of ambient air and critically ill patients often achieve supranormal 

arterial oxygen levels (PaO
2
) in the first 24 hours of admission (1, 2). In this setting, hyperoxia may 

compensate and prevent tissue hypoxia by promoting oxygen delivery to the affected organs. 

However, arterial hyperoxia has also been shown to induce vasoconstriction and reduce cardiac 

output which may impair blood flow to the organs at risk (3-5). In addition, hyperoxia facilitates 

a complex pro-inflammatory response and has been associated with cell injury by reactive oxygen 

species (ROS) (6, 7). Accordingly, oxygen therapy yields a delicate balance between benefit and 

harm, depending on dose, duration and underlying diseases.

In critically ill patients, the harmful effects are accentuated and may eventually prevail, 

considering the extended duration of supplemental oxygen and the patient’s susceptibility for 

inflammation and cardiovascular instability. In recent years, an increasing number of studies have 

investigated the association between arterial hyperoxia and (functional) outcome in these patients. 

The purpose of this review was to perform a meta-analysis and meta-regression of cohort studies 

comparing hyperoxia to normoxia in critically ill adults.

M AT E R I A L S  A N D  M E T H O D S

This study was reported in accordance with the Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) guidelines for systematic reviews and meta-analyses (8). Eligibility 

criteria included observational cohort studies assessing the effect of arterial hyperoxia on outcome 

in critically ill adults (≥18 years) admitted to critical care facilities (e.g. ICU, CCU). 

Data Sources and Searches

After consultation of a librarian, the electronic databases of MEDLINE (1962-2015), EMBASE (1970-

2014) and Web of Science (1970-2014) were systematically searched by combining the key words 

and MeSH headings hyperoxia and mortality or outcome. Related synonyms, alternatives and plural 

(e.g. hyperoxaemia, arterial oxygen tension, oxygen supply, outcome, survival, fatality) were also 

considered. The main search was performed in July 2014 and updated in January 2015. In addition, 

personal records and reference lists of relevant articles were screened. The full electronic search 

string is shown in the supplemental data (Supplemental Digital Content 1).

Study Selection

Studies were independently screened based on title and abstract by two authors (HH, MR) and 

differences were resolved by consensus. We excluded studies in chronic obstructive pulmonary 
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disease (COPD) patients, patients on extracorporeal life support and patients undergoing 

surgery at the time of oxygen sampling. Data from studies with hyperbaric oxygen therapy were  

not considered.

We retrieved full text of potentially eligible articles. Data from full-text articles were preferred 

in case of duplicate reports with concurrent data in conference abstracts. Published conference 

abstracts were only included when requisite data for quality assessment of the database was 

available. No language restrictions were applied. As no formal definition for hyperoxia exists, we 

included studies independent of admission diagnosis and definition of arterial hyperoxia.

Data Extraction and Quality Assessment

Relevant data were extracted using a standardized data abstraction sheet. The primary outcome 

measure was in-hospital mortality. The effects of arterial oxygenation on functional outcomes, 

long-term mortality and discharge parameters were also noted as secondary outcomes. Predictive 

scores, including the Cerebral Performance Category (CPC), Glasgow Coma Scale (GCS) and 

the modified Rankin Scale (mRS), were used as a surrogate for functional outcome. Corresponding 

authors of included articles were contacted or data from prior analyses (9) were used in case of 

missing requisite data.

Quality scoring for observational studies is controversial and may lack validity and value (10). 

Therefore, risk of bias was estimated according to the Newcastle-Ottawa quality assessment scale 

(11), but no summary score for study quality was adopted. Furthermore, the studies substantially 

differed in methodology in terms of study population and definition of hyperoxia. Hence, results 

were stratified and if possible analyzed separately for subgroups, hyperoxia thresholds, selection of 

PaO
2
 measurement and secondary outcomes.

Data Synthesis and Analysis

Effect estimates were primarily presented as adjusted odds ratios. Unadjusted odds ratios were 

used in absence of adjusted odds ratios, and for formal meta-analysis of the data. Odds ratios with 

95% confidence intervals were pooled in a random effects model according to Mantel and Haenszel 

for crude effects and inverse variance for adjusted effects.

Heterogeneity was assessed, using the I2 statistics, Chi2 test, Tau2 and by visualization in 

a funnel plot, respectively. Small study effect was visually estimated by symmetry in funnel plots. 

The subgroup of any mechanically ventilated patients was excluded when analyzing the crude 

effects in view of the heterogeneous illness severity of this population (12, 13). In case of overlapping 

study populations (14, 15), individuals were only counted when included in a non-overlapping time 

period. As a random effects model was used and in view of the model’s reliability, pooled subgroup 

estimates were only reported in the results when five or more studies were included. In accordance, 

the I2 statistics for subgroup analyses were omitted in case of few studies in order to avoid 

overestimation of this measure. For purposes of exploring heterogeneity, adjusted odds ratios 

were also graphically presented stratified by admission diagnosis, selection of PaO
2
 measurement 

and secondary outcomes. The effects of hyperoxia by threshold were, independent of admission 

diagnosis, analyzed using a meta-regression framework (16). Mixed effects models were performed 
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with subgroup, threshold, and timing and selection of the PaO
2
 measurement as predictors for 

outcome. In these moderator analyses, threshold was categorized according to the primary PaO
2
 

cut-off used for defining hyperoxia. Subgroups were categorized as the subsets of critically ill 

patients. The selection of the PaO
2
 measurement was categorized as first, worst, highest or mean 

and the timing was defined as measurement within or beyond 24 hours of admission.

Analyses were conducted with RevMan 5.3 (Nordic Cochrane Centre, Cochrane Collaboration, 

Copenhagen, Denmark) and R version 3.1.2 (R Foundation for Statistical Computing, Vienna, Austria) 

using RStudio version 0.98.1028 (RStudio Inc, Boston, MA).

R E S U LT S

Search Results and Study Characteristics

Our search strategy resulted in 1609 studies considered for inclusion. After screening of titles and 

abstracts 32 full-text articles were assessed for eligibility (Fig. 1). 

In total, 24 cohort studies were included, of which five studies were included only for specific 

subset analyses or for secondary outcomes (Table 1). The included articles were published between 

2008 and 2015 and data collection was conducted between 1987 and 2012. In total, twelve articles 

included cardiac arrest patients, five included patients with traumatic brain injury (TBI), three 

included stroke patients, one included post cardiac surgery patients, and the remaining two studies 

included mechanically ventilated ICU patients, independent of admission diagnosis. The estimated 

risk of bias of included studies was moderately low. Most studies used large and high quality 

national databases and adjusted the data for severity of illness. Two studies did not adjust the data 

for potential confounders (17, 18) and two studies included cardiac arrest patients only when treated 

with therapeutic hypothermia (19, 20).

Qualitative Data Synthesis

Adjusted odds ratios for the primary outcome ranged from 0.11 to 2.00 (Supplemental Table 1, 

Supplemental Digital Content 2).

Frequent confounders included in multivariate analysis were age, sex, illness severity, and 

subgroup specific confounders such as neurological or cardiac parameters. The most commonly 

used threshold to define hyperoxia was 300 mmHg (range 85–487 mmHg), although cohort 

specific thresholds based on data distribution across percentiles were also frequently chosen. 

The selected PaO
2
 used for classification of patients were mainly based on measurements in the first 

24 hours of admission in the hospital or ICU. Some studies used longer time frames (20, 29, 34) and/

or estimated hyperoxia exposure from more than one blood gas sample (20, 21, 27, 30, 34). In most 

studies, the reference range for calculating odds ratios was chosen as self-defined normoxia range. 

In a few studies hyperoxia was compared to non-hyperoxia (17, 26).

Some studies were not pooled in the meta-analyzed models, due to missing requisite crude (12, 

13, 18, 21, 25-27) and/or adjusted data (17, 34) for the primary outcome. One study (24) was excluded 

for meta-analysis in order to prevent duplicate data synthesis as this study used a secondary analysis 

of another included cohort (23).
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Quantitative Data Synthesis

Meta-analysis of sixteen studies covering 49,389 patients showed a crude odds ratio of 1.38 [95% 

CI 1.18–1.63] (P<0.0001) for in-hospital mortality, independent of admission diagnosis (Fig. 2). This 

corresponds with a risk ratio of 1.18 [95% CI 1.08–1.30] and a risk difference of 0.06 [95% CI -0.02–

0.13]. The overall effects were statistically significant in subgroups of cardiac arrest (P=0.001) and 

ischemic stroke (P=0.03), but not for TBI (P=0.32), subarachnoid (P=0.47), intracerebral hemorrhage 

(P=0.09) and post cardiac surgery (P=0.19). Heterogeneity among all studies was substantial  

(I2 76%), but unimportant among subgroups (I2 0%).

Meta-analysis of adjusted estimates derived from seventeen studies showed an odds ratio of 

1.21 [95% CI 1.08–1.37] (P=0.001) (Fig. 3). The tests for overall effect was only statistically significant 

for cardiac arrest patients (P=0.005). Again, heterogeneity among all studies was considerable  

(I2 80%), and moderate among subgroups (I2 41%).

Figure 1. Flow diagram of study selection for the systematic review.

COPD, chronic obstructive pulmonary disease.
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Adjusted odds ratios for mechanically ventilated patients (n=2 studies) were 1.00 [95% CI 0.94–

1.07] and 1.23 [95% CI 1.13–1.34]. In cardiac arrest patients, the adjusted odds ratios (n=6 studies) 

ranged from 0.60 to 1.80, with a pooled estimate of 1.31 [95% CI 1.09–1.57] (I2 63%). In patients with 

Figure 2. Forest plot for the crude associations between arterial hyperoxia and hospital mortality by subsets of 

critical illness. 

The pooled odds ratios were calculated using a random-effects model. Weight refers to the contribution of 

each study to the pooled estimates. CI, confidence interval, M-H, Mantel-Haenszel.
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Figure 3. Forest plot for the adjusted associations between arterial hyperoxia and hospital mortality by subsets 

of critical illness. 

The pooled odds ratios were calculated using a random-effects model. Weight refers to the contribution of 

each study to the pooled estimates. CI, confidence interval, IV, inverse variance.

TBI, adjusted odds ratios (n=5 studies) ranged from 0.11 to 2.00, with a pooled estimate of 1.26 [95% 

CI 0.85–1.88] (I2 78%). Stroke patients were combined and adjusted odds ratios (n=2 studies) were 

0.87 [95% CI 0.57–1.32] and 1.22 [95% CI 1.04–1.45]. In post cardiac surgery patients, the odds ratio 

(n=1) was 0.9 [95% CI 0.7–1.1].

The crude (Figure 4a) and adjusted (Figure 4b) effect estimates increased with increasing 

thresholds used for defining arterial hyperoxia (P=0.007 and P=0.22, respectively) and showed 

a significant difference between threshold categories (P<0.00001). 



A
SSO

C
IA

TIO
N

 BETW
EEN

 A
RTERIA

L H
Y

PERO
X

IA
 A

N
D

 O
U

TC
O

M
E IN

 SU
BSETS O

F C
RITIC

A
L ILLN

ESS

6

103

Figure 4. Meta-regression analysis for the crude (a) and adjusted (b) effects on hospital mortality by  

PaO
2
 threshold. 

Scatters indicate odds ratios for in-hospital mortality on a logarithmic scale, according to the hyperoxia 

threshold that was used as primary cutoff in the indicated studies. The point sizes are inversely proportional 

to the SEs of the individual studies (i.e., larger/more precise studies are shown as larger circles). The predicted 

effect sizes are modeled in a linear mixed-effects model with corresponding 95% CI boundaries and 

a β-coefficient with p value for the meta-regression line.
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Figure 5. Forest plot for the adjusted effects of arterial hyperoxia by selection of PaO
2
 measurements. 

Subgroups sorted in ascending order by timing and selection of PaO
2
 measurements. Studies sorted 

alphabetically by name of first author.

Figure 5 displays the effects stratified for selection of the PaO
2
 measurement and also showed 

significant subgroup differences (P<0.001). When modeling the crude effects, subgroup (P=0.001), 

threshold (P=0.01) and timing and selection of the PaO
2
 measurement (P=0.01 and P=0.003, 

respectively) were independent moderators of the outcome. The individual tests of moderators 

were not significant when modeling the adjusted estimates.

The symmetrical appearance of the funnel plots (Supplemental Fig. 1, Supplemental Digital 

Content 3 and Supplemental Fig. 2, Supplemental Digital Content 4) indicates that substantial 

publication bias is unlikely. Also, studies finding either statistically significant or non-significant 
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Figure 6. Forest plot for the adjusted effects of arterial hyperoxia by secondary outcomes. 

CPC, Cerebral Performance Category, GCS, Glasgow Coma Scale, mRS, modified Rankin Scale.

effects were almost equally published and had a similar mean publication delay (129 vs. 121 days, 

respectively, P=0.68) (supplemental data, Supplemental Digital Content 1).

Secondary outcomes were diverse and results are listed in the Supplemental Table 2 

(Supplemental Digital Content 5). Significant associations of adjusted analyses were found for 

CPC≥3 (cardiac arrest), GCS 3-8 (TBI), mRS 4-8 and delayed cerebral ischemia (stroke) (Fig. 6). 

Arterial hyperoxia was associated with hospital stay shorter than 7 days in TBI patients, although 

this association did not reach statistical significance for ICU stay in the same cohort (30), nor in 
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a prospective cohort of cardiac arrest patients (17). ICU mortality, 6 month-mortality and failure to 

discharge home were not significantly associated with arterial hyperoxia (17, 26, 28, 32, 36).

D I S C U S S I O N

This systematic review identified nineteen observational cohort studies investigating the crude 

and/or adjusted effects of arterial hyperoxia on hospital mortality in major subgroups of critically 

ill patients. Meta-analysis of pooled data from all patients highlighted that arterial hyperoxia was 

associated with hospital mortality. After adjustment for confounders, this association was also 

established in patients admitted to critical care units following cardiac arrest, but this effect was not 

found in other subgroups. Functional outcome measures were diverse and showed a signal generally 

favoring normoxia. Other secondary outcomes were not associated with arterial hyperoxia. 

However, considerable heterogeneity and the observational character of included studies hamper 

profound conclusions and causal inferences.

The observed heterogeneity warrants cautious interpretation of pooled results. Our findings 

may be substantially influenced by the used methodology of the included studies and stress 

the importance of the used threshold, reference range, confounders, summary statistic, subgroup 

and outcome measure. The definition of hyperoxia and its reference range may be the most 

important factors determining the effect size. Indeed, increasing PaO
2
 levels were more strongly 

associated with poor outcome, but this observation may have been attenuated by detrimental 

effects of hypoxia, in cases where this subgroup was not excluded from the reference group. 

Moreover, the prevalence of hyperoxia was highly dependent on the used threshold and also 

addresses the relevance of the risks of severe hyperoxia in different cohorts. The timing and 

selection of the PaO
2
 measurement chosen to reflect arterial oxygenation emerged as another key 

determinant of the magnitude of the association. The choice of this summary statistic for defining 

hyperoxia can be essential in determining the relation between oxygenation and the outcome as 

oxygen toxicity may manifest during prolonged exposure, while direct effects may also be crucial 

in the acute and pre-hospital setting. Indeed, hyperoxia in the first arterial blood gas was more 

consistently associated with poor outcome than averaged oxygen levels, which may in fact not 

be a reliable marker of the total hyperoxic exposure during ICU stay. These findings suggest that 

oxygen may have both a time and dose dependent effect in which early (first samples) and severe 

hyperoxia are specifically hazardous. However, we cannot rule out that hyperoxia can also be 

harmful during prolonged exposure and when PaO
2
 values are moderately higher than normal. 

The study by Asher et al. (29) contradicts most other findings and is likely to be an outlier as 

a result of its small sample size which is also reflected in the funnel plots and by its weight in meta-

analyses. Further, it is the only study to use the highest PaO
2
 in the first 72 hours of admission, 

which may represent other oxygenation and ventilation strategies during this phase of admission 

than other summary statistics. Despite the addressed differences between all included studies, 

the direction of the pooled effects pertains, while the magnitude and significance level of individual 

results may be partially explained by methodological issues.

The following study strengths and limitations should be considered. First, well established 

confounders for outcome after ICU stay (e.g. illness severity scores), cardiac arrest (e.g. initial 
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rhythm), TBI and stroke (e.g. Glasgow Coma Scale, Injury Severity Score), were assessed in some 

but not all included studies and may substantially determine the effect size. Moreover, authors 

should judiciously consider to recalculate illness severity scores when included as a confounder 

in multivariate analyses. These scores may contain the same PaO
2
 derived from the first 24 hours 

of admission as the PaO
2
 that is used for defining hyperoxia as outcome predictor. A recalculated 

score, omitting or standardizing oxygen components, may therefore avoid overadjustment in such 

analyses. In line, FiO
2
 levels are closely related to PaO

2
 levels, included in illness severity scores and 

may accordingly inflict multicollinearity.

Unmeasured bias may impose a further limitation inherent to analyses in observational studies. 

From the funnel plots, we cannot fully rule out that our findings are impacted by publication bias. 

On the other hand, the statistical significance level of the results did not appear to have an effect 

on publication delay and we also included data from a conference abstract study where database 

quality was previously assessed (37). Partially overlapping populations (14, 15, 26) (23, 24) in databases 

from included studies was accounted for by including only the main study in meta-analysis and by 

presenting the data as a subsample, where appropriate.

