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Chapter 1

Introduction

1.1 Background

It is now the Age of Information. Each day, users produce enormous amounts of

data by modern commonplace technologies. As a result, the amount of informa-

tion is increasing exponentially, especially the multimedia information. Most of

this information is stored digitally and available to the public. For example, it

is reported that the Facebook users have uploaded over 250 billion photos, and

are uploading 350 million new photos each day. Such a large amount of available

data is a double-edged sword in our lives. On the one hand, if we can properly

handle and analyze the data, we can have more alternatives for our queries. On

the other hand, it is easy for us to get lost in the sea of data. Without computer-

aided programs, it may take centuries for us to sift through the information and

�nd what we want.

While search engines like Google and Yahoo can perform the textual analysis

quite well, it is still challenging to fully exploit the visual content due to the

well-known semantic gap. The key to bridging this gap is to develop or learn

highly discriminative features to represent the images.

Generally, the development of image representation can be divided into three

stages: In the �rst stage, images are described with low-level global features,
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1. INTRODUCTION

such as color histograms, contour representations, shape descriptors, and texture

features. These features represent the whole image with a single vector, and

can capture the global image appearance well. However, they are sensitive to

occlusion and clutter.

To incorporate more local context and obtain a more informative description,

various local features are developed, such as SIFT [1], SURF [2], HoG [3], etc. The

local features are descriptors of local image neighborhoods computed at multiple

key points. Compared with global features, local features are more robust to

image translation and occlusion. To aggregate spatial local features into a global

image representation, these features are often encoded with Bag of Visual Words

(BoW) [4], or its variants, such as VLAD [5] or Fisher Vector(FV) [6].

Both the traditional global features and local features are hand-crafted features,

which often require expensive human labor and do not generalize well. Recent

studies have shown that there are no universally best hand-crafted features for

all datasets, and it would be more advantageous to learn features directly from

the raw data [7]. Since 2006, deep learning has emerged as a new area of ma-

chine learning research [8], and it introduces the concept of end-to-end learning

which means transformation from pixel level to real application. Deep learning

algorithms typically attempt to distill high-level abstractions in data by utilizing

hierarchical architectures. The output of each intermediate layer can be viewed

as a representation of the original input data. Several deep representations have

been repeatedly veri�ed to be highly discriminative and achieved top tier perfor-

mance on various benchmark datasets and international contests.

Due to advances in deep image representations, numerous breakthroughs have

been made in diverse computer vision applications. For example, for the most

intuitive and extensively studied task, image classi�cation, many deep learning

algorithms have reached comparable performance relative to the human perfor-

mance on the large scale ImageNet dataset [9]. Aside from solely discovering the

objects, there are some new emerging applications (e.g. image captioning, visual

question answering) which aim to exploit more information (e.g. action, relation

and etc) based on the deep image representation, and also achieved competitive

results with the human performance [10].

2



1.2 Research Goals and Contributions

1.2 Research Goals and Contributions

The main purpose of our work is to develop new algorithms which can improve

the understanding of images. To ful�ll this, we focus on two visual applications:

image classi�cation and image captioning.

Image classi�cation aims to classify images into pre-de�ned categories, and helps

people to know what objects the images contain. In the �rst part of this thesis,

we propose new features which can improve the performance without signi�cantly

increasing the computational cost. Therefore, they may be utilized in many other

applications.

The second part of the thesis proposes to address the hierarchical image classi-

�cation task, which can generate multiple hierarchical labels in a coarse-to-�ne

pattern. By providing the evolution of the image categories, this task can better

describe what the categories are, especially for the �ne-grained categories.

For the third part, we investigate a more challenging and new emerging task, i.e.

image captioning, which attempts to generate a sentence to describe the image.

In contrast to image classi�cation which only detects the existence of an object,

the sentence generated by image captioning may also contain the action, relation

and etc.

1.3 Thesis Overview

This thesis is based on articles where I have been a primary author that have

been published or are currently under consideration at respected journals and

conference proceedings. The following provides a brief description of each chap-

ter.

Chapter 2 presents a survey which reviews about 200 papers published between

2010 and 2016 in the area of deep learning for visual understanding. The sur-

vey provides a comprehensive background for this research area, including the

3



1. INTRODUCTION

development of the relevant methods, the applications, and the directions that

the �eld is moving towards. This survey has been published by :

• Neurocomputing (journal)

Chapter 3 introduces an e�ective and straightforward feature, called Principal

Pyramidal Convolution (PPC). This feature is derived from the commonly-used

CNN feature (i.e. the fully-connected activation), and demonstrates superior

performance than the baseline for di�erent datasets and di�erent dimensions.