Experimental data from animal models have recently been summarized and showed an 

association between 100% oxygen therapy and worse neurological outcome following cardiac arrest 

(38). In accordance, aggregated data from observational studies focusing on cardiac arrest patients 

found a correlation between hyperoxia and hospital mortality (9). A recent meta-analysis found 

insufficient evidence regarding the safety of arterial hyperoxia, as the results may be impacted by 

methodological limitations (39). The current analyses extend these observations by including and 

aggregating all subgroups including post-operative cases, various secondary outcomes, novel data 

from recent cohort studies and by further exploring the impact of the definition of hyperoxia. Still, 

our findings may not depict a universal effect for all ICU patients and cannot be directly extrapolated 

to other subgroups.

Current guidelines aim at PaO
2
 levels around 55 to 80 mmHg, but this target range was based 

on expert-consensus more than on evidence from clinical studies (40, 41). Conflicting findings 

from previous studies further impede the constitution of compelling clinical recommendations. 

Consequently, attitudes regarding the management of oxygen administration vary considerably 

and clinicians often consider hyperoxia acceptable as long as the FiO
2
 is relatively low (1, 42). This 

may also be triggered by the double-edged nature of oxygen, which similarly urges strict prevention 

of hypoxia and its inherent hazards (12, 13). Furthermore, carbon dioxide may importantly mediate 

the effects of oxygen, although direct effects are assumed to be small (43). Hyperoxia may 

alternatively be a non-causal marker of disease severity as clinicians may intuitively treat the most 

severely ill patients with higher FiO
2
 or PEEP levels in attempts to compensate for tissue hypoxia. 

Although this is less likely as the association between hyperoxia and mortality has also been shown 

to persist after adjustment for severity scores and FiO
2
, future prospective intervention trials are 

needed to definitively study the effects of hyperoxia on outcome.
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C O N C L U S I O N S

This systematic review has shown that, despite methodological limitations, arterial hyperoxia is 

associated with poor hospital outcome in various subsets of critically ill patients. The harmful effects 

depend on hyperoxic degree and may be more pertinent to certain subgroups at specific moments 

of admission. Taken together, the effect estimates favoring normoxia were quite consistent 

throughout our analyses, but were not universal for all subsets and secondary outcomes. In 

the absence of studies specifically addressing the effects in other important critical care subgroups, 

including acute lung injury, sepsis, shock and multiple trauma, the vast majority of the population 

in the current analysis consisted of patients with mechanical ventilation, cardiac arrest, traumatic 

brain injury and stroke. Furthermore, the impact of pursuing normoxia on the incidence of hypoxic 

episodes is unknown and the long-term effects of conservative oxygen therapy are still to be 

assessed in large cohorts. Given the lack of robust guidelines, more evidence is needed to provide 

tailored oxygen targets for critically ill patients.
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We read the article by Helmerhorst et al. (1) with interest. Hyperoxia has been studied in emergency 

situations, such as cardiac arrest (CA), myocardial ischemia, traumatic brain injury, and stroke. 

The potential harm of hyperoxia due to the oxygen free radical formation has been discussed in 

several studies. Because of the diversity of diseases and the different definitions of hyperoxia, these 

conclusions remain contradictory.

In this review, seven studies about CA have been pooled to investigate the association between 

hyperoxia and mortality. Because of the diversity of methodology, definitions of hyperoxia, 

reference range, and other confounders, the heterogeneity was significant (I2 = 66%), which 

warrants cautious interpretation of the pooled results.

In a sensitivity analysis of this pooled outcome, we found that when the study by Bellomo et 

al. (2) was excluded, the conclusion became insignificant (odds ratio, 1.38; 95% CI, 0.95–2.01;  

I2 = 70%) (Fig. 1). 

This may be explained that Bellomo et al. (2) chose the lowest PaO
2
 level or the PaO

2
 associated 

with the arterial blood gas with the highest alveolar-arterial gradient, which may lead to 

the underestimation of the proportion of hyperoxia. According to the conclusion of Kilgannon et al. 

(3), there was a dose-dependent association between mortality and PaO
2
 range, with a 24% increase 

in mortality risk for every 100 mmHg increase in PaO
2
, which means that in the study by Bellomo et 

al. (2), the mortality associated with hyperoxia may be overestimated.

Besides, in the study by Kilgannon et al. (4) based on IMPACT database, a large critical-care 

database of ICU at 120 U.S. hospitals initially developed by the Society of Critical Care Medicine, 

the first blood gas measurement in the ICU was used and found that hyperoxia (PaO
2
 of at least 300 

mmHg) was associated with increased mortality. This excluded the temporal effect of hyperoxia, 

which has been debated whether the use of blood gas value at a single time point was appropriate. 

In this sensitivity analysis, when the study by Kilgannon et al. (4) was excluded, the heterogeneity 

became insignificant, with I2 decreasing from 66% to 33%, which raised the question: Is it appropriate 

to include this study in this analysis? In the reanalysis of IMPACT database by Kilgannon et al. (3), 

they defined the exposure by the highest partial pressure of arterial oxygen over the first 24 hours 

Figure 1. Sensitivity analysis of association between hyperoxia and mortality (Bellomo et al (2) was excluded). 

M-H, Mantel-Haenszel.
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in the ICU, with the same inclusion and exclusion criteria of Kilgannon et al. (4). Because of different 

data acquisition time, the number of patients was slightly different. We extracted the mortality from 

Figure 1 in this article, with definition of hyperoxia as PaO
2
 of at least 300 mmHg, and reanalyzed in 

Review Manager 5.1.6. (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 

2011). The heterogeneity become insignificant (I2 = 37%) (Fig. 2), and the sensitive analysis  

was stable.

Based on current studies, hyperoxia was associated with increased mortality in CA patients; 

because of the diversity definition of hyperoxia in these studies, the pooled results should be 

interpreted with caution.

Figure 2. Reanalysis of association between hyperoxia and mortality (Kilgannon et al (4) was replaced by 

Kilgannon et al (3)). M-H, Mantel-Haenszel.
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We thank Shen and Zhang (1) for their interest and thoughtful analyses regarding our work. Their 

sensitivity analyses provide valuable insights in the relationship between arterial hyperoxia and 

hospital mortality after cardiac arrest and further emphasize the importance of the used definition 

for arterial hyperoxia. As discussed in our study (2), we strongly agree that the pooled results must 

be interpreted with caution in view of the observed heterogeneity.

The selection of a single PaO
2
 yields considerable limitations and the time point at which 

the arterial blood gas was analysed may further lead to misinterpretation of the actual exposure 

to hyperoxia during ICU admission. Indeed, we showed that both timing and selection were 

independent moderators of the outcome when modeling the crude effects (2). Sensitivity analyses 

are useful alternatives to examine the impact of individual study results and methodology. 

The abstraction of arterial hyperoxia that was used in the studies by Bellomo et al. (3) and Kilgannon 

et al. (4) may indeed not be the most representative method, but the rationale for an eventual 

exclusion of these studies in analyses should also be carefully considered. 

First, similar methods using the first, lowest or worst PaO
2
 during admission were also 

frequently used in other cohorts and have not previously been shown to be inferior. Second, 

after exclusion of the study by Bellomo et al. (3), the recalculated pooled effect estimate reflects 

statistical insignificance by the strict use of statistical thresholds, but the absolute difference 

between the original estimate and the estimate in sensitivity analyses was actually marginal (odds 

ratio difference, 0.11) and showed a slight shift in magnitude yet not in direction. The shift in effect 

size should rather be interpreted as a loss of statistical power considering the size of the excluded 

cohort. This is also supported by the adjusted analyses, which may be used to overcome several 

other study limitations. When the study by Bellomo et al. (3) was excluded in sensitivity analyses using 

adjusted effect estimates, the pooled effects remained virtually unchanged (adjusted odds ratio, 

1.32; 95% CI, 1.05–1.66 vs adjusted odds ratio, 1.31; 95% CI, 1.09–1.57). It can be debated whether this 

study essentially overestimated the mortality. The authors have comprehensively stratified the risks 

by deciles of PaO
2
, whereas we selected only the reported risk estimate according to the primarily 

used threshold of hyperoxia (i.e., 300 mmHg). Their results have previously been compared with 

the Kilgannon studies, and other methodological differences may explain heterogeneity (5). It 

is yet interesting to note that the replacement of the original Kilgannon study data (4) by their 

secondary analysis reduces the heterogeneity, which may be attributed to the use of the highest 

PaO
2
 in concordance with the study by Janz et al. (6). Nonetheless, the recalculated pooled effect 

estimates did not materially differ, which may in fact not be overly surprising because the data were 

generated from a subsample of the same cohort.

Finally, the temporal effect of hyperoxia has not been adequately accounted for in most studies 

and is typically only estimated within the first 24 hours of admission. The exact impact over the total 

ICU admission remains unknown although we have initiated comprehensive analyses comparing 

different strategies for defining hyperoxia. Preliminary results of such analyses in a Dutch 

multicenter cohort of ICU patients suggest that all strategies differ substantially, and results should 

therefore always be viewed in light of the used definition for arterial hyperoxia.
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A B S T R AC T

Objective
Emerging evidence has shown the potential risks of arterial hyperoxia, but the lack of a clinical 

definition and methodological limitations hamper the interpretation and clinical relevance of 

previous studies. Our purpose was to evaluate previously used and newly constructed metrics of 

arterial hyperoxia and systematically assess their association with clinical outcomes in different 

subgroups in the intensive care unit (ICU).

Design

Observational cohort study

Setting

Three large tertiary care ICUs in the Netherlands

Patients

A total of 14,441 eligible ICU patients

Interventions

None

Measurements and Main Results
In total, 295,079 arterial blood gas (ABG) analyses, including the partial pressure of arterial oxygen 

(PaO
2
), between July 2011 and July 2014 were extracted from the patient data management system 

database. Data from all admissions with more than one PaO
2
 measurement were supplemented 

with anonymous demographic and admission and discharge data from the Dutch National Intensive 

Care Evaluation registry. Mild hyperoxia was defined as PaO
2
 between 120 and 200 mmHg; severe 

hyperoxia as PaO
2
 >200 mmHg. Characteristics of existing and newly constructed metrics for arterial 

hyperoxia were examined and the associations with hospital mortality (primary outcome), ICU 

mortality and ventilator-free days and alive at day 28 (VFDs) were retrospectively analyzed using 

regression models in different subgroups of patients.

Severe hyperoxia was associated with higher mortality rates and fewer VFDs in comparison 

to both mild hyperoxia and normoxia for all metrics except for the worst PaO
2
. Adjusted effect 

estimates for conditional mortality were larger for severe hyperoxia than for mild hyperoxia. This 

association was found both within and beyond the first 24 hours of admission and was consistent for 

large subgroups. The largest point estimates were found for the exposure identified by the average 

PaO
2
, closely followed by the median PaO

2
 and these estimates differed substantially between 

subsets. Time spent in hyperoxia showed a linear and positive relationship with hospital mortality.

Conclusions

Our results suggest that we should limit the PaO
2
 levels of critically ill patients within a safe 

range, as we do with other physiological variables. Analytical metrics of arterial hyperoxia should 

be judiciously considered when interpreting and comparing study results and future studies are 

needed to validate our findings in a randomized fashion design.
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I N T R O D U C T I O N

Oxygen therapy and arterial oxygenation play a vital role in the clinical course of patients in 

the intensive care unit (ICU). The effects of hypoxia are well established and are actively prevented 

in order to maintain physiological stability. In contrast, hyperoxia is frequently encountered in 

the ICU but generally accepted (1-3). In recent years, emerging evidence has shown the potential 

risks of arterial hyperoxia (4, 5), but observational studies failed to indisputably demonstrate 

its impact on clinical outcomes of critically ill patients (6-9). Most studies focus on hospital 

mortality of mechanically ventilated patients, but the lack of a clinical definition of hyperoxia and 

methodological limitations hamper the interpretation and clinical relevance of these studies (10). 

Importantly, it is unknown whether the partial pressure of arterial oxygen (PaO
2
) from a single 

arterial blood gas (ABG) measurement in the first 24 hours of admission reliably estimates the actual 

exposure to hyperoxia and associated risks during the ICU stay. Also, we do not know whether high 

arterial peak-levels of oxygen or prolonged exposure to high PaO
2
 are associated with adverse 

outcomes. Knowledge on oxygenation metrics and related summary statistics is important when 

interpreting studies on the effects of hyperoxia and for setting up future research. Oxygenation 

based metrics may be based on a certain time period (e.g. first 24 hours after ICU admission or 

complete ICU period) and on a single measurement, central tendency or cumulative exposure.

The aim of this study was to 1) comprehensively assess the metric-related association of arterial 

oxygenation with clinical outcomes in different subsets of critically ill patients and 2) systematically 

evaluate the influence of choosing a certain metric on the composition of subgroups of patients 

with arterial hyperoxia and mortality in those subgroups.

M AT E R I A L S  A N D  M E T H O D S

Data collection

Data were collected between July 2011 and July 2014. Data collection procedures have been 

described in detail previously, and reviewed and approved by the Medical Ethical Committee 

of the Leiden University Medical Center (2, 11). In brief, arterial blood gas (ABG) analyses and 

concurrent ventilator settings were extracted from the patient data management system (PDMS) 

database (MetaVision, iMDsoft, Leiden, The Netherlands) of closed format, mixed medical 

and surgical, tertiary care ICUs of three participating hospitals in the Netherlands. Data were 

supplemented with anonymous demographic data, admission and discharge data, and variables 

to quantify severity of illness from the Dutch National Intensive Care Evaluation (NICE) registry, 

a high quality database, which has been described previously (12). According to the Dutch Medical 

Research Involving Human Subjects Act, there was no need for informed patient consent, as only 

registries without patient identifying information were used. Admissions were only eligible for 

inclusion when requisite data from more than one ABG measurement was available. Patients on 

extracorporeal membrane oxygenation were excluded from the study. Conservative oxygenation 

was promoted during the study in all three units, but actual strategies were left to the discretion of 

the attending physicians and nurses.
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Hyperoxia metrics

We calculated several previously used and newly constructed metrics for arterial hyperoxia. Existing 

metrics were derived from a systematic literature review and included the first, highest, worst, 

and average PaO
2
, typically assessed over the first 24 hours of admission (9). These metrics were 

compared to new metrics within specific time frames, namely the median, area under the curve and 

time spent in arterial hyperoxia.

As no formal definition for arterial hyperoxia exists, we stratified the analyses using previously 

used thresholds, while considering the incidence in the present cohort. Mild hyperoxia was defined 

as PaO
2
 120 – 200 mmHg (13) and severe hyperoxia as PaO

2 
> 200 mmHg (14).

Metrics of single sampling

The first PaO
2
 (FIR) was the PaO

2
 value that was measured in the first ABG registered in the PDMS 

after the patient was admitted to the ICU.

Highest PaO
2
 (MAX) was the maximum value that was registered during the first 24 hours 

(MAX
0-24

) or during the total ICU LOS (MAX
ICU LOS

). Worst PaO
2
 (WOR) was defined as the PaO

2
 

derived from the ABG associated with the lowest concurrent PaO
2
 to fractions of inspired oxygen 

ratio (FiO
2
) ratio (P/F ratio) and also calculated for the first 24 hours (WOR

0-24
) and over the total ICU 

LOS (WOR
ICU LOS

) (13, 15).

Metrics of central tendency

The average (AVG) and median (MED) PaO
2
 were calculated over the first 24 hours and over the total 

ICU LOS per admission.

Metrics of cumulative exposure

Per patient, the area under the curve was computed over the first 24 hours (AUC
0-24

), first 96 hours 

(AUC
0-96

) and total duration of ICU admission (AUC
ICU LOS

) using linear interpolation of the available 

PaO
2
 measurements. We calculated the median PaO

2
 over the respective time frames and inserted 

these values as PaO
2
 measurements at the starting (T=0) and end point of the curve (T=24, T=96 or 

at discharge or death, depending on considered time frame).

Smoothing curves, using natural spline interpolation (16), were fitted to compute the individual 

time spent in the range of hyperoxia in a similar manner. Patients with an interval longer than 24 

hours between two consecutive PaO
2
 measurements were excluded from these analyses (n=392), as 

the amount of estimated data from the fitted curve would otherwise excessively exceed the amount 

of real data.

Statistical Analyses

In accordance with a study examining glucose metrics in critical care (17), we analyzed 

the associations between the metrics and hospital mortality (primary outcome) by logistic 

regression with each metric categorized by severity of the hyperoxic exposure based on specified 

thresholds (120 and 200 mmHg) or data distribution (quintiles) and compared these categories to 
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normoxia (60-120 mmHg) or median quintiles. The associations between the metric and secondary 

outcomes, including ICU mortality, and ventilator-free days (VFDs) were also assessed. VFDs were 

calculated as the number of ventilator-free days and alive, 28 days after ICU admission according to 

a previously described definition (18).

Data were reanalyzed for specific subgroups categorized by use of mechanical ventilation, 

admission type and specific admission diagnoses that were studied in previous work (8, 9, 19). 