This work has been published in the conference proceeding:

• 16th Paci�c-Rim Conference on Multimedia (PCM2015) in Gwangju, Ko-

rea.

Chapter 4 presents a new feature called Bag of Surrogate Parts (BoSP). This

feature is motivated by the well-known Bag of Words (BoW) scheme, and aims to

integrate the advantages of CNN and BoW (i.e. high discrimination for CNN, and

scale/position/occlusion invariance for BoW). Together with the feature, several

enhancements are also proposed, including spatial aggregation, scale pooling and

global-part prediction. An early version of this work was presented at:

• 27th British Machine Vision Conference (BMVC2016) in York, UK.

Chapter 5 aims to give better understanding of the objects by tracing how the

semantic categories evolve, and utilizes the CNN-RNN framework to ful�ll the

hierarchical image classi�cation task. This framework can not only generate hier-

archical labels for images, but also improve the traditional leaf-level classi�cation

performance by incorporating the relationship between hierarchical labels. In

addition, we also investigate how we can utilize the framework to bene�t the

classi�cation when a fraction of the training data is coarse-labeled. This work

has been submitted to:

• Multimedia Tools and Applications (journal)

Chapter 6 focuses on a new emerging research area, i.e. image captioning, and

investigates the e�ects of di�erent Convnets. To obtain a richer visual representa-

tion, we propose aggregating their activations and achieve promising performance.

This work has been published in the conference proceeding:
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1.3 Thesis Overview

• 23rd International Conference on Multimedia Modeling (MMM2017) in

Reykjavik, Iceland.

Chapter 7 concludes the thesis and re�ects on our future work.

These are the publications which are related to the contents of this thesis:

• Guo Y., Bai L., Lao S., Wu S., and Lew M.S., �A Comparison between

Arti�cial Neural Network and Cascade-Correlation Neural Network in Con-

cept Classi�cation.� 15th Paci�c Rim Conference on Multimedia, 2014.

• Guo Y., Lao S., Liu Y., Bai L., Liu S., and Lew M.S., �Convolutional

Neural Networks Features: Principal Pyramidal Convolution.� 16th Paci�c

Rim Conference on Multimedia, 2015.

• Guo Y., and Lew M.S., �Bag of Surrogate Parts: one inherent feature of

deep CNNs.� 27th British Machine Vision Conference, 2016.

• Liu Y.∗, Guo Y.∗, and Lew M.S., �What Convnets Make for Image Cap-

tioning?� 23rd International Conference on Multimedia Modeling, 2017 (*

means equal contribution).

• Guo Y., Liu Y., Oerlemans A, Lao S., Wu S., and Lew M.S., �Deep learning

for visual understanding: A review.� Neurocomputing, vol 187, 2016.

• Guo Y., Liu Y., Lao S., Bakker E.M., Bai L., and Lew M.S., �Bag of

Surrogate Parts for Visual Recognition.� IEEE Transactions on Multimedia

(submitted).

• Guo Y., Liu Y., Bakker E.M., Guo Y., and Lew M.S., �CNN-RNN: A

Large-scale Hierarchical Image Classi�cation Framework.� Multimedia Tools

and Applications (submitted).

• Liu Y., Guo Y., Wu S., and Lew M.S., �DeepIndex for Accurate and Ef-

�cient Image Retrieval.� Proceedings of the 5th ACM on International

Conference on Multimedia Retrieval, 2015.

• Liu Y., Guo Y., and Lew M.S., �On the Exploration of Convolutional

Fusion Networks for Visual Recognition.� 23rd International Conference on

5



1. INTRODUCTION

Multimedia Modeling, 2017 (Best Paper).

• Liu Y., Guo Y., Bakker E.M., and Lew M.S., �Learning a Recurrent Resid-

ual Fusion Network for Multimodal Matching.� International Conference

on Computer Vision, 2017.
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Chapter 2

A Comprehensive Review of Deep

Learning Methods and

Applications

Deep learning algorithms are a subset of the machine learning algorithms, which

aim at discovering multiple levels of distributed representations. Recently, nu-

merous deep learning algorithms have been proposed to solve traditional arti-

�cial intelligence problems. This chapter aims to review the state-of-the-art in

deep learning algorithms in computer vision by highlighting the contributions and

challenges from about 200 recent research papers. It �rst gives an overview of

various deep learning approaches and their recent developments, and then brie�y

describes their applications in diverse vision tasks, such as image classi�cation,

object detection, image retrieval, semantic segmentation and human pose esti-

mation. Finally, the chapter summarizes the future trends and challenges in

designing and training deep neural networks.
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2. A COMPREHENSIVE REVIEW OF DEEP LEARNING
METHODS AND APPLICATIONS