The multivariate models were adjusted for age and APACHE IV, which were found to be confounders 

in previous studies (17). The APACHE score was calculated from the data obtained within 24 hours 

of admission. ICU LOS was also included as potential confounder for the association with hospital 

mortality. In the multivariate logistic regression models, we quantify how the metrics are associated 

with the distribution between death and discharge at a specific time point, given that either of 

the two occurs (conditional hospital mortality). Adjusted associations with conditional hospital 

mortality were also depicted using loess smoothing curves.

The relationship between the individual metrics, that were not directly dependent on the ICU 

LOS, was examined using pairwise correlations and cluster analysis. The area under the receiver-

operating characteristic curve (C-statistic), the Brier score and the Nagelkerke R2 were determined 

as measures of discrimination and/or calibration for the univariate models of metrics using data 

from the first 24 hours of admission. In these models, spline based transformations of the metrics 

were used to predict hospital mortality. A recalibration of the APACHE IV score was explored by 

replacing the oxygen component by the first, mean, median, worst or highest PaO
2
 within the first 

24 hours of admission. The multivariate models were reanalyzed by additionally adjusting for 

applied FiO
2
 levels and also if the oxygen component in the APACHE score covariate was removed.

All statistical analyses were conducted using R version 3.2.1 (R Foundation for Statistical 

Computing, Vienna, Austria). To account for multiple testing, the indicated levels of statistical 

significance were lowered to 0.01.

R E S U LT S

In total, 14,441 patients were included and 295,079 ABG analyses were obtained from eligible 

admissions (Table 1). The median time to the first ABG measurement was 26 (IQR 13-69) minutes, 

the median interval between two consecutive ABG samples was 249 (IQR 147-358) minutes, and 

the median number of ABG measurements per patient was 7 (IQR 4-17).

Metric characteristics

All metrics calculated over the first 24 hours of admission were strongly related to the corresponding 

metrics calculated over the total ICU LOS (Pearson r = 0.87–0.91, Supplemental Fig. 1, Supplemental 

Digital Content 1). Also, AVG
ICU LOS

 had high correlation with MED
ICU LOS

 (r = 0.92). In contrast, very 

low correlation (r < 0.25) was shown for MAX
ICU LOS

 with WOR
ICU LOS

, and WOR
0-24

. Cluster analysis in 

the Supplemental Digital Content showed that the metrics could be subdivided in multiple families, 

where the highest PaO
2
 appeared to be least related to the other metrics (Supplemental Fig. 2, 

Supplemental Digital Content 1). 



M
ETRIC

S O
F A

RTERIA
L H

Y
PERO

X
IA

 A
N

D
 A

SSO
C

IA
TED

 O
U

TC
O

M
ES IN

 C
RITIC

A
L C

A
RE

132

7

Table 1. Descriptive characteristics

Total

Patients characteristics

No. of patients 14,441

Demographics

 Age, y 65 (55-73)

 Male, n (%) 9315 (64.5)

 BMI, kg/m2 25.8 (23.3-29.0)

 Planned admission, n (%) 7328 (50.7)

 Medical admission, n (%) 5130 (35.5)

 Planned surgery, n (%) 5038 (34.9)

 Emergency surgery, n (%) 1344 (9.3)

Clinical characteristics

 APACHE IV score 54 (41-75)

 APACHE IV predicted mortality, % 5.2 (1.4-22.9)

 SAPS II score 34 (26-45)

 SAPS II predicted mortality, % 15 (7-34)

Clinical outcomes

 Mechanical ventilation time, hrs 11 (5-40)

 ICU LOS, hrs 37 (21-85)

 ICU mortality, n (%) 1427 (9.9)

 Hospital mortality, n (%) 1989 (13.8)

Oxygenation and ventilation characteristics

No. of arterial blood gas analyses 295,079

Arterial blood gas results

 PaO
2
, mmHg 81 (70-98)

 PaCO
2
, mmHg 40 (34-46)

 pH 7.42 (7.36-7.47)

 Hb, mmol/L 6.2 (1.2)

 Lactate, mmol/L 1.5 (1.0-2.2)

 Glucose, mmol/L 7.6 (6.4-9.1)

Ventilator settings

 FiO
2
, % 40 (31-50)

 PEEP, cm H
2
O 7 (5-10)

 Mean airway pressure, cm H
2
O 11 (9-14)

Oxygenation measures

 PaO
2
/FiO

2
 ratio 219 (165-290)

 Oxygenation index 3.8 (2.5-6.1)

Data are means (±SD) or medians (IQR), unless stated otherwise, BMI, Body Mass Index; APACHE, Acute Physiology 

and Chronic Health Evaluation score; SAPS, Simplified Acute Physiology Score; ICU LOS, Intensive Care Unit Length 

of Stay; PaO
2
, partial pressure of arterial oxygen; PaCO

2
, partial pressure of arterial carbon dioxide; Hb, hemoglobin; 

FiO
2
, fraction of inspired oxygen; PEEP, positive end-expiratory pressure. Oxygenation index was calculated as 

the FiO
2
/PaO

2
 ratio multiplied by the concurrent mean airway pressure

Within 24 hours of admission, a spline based transformation of the worst PaO
2
 was the best 

discriminator for hospital mortality. When recalculating the APACHE score with different metrics 

using PaO
2
 data from the first 24 hours of admission, equal discrimination (C-statistic) was found 
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for APACHE IV with either worst, highest, first, average or median PaO
2
 (Supplemental Table 1, 

Supplemental Digital Content 1).

Clinical outcomes

Unadjusted analyses showed higher mortality rates and fewer VFDs for severe hyperoxia in 

comparison to both mild hyperoxia and normoxia for all metrics except for the worst PaO
2
, where 

lower or equal mortality rates and more VFDs for severe hyperoxia were assessed (Supplemental 

Table 2, Supplemental Digital Content 1). 

Table 2 shows the event rates and adjusted estimates regarding patient-centered outcomes for 

each metric. 

The estimates are pooled in forest plots (Supplemental Fig. 3–4, Supplemental Digital  

Content 1) and there were notable differences in effect size depending on the used metric for 

hyperoxia. The choice of a certain metric for oxygenation had major influence on the incidence 

of arterial hyperoxia. For example, severe hyperoxia was present in 20% of patients when using  

MAX
ICU LOS

 compared to 1% of patients using AVG
ICU LOS

.

Without exception, the point estimates for conditional mortality were larger for severe 

hyperoxia than for mild hyperoxia. The highest odds ratios were found for the exposure identified 

by the average PaO
2
, closely followed by the median PaO

2
. The AUC and time in arterial hyperoxia 

showed a consistent effect favoring the middle quintiles and no time in arterial hyperoxia. Mild 

hyperoxia was mainly associated with a slight increase in VFDS, whereas severe hyperoxia was 

associated with a decrease in VFDS. Mean PaO
2
 (AVG

ICU LOS
) showed a J-shaped relationship with 

hospital mortality (Figure 1). 

Time spent in mild hyperoxia and time spent in severe hyperoxia both showed a linear and 

positive relationship with hospital mortality and were therefore also modeled linearly (Figure 2). 

U-shaped (FIR, WOR
ICU LOS

, MED
ICU LOS

) and linear (MAX
ICU LOS

) relationships were found for the other 

metrics (Supplemental Fig. 5–8, Supplemental Digital Content 1).

Subpopulations

In mechanically ventilated patients, the adjusted odds ratios for conditional hospital mortality 

were highly comparable with the estimates for the total study population (Table 3). In large patient 

groups, such as planned and medical admissions, the odds ratios differed slightly from those in 

mechanically ventilated patients. In smaller subpopulations, including patients admitted with 

cardiac arrest, stroke, and sepsis, no statistically significant risks from arterial hyperoxia could  

be identified. 

D I S C U S S I O N

In this multicenter cohort study, we found a dose-response relationship between supraphysiological 

arterial oxygen levels and hospital mortality, ICU mortality and ventilator-free days. The effect size 

was importantly influenced by the definition of arterial hyperoxia and severe hyperoxia was more 

consistently associated with poor outcomes than mild hyperoxia. Furthermore, the oxygenation 
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Figure 2. Adjusted probability of in-hospital death by time in hyperoxia. 

Probability of death predicted from logistic regression model adjusted for age, APACHE IV score and ICU 

LOS. Lines represent estimated time in mild (dashed) and severe (solid) hyperoxia. Grey zones represent 95% 

confidence intervals. A linear model was presented, because the smoothing curve for both metrics showed 

a clear linear relationship between the predicted outcome and time in hyperoxia.

Figure 1. Adjusted probability of in-hospital death by mean PaO
2
. 

Loess smoothing curve predicted from logistic regression model adjusted for age, APACHE IV score and 

ICU LOS. Blue line represents oxygenation by mean PaO
2
 over the total ICU LOS. Grey zones represent 95% 

confidence intervals.
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metric that defines the exposure was shown to be an essential factor in determining the risk for 

the studied population.

We selected a variety of metrics that were identified by a previous systematic review of 

the literature (9). These pre-existing metrics are usually calculated over the first 24 hours of 

admission, but our findings show that exposure to arterial hyperoxia in other time frames and using 

different definitions may substantially impact on the studied outcomes. For this study a new set 

of relevant oxygenation metrics was compiled for ICU patients. This allowed for comprehensive 

insights in the epidemiology and associated outcomes across multiple abstractions of arterial 

hyperoxia. However, we cannot rule out that the observed effects in this study can be subtly altered 

when alternative metrics are used. 

By studying the continuous application-related adverse effects of hyperoxia this study addressed 

the timely clinical questions whether arterial hyperoxia is a biomarker for mortality and when 

the exposure is sufficient to cause harm (20-22). Metrics of central tendency (mean, median) were 

found to have the strongest relationship with outcome. The effects were smaller for the metrics of 

single measurements (i.e. highest, worst, first). In this context, the maximum PaO
2
 value may be an 

incidental outlier but could also be indicative of a longer lasting, gradual process of increasing PaO
2
 

levels where a maximum is ultimately achieved, thereby mimicking metrics of central tendency. 

However, the latter explanation is less likely as this metric was shown to substantially differ from 

other metrics in cluster, correlation, and regression analyses.

Metrics of cumulative oxygen exposure, including hourly exposure and AUC in the first 24 

hours, have recently been used by Elmer et al. to show associations with morbidity and mortality 

after cardiac arrest (23, 24). We additionally calculated AUC and time in arterial hyperoxia from 

admission to discharge, which may be a more accurate measure of total hyperoxia exposure even 

though exposure beyond the ICU admission, e.g. in the general wards, was not considered in this 

study. Assuming that these metrics closely reflect the actual exposure, the association between 

arterial hyperoxia and poor outcome is consistent in multivariate models which account for 

the total length of stay and illness severity. Notably, our results were essentially unchanged when 

the multivariate models were additionally adjusted for applied FiO
2
 levels and also if the oxygen 

component in the APACHE score covariate was removed in order to avoid overadjustment. Still, we 

cannot exclude that residual confounding may be present from unmeasured variables.

In contrast with a previous study in mechanically ventilated patients (13) but in concordance 

with another (15), hyperoxia identified by the worst PaO
2
 in the first 24 hours was not significantly 

associated with hospital mortality. Since the spline based transformation of this metric calculated 

over the total ICU LOS did emerge as the best discriminator for mortality, the association may be 

primarily driven by the discriminative capability of the arterial normoxia and/or hypoxia range. In 

other words, the worst PaO
2
 is an important measure over the total ICU stay, but within the first 24 

hours a hypoxic worst PaO
2
 may predict mortality more precise than a hyperoxic measurement. 

When comparing previous studies, the selected metrics should be explicitly considered, as we 

showed that this may considerably impact on the observed effect sizes. Regional differences in 

oxygen management and cohort type may further be responsible for specific study differences. For 

careful interpretation of the outcome, the sample size and event rates in the studied oxygenation 
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ranges by different metrics should also be taken into consideration. Indeed, the probability of type 

2 errors increases with relatively low numbers of exposed patients in specific subsets. In smaller 

subsets of cardiac arrest, stroke, or sepsis patients, our risk estimates were in the same order of 

magnitude as previously found for arterial hyperoxia although subtle differences can be designated 

(7, 9, 25-27). The absence of significant effects in small subsets may be a signal of the used 

definition or may reflect indifferent outcome or a lack of statistical power. Analyses in different 

subpopulations should therefore mainly be considered exploratory and interpreted with caution. 

Also, we accounted for multiple testing by lowering the level for statistical significance.

Several limitations deserve further mention. First, methodological flaws following 

the retrospective nature of this study should be considered and causality cannot be inferred. Second, 

immortal time bias may play a role in models predicting hazard when no censored data is available. 

We therefore corrected for the total ICU LOS in multivariate analyses, modeled hospital mortality 

given either death or discharge, and only analyzed the predictive value for metrics that were not 

computed based on the total ICU LOS. The inherent limitation of non-continuous PaO
2
 sampling 

with a lack of data between successive measurements was overcome by using linear and natural 

spline interpolation between separate PaO
2
 measurements and calculate area under the curves and 

time spent in arterial hyperoxia, but it should be considered that real data of unmeasured arterial 

oxygenation and ventilatory management was not available. Further, our statistical models were 

fully calibrated on the data of the present cohort but may not universally fit other data and cannot 

be directly extrapolated to other cohorts. We used a cohort in which conservative oxygenation was 

promoted, and the exposure rates may therefore differ in comparison to other hospitals. However, 

we used a multicenter cohort and the concepts are likely to be comparable across different ICUs and 

regions. Indeed, our findings were quite consistent in the three participating centers and over time. 

The dose-response relationship was recently also illustrated in a meta-regression of cohort studies 

(9). When pooling these studies, heterogeneity of included studies was found to be substantial, 

which could be partially explained by the use of different metrics for arterial hyperoxia and different 

multivariate models.

Strengths of our study include the representation of arterial hyperoxia by several relevant and 

novel analytical metrics of PaO
2
, the large multicenter cohort and an unprecedented set of ABG 

samples, including data within and beyond the first 24 hours of admission. We placed previously 

found associations of arterial hyperoxia with hospital mortality in a broader and clinically relevant 

context of varying definitions, durations and also included secondary outcomes, such as length of 

stay, mechanical ventilation time and ventilator-free days. Our strategies to investigate the effects 

of a continuously changing parameter on patient-centered outcomes can be further applied as 

a toolbox for other clinical challenges such as glucose and carbon dioxide management.

The present findings underline the importance of preventing excessive oxygenation during 

prolonged periods and urge careful oxygen titration in critically ill and mechanically ventilated 

patients. PaO
2
 levels exceeding 200 mmHg were not only associated with ICU mortality and hospital 

mortality but may also lead to fewer ventilator-free days. Mild hyperoxia was not consistently 

shown to be harmful and may have beneficial properties when attempting to compensate and 

prevent impaired oxygen delivery. Interestingly, however, our analyses show that the probability 
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of death increases linearly when the exposure time in mild hyperoxia increases strongly. Thus, on 

the short term mild hyperoxia may not directly impact on outcome, but clinicians should still be 

aware that cumulative exposure to even mild hyperoxia may be harmful. Taking this into account, 

exposure time may also be a marker of responsive care, even though the effect sizes were similar 

when adjusting for proxy markers of less responsive care (e.g. lowest glucose). It should be realized 

that hyperoxia is a label that admits to several definitions, where PaO
2
 is not a single indicator of 

blood oxygen and may embrace both care given and the consequences of that care. The curvilinear 

relationship between the metrics and outcome, suggest that both arterial hypoxia and arterial 

hyperoxia should be actively avoided, and deviations from the normal may be a result of unfavorable 

oxygen management. Given the diversity of patients, clinical scenarios and characteristics of 

oxygen, universal recommendations remain cumbersome. However, in expectation of future 

randomized controlled trials, our findings may be auxiliary to guide targeted oxygen management 

by estimating the potential risk in different clinical situations.

C O N C L U S I O N S

We found that metrics of central tendency for severe arterial hyperoxia, as well as exposure time for 

mild and severe arterial hyperoxia, were associated with unfavorable outcomes of ICU patients and 

this association was found both within and beyond the first day of admission. Our results suggest 

that the relationship was consistent for large patient groups and that previously used approaches 

may not have completely captured the actual exposure effects.
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A B S T R AC T

Background

High inspiratory oxygen concentrations are frequently administered in ventilated patients in 

the intensive care unit (ICU) but may induce lung injury and systemic toxicity. We compared beliefs 

and actual clinical practice regarding oxygen therapy in critically ill patients.

Methods

In three large teaching hospitals in the Netherlands, ICU physicians and nurses were invited to 

complete a questionnaire about oxygen therapy. Furthermore, arterial blood gas (ABG) analysis 

data and ventilator settings were retrieved to assess actual oxygen practice in the same hospitals 1 

year prior to the survey.

Results

In total, 59% of the 215 respondents believed that oxygen-induced lung injury is a concern. 

The majority of physicians and nurses stated that minimal acceptable oxygen saturation and 

partial arterial oxygen pressure (PaO
2
) ranges were 85% to 95% and 7 to 10 kPa (52.5 to 75 mmHg), 

respectively. Analysis of 107,888 ABG results with concurrent ventilator settings, derived from 5,565 

patient admissions, showed a median (interquartile range (IQR)) PaO
2
 of 11.7 kPa (9.9 to 14.3) [87.8 

mmHg], median fractions of inspired oxygen (FiO
2
) of 0.4 (0.4 to 0.5), and median positive end-

expiratory pressure (PEEP) of 5 (5 to 8) cm H
2
O. Of all PaO

2
 values, 73% were higher than the upper 

limit of the commonly self-reported acceptable range, and in 58% of these cases, neither FiO
2
 nor 

PEEP levels were lowered until the next ABG sample was taken.

Conclusions

Most ICU clinicians acknowledge the potential adverse effects of prolonged exposure to hyperoxia 

and report a low tolerance for high oxygen levels. However, in actual clinical practice, a large 

proportion of their ICU patients was exposed to higher arterial oxygen levels than self-reported 

target ranges.
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B AC KG R O U N D

Oxygen supply during mechanical ventilation is a highly effective and uniformly used intervention to 

support oxygenation of mechanically ventilated patients in the intensive care unit (ICU). Although 

oxygen administration is a lifesaving strategy in the management of patients with respiratory 

insufficiency, the clinical implications of hyperoxia remain an important subject of debate (1). 

The controversies are triggered by a considerable number of studies showing both beneficial, 

harmful and/or insignificant effects of oxygen therapy on outcome in different subgroups (2-15).  

However, morbidity and mortality may be substantially impacted by the used threshold and depend 

on degree, duration, and susceptibility for hyperoxia. 

The emerging laboratory evidence for the double-edged nature of oxygen (lifesaving but 

also potentially harmful) is compelling (16-22), but robust clinical studies and evidence-based 

guidelines in critically ill patients are still limited (23-26). Consequently, the attitudes and beliefs in 

the management of oxygen administration vary considerably in clinical practice (27, 28). In general, 

physicians are inclined to treat hypoxemia aggressively in order to achieve satisfactory tissue 

oxygenation (23, 29, 30). However, hyperoxemia is often considered acceptable, especially when 

applied fractions of inspired oxygen (FiO
2
) are relatively low (31-33).

Given the lack of established guidelines on oxygen therapy in ICU patients, our study was 

designed to investigate the common beliefs and self-reported attitudes of ICU physicians and 

nurses on oxygenation targets and to compare this with actual treatment of ICU patients in 

the same hospitals. We hypothesized that the potential harmful effects of oxygen are well known 

and generally acknowledged, but that in real clinical practice, hyperoxia is not a major concern for 

ICU professionals. 

M E T H O D S

Questionnaire

An anonymous online survey was performed between June and August 2012 to elicit the self-reported 

behavior of ICU personnel with respect to oxygen therapy. The questionnaire was a modified and 

comprehensive version of previously used questionnaires from Canada and Australia/New Zealand 

(27, 28) and comprised multiple choice questions (see Additional file 1). The target population 

consisted of physicians and nurses, working in closed format, mixed medical and surgical, tertiary 

care ICUs of three participating hospitals, including two academic and one large teaching hospital 

in the Netherlands. Participants were invited by email to complete the online questionnaire. 

A reminder was sent once to all participants.

Patient data

Analyses were performed on data recorded between 1 April 2011 and 31 March 2012 for all patients 

admitted to the ICU departments of the same hospitals that participated in the questionnaire study. 

Anonymous encrypted data were collected from the patient data management system (PDMS) 

database (MetaVision, iMDsoft, Leiden, The Netherlands). According to the Dutch Medical Research 

Involving Human Subjects Act, there was no need for informed patient consent or approval by 

ethical committees, as only registries without patient identifying information were used.
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Arterial blood gas (ABG) analyses and concurrent ventilator settings were extracted to 

retrospectively assess actual practices regarding oxygen therapy. Data from ICU admission to 

dismissal or death were included for analysis. Data with a partial arterial oxygen pressure (PaO
2
) 

of ≤4.5 kPa or 33.8 mmHg (n=209) were excluded to prevent confounding by venous blood gas 

samples. Further exclusion of samples with PaO
2
 of 4.5 to 5.0 kPa (n=146) or PaO

2
 of 5.0 to 6.0 

kPa (n=356) did not materially change our observations (data not shown). Every set of ABG data 

and ventilator settings was compared with the following set, as described previously (32). Prone 

positioning, recruitment maneuvers, and other efforts that may improve oxygenation could not be 

explored in this database. Clinicians’ responses to ABG results were explored by analyzing the FiO
2
 

and positive end-expiratory pressure (PEEP) adjustments in a subsample of mechanically ventilated 

patients when more than two ABG samples and ventilator settings were recorded. PaO
2
 values were 

categorized according to the commonly self-reported acceptable range (7 to 10 kPa or 52.5 to 75 

mmHg) extracted from the survey results (Fig. 1). This range is roughly consistent with oxygenation 

goals (7.3 to 10.7 kPa or 55 to 80 mmHg) previously suggested by the Acute Respiratory Distress 

Syndrome (ARDS) network (30, 34).

Mechanical ventilation protocol

Local guidelines, applicable during the survey and collection of ABG and ventilation data, instructed 

for lowest acceptable FiO
2
 levels. FiO

2
 levels higher than 60% should be avoided by increasing PEEP 

levels, instituting inverse-ratio ventilation or prone positioning. No explicit target ranges for PaO
2
, 

FiO
2,

 or saturation were specified in the participating hospitals during this period.

Statistical analysis

All data are expressed as percentages of the total number of respondents for the particular 

questions, unless otherwise specified. Data are presented as means (±SD) or medians (interquartile 

range, IQR) depending on data distributions, unless stated otherwise. For assessing differences 

between physicians and nurses, ICU personnel were grouped according to their respective 

profession and data were analyzed using Fisher’s exact tests. ICU physicians, fellows, and residents 

were classified as physicians; ICU nurses and ICU nurses in training were classified as nurses.

Statistical analyses were conducted using STATA/SE 10.1 (StataCorp LP, College Station, TX, USA).

R E S U LT S

Data derived from questionnaire

Respondent characteristics

Approximately 500 potential participants were invited to complete the online questionnaire. Full or 

partial responses were received from 215 ICU physicians and nurses with a mean age of 40.4±10.0 

years (range 24 to 62). In total, 171 (80%) respondents fully completed all questions. The group 

of respondents consisted of 28 (13%) critical care physicians, 15 (7%) fellows, 15 (7%) residents, 

141 (66%) ICU nurses, 11 (5%) ICU nurses in training, and 5 (2%) ICU clinicians with another type  

of practice.
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Opinions towards oxygen toxicity 

The responses are listed in Table 1. Overall, 126 (59%) respondents considered oxygen induced 

lung injury in mechanically ventilated patients a major concern. However, the vast majority of 

respondents (81%) considered high tidal volumes and high inspiratory pressures as the greatest risk 

for lung injury in mechanically ventilated patients. No differences between physicians and nurses 

were detected.

Self-reported acceptance of hyperoxemia and hypoxemia

The percentages of respondents accepting various oxygenation ranges in a young to middle-aged 

mechanically ventilated patient with ARDS are shown in Figure 1. 

For both short and longer lasting periods, the vast majority of respondents choose 7 to 10 kPa 

(52.5 to 75 mmHg) as the lowest acceptable PaO
2
 range. Physicians were more tolerant towards 

lower PaO
2
 limits for short duration than nurses (P<0.001). 

Table 1. Questionnaire responses regarding risks assessment and management in oxygen therapy 

Question

Responses

 (% of total)

Physicians vs.

 nurses

Is oxygen induced lung injury a concern when placing a patient on mechanical 

ventilation?

 YES, a major concern 

  due to the high incidence of injury 

  due to the severity of injury 

  due to the high incidence and severity of injury 

 YES, but not a major concern 

 NO, it is not a concern

126 (59%)

13 (6%)

63 (29%)

50 (23%)

80 (37%)

9 (4%)

NS

In your opinion, which one of the following two situations poses a greater threat 

of lung injury for mechanically ventilated patients? 

 High FiO
2
 

 High tidal volumes and high ventilator pressures 

 Don’t know 

35 (16%)

173 (81%)

7 (3%)

NS

In situations when maximal SaO
2
 achievable is low (±85%) or when FiO

2
 

requirements are high, do you assess indices of tissue oxygenation? 

 NO 

 YES, lactate 

 YES, microcirculation with OPS/SDF imaging

 YES, a combination of indices 

 YES, SvO
2

 YES, other

91 (43%)

88 (42%)

4 (2%)

20 (9%)

6 (3%)

2 (1%)

P=0.05

NS, Not significant; FiO
2
, Fractions of inspired Oxygen; OPS, Orthogonal Polarization Spectral; SDF, Sidestream Dark 

Field; SaO
2
, Arterial Oxygen Saturation; SvO

2
, Mixed Venous Oxygen Saturation



SELF-REPO
RTED

 A
T

TITU
D

ES V
ER

SU
S A

C
TU

A
L PR

A
C

TIC
E

152

8

Presented with a patient whose arterial oxygen saturation (SaO
2
) levels are low (<85%) or FiO

2
 

requirements are high, indices of tissue oxygenation were frequently assessed (Table 1). Differences 

between physicians and nurses approached statistical significance (P=0.05), with physicians favoring 

lactate assessment, and nurses being less likely to demand some assessment of tissue oxygenation. 

Nurses in training more often favored lactate assessment than senior ICU nurses (P=0.01).

Adjustment of FiO
2
 in specific clinical cases

The proportions of ICU clinicians adjusting FiO
2
 levels in specified clinical cases are listed in  

Table 2. Observed differences by profession were mainly restricted to questions regarding patients 

with untreatable anemia, where physicians generally favored higher FiO
2
 levels than nurses. Only 

minor differences within the clustered categories of physicians (comparison between physicians, 

fellows, residents) and nurses (ICU nurses, nurses in training) were observed.

Data derived from ABG measurements and ventilator settings

Descriptive data

A total of 107,888 ABG results with concurrent ventilator settings, covering 5,565 patient admissions, 

were retrieved and included for analysis over a 1-year period prior to the survey in three hospitals. 

Median interval between two consecutive ABG samples was 214 min (IQR 130 to 331), and the median 

number of ABG samples per patient was 7 (IQR 4 to 19). Mean PaO
2
 was 12.9 kPa (SD 5.1) or 96.8 

mmHg and median PaO
2
 was 11.7 kPa (IQR 9.9 to 14.3) or 87.8 mmHg. Overall, in 25.3% of ABG 

results, PaO
2
 was in the self-reported range (7 to 10 kPa), 1.2% was lower and 73.4% was higher than 

the predefined range.

Figure 1. Self-reported tolerance limits for short-term (15 min, open bars) and longer term (24 to 48 h, closed 

bars) oxygenation. 

Bars represent percentage of respondents (n=200). The presented case is a young to middle-aged ARDS patient 

in the ICU requiring mechanical ventilation. Ventilator settings (e.g., PEEP, airway pressures, I:E ratio, flow ratio) 

are optimized with respect to the PaO
2
/FiO

2
 ratio and hemodynamic indices. Lung injury due to high FiO

2
 and/

or ventilator settings is minimized. There is no evidence to indicate end-organ ischemia, and hemodynamics 

are stable.
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Mechanical ventilation settings showed a mean PEEP of 6.1 cm H
2
O (SD 4.3), and median PEEP 

was 5 (IQR 5 to 8). Mean FiO
2
 was 0.45 (SD 0.14), and median FiO

2
 was 0.40 (IQR 0.40 to 0.50). Only 

small differences were observed between the three participating hospitals.

Recorded FiO
2
 adjustments following ABG analysis

After exclusion of spontaneously breathing and non-invasively ventilated patients, 62,875 ABG 

records derived from 4,264 mechanically ventilated patients were included for analysis of FiO
2
 

adjustments in response to ABG samples. 

Analyzing every first registered ABG sample in the ICU, 62,222 PaO
2
 measurements covering 

3,791 patients were retrospectively categorized in predefined ranges and were followed by 

a recorded FiO
2
 adjustment. The subsequently registered PaO

2
 measurement was compared with 

the first registered PaO
2
 (Table 3). 

Table 4 shows that quantity, direction, and magnitude of ventilator adjustments in response to 

high arterial oxygen levels are considerably influenced by the level of FiO
2
. In 58.3% of cases with 

PaO
2
 higher than the upper level of the commonly self-reported acceptable oxygenation (10 kPa 

or 75 mmHg), neither FiO
2
 nor PEEP levels had been lowered when the next ABG sample was taken. 

Table 3. FiO
2
 adjustment following ABG analysis and its effects on oxygenation measured in the next ABG

PaO
2
 (%)

[n=107,888]

Adjustment of FiO
2
 (%)

[n=62,222]

Successive PaO
2
 

[n=61,073]

Higher

(Delta PaO
2
) Unchanged

Lower

(Delta PaO
2
)

<7 kPa (1.2) Higher (34.7) 96.6% (+5.3) 0.4% 3.0% (-0.5)

 Unchanged (46.9) 87.4% (+5.6) 3.2% 9.4% (-0.6)

Lower (18.4) 95.1% (+7.9) 2.4% 2.5% (-0.9)

7–10 kPa (25.3) Higher (27.9) 76.3% (+3.1) 2.7% 21.0% (-0.9)

Unchanged (56.0) 66.3% (+2.0) 4.3% 29.4% (-0.8)

Lower (16.1) 61.3% (+2.6) 3.6% 35.1% (-1.0)

>10 kPa (73.4) Higher (10.8) 48.6% (+4.6) 2.1% 49.3% (-3.1)

Unchanged (62.0) 44.7% (+2.1) 3.1% 52.2% (-2.3)

Lower (27.2) 23.5% (+2.4) 1.7% 74.8% (-4.6)

Total (100) – 46.3% (+2.6) 2.7% 51.0% (-2.9)

Data presented as percentages of total and irrespective of adjustment of other ventilator settings (e.g. PEEP, I:E 

ratio). Delta, mean difference between two successive ABG samples; PaO
2
, any recorderd PaO

2
 stratified by self-

reported ranges; Successive PaO
2
, PaO

2
 from successively registered ABG sample; Higher, i.e. increased FiO

2
 (column 

2) or PaO
2
 (column 3), higher than previous level; Unchanged, i.e. FiO

2
 or PaO

2 
equal to previous level; Lower, i.e. 

decreased FiO
2
 or PaO

2
, lower than previous level. A total of 62,222 PaO

2
 measurements from 3,791 patients (57.7% 

of all 107,888 ABG samples) in the database is followed by an adjustment of ventilator settings, and 98.2% of PO
2
 

measurements is followed by a successive PO
2
 measurement (n=61,073) in the same patient when adjustment of FiO

2
 

is also measured.
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D I S C U S S I O N

In accordance with accumulating laboratory evidence for the toxic effects of oxygen in pulmonary 

injury (1, 35-38), the majority of surveyed ICU physicians and nurses consider prolonged hyperoxic 

exposure to be associated with an increased risk for lung injury, although a lower risk than high tidal 

volumes and inspiratory pressures. In contrast, in actual clinical practice, the majority of PaO
2
 values 

recorded in ICU patients are higher than recommended targets under comparable conditions and 

are generally accepted by ICU physicians and nurses without adjustment of ventilator settings.

Compared with previous studies from other countries, more respondents identified oxygen 

toxicity as a major threat to lung injury in ICU patients (59% compared with 26% and 51% in studies 

from Australia and Canada, respectively) (27, 28). Similar proportions of respondents considered 

high inspiratory oxygen concentrations a more important risk than high tidal volumes or inspiratory 

pressures, and a similar heterogeneity in self-reported attitudes regarding oxygen therapy was 

observed (27, 28, 39). The current results show generally higher minimum allowable SaO
2
 ranges 

than data from Canadian intensivists (28), which may indicate that clinicians’ beliefs have changed 

over the last decade or it may merely reflect geographical differences in oxygen therapy.

It appears that clinicians’ opinions regarding optimal oxygen therapy are more variable in 

case SaO
2
 is presented compared to PaO

2
 as marker of oxygenation. For PaO

2
, the vast majority 

of clinicians choose 7 to 10 kPa (52.5 to 75mmHg), whereas the preferred targets for saturation 

varied between 85% and 95%. Assuming that oxygenation targets should be in line with the best 

evidence in available guidelines, these preferred ranges may be triggered by recommendations and 

protocols providing comparable PaO
2
 targets (30, 40). However, caution is urged when interpreting 

pulse oximetry to differentiate between hyperoxemia and normoxia. Saturation levels above 95% 

require special attention, since the corresponding PaO
2
 levels usually cover a wide range and may 

substantially exceed target levels (24, 41).

According to the results from our questionnaire, the vast majority of respondents stated they 

would lower FiO
2
 levels if PaO

2
 was higher than 12 kPa (90 mmHg) or SaO

2
 was higher than 95% 

in ARDS patients. The proportion of respondents that would lower FiO
2
 is much lower if patients 

were presented with sepsis, cardiac and cerebral ischemia, or untreatable anemia. Unfortunately, 

we do not know whether respondents believe that oxygen is specifically harmful in patients with 

pre-existing acute lung injury or that higher oxygen levels are considered desirable in patients with 

ischemia or anemia. The latter hypothesis appears plausible, even though hyperoxemia has been 

reported to induce important vasoconstriction, which may lead to a paradoxical decrease in oxygen 

delivery (4, 42).