2.1 Introduction

Deep learning is a sub�eld of machine learning which attempts to learn high-level

abstractions in data by utilizing hierarchical architectures. It is an emerging

approach and has been widely applied in traditional arti�cial intelligence do-

mains, such as semantic parsing [11], natural language processing [12], computer

vision [13, 14] and many more. There are mainly three important reasons for

the booming of deep learning today: the dramatically increased chip processing

abilities (e.g. GPU units), the signi�cantly lowered cost of computing hardware,

and the considerable advances in the machine learning algorithms [15].

Deep learning approaches have been extensively reviewed and discussed in recent

years [15�19]. Among those Schmidhuber et al. [17] emphasized the important

inspirations and technical contributions in a historical timeline format, while

Bengio [18] examined the challenges of deep learning research and proposed a few

forward-looking research directions. Deep networks have shown to be successful

for computer vision tasks because they can extract appropriate features while

jointly performing discrimination [15, 20]. In recent ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) competitions [21], deep learning methods have

been widely utilized by researchers and achieved top accuracy scores.

This chapter is intended to be useful to general neural computing, computer vision

and multimedia researchers who are interested in state-of-the-art deep learning

studies for computer vision. It provides an overview of various deep learning

algorithms and their applications, especially those that can be applied in the

computer vision domain.

The remainder of this chapter is organized as follows: In Section 2.2, we divide the

deep learning algorithms into four categories: Convolutional Neural Networks,

Restricted Boltzmann Machines, Autoencoder and Sparse Coding. Some well-

known models in these categories as well as their developments are listed. We

also describe the contributions and limitations for these models in this section.

In Section 2.3, we describe the achievements of deep learning schemes in various

computer vision applications, e.g. image classi�cation, object detection, image

retrieval, semantic segmentation and human pose estimation. The results on

8



2.2 Methods and recent developments

these applications are shown and compared in the pipeline of their commonly

used datasets. In Section 2.4, along with the success deep learning methods have

achieved, we also face several challenges when designing and training the deep

networks. In this section, we summarize some major challenges for deep learning,

together with the inherent trends that might be developed in the future. In

Section 2.5, we conclude this chapter.

2.2 Methods and recent developments

In recent years, deep learning has been extensively studied in the �eld of computer

vision and as a consequence, a large number of related approaches have emerged.

Generally, these methods can be divided into four categories according to the

basic method they are derived from: Convolutional Neural Networks (CNNs),

Restricted Boltzmann Machines (RBMs), Autoencoder and Sparse Coding.

The categorization of deep learning methods along with some representative works

is shown in Figure 2.1.

Deep learning methods



CNN-based Methods


AlexNet [14]

Clarifai [22]

SPP [23]

VGG [24]

GoogLeNet [25]

RBM-based Methods

[ Deep Belief Networks [8]

Deep Boltzmann Machines [26]

Deep Energy Models [27]

Autoencoder-based Methods

[ Sparse Autoencoder [28]

Denoising Autoencoder [29]

Contractive Autoencoder [30]

Sparse Coding-based Methods


Sparse Coding SPM [31]

Laplacian Sparse Coding [32]

Local Coordinate Coding [33]

Super-Vector Coding [34]

Figure 2.1: A categorization of the deep learning methods and their representative

works.
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2. A COMPREHENSIVE REVIEW OF DEEP LEARNING
METHODS AND APPLICATIONS

In the next four parts, we will brie�y review each of these deep learning methods

and their most recent developments.

2.2.1 Convolutional Neural Networks (CNNs)

The Convolutional Neural Networks (CNN) is one of the most notable deep learn-

ing approaches where multiple layers are trained in an end-to-end manner [35].

It has been found highly e�ective and is also the most commonly used in diverse

computer vision applications.

The pipeline of the general CNN architecture is shown in Figure 2.2.

… 

Convolution Max  pooling 

Convolutional Layers + Pooling layers 

…
 

…
 

Fully connected layers 

Cat 

Dog 

Person 

Bird 

Fish 

Fox 

Figure 2.2: The pipeline of the general CNN architecture.