The self-reported low tolerance for higher PaO
2
 or SaO

2
 than target levels appears to be in 

contrast with actual treatment of patients in the same three ICUs where the survey was conducted. 

Neither FiO
2
 nor PEEP was changed in the majority of cases when PaO

2 
was higher than 15 kPa (112.5 

mmHg) and FiO
2
 was 40% or lower. In cases when FiO

2
 was 40% to 100%, ventilator settings were 

adjusted more often, but even in these circumstances, hyperoxemia was accepted in approximately 

20%. Considering the absence of definitive guidelines and robust controlled clinical evidence, this 

behavior in itself may still be justifiable (43). However, the contrast between self-reported attitudes 
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towards oxygen therapy on the one hand and actual treatment by the same healthcare workers on 

the other hand is striking.

The findings about oxygenation in ICU patients are consistent with previous findings from 

single center studies, showing that hyperoxemia was frequently present in mechanically ventilated 

patients and seldom led to adjustment of ventilator settings (31, 32). Clinicians may have specific 

reasons not to adjust ventilator settings when PaO
2 

levels are higher than the target range. 

Indeed, we identified a considerable number of cases in which a presumed inadequate adjustment 

ultimately proved reasonable in the subsequent ABG sample (e.g., high PaO
2
 followed by an 

increase in FiO
2
, but resulting in a lower PaO

2
). These cases may reflect scenarios in which clinicians 

anticipate deterioration in oxygenation or otherwise consider PaO
2
 values as erroneous (e.g., 

arguably high PaO
2
 – see Table 4, row PaO

2
 > 30) or not representative for the current situation of 

a patient. Alternatively, it may be argued that hypoxemia harbors greater inherent hazards than 

 hyperoxemia (3). 

The differences between self-reported attitudes and actual treatment of patients should be 

interpreted with caution. First, the cases presented to the respondents included only limited details 

and do not reflect the complexity of clinical situations in daily practice. Further, we presented SaO
2
 

and PaO
2
 categorized in ranges that were arbitrarily chosen. This may have influenced interpretation 

of the hypothetical cases. Second, ICU clinicians may have given more favorable responses in 

the online questionnaire due to social desirability and attention bias, although this is less likely as 

anonymous evaluation was secured. Third, the respondents were asked for the minimum allowable 

range in a specific ARDS case vignette, which may not reflect their beliefs regarding oxygen therapy 

in general. In the analysis of actually achieved oxygenation, we studied all patients independent 

of admission diagnosis. Also, response rates for the survey were relatively modest. However, 

the profession distribution in the group of respondents closely reflects a typical staff constitution in 

a general ICU in the Netherlands, which reduces the chance of sampling bias. In the Dutch clinical 

setting where respiratory therapists are not available, it is often the bedside nurse that responds 

first to changes in oxygenation. Therefore, the opinions of ICU nurses about oxygen therapy are 

important in the actual care of critically ill patients (39). Finally, some ABG samples, taken shortly 

after ICU arrival, may reflect oxygen therapy initiated on the operating room and influenced by 

anesthesiological ventilation strategies. However, successive ventilator adjustments were all 

recorded on the ICU and were supervised by critical care physicians. Therefore, high PaO
2
 values in 

the direct postoperative period are not a plausible explanation for the low proportion of hyperoxic 

ABG samples not followed by adaptation of the ventilator settings.

Strengths of this study include the large sample of questionnaire responses and the extensive 

set of ABG data, derived from the same ICUs where the questionnaire was conducted. This facilitated 

a comprehensive comparison between self-reported attitudes and actual practices of oxygen 

therapy for both physicians and nurses. Further, the design of the present questionnaire closely 

resembles previous surveys from Canada and Australia, thereby exploring geographical patterns 

and trends in time concerning oxygen therapy. Our study extends these data as we have assessed 

objective data in our analysis including the successively measured PaO
2 

after FiO
2
 adjustment. This 
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allows further estimation of the effects of recorded FiO
2
 adjustments in comparison with previous 

data (32).

C O N C L U S I O N S

This study shows that most clinicians acknowledge the potential adverse effects of prolonged 

exposure to hyperoxia, in accordance with emerging evidence for pulmonary toxicity and increased 

risk of poor outcome in both humans and animals caused by excessive oxygenation (2, 4, 6, 8, 16, 18, 

20, 35, 44). However, objective data also suggest that clinicians did not consistently accommodate 

this conception in actual clinical practice and a large proportion of patients was exposed to 

arterial oxygen levels higher than self-reported as acceptable by nurses and physicians. Additional 

education, feedback, and implementation strategies, aimed at careful titration of oxygen, may 

therefore be an effective approach for strict adherence to oxygenation targets (45). Studies on 

the effects of different target ranges for PaO
2
 on clinically relevant endpoints are needed to guide 

ICU professionals on how much oxygen should be administered to their patients.

L I S T  O F  A B B R E V I AT I O N S

ABG, arterial blood gas; FiO
2
, fractions of inspired oxygen; ICU, intensive care unit; PaO

2
, partial 

arterial oxygen pressure; PDMS, patient data management system; PEEP, positive end-expiratory 

pressure; SaO
2
, arterial oxygen saturation
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A B S T R AC T

Objective

Conservative oxygen therapy is aimed at the prevention of harm by iatrogenic hyperoxia while 

preserving adequate tissue oxygenation. Our aim was to study the effectiveness and clinical 

outcomes of a two-step implementation of conservative oxygenation targets in the ICU.

Design

This was a before and after stepwise implementation study of conservative oxygenation targets, 

between July 2011 and July 2014. The primary endpoint was the proportion of PaO
2
 values within 

the target range. Secondary outcomes included ventilator-free days (VFDs) at day 28, length of stay 

(LOS), and mortality.

Setting

Three closed-format ICUs in the Netherlands.

Patients

We analysed data on 15,045 eligible admissions.

Interventions 

The first implementation phase consisted of providing training and feedback on new guidelines 

instructing for explicit targets for arterial oxygen tension (PaO
2
 55–86 mmHg) and oxyhemoglobin 

saturation (SpO
2
 92–95%). In the second phase, bedside clinicians were additionally assisted in 

guideline adherence by a computerized decision-support system.

Measurements and Main Results

The proportion of PaO
2
 in the target range increased from 47% at baseline to 63% in phase 1 and to 

68% in phase 2 (P<0.0001). Episodes of hyperoxia decreased (P<0.0001), whereas hypoxic episodes 

remained unchanged (P=0.06) during the study. Mechanical ventilation time was significantly lower 

(P<0.01) during both study phases. After adjustment for potential confounders, VFDs in phase 1 and 

phase 2 were higher than baseline: adjusted mean difference 0.55 [95% CI 0.25, 0.84] and 0.48 [0.11, 

0.86], respectively. Adjusted ICU mortality and intensive care unit free-days did not significantly 

differ between study phases. Hospital mortality decreased in reference to baseline: adjusted OR 

0.84 [95% CI 0.74, 0.96] for phase 1 and 0.82 [95% CI 0.69, 0.96] for phase 2.

Conclusions

Stepwise implementation of conservative oxygenation targets was feasible, effective, and appeared 

safe in critically ill patients. The implementation was associated with several changes in clinical 

outcomes, but the causal impact of conservative oxygenation is still to be determined. 

Trial registration: Netherlands Trial Register, number NTR3424
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I N T R O D U C T I O N

The application of oxygen has always been of undisputed importance in emergency and critical 

care medicine. It is a highly effective therapy in preventing or compensating hypoxic injury and has 

life-saving properties. However, the risks of excessive oxygenation have recently placed the liberal 

use of oxygen in a new perspective. Oxygen is essential for cell metabolism and organ function, 

but triggers free radical formation and induces hemodynamic and inflammatory changes in higher 

doses (1-4). Furthermore, hyperoxia may promote lung injury during mechanical ventilation and 

has been linked to poor outcome in various subgroups (5-10). A considerable proportion of patients 

in the intensive care unit (ICU) is exposed to hyperoxia (11, 12), but preventive strategies may be 

hampered by a lack of clinical trials. Guidelines are available for a limited number of subgroups and 

are not easily extrapolated to universal recommendations for critically ill patients. 

Conservative oxygen therapy is aimed at the prevention of iatrogenic hyperoxia while preserving 

adequate tissue oxygenation through careful oxygen titration (13, 14). This pragmatic strategy is 

increasingly advocated but its feasibility and effects on important clinical parameters are still to be 

assessed (15, 16). We hypothesized that a stricter adherence to conservative oxygenation guidelines 

may improve patient-centered outcomes by preventing derangements and inherent harm. Our aim 

was to study the effectiveness and clinical outcomes of a two-step implementation of conservative 

oxygenation targets in the ICU.

M AT E R I A L S  A N D  M E T H O D S

Study Design

This was a before and after stepwise implementation study of conservative oxygenation targets in 

the ICUs of three participating hospitals, including two academic and one large teaching hospital 

in the Netherlands. The participating ICUs are mixed medical and surgical, tertiary care units, with 

20–30 beds, where full responsibility for the patient and treatment is transferred to the critical  

care physician.

The study was registered with the Netherlands Trial Register, number NTR3424. Ethical approval 

was granted by the Medical Ethical Committee of the Leiden University Medical Center. The need 

for informed consent was waived under Dutch National law for the type of study and in view of 

the retrospective and anonymous data collection.

Data Collection

Arterial blood gas (ABG) analyses, concurrent ventilator settings, and hourly pulse oximetry data 

recorded between July 1, 2011 and July 1, 2014 were extracted from the patient data management 

system (PDMS) databases (MetaVision, iMDsoft, Tel Aviv, Israel) of participating ICUs. Data were 

supplemented with anonymous demographic patient data, admission and discharge data, and data 

to quantify severity of illness from the Dutch National Intensive Care Evaluation (NICE) registry, 

a high quality database, which is subject to multiple quality checks and local audits in accordance 

with applicable research and ethical protocols (17).
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All ABG data were used when analyzing the effects on oxygenation. For clinical endpoints, 

data were summarized per patient admission and in case of readmissions only the first admission 

was included. Analyses were conducted on data from all ICU patients with subgroup analyses on 

mechanically ventilated patients. Patients on extracorporeal membrane oxygenation were excluded 

from the study. Retrospective baseline analyses were performed over a 12-months period prior to 

the implementation and details have been described previously (11).

Procedures

At baseline, oxygen therapy was approached liberally and targets for the partial pressure of arterial 

oxygen (PaO
2
) only specified a lower limit of 75 mmHg with liberal oxyhemoglobin saturation by 

pulse oximetry (SpO
2
), in the participating hospitals. Local guidelines instructed for a fraction 

of inspired oxygen (FiO
2
) and positive end-expiratory pressure (PEEP) depending on individual 

oxygenation measures and generally avoiding FiO
2
 levels higher than 0.6 by increasing PEEP levels, 

instituting inverse-ratio ventilation, or prone positioning.

The first implementation phase of this study started at July 2012 and consisted of providing 

a written guideline, instructing to supply as little oxygen as possible with clear recommendations 

how to adapt oxygen administration and ventilator settings depending on ABG analyses. Guidelines 

were available as pocket cards, on posters, and electronically in participating hospitals. The study 

PaO
2
 and SpO

2
 targets were set between 55 and 86 mmHg, and 92–95%, respectively, and were 

chosen since they were considered safe, feasible, and consistent with previously suggested 

targets (18, 19). In patients with severe cardiac ischemia, cerebral ischemia, or untreatable anemia, 

higher target levels up to 105 mmHg were allowed. Repeated passive and interactive education on 

the rationale of conservative oxygenation targets and a clear description of preferred PEEP/FiO
2
 

combinations were provided to all ICU clinicians in the participating hospitals. Baseline strategies 

for protective ventilation remained unchanged and during all study phases guidelines instructed for 

tidal volumes between 6–8 ml/kg ideal body weight, PEEP levels between 5–24 cm H
2
O, respiratory 

rate between 8–35 per minute and pH higher than 7.2. During the first study phase feedback was 

provided by statistical process control (SPC) and involvement of local leadership to promote 

a culture that supports guideline compliance. SPC was provided through newsletters and posters 

showing a summary of the guideline and the results of the previous time period including plots 

with mean and confidence interval statistics per week for oxygenation in range, PaO
2
, SpO

2
, FiO

2
,  

and PEEP. 

In the second and last phase of this study, from December 2013 till July 2014, a computerized 

decision-support system (CDSS) was introduced in the active, critiquing mode, meaning that it will 

automatically give decision-support, but only if the actual situation is not according to the guideline 

provided in phase 1 (20, 21). Raw data of all registered measurements were used for CDSS and 

filtered on data quality. A pop-up window appeared in the PDMS for bedside clinicians if either 

PaO
2
 in ABG analysis was higher than the upper level or SpO

2
 measurements were continuously 

higher than or equal to 97% for at least 30 minutes. The event was only triggered if the FiO
2
 or 

PEEP level was not lowered within 40 minutes after registration of out-of-range oxygenation and 
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the previous notification was more than three hours ago. The notification window suggested to 

adjust oxygen administration and/or ventilator settings for a maximum of two times per shift and 

not within the first three hours of ICU admission. Measures from the first phase of implementation 

were also continued using repeated training and feedback. The implemented guidelines and CDSS 

were introduced with an intention-to-treat approach. Actual decisions to change the settings or 

targets were left to the discretion of the attending physicians and nurses in the ICU.

Outcomes

The primary endpoint was a priori defined as the proportion of PaO
2
 values within the targeted 

study range. Secondary outcomes included ventilator-free days at day 28 after admission, duration 

of mechanical ventilation, length of stay (LOS), and mortality. PaO
2
 according to study protocol was 

defined as 1) any PaO
2
 in target range; 2) any PaO

2
 higher than target range with concurrent FiO

2
 

at 0.21 and PEEP at 5 or followed by a decrease in FiO
2
 or PEEP; 3) any PaO

2
 lower than target range 

with concurrent FiO
2
 at 1.0 and PEEP at 24 or followed by an increase in FiO

2
 or PEEP. Hyperoxia was 

defined as any PaO
2
 higher than 120 mmHg (22, 23) and hypoxia as any PaO

2
 lower than 45 mmHg.

Mechanical ventilation time was calculated as the sum of all mechanically ventilated episodes 

during the same admission. The ventilator-free days (VFDs) were calculated as the number of 

ventilator-free days and alive, 28 days after ICU admission according to a previously described 

definition (24). Accordingly, the intensive care unit-free days (ICUFDs) were calculated as 

the number of days not spent in the ICU and alive at day 28. Oxygenation index was calculated as 

the FiO
2
/PaO

2
 ratio multiplied by the concurrent mean airway pressure. The standardized mortality 

ratio (SMR) was calculated using the APACHE IV predicted mortality.

Statistical Analysis

The study was designed to detect a 5% difference in the primary endpoint with 98% power, assuming 

5000 ICU admissions in the participating hospitals per year. 

Every set of ABG data and ventilator settings could be compared with the following set, as 

described previously (11, 25). Means with standard deviations and medians with interquartile ranges 

are provided according to the underlying distribution. In some cases, both means and medians are 

provided in order to comprehensively summarize the data. Differences between study phases were 

tested with ANOVA or Kruskal Wallis as appropriate. Multivariate analyses were performed using 

generalized linear regression models for ventilator-free and ICU-free days and logistic regression 

for mortality while adjusting for confounding covariates. Confounding variables were stepwise 

selected using the 10% change-in-estimate method (26). Propensity scores were included in 

the multivariate models in order to adjust for each patient’s propensity to be admitted during either 

study phase. Variables included in the propensity score model were age, sex, hospital, APACHE III 

score, admission type, admission source, planned admission, co-morbidities, vaso-active drugs 

in the first 24 hours of admission and confirmed infection within 24 hours of admission. Mixed-

effects models with random intercepts were performed to account for random effects within 

patients or hospitals. Inspection of the variance inflation factors indicated absence of important 
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multicollinearity in the multivariate models. All analyses were conducted using R version 3.1.3 (R 

Foundation for Statistical Computing, Vienna, Austria) and RStudio version 0.98.1103 (RStudio Inc, 

Boston, MA).

R E S U LT S

In total, 295,701 ABG analyses were obtained over the baseline and implementation period. After 

excluding readmissions, 15,045 patients were included (Table 1). Eligible patients were predominantly 

male (64.2%), with a median age of 65 years. The majority of patients were mechanically ventilated 

at any time (81.8%) during admission and 17.3% was ventilated for more than 48 hours. Patient 

characteristics were comparable across study phases in terms of age, sex, body mass index, planned 

admission rate, illness severity, and several co-morbidities. The percentage of medical admissions 

increased from 33.7% at baseline to 36.8% in phase 1 and 38.1% in phase 2.

During the study, median levels of arterial oxygen pressures (PaO
2
), oxyhemoglobin saturation 

(SpO
2
) and central venous oxygen saturation (ScvO

2
) decreased significantly (Table 1). Lactate was 

slightly higher during phase 2, but not during phase 1.

Arterial oxygenation

The proportion of ABG analyses with a PaO
2
 in the targeted study range was markedly higher after 

implementation and increased from 47% during baseline to 63% in the first implementation phase 

and 68% during the second implementation phase (Table 2).

The mean difference between baseline and phase 1 was 16.1 [95% CI 15.8, 16.5] and 21.0 [95% CI 

20.5, 21.5] between baseline and phase 2. The compliance showed a gradual increase during the 12 

months of phase 1, but in comparison to the end of phase 1 no further improvement was found after 

implementation of the CDSS  in phase 2 (Fig. 1).

The proportion of PaO
2
 in range per patient admission, increased from 38% at baseline to 53% 

in phase 1 and 57% in phase 2. PaO
2
 within target range as well as PaO

2
 outside target range but 

promptly followed by adequate adjustments of oxygen administration or ventilator settings (PaO
2
 

according to study protocol) increased from 72% to 86% and 90%, respectively. The proportion of 

SpO
2
 measurements in the target range increased from 16% to 25% and 27%, respectively. PaO

2
 levels 

showed a rapid and persistent decline after the study start (supplemental figures, Supplemental 

Digital Content 1). The incidence of hyperoxia decreased from 15.3% during baseline to 9.0% and 

7.6% in phase 1 and phase 2, respectively. The incidence of hypoxic episodes (<45 mmHg) did not 

essentially change (0.4% during baseline, 0.5% during both implementation phases).

In mechanically ventilated patients, the oxygenation index and FiO
2
 levels decreased significantly 

during the study, along with an increase in PaO
2
/FiO

2
 ratio (Table 1). PEEP levels increased marginally 

in phase 2, and were adjusted less frequently than FiO
2
 levels in all study phases. Mean airway 

pressures remained unchanged. Oxygenation higher than the upper study limit was less commonly 

observed after implementation and FiO
2
 and PEEP levels were more frequently lowered in these 

cases (Table 2). Likewise, these ventilator settings were more frequently increased when PaO
2
 levels 

were lower than the lower study limit.
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Figure 1. Percentage of arterial blood gas analyses in targeted oxygenation range during baseline and  

study phases. 

Blue scatters are weekly means of primary outcome with weighted regression lines (95% CI) per study phase. 

Red horizontal lines are study phase means with SD

Table 2. Measures of implementation and oxygenation during all study phases

Total

Study phase

Baseline Phase 1 Phase 2 P-value

PaO
2
 in target range, % 57.9 46.7 62.8 67.7 <0.0001

SpO
2
 in target range, % 22.2 16.0 24.6 26.6 <0.0001

PaO
2
 in target range per patient, % 48.6 38.0 52.5 56.8 <0.0001

PaO
2
 according to study protocol, % 81.8 72.2 85.9 89.5 <0.0001

PaO
2
 > upper study limit, % 39.4 51.3 34.1 29.0 <0.0001

 of which followed by decrease in FiO
2
 or PEEP, %a 45.7 39.6 50.3 55.9 <0.0001

PaO
2
 < lower study limit, % 2.8 2.0 3.2 3.3 <0.0001

 of which followed by increase in FiO
2
 or PEEP, %a 56.4 52.4 55.0 66.6 <0.0001

PaO
2
 > 120 mmHg, % 11.0 15.3 9.0 7.6 <0.0001

PaO
2
 < 45 mmHg, % 0.4 0.4 0.5 0.5 0.06

ABG per patient, n 7 (4-16) 7 (4-17) 6 (4-16) 6 (4-15) <0.0001

ABG per 24 hours, n 5 (4-6) 5 (4-7) 5 (4-6) 4 (3-6) <0.0001

Abbreviations: ABG, arterial blood gas; PaO
2
, partial pressure of arterial oxygen; FiO

2
, fraction of inspired oxygen; 

PEEP, positive end-expiratory pressure; SpO
2
, oxyhemoglobin saturation by pulse oximetry. 

aData in italics are subanalyses on mechanically ventilated patients of which PaO
2
 was higher than the upper limit or 

lower than the lower limit.
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Table 3. Crude clinical outcomes during all study phases

Total

Study phase

Baseline Phase 1 Phase 2 P-value

All patients, n 15045 4890 7148 3007 -

 ICU LOS

  Mean, days 3.4 (6.5) 3.4 (6.8) 3.5 (6.5) 3.4 (5.9) 0.72

  Median, days 1.4 (0.8-3.1) 1.1 (0.8-3.0) 1.5 (0.8-3.2) 1.7 (0.9-3.6) <0.0001

 Hospital LOS

  Mean, days 14.3 (17.1) 14.7 (18.0) 14.2 (17.1) 13.8 (15.5) 0.04

  Median, days 9 (6-16) 9 (6-16) 9 (6-16) 8 (5-16) 0.22

 ICUFDs, days 21.6 (9.2) 21.5 (9.5) 21.7 (9.1) 21.6 (8.9) 0.63

 ICU mortality, n 1487 (9.9%) 475 (9.7%) 709 (9.9%) 303 (10.1%) 0.86

 Hospital mortality, n 2063 (13.7%) 723 (14.8%) 942 (13.2%) 398 (13.2%) 0.03

 SMR [95% CI] 0.78 [0.75, 0.82] 0.84 [0.77, 0.90] 0.75 [0.70, 0.80] 0.76 [0.69, 0.84] 0.01

Mechanically ventilated at 

any time, n

12206 (81.1%) 4043 (82.7%) 5789 (81.0%) 2374 (78.9%) 0.0003

 Mechanical ventilation time

  Mean, hours 46.9 (111.4) 50.7 (129.8) 46.0 (103.9) 42.5 (93.7) 0.01

  Median, hours 10.8 (5.2-39.0) 11.4 (6.0-40.3) 10.8 (5.0-38.8) 9.4 (4.6-36.4) <0.0001

 ICU LOS

  Mean, days 3.8 (7.1) 3.8 (7.4) 3.9 (7.1) 3.8 (6.5) 0.63

  Median, days 1.7 (0.9-3.8) 1.3 (0.8-3.6) 1.7 (0.9-3.8) 1.8 (0.9-4.0) <0.0001

 Hospital LOS, days

  Mean, days 14.3 (17.2) 14.7 (18) 14.3 (17.3) 13.7 (15.7) 0.09

  Median, days 9 (6-16) 9 (6-16) 9 (6-16) 8 (6-15) 0.22

 VFDs, days 22.3 (9.4) 22.1 (9.6) 22.5 (9.3) 22.5 (9.3) 0.10

 ICUFDs, days 21.1 (9.6) 21.0 (9.8) 21.1 (9.5) 21.0 (9.4) 0.78

 ICU mortality, n 1393 (11.4%) 452 (11.2%) 663 (11.5%) 278 (11.7%) 0.80

 Hospital mortality, n 1802 (14.8%) 634 (15.7%) 824 (14.2%) 344 (14.5%) 0.13

 SMR [95% CI] 0.80 [0.76, 0.84] 0.85 [0.78, 0.91] 0.77 [0.71, 0.82] 0.80 [0.71, 0.88] 0.01

Data are means (standard deviation), or medians (interquartile range) according to distribution, unless stated 

otherwise. Abbreviations: ICU, intensive care unit; LOS, length of stay; ICUFDs, intensive care unit-free days 

and alive at day 28; VFDs, ventilator-free days and alive at day 28; SMR, standardized mortality ratio according to  

APACHE IV model.

Secondary end points

Secondary outcome measures are listed in Table 3 and depicted in the supplemental figures. 

ICU mortality and ICUFDs did not differ between study phases. The median ICU LOS was longer 

in phase 2 compared to phase 1 and baseline, whereas the mean ICU LOS remained unchanged. 

Median hospital LOS did not change and hospital mortality decreased from 14.8% during baseline to 

13.2% during both implementation phases. Standardized mortality ratios and Kaplan-Meier curves 

for survival and mechanical ventilation time are shown in more detail in the supplemental figures. 

For patients requiring mechanical ventilation at any time (n=12,206), median mechanical 

ventilation time decreased from 11.4 hours at baseline to 10.8 in phase 1 and 9.4 hours in phase 2. 
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Mortality rates showed no statistically significant change in this subgroup. The VFDs increased from 

22.1 to 22.5 days after implementation. For the smaller cohort of patients who were ventilated for 

more than 48 hours (n=2,609), no significant differences for major outcome measures between 

study phases were observed (Supplemental Tables, Supplemental Digital Content 2). For surviving 

patients, mechanical ventilation time decreased, ICU LOS increased, whereas hospital LOS remained 

unchanged over the study time (Supplemental Tables, Supplemental Digital Content 2).

Separate analyses for the effect of the implementation in the individual participating ICUs are 

shown in the supplemental tables. Similar improvements in PaO
2
 in target range were found in each 

ICU. In one of the units, the proportion of medical admissions increased markedly in phase 1 and 

phase 2, and potentially related to this, a concurrent increase in ICU LOS was found. The effect sizes 

of other outcome measures were in the same order of magnitude for all three ICUs.

Multivariate analyses

When the model for the proportion of PaO
2
 samples in the target range was reanalysed in mixed-

effects models, the associations were virtually unchanged (data not shown). The crude and adjusted 

estimates were calculated as mean differences or odds ratios per study phase in reference to 

baseline and were adjusted for identified confounders and propensity scores (Table 4). No increase 

in ICUFDs was found in either the unadjusted or adjusted analyses. After adjustment, the increase 

in VFDs was stronger. There were no statistically significant differences in ICU mortality, whereas 

the odds ratios for hospital mortality were lower in both implementation phases, after adjustment 

for confounders.

Table 4. Clinical outcomes with adjustment for confounders

Study phase 1 Study phase 2

Unadjusted Adjusted Unadjusted Adjusted

Mean difference [95% CI]

 VFDsa 0.38 [0, 0.76] 0.55 [0.25, 0.84]* 0.39 [-0.08, 0.87] 0.48 [0.11, 0.86]*

 ICUFDsb 0.16 [-0.17, 0.50] 0.16 [-0.11, 0.42] 0.08 [-0.34, 0.50] 0.10 [-0.23, 0.43]

Odds ratio [95% CI]

 ICU mortalityc 1.02 [0.91, 1.16] 1.09 [0.93, 1.27] 1.04 [0.89, 1.21] 1.09 [0.90, 1.32]

 Hospital mortalityc 0.87 [0.79, 0.97]* 0.84 [0.74, 0.96]* 0.88 [0.77, 1.00] 0.82 [0.69, 0.96]*

Multivariate models were adjusted for admission type, APACHE III score and propensity score (for admission during 

either phase 1 or phase 2). Abbreviations: ICUFDs, intensive care unit-free days and alive at day 28; VFDs, ventilator-

free days and alive at day 28. a Mean difference in ventilator-free days in reference to baseline for subgroup of 

mechanically ventilated patients. b Mean difference in intensive care unit-free days in reference to baseline for all 

patients. c Odds ratio (OR) for indicated mortality in reference to baseline for all patients. * P<0.05
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D I S C U S S I O N

Key findings

In this multicenter clinical trial, stepwise implementation of a strategy targeting conservative 

oxygenation levels through education, feedback, and decision support was shown to be feasible 

and effective in critically ill patients. Targeting PaO
2
 levels of 55–86 mmHg and SpO

2
 levels of 92–95% 

resulted in lower but safe oxygenation levels of arterial blood. Taking the before after design in 

consideration, this study was limited in the ability to address the clinical impact of our strategy. In 

adjusted analyses, implementation of the study protocol was associated with a slight improvement 

in ventilator-free days and hospital mortality. However, ICU-free days and ICU mortality were 

unaffected over the study time.

Interpretation

The proportion of PaO
2
 samples in the target range (primary outcome) increased strongly in 

the first study phase in which traditional implementation strategies were applied. These strategies 

consisted of education for all ICU nurses and physicians, providing written guidelines on targets and 

ventilator settings, and frequent feedback using statistical process control. In contrast, the CDSS, 

which was offered in phase 2, had no additional effect on the primary outcome and may even have 

been somewhat counterproductive. However, phase 2 was shorter than phase 1 and trends could 

therefore be assessed with less precision. A ceiling effect of modifiable oxygenation should also 

be considered as ventilator settings are often initiated outside the ICU (e.g. during anesthesia or at 

the emergency room) and first ABG samples, taken shortly after ICU arrival, were responsible for an 

important part of these out-of-range samples. Other reasons for a ceiling effect can be postulated 

in terms of knowledge barriers, attitude barriers, and behavioral barriers (27). Barriers include 

reluctance of clinicians to adhere to new guidelines, resistance to change, and reluctance to replace 

pre-existing guidelines (28-30). Guideline implementation strategies were previously shown to 

be successful when strategies were multifaceted and actively engaged clinicians throughout 

the process (31). Although CDSS is usually beneficial (32), its effects in a multifaceted approach 

may be less (cost-)effective (33-35). An alternative explanation for the apparently paradoxical 

course of compliance in phase 2, is that traditional implementation was so successful that no 

additional benefit could be achieved by a decision support module. However, we cannot rule out 

that prolonged CDSS, different algorithms, more frequent reminders, or more specific suggestions 

to change ventilator settings, could have been more effective. During phase 2, the proportion of 

PaO
2
 values within range was even somewhat lower than at the end of phase 1. Although this may 

be normal fluctuation by chance, decision support may alternatively induce passive behavior of 

bedside clinicians leading to slower adjustments of ventilator settings. Even after implementation 

of conservative oxygenation targets, approximately 30% of PaO
2
 and 70% of SpO

2
 measurements 

was higher than the target range. The latter marker of oxygenation is indeed less reliable and more 

variable, albeit the percentage of registered values increased significantly with implementation. 

The proportion of samples according to protocol, also including PaO
2
 outside the limits followed by 

appropriate adjustments of oxygen and ventilator settings, was much better, reaching almost 90% 
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at the end of the study. In this respect, phase 2 was superior to phase 1, in line with other clinical 

outcome measures in multivariate analyses. Controlled evidence is warranted to further evaluate 

CDSS in comparison to traditional training and feedback (21).

Strengths and Limitations

The following potential limitations of this study should be considered. First, the non-randomized 

intervention in this clinical trial hampers causal inferences, especially regarding effects on 

relevant clinical patient outcomes. Differences in case-mix between the baseline period and both 

implementation phases may have been responsible for differences in outcomes such as length of 

stay, mechanical ventilation time, or hospital mortality. However, demographic characteristics 

and illness severity scores were very similar across the study periods and multivariate analyses 

were adjusted for confounders and propensity scores. The longitudinal design of this study yields 

potential bias as outcomes of ICU patients may improve over time due to factors other than 

oxygenation targets. Hypothesizing that attentive monitoring of oxygenation and ventilation 

improves outcome, study awareness may elicit attention bias. Indeed, we could not fully control 

for secular trends and potential changes in clinician behavior and ventilation management during 

the study. Interestingly, improvement of clinical outcomes was observed in all three ICUs during 

the first implementation phase, but without a further improvement after adding CDSS. Also, during 

the 12 months baseline period, no significant trends to improved survival, LOS, or mechanical 

ventilation time were found. 

General oxygenation strategies were specified as much as possible, but specific and individual 

oxygenation strategies were left to the discretion of the participating centers and responsible 

clinicians. In this context, individual cases with amended target ranges including patients with 

severe anemia or ischemia were not specifically registered in the database. Hospital related 

differences in case-mix, patient care, and guideline adherence may accordingly influence 

the overall-effects, although there was a consistent signal for end points in the sensitivity analyses, 

even when wider PaO
2
 target levels up to 105 mmHg were used for analysis. The only exception was 

ICU LOS which increased only in the ICU where an increase in the proportion of medical admissions 

was found. The finding that median ICU LOS increased during the study should therefore be 

interpreted with caution. Accordingly, in the multivariate analysis, also adjusting for admission type, 

no association between ICUFDs and implementation was found. Finally, our findings may not be 

directly generalizable to other ICUs although we believe that the inclusion of patients from three 

participating hospitals during two years can robustly represent a general ICU population. At least it 

shows the feasibility of conservative oxygen therapy with strict adherence to oxygenation targets. 

Strengths of this study include the multicenter trial participation, the large patient cohort, 

the quality of the database, and the possibility to control for many covariates. Further, our findings 

are consistent with a previous single-center pilot study reporting compliance with targeted 

saturation in a small sample of mechanically ventilated patients (13). In this study, conservative 

oxygen therapy was shown to be free of adverse biochemical, physiological, and clinical outcomes. 

The present study confirms these findings on a larger scale and also demonstrates the feasibility of 

PaO
2
 targets.
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Clinical Implications

In mechanically ventilated patients, we could not demonstrate an improvement in mortality rates 

and LOS, yet mechanical ventilation time decreased in a significant manner. Potential mechanisms 

underlying the observed effects in clinical outcomes are multifarious. Precise control of arterial 

oxygenation avoids significant variation from the target range and may successfully reduce 

the harms associated with unnecessary extremes (15). In addition, conservative oxygen therapy 

may contribute to acclimatization and cellular adaptation to mild hypoxia, which may result in 

improved efficiency of ATP production and protection of mitochondria (15). Reducing the exposure 

to hyperoxia may decrease mechanical ventilation time by preventing absorption atelectasis, 

pulmonary inflammation, and other histopathological changes in the lung (1, 4, 9). Patient-centered 

outcomes are also likely to be impacted by reactive oxygen species, oxygen-induced cardiovascular 

alterations (2), oxidative DNA damage (36) and mediators of oxygenation. Interestingly, hospital 

mortality decreased during the study whereas ICU mortality remained unchanged. This observation 

is in agreement with results from pooled cohort studies, showing that arterial hyperoxia was 

associated with hospital mortality but not specifically with ICU mortality (10). Clinical improvements 

may alternatively be attributed to behavioral changes in clinical practice and precise control of 

oxygenation, rather than to the prevention of hyperoxia per se (37).