Generally, a CNN consists of three main neural layers, which are convolutional

layers, pooling layers, and fully connected layers. Di�erent kinds of layers play

di�erent roles. In Figure 2.2, a general CNN architecture for image classi�ca-

tion [14] is shown layer-by-layer. There are two stages for training the network:

a forward stage and a backward stage. First, the main goal of the forward stage

is to represent the input image with the current parameters (weights and bias) in

each layer. Then the prediction output is used to compute the loss cost with the

ground truth labels. Second, based on the loss cost, the backward stage computes

the gradients of each parameter with chain rules. All the parameters are updated

based on the gradients, and are prepared for the next forward computation. After

su�cient iterations of the forward and backward stages, the network learning can

be stopped.

10



2.2 Methods and recent developments

Next, we will �rst introduce the functions along with the recent developments

of each layer, and then summarize the commonly used training strategies of the

networks. Finally, we present several well-known CNN models, derived models,

and conclude with the current tendency for using these models in real applica-

tions.

2.2.1.1 Types of layers

Generally, a CNN is a hierarchical neural network whose convolutional layers

alternate with pooling layers, followed by some fully connected layers (see Fig-

ure 2.2). In this section, we will present the function of the three layers and

brie�y review the recent advances that have appeared on those layers.

• Convolutional layers

In the convolutional layers, a CNN utilizes various kernels to convolve the whole

image as well as the intermediate feature maps, generating various feature maps,

as shown in Figure 2.3.

Kernels 

Inputs Outputs 

Figure 2.3: The operation of the convolutional layer.

There are three main advantages of the convolution operation [36]: 1) the weight

sharing mechanism in the same feature map reduces the number of parameters;

2) local connectivity learns correlations among neighboring pixels; 3) invariance

to the location of the object.

11



2. A COMPREHENSIVE REVIEW OF DEEP LEARNING
METHODS AND APPLICATIONS

Due to the bene�ts introduced by the convolution operation, some well-known

research papers use it as a replacement for the fully connected layers to accelerate

the learning process [25, 37]. One interesting approach of handling the convo-

lutional layers is the Network in Network (NIN) [38] method, where the main

idea is to substitute the conventional convolutional layer with a small multilayer

perceptron consisting of multiple fully connected layers with nonlinear activation

functions, thereby replacing the linear �lters with nonlinear neural networks. This

method achieves good results in image classi�cation.

• Pooling layers

Generally, a pooling layer follows a convolutional layer, and can be used to reduce

the dimensions of feature maps and network parameters. Similar to convolutional

layers, pooling layers are also translation invariant, because their computations

take neighboring pixels into account. Average pooling and max pooling are the

most commonly used strategies. Figure 2.4 gives an example for a max pooling

process. For 8 × 8 feature maps, the output maps reduce to 4 × 4 dimensions,

with a max pooling operator which has size 2× 2 and stride 2.

Feature maps Output  maps 

max 

Figure 2.4: The operation of the max pooling layer.

For max pooling and average pooling, Boureau et al. [39] provided a detailed

theoretical analysis of their performances. Scherer et al. [40] further conducted a

comparison between the two pooling operations and found that max-pooling can

lead to faster convergence, select superior invariant features and improve gener-

alization. In recent years, various fast GPU implementations of CNN variants

were presented, most of them utilize the max-pooling strategy [14, 41].
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The pooling layers are the most extensively studied among the three layers. There

are three well-known approaches related to the pooling layers, each having di�er-

ent purposes.

√
Stochastic Pooling

A drawback of max pooling is that it is sensitive to over�t the training set, making

it hard to generalize well to test samples [36]. Aiming to solve this problem, Zeiler

et al. [42] proposed a stochastic pooling approach which replaces the conventional

deterministic pooling operations with a stochastic procedure, by randomly picking

the activation within each pooling region according to a multinomial distribution.

It is equivalent to standard max pooling but with many copies of the input image,

each having small local deformations. This stochastic nature is helpful to prevent

the over�tting problem.

√
Spatial Pyramid Pooling (SPP)

Normally, the CNN-based methods require a �xed-size input image. This re-

striction may reduce the recognition accuracy for images of arbitrary sizes. To

eliminate this limitation, He et al. [23] utilized the general CNN architecture but

replaced the last pooling layer with a spatial pyramid pooling layer. The spatial

pyramid pooling can extract �xed-length representations from arbitrary images

(or regions), generating a �exible solution for handling di�erent scales, sizes, as-

pect ratios, and can be applied in any CNN structure to boost the performance

of this structure.

√
Def-Pooling

Handling deformation is a fundamental challenge in computer vision, especially

for the object recognition task. Max pooling and average pooling are useful in

handling deformation but they are not able to learn the deformation constraint

and geometric model of object parts. To deal with deformation more e�ciently,

Ouyang et al. [43] introduced a new deformation constrained pooling layer, called

def-pooling layer, to enrich the deep model by learning the deformation of visual

patterns. It can substitute the traditional max-pooling layer at any information

abstraction level.