The oxygenation ranges used in this study were chosen based on previous recommendations 

(18, 19). In accordance, this range was within the standard of care and no reasonably foreseeable 

risks of the actually achieved oxygenation were anticipated. Although other target ranges for 

conservative oxygen therapy may well be as good as or even better than the range we studied (14), 

our approach was safe in terms of major clinical end points. Also, the incidence of severe hypoxia 

was rare and did not increase over time. In comparison to baseline, tissue oxygenation represented 

by arterial lactate or oxygenation index did neither deteriorate. Moreover, the higher percentiles 

of lactate levels remained virtually unchanged (data not shown). In prospective evaluation of 

conservative oxygenation, a randomized intervention, alternative mediators and the effects on 

specific parameters including hemodynamics and the microcirculation are still to be assessed.

C O N C L U S I O N S

Stepwise implementation of conservative oxygenation was feasible and showed a rapidly established 

high compliance to targeted arterial oxygen and saturation levels. The gradual improvement in 

guideline adherence was accompanied by a slight improvement in several clinical outcomes, but 

this should be interpreted with caution in view of the study design. Future randomized controlled 

studies should further clarify the causal effects of oxygenation targets on clinical outcomes for  

ICU patients.
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In a recent issue of Critical Care Medicine, Helmerhorst et al. (1) made two important points. 

First, hyperoxia is associated with significant morbidity and mortality. Second, an intervention 

with minimal cost, involving training and provider feedback, decreased improper use of oxygen 

by 25% (p < 0.0001), ensuring that 63% of patients received appropriate therapy (SpO
2
 , 92–95%). 

This modest intervention resulted in a significant decrease in hospital mortality and mechanical 

ventilation time. However, in low-income nations, undertreatment of hypoxemia, as opposed to 

the “more is better” scenario addressed by Helmerhorst et al. (1), is still a problem. A single study 

found that the point prevalence of undiagnosed hypoxemia was 9% among 109 inpatient adults in 

Zambia (2). In 2015, the Lancet Commission on Global Surgery found that 24% of developing country 

hospitals lack oxygen, and 70% of operating theaters do not have pulse oximeters (3). Our group 

sought to determine the occurrence rate of hypoxemia and associated mortality among all inpatient 

adults in a low-income setting. We conducted a prospective single-center observational study in 

one of Rwanda’s two public tertiary care hospitals, with 12,000 annual admissions (4). We screened 

all adult inpatients (age > 15yr) every day for 4 weeks in 2014 with an Acare/Lifebox oximeter (Acare 

Technology Co., Ltd., Taipei, Taiwan). Hypoxemia was defined as oxygen saturation less than 90% 

or receiving oxygen supplementation. During the 4 weeks of the study, 1,046 adult patients were 

admitted to the hospital (4). One hundred twenty-six patients (12.0%) were hypoxemic on one or 

more days with an inpatient mortality rate of 49.2%. Median age was 49 years (interquartile range 

(IQR), 34–65 yr). Mortality was worse with worsening hypoxemia. As hypoxemia increased from 

mild, moderate, to severe, corresponding mortality rates increased from 30.8% to 40.7% to 57.4% 

(estimated PaO
2
-to-Fio

2
 ratio between 200 and 300; 100–200; < 100), respectively. While 111 patients 

(88.1%) received adequate oxygen at least 1 day, 76 (60.3%) of hypoxemic patients either received 

no oxygen therapy or inadequate oxygen therapy on at least 1 day (SpO
2
 < 90%). Median time 

from admission to hypoxemia was 1 day (IQR, 1–3 d). Oxygen has been listed as one of the World 

Health Organization’s Essential Medicines since the first online edition was published in 2002 (5); 

however, very little research exists on hypoxemia in adult populations. In our study of inpatient 

adults, hypoxemia occurred at epidemic proportions. Although 85.7% of hypoxemic patients were 

in hospital wards outside the ICU, their 49.2% mortality rate was almost identical to the mortality 

of our ICU patients (47.1%) (4). It is possible that hypoxemia is simply a marker of severe disease; 

however, our data raise the question of whether consistent oxygen therapy at all levels of the health 

system could make an impact on mortality. While Helmerhorst et al. (1) study rightly emphasizes 

that more oxygen is not always better, “some” oxygen to address hypoxemia is almost certainly 

beneficial. Helmerhorst et al. (1) trial indicates that simple, low cost educational and behavioral 

interventions are capable of improving oxygen use where oxygen is available and hyperoxia 

a common occurrence. For much of the world, making oxygen consistently available and educating 

on the need to avoid hypoxemia remain the priority.
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We thank Sutherland et al. (1) for their interest and thoughtful comments regarding our work. They 

have raised an important issue that regional differences play a key role in oxygen management and 

that insufficient availability may contribute to higher mortality rates as shown by Riviello et al. (2). 

Despite the potential risks of excessive oxygenation, it is extremely important to realize that oxygen 

has life-saving properties in many critical conditions. This accounts for all patients worldwide, but 

Sutherland et al. (1) duly emphasize that its availability is not self-evident in all countries. Especially 

in low-income nations, meeting the basic needs of oxygen should receive first priority as long as 

hypoxemia imposes a major threat to public health. Indeed, sufficient oxygen therapy is vital for all 

levels of the health system, and adequate training and education on the accessibility, use, and misuse 

of oxygen remain crucial. This makes it even more pertinent that our study showed that clinicians’ 

behavior regarding oxygen management can be (permanently) changed by simple and universal 

measures such as education, feedback, and training (3). We also showed that, with increased focus 

on conservative oxygen therapy, hypoxemic events were more adequately acted upon during our 

study period. Computerized decision support may be of added value in this context but should be 

further studied and may not be universally available in all health institutions.

A second issue that Sutherland et al. (1) address is adequate recognition and treatment 

of hypoxemia. Early diagnosis by pulse-oximeters and point-of-care blood gas analyzers are 

prerequisites for optimal oxygen therapy, avoiding both hypoxemia and hyperoxia. Furthermore, 

tailored oxygen administration through nasal cannulas, masks, or ventilators and appropriate 

titration of the dose determine the success of the intervention. These assets are essential for 

patient-centered outcome and are impacted by the (financial) resources and focus of the institution 

and caregivers. 

We believe that our study yielded hopeful results for further implementation of targeted 

oxygen management, and we intend to persevere on studying on the safety and effectiveness of 

such measures.
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P L E A D I N G S

This thesis addresses the clinical challenge of providing the right amount of oxygen to critically  

ill patients. 

In the first part we reviewed the literature for the experimental and clinical effects of inspired 

and arterial hyperoxia (chapter 2). Sufficient oxygen supply is essential for human survival and 

administering high levels of inspired oxygen is therefore a powerful and efficient tool to prevent 

the life-threatening effects of hypoxia in critically ill patients. However, excessive oxygenation also 

has deleterious properties in various pathophysiological processes. The effects of supplemental 

oxygen prove to be diverse and reactive oxygen species play an important role in hyperoxia-

mediated tissue injury and oxidative stress, characterized by cell damage, cell death and 

inflammation. When human lungs are continuously exposed to hyperoxia, symptoms start locally 

with tracheobronchitis, atelectasis, pulmonary edema, and eventually respiratory failure. Symptoms 

may also spread to the central nervous system, as evidenced by nausea, dizziness, headache, 

visual disturbances, neuropathies and convulsions. Vascular effects originate rapidly and include 

vasoconstriction in most vascular beds. The increase in systemic vascular resistance may prove 

useful in counteracting unfavourable vasodilation during shock or anesthesia, but may also impair 

cardiac output and organ perfusion. We concluded that oxygen remains of life-saving importance 

in critical care, but can also be toxic in higher doses and after prolonged exposure. We must further 

stress that evidence from experimental models that are clinically relevant to the critical care setting 

were scarce and the effects of hyperoxic exposure on critically ill patients requires further research 

due to the lack of robust evidence from clinical studies. 

As a proof of principle, we further investigated which effects prolonged hyperoxia has 

in a preclinical context (chapter 3). By exposing mice to increasing levels of inspired oxygen 

during mechanical ventilation, we found that hyperoxia has a time- and dose dependent effect. 

We demonstrated a severe vascular leakage and a pro-inflammatory pulmonary response in 

mechanically ventilated mice, which was enhanced by hyperoxia and longer duration of mechanical 

ventilation. Prolonged ventilation with high oxygen concentrations induced a time-dependent 

immune response characterized by elevated levels of neutrophils, cytokines and chemokines in 

the pulmonary compartment, which was not directly translated into extensive lung injury. This was 

in line with previous findings even though remarkable differences in cytokine levels were noted 

and lung injury scores were comparable between the study groups. The complex kinetics and 

dynamics of the immune response make it very difficult to characterize the exact mechanisms, 

interpret the effects and attribute these to a specific part of the combined exposure to anesthesia, 

mechanical ventilation and hyperoxia. Moreover, translation of these study results to the clinical 

situation remains cumbersome as healthy mice are not identical to critically ill patients. Our 

experimental model may be a useful representation of the intensive care setting and may aid to 

determine optimal ventilator strategies in critically ill patients but needs further modification and 

validation to test new hypotheses, acquire more insight in save oxygen management and generate 

further leads for clinical implementation.
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In the second part of this thesis, we focused on the clinical effects of hyperoxia and the associated 

outcomes in critical illness. Concentrating on the vascular effects of clinical implementation, we 

experimentally introduced a brief hyperoxic interval in the postoperative period of mechanically 

ventilated patients in the ICU after coronary artery bypass grafting surgery (chapter 4). We 

evaluated the acute hemodynamic changes and aimed to comprehensively describe alterations of 

the circulation by measuring cardiac output, mean systemic filling pressure, resistance to venous 

return, cerebral blood flow velocity and markers of the microcirculation. During a 15-minute 

exposure to hyperoxia, we observed significant alterations in systemic circulation mainly by 

vasoconstriction of both the venous and arterial circulation and an increase of mean systemic filling 

pressure. Effects on cardiac output, cerebral blood flow and the microcirculation were relatively 

small and may be clinically insignificant in hemodynamically stable subjects. However, the increase 

in systemic resistance, stressed volume and systemic filling pressure by hyperoxia resembled 

the effects of norepinephrine and associated changes in central circulatory variables may have 

clinically important consequences in critically ill patients when hemodynamic changes are vital. 

These findings underscore the potential benefit of inducing hyperoxia during vasodilatory shock, 

but may also explain why patients with acute cardiac ischemia have a greater myocardial infarct 

size after supplemental oxygen therapy in the ambulance and during cardiac catheterization. 

Furthermore, these results shine light on associations found between arterial hyperoxia and in-

hospital mortality among patients admitted to the ICU following resuscitation from cardiac arrest.

In order to further appraise this relationship, we examined the separate and combined effects 

of the partial pressures of both arterial carbon dioxide and arterial oxygen in a multicenter cohort 

of patients admitted to Dutch intensive care units after cardiac arrest (chapter 5). We exhibited 

the survival probability inferred from continuous levels of PaCO
2
  and PaO

2
, revealed a U-shaped 

relationship with mortality for both parameters, and found that hypocapnia and hypoxia were 

independently associated with hospital mortality in post cardiac arrest patients. A synergistic 

effect of concurrent derangements of PaCO
2
 and PaO

2
 was not observed, but the close relationship 

between both parameters argues for a concurrent assessment of the effects and we concluded that 

accurate evaluation of target ranges is warranted.

With regards to arterial oxygenation, we systematically reviewed the literature for cohort 

studies comparing hyperoxia to normoxia in critically ill adults and performed a meta-analysis 

and meta-regression of the results (chapter 6). Nineteen studies were pooled and showed that 

arterial hyperoxia during admission decreases hospital survival. Functional outcome measures were 

diverse and generally showed a more favorable outcome for normoxia. Considering the substantial 

heterogeneity of included studies and the lack of a clinical definition, we interpreted that more 

evidence was needed to provide optimal oxygen targets to critical care physicians. 

We challenged this conclusion by evaluating previously used and newly constructed definitions 

of arterial hyperoxia (metrics) and systematically assess their association with clinical outcomes in 

different subgroups in the intensive care unit (chapter 7). Severe hyperoxia was associated with 

higher mortality rates and fewer days on the mechanical ventilator in comparison to both mild 

hyperoxia and normoxia for most metrics. Adjusted effect estimates for hospital mortality were 

larger for severe hyperoxia than for mild hyperoxia. This association was found both within and 
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beyond the first 24 hours of ICU admission and was consistent for large subgroups. The largest 

point estimates were found for the exposure identified by measures of central tendency (average 

and median PaO
2
) and these estimates differed substantially between subsets. Time spent in 

hyperoxia showed a linear and positive relationship with hospital mortality. This led us to conclude 

that we should limit the PaO
2
 levels of critically ill patients within a safe range, as we do with other 

physiological variables. 

In the third part of this thesis, we studied current oxygen management and explored strategies 

to support guideline adherence regarding oxygen therapy. In order to pursue this, we identified 

common beliefs and self-reported attitudes of critical care physicians and nurses on oxygenation 

targets and compared this with actual treatment of patients in three tertiary care intensive care 

units in the Netherlands (chapter 8). Most ICU clinicians acknowledge the potential adverse effects 

of prolonged exposure to hyperoxia and report a low tolerance for high oxygen levels. However, in 

actual clinical practice, a large proportion of their patients was exposed to higher arterial oxygen 

levels than self-reported target ranges. 

Following these results, we subsequently studied the feasibility, effectiveness and clinical 

outcomes of a two-step implementation of conservative oxygenation targets in the same three 

intensive care units (chapter 9). With education, feedback and a computerized decision support 

system, we recognized that stepwise implementation of conservative oxygenation targets was 

feasible and showed a rapidly established high compliance to targeted arterial oxygen and 

saturation levels. Targeting PaO
2
 levels of 55-86 mmHg and SpO

2
 levels of 92–95% resulted in lower 

but safe oxygenation levels of arterial blood. The gradual improvement in guideline adherence was 

accompanied by a decrease in mechanical ventilation time and hospital mortality, but this should 

be interpreted with caution in view of the before-after design of this study. Future randomized 

controlled studies should further clarify the causal effects of oxygenation targets on clinical 

outcomes for ICU patients.

W I T N E S S  A N D  J U RY

The side-effects of hyperoxia can be roughly subdivided in cell damage, inflammation, pulmonary 

complications, neurological symptoms and vascular effects. These major features are responsible 

for the large majority of the unfavourable effects and increased risk for morbidity and mortality 

following (prolonged) exposure to hyperoxia.

As a result of oxygen free radicals (reactive oxygen species) and damage associated molecular 

patterns (DAMPs), DNA and cell damage may manifest as apoptosis and necrosis leading to tissue 

injury and local organ-specific complications. DNA damage has been suggested to underlie 

the worse outcomes of cancer patients exposed to high FiO
2
 levels during oncological surgery (1, 2). 

Pathways of cell damage and oxidative stress contribute to a pro-inflammatory state in which tissue 

injury is exaggerated and the innate immune system may be impaired. Neurological symptoms can 

be transient or severe but are usually less pertinent and difficult to diagnose in sedated critically 

ill patients. Pulmonary complications, however, are more frequently encountered as atelectasis 

and pulmonary edema can have major influence on oxygenation and ventilation parameters. 

Furthermore, vascular effects, including vasoconstriction and bradycardia, may result in impaired 
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organ perfusion. Likewise, increased mortality and morbidity have been observed with hyperoxia 

during events such as ischemic heart disease (3), cardiac arrest (4, 5), stroke (6, 7), traumatic brain 

injury and mechanical ventilation.

Interestingly, it has long been suggested that hyperoxia may have anti-bacterial properties 

and can reduce surgical site infections or infectious complications, but in recent meta-analyses 

this effect appeared to be marginal or even absent (8, 9). Pursuing prolonged periods of 

supraphysiological oxygenation may thus not have any beneficial effect compared to normoxia. As 

the risk of adverse events may be increased by a FiO
2
 of 60% or higher, and as robust evidence is 

lacking for a beneficial effect, evidence is still insufficient to support the routine use of hyperoxia 

during anesthesia, surgery and mechanical ventilation of non-injured lungs (10). 

In the ICU setting, clinical practice guidelines generally target oxygen levels in arterial blood 

comparable with healthy adults at sea level (11-13). Recently published trials comparing conservative 

with conventional or maximal oxygen therapy (14, 15) show potential benefits for conservative 

oxygenation which is in keeping with the results of the Oxytar trial (16), but contrasts with results of 

a pilot randomized controlled trial (RCT) that demonstrated the feasibility and safety of conservative 

oxygen administration (17). 

R U L I N G  A N D  V E R D I C T 

From this thesis, we conclude that careful oxygen titration and monitoring is the best therapeutic 

strategy aimed at the prevention of potentially dangerous hyperoxia while preserving adequate 

tissue oxygenation. In this context, conservative oxygenation in the intensive care unit is a promising 

strategy to achieve better clinical outcomes for critically ill patients. Importantly, the beneficial 

effects of sufficient oxygen supply should not be undervalued in attempts to prevent hyperoxia and 

pursue conservative oxygenation. In critical situations, administering oxygen remains essential to 

prolong the window of opportunity and provide as much oxygen as necessary in anticipation of (e.g. 

pre-oxygenation), or during arterial hypoxia (e.g. respiratory failure, carbon monoxide intoxication, 

gas embolism, decompression sickness), and to rapidly establish pulmonary vasodilation (e.g. in 

right-sided heart failure) or systemic vasoconstriction (e.g. in vasodilatory shock), when other 

measures are inadequate or fail. At the same time, clinicians should be well aware of the side-effects 

that are induced by supplying high levels of oxygen, as hyperoxia is also frequently encountered in 

critically ill patients.

Given the risk of bias in the available evidence, definitive recommendations in providing the right 

dose of supplemental oxygen are not yet obtainable and further RCTs from robust methodological 

quality are warranted. Some RCTs have provided further leads for patients in specific subsets and 

several more trials have recently been initiated. In selected patients, targeting the lower ranges 

of normoxia (55-80 mmHg) can be safely pursued. In expectation of compelling evidence from 

future clinical trials, targeting relative normoxia (80-150 mmHg) by avoiding exposure to both 

subphysiological as well as supraphysiological oxygenation should be considered the most rational 

choice in most cases.
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N E D E R L A N D S E  S A M E N VAT T I N G

Bij een aanzienlijk deel van patiënten op de intensive care (IC) afdeling wordt het ademen 

ondersteund met een beademingsmachine. Zuurstoftoediening kan hierbij van levensreddend 

belang zijn om het lichaam van voldoende zuurstofrijk bloed te voorzien tijdens een kritieke 

ziekteperiode. Ondanks het grote belang van deze behandeling zijn er aanwijzingen dat beademing 

met hoge zuurstofconcentraties de kans op complicaties en zelfs overlijden op de IC vergroot. Er 

wordt dus vermoed dat overdaad schaadt. De mechanismes die leiden tot complicaties zijn echter 

nog onvoldoende opgehelderd maar zijn van essentieel belang in de behandeling en preventie van 

zuurstofschade bij beademde patiënten. 

Dit proefschrift gaat in op de klinische uitdaging voor zorgverleners om de juiste hoeveelheid 

zuurstof toe te dienen aan kritisch zieke patiënten. In het eerste deel van dit proefschrift wordt  

de huidige stand van zaken beschreven op het gebied van de fysiologische, (dier)experimentele en 

klinische effecten van hoge concentraties zuurstof (hyperoxie) in de ingeademde lucht en in het 

slagaderlijke bloed.

In hoofdstuk 2 beschrijven we dat voldoende zuurstofvoorziening essentieel is voor het 

menselijk bestaan en dat de toediening van een hoge dosis zuurstof een krachtig en efficiënt 

middel is om een levensbedreigend zuurstoftekort bij kritisch zieke patiënten te voorkomen. 

Teveel zuurstof heeft echter ook nadelige gevolgen in een aantal ziekteprocessen. De effecten van 

zuurstoftoediening zijn divers en zuurstofradicalen spelen een belangrijke rol bij de weefselschade 

door celschade, celdood en ontstekingsreacties (de zogenaamde ‘oxidatieve stress’). Op het 

moment dat onze longen continu blootgesteld worden aan hyperoxie, beginnen de symptomen 

van zuurstofvergiftiging vaak met een lokale ontstekingsreactie, het samenvallen van longblaasjes 

(atelectase), een toename van longvocht (longoedeem), en op den duur kan de ademhaling zelfs 

volledig falen. De symptomen kunnen zich verspreiden naar het centrale zenuwstelsel, waarbij er 

misselijkheid, duizeligheid, hoofdpijn, visusklachten, gevoelsstoornissen en convulsies kunnen 

ontstaan. De effecten op de bloedvaten kunnen zich heel snel manifesteren, waarbij de bloedvaten 

vrijwel overal in het lichaam, met uitzondering van de longen, samenknijpen (vasoconstrictie). 

Hierdoor ontstaat een toename in de systemische vaatweerstand en bloeddruk. Dit kan gunstig zijn 

in het geval van een lage bloeddruk met vaatverwijding (vasodilatatie) bij shock of na het geven van 

narcosemiddelen (anesthetica), maar kan ook het hartminuutvolume en de weefseldoorbloeding 

verminderen. Op basis van deze bevindingen concluderen we dat zuurstof van levensreddend 

belang blijft in spoedeisende situaties en op de IC, maar dat zuurstof ook toxisch kan zijn in hogere 

doses en na langdurige blootstelling. Bovendien moeten we benadrukken dat het bewijs voor 

zuurstoftoxiciteit uit experimentele studies, die klinisch relevant zijn voor de IC setting, mager 

en onvoldoende is. Doordat er gelijktijdig een gebrek is aan goed uitgevoerde, klinische studies, 

behoeft het effect van hyperoxie bij kritisch zieke patiënten zonder twijfel meer onderzoek. 

Om meer inzicht te krijgen in de effecten van langdurige hyperoxie in een preklinische context 

hebben wij in hoofdstuk 3 gebruik gemaakt van een experimenteel beademingsmodel. Door muizen 

bloot te stellen aan oplopende hoeveelheden zuurstof met een beademingsmachine, hebben 

we laten zien dat hyperoxie een tijds- en dosis-afhankelijk effect heeft. We hebben aangetoond 

N E D E R L A N D S E  S A M E N VAT T I N G
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dat door de beademing de longvaten kunnen gaan lekken en dat er een ontstekingsreactie 

in de longen van muizen ontstaat. De beademingsduur en de mate van hyperoxie zijn hierbij 

belangrijke determinanten voor de longschade en -ontsteking. Langdurige beademing met 

hoge concentraties zuurstof veroorzaakte een tijdsafhankelijke reactie die gepaard gaat met 

verhoogde waardes van witte bloedcellen en andere ontstekingsmediatoren in longvocht. Dit 

komt overeen met resultaten uit voorgaande studies maar er zijn ook opvallende verschillen in  

de concentratie van de ontstekingswaarden. Bovendien zijn de scores voor longschade  

vergelijkbaar in de verschillende zuurstof-studiegroepen. Dit kan verklaard worden door  

de complexiteit van de immuunreactie waarbij het ingewikkeld is om de verschillende waarden 

specifiek toe te schrijven aan de verschillende onderdelen van de gelijktijdige blootstelling 

aan narcose, mechanische beademing en hyperoxie. Daarnaast blijft het complex om  

de experimentele resultaten eenduidig naar de klinische praktijk te vertalen. Ondanks dat 

gezonde muizen niet identiek zijn aan kritisch zieke mensen, kan ons experiment een bruikbaar 

model zijn voor de intensive care setting. Het kan bijdragen aan de zoektocht naar optimale  

beademingsstrategieën, maar het model behoeft validatie en verdere aanpassingen om 

nieuwe hypotheses te testen, meer inzicht te geven in veilige omgang met zuurstof en nieuwe 

aanknopingspunten te genereren voor de klinische toepasbaarheid.

In het tweede gedeelte van dit proefschrift ligt de focus op de klinische gevolgen van hyperoxie 

en de gerelateerde uitkomsten in kritieke fases van ziekte. In hoofdstuk 4 hebben we ons 

geconcentreerd op de effecten van hyperoxie op de bloedvaten. Daartoe hebben we beademde 

patiënten een korte periode blootgesteld aan hoge fracties zuurstof in de inademingslucht, terwijl 

zij op de intensive care waren opgenomen nadat ze een bypass van de kransslagaders van het 

hart hadden ondergaan. Tijdens deze periode hebben we de veranderingen in de hemodynamiek 

(circulatie en drukken van het hart- en vaatsysteem) van de patiënten geëvalueerd. Daarbij 

zijn ook de veranderingen in de hersendoorbloeding en doorbloeding van de kleine haarvaten 

(microcirculatie) in acht genomen. Tijdens een 15-minuten-durende blootstelling aan hyperoxie 

hebben we waargenomen dat er significante veranderingen optraden in de bloedcirculatie. Deze 

veranderingen worden voornamelijk veroorzaakt door het samenknijpen van de bloedvaten in 

zowel het slagaderlijke (arteriële) als aderlijke (veneuze) systeem. We hebben hierbij opgemerkt 

dat de bloeddruk stijgt ten gevolge van de blootstelling aan hoge fracties zuurstof. Ook de druk 

die overblijft tijdens een hypothetische stilstand van de bloedsomloop (bijvoorbeeld tijdens een 

hartstilstand) kon worden nagebootst in een model en liet een belangrijke toename zien tijdens 

hyperoxie. De effecten op de output van het hart, de hersendoorbloeding en de microcirculatie 

zijn relatief klein en kunnen van ondergeschikt belang zijn in stabiele gezonde patiënten.  

De toename in de vaatweerstand door hyperoxie blijkt daarentegen goed overeen te komen met 

eerder aangetoonde effecten van het vaak toegediende hormoon noradrenaline als medicament. 

De daarmee gepaard gaande veranderingen in de hemodynamiek kunnen klinisch van groot belang 

zijn bij kritisch zieke IC patiënten. Deze bevindingen benadrukken het potentiële nut dat hyperoxie 

kan hebben als een patiënt zich in een kritieke fase van shock bevindt met een bijkomende lage 

bloeddruk. Het laat echter ook zien hoe patiënten met een acute vernauwing of verstopping van  

de kransslagaders een groter hartinfarct kunnen krijgen als er zuurstof toegediend is in  
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de ambulance of tijdens de hartkatheterisatie. De resultaten kunnen ook een recent aangetoond 

verband verklaren tussen hyperoxie en ziekenhuissterfte bij patiënten die na een hartstilstand en 

reanimatie op de intensive care worden opgenomen.

Om dit verband nader in kaart te brengen onderzochten we de onafhankelijke  

en gecombineerde effecten die de waarden van zuurstof (PaO
2
) en koolstofdioxide (PaCO

2
) in 

het slagaderlijke bloed hebben in patiënten die na een hartstilstand opgenomen zijn geweest op 

Nederlandse intensive care units (hoofdstuk 5). Daarbij hebben we laten zien dat zowel lage als  

hoge opnamewaarden van PaCO
2
 en PaO

2
 de overlevingskans negatief beïnvloeden (U-vormige 

curve). Hypocapnie (verlaagd PaCO
2
) en hypoxie (verlaagd PaO

2
) zijn voor deze patiënten 

onafhankelijke voorspellers van toegenomen sterfte. We zien hierbij geen versterkt (synergistisch) 

effect van gelijktijdige afwijkingen in zowel PaCO
2 

als PaO
2
, maar de nauwe verwantschap tussen 

zuurstof en koolstofdioxide rechtvaardigt een gelijktijdige beoordeling van de effecten. We 

concluderen dat nauwkeurige evaluatie van deze streefwaarden derhalve essentieel is.

Ten aanzien van de slagaderlijke zuurstofwaarden, hebben we in de literatuur gezocht naar 

cohortstudies die hyperoxie vergelijken met normoxie (zuurstof binnen de normaalwaarden) bij 

kritisch zieke patiënten. Deze studies hebben we systematisch beoordeeld en opgenomen in een 

meta-analyse (hoofdstuk 6). We hebben negentien studies gevonden die aan de inclusiecriteria 

voldeden. Door de resultaten van deze studies te combineren hebben we aangetoond dat hyperoxie 

in het slagaderlijke bloed gedurende de IC-opname sterk geassocieerd is met een verhoogde kans 

op ziekenhuissterfte. Voor functionele uitkomstmaten zijn de resultaten van de verschillende 

studies divers, maar over het algemeen laten dezen een gunstigere uitkomst zien voor patiënten 

met zuurstof binnen de normaalwaarden. De geïncludeerde studies zijn sterk uiteenlopend en met 

het oog op het gebrek aan een duidelijke klinische definitie van hyperoxie hebben we geconstateerd 

dat er meer bewijs nodig is om optimale zuurstofstreefwaarden vast te stellen. 

Deze conclusie hebben we vervolgens getest door de klinische uitkomsten, gebaseerd 

op nieuwe en bestaande definities van hyperoxie, in verschillende IC patiëntengroepen te 

onderzoeken (hoofdstuk 7). Ernstige hyperoxie blijkt geassocieerd met een hoger sterfterisico en 

minder beademingsvrije dagen op de IC in vergelijking met zowel milde hyperoxie als normoxie 

(licht verhoogde of normale zuurstofwaarden). Deze associatie gaat op voor de meest gebruikte 

definities van hyperoxie bij verschillende grote subgroepen en blijft bovendien bestaan als we 

corrigeren voor mogelijk verstorende factoren. De hoogste risicocijfers worden gevonden  

voor de definities van hyperoxie gebaseerd op gemiddelde of mediane zuurstofwaarden berekend 

over de opnameduur. Daarnaast hebben we aangetoond dat de kans op ziekenhuissterfte lineair 

toeneemt met de tijdsduur waarbij er sprake is van hyperoxie bij een IC patiënt. Dit brengt ons 

tot de conclusie dat zorgverleners de zuurstofwaarden van kritisch zieke patiënten binnen veilige 

marges moeten houden, zoals we dat ook al voor veel andere variabelen nastreven.

In het derde en laatste deel van dit proefschrift hebben we onderzoek gedaan naar de huidige 

omgangsvormen met zuurstoftherapie en naar strategieën om de naleving van richtlijnen te 

bevorderen. Daartoe hebben we zelf-gerapporteerde ideeën en standpunten van IC artsen  

en verpleegkundigen ten aanzien van zuurstoftherapie en –streefwaarden in kaart gebracht  

en vergeleken met hun daadwerkelijke gedrag en behandelingsstrategieën in drie grote intensive 
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care units in Nederland (hoofdstuk 8). De meeste IC zorgverleners erkennen het potentiële 

gevaar van langdurige blootstelling aan hyperoxie en rapporteren een lage tolerantie voor hoge 

zuurstofwaarden. In de klinische praktijk blijkt echter dat een groot gedeelte van de door hen 

behandelde patiënten bloot gesteld wordt aan hogere zuurstofwaarden in het slagaderlijke bloed 

dan de streefwaarden die de zorgverleners zelf hebben benoemd. 

Als vervolg op deze observaties, hebben we de haalbaarheid, effectiviteit en klinische 

uitkomsten bestudeerd van implementatie van nieuwe zuurstofstreefwaarden (hoofdstuk 9). 

Op de drie betrokken Nederlandse IC afdelingen werd hiervoor een richtlijn geïmplementeerd 

waarbij conservatieve oxygenatie werd nagestreefd met een streefwaarde van 55-86 mmHg 

(7.3-11.5 kPa) voor arteriële zuurstofspanning (PaO
2
) en 92-95% voor de zuurstofsaturatie van het 

bloed. In het eerste jaar bestond de implementatie uit het geven van onderwijs en verspreiden 

van zakkaartjes en posters. In de tweede fase werd een geautomatiseerd behandeladvies 

gegeven wanneer de zuurstofwaarde van de patiënt buiten de streefwaarden viel. Beide 

fases werden vergeleken met de periode voorafgaand aan de implementatie. Het blijkt goed 

haalbaar om dit beleid te implementeren en te handhaven op de afdelingen. Er wordt snel effect 

gezien van het onderwijs en de trainingen op de behaalde zuurstofwaarden in het bloed van  

de patiënten in de deelnemende centra. Een conservatief zuurstofbeleid voor IC patiënten blijkt op 

basis van deze studie haalbaar en veilig, maar voor het aantonen van effect op klinische uitkomsten 

is de opzet van deze studie niet afdoende en zullen nieuwe gerandomiseerde studies nodig zijn. 

De behandelparadigma’s ‘treat first what kills first’ en ‘the more, the merrier’ leiden vaak tot 

ruimhartige zuurstoftoediening om een tekort aan zuurstof (hypoxie) te vermijden, maar er zal bij 

de kritisch zieke patiënt ook aandacht moeten worden besteed aan het vermijden van hyperoxie  

en zuurstofvergiftiging.
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2015

Oxygen toxicity and target ranges: too little, too much and enough 

 (oral presentation, Venticare Congress, Utrecht, The Netherlands)

2015

Metrics of arterial hyperoxia and associated outcome in critical care 

 (oral presentation, 28th ESICM Congress, Berlin, Germany)

2015

Improved adherence to lower oxygenation targets by a stepwise implementation strategy 

 (oral presentation, NVIC Congress, ‘s Hertogenbosch, the Netherlands)

2015

Pathophysiology of hyperoxia and guidelines for oxygen therapy 

 (oral presentation, Regional Lecturing Symposium, Leiden, The Netherlands)

2015

More or less oxygen in the ICU 

 (oral presentation, Topics in IC, Lunteren, The Netherlands)

2016

Research meetings

Intensive Care Research Meeting, LUMC (monthly) 2013-2016

Intensive Care Research Meeting, AMC (weekly) 2012-2015

Intensive Care Journal Club, AMC (monthly) 2012-2015

Laboratory of Experimental Intensive Care and Anesthesiology Meeting, AMC (weekly) 2012-2015

Peer review activities

Annals of Intensive Care 2015-2017

Intensive Care Medicine 2014-2015

Journal of Travel Medicine 2014-2015

Parameters of Esteem

Young Investigator Award, European Society of Intensive Care Medicine 2015
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