13
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Because of the di�erent purposes and procedures the pooling strategies are de-

signed for, various pooling strategies could be combined to boost the performance

of a CNN.

• Fully-connected layers

Following the last pooling layer in the network as seen in Figure 2.2, there are

several fully-connected layers converting the 2D feature maps into a 1D feature

vector, for further feature representation, as seen in Figure 2.5.

…
 

pool5 

fc6 fc7 

…
 

…
 

fc8 

Figure 2.5: The operation of the fully-connected layer.

Fully-connected layers perform like a traditional neural network and contain

about 90% of the parameters in a CNN. It enables us to feed forward the neural

network into a vector with a pre-de�ned length. We could either feed forward the

vector into certain number categories for image classi�cation [14] or take it as a

feature vector for follow-up processing [44].

Changing the structure of the fully-connected layer is uncommon, however an ex-

ample came in the transferred learning approach [45], which preserved the param-

eters learned by ImageNet [14], but replaced the last fully-connected layer with

two new fully-connected layers to adapt to the new visual recognition tasks.

The drawback of these layers is that they contain many parameters, which results

in a large computational e�ort for training them. Therefore, a promising and

commonly applied direction is to remove these layers or decrease the connections

with a certain method. For example, GoogLeNet [25] designed a deep and wide

network while keeping the computational budget constant, by switching from

fully connected to sparsely connected architectures.
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2.2.1.2 Training Strategy

Compared to shallow learning, the advantage of deep learning is that it can

build deep architectures to learn more abstract information. However, the large

amount of parameters introduced may also lead to another problem: over�tting.

Recently, numerous regularization methods have emerged in defense of over�t-

ting, including the stochastic pooling mentioned above. In this section, we will

introduce several other regularization techniques that may in�uence the training

performance.

• Dropout and DropConnect

Dropout was proposed by Hinton et al. [46] and explained in-depth by Baldi et

al. [47]. During each training case, the algorithm will randomly omit half of the

feature detectors in order to prevent complex co-adaptations on the training data

and enhance the generalization ability. This method was further improved in [48�

53]. Speci�cally, Warde-Farley et al. [53] analyzed the e�cacy of dropouts and

suggested that dropout is an extremely e�ective ensemble learning method.

One well-known generalization derived from Dropout is called DropConnect [54],

which randomly drops weights rather than the activations. Experiments showed

that it can achieve competitive or even better results on a variety of standard

benchmarks, although slightly slower. Figure 2.6 gives a comparison of No-Drop,

Dropout and DropConnect networks [54].

(a) No-drop Network

 

 

(b) Dropout Network (c) Dropconnect Network

Figure 2.6: A comparison of No-Drop, Dropout and DropConnect networks [54].
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• Data Augmentation

When a CNN is applied to visual object recognition, data augmentation is of-

ten utilized to generate additional data without introducing extra labeling costs.

The well-known AlexNet [14] employed two distinct forms of data augmentation:

the �rst form of data augmentation consists of generating image translations and

horizontal re�ections, and the second form consists of altering the intensities of

the RGB channels in training images. Howard et al. [55] took AlexNet as the base

model and added additional transformations that improved the translation invari-

ance and color invariance by extending image crops with extra pixels and adding

additional color manipulations. This data augmentation method was widely uti-

lized by some of the more recent studies [23, 25]. Dosovitskiy et al. [56] proposed

an unsupervised feature learning approach based on data augmentation: it �rst

randomly sampled a set of image patches and declares each of them as a surrogate

class, then extended these classes by applying transformations corresponding to

translation, scale, color and contrast. Finally, it trained a CNN to discriminate

between these surrogate classes. The features learnt by the network showed good

results on a variety of classi�cation tasks. Aside from the classic methods such

as scaling, rotating and cropping, Wu et al. [57] further adopted color casting, vi-

gnetting and lens distortion techniques, which produced more training examples

with broad coverage.

• Pre-training and �ne-tuning

Pre-training means to initialize the networks with pre-trained parameters rather

than randomly set parameters. It is quite popular in models based on CNNs, due

to the advantages that it can accelerate the learning process as well as improve

the generalization ability. Erhan et al. [58] has conducted extensive simulations

on the existing algorithms to �nd why pre-trained networks work better than

networks trained in a traditional way. As AlexNet [14] achieved excellent perfor-

mance and is released to the public, numerous approaches choose AlexNet trained

on ImageNet2012 as their baseline deep model [23, 44, 45], and use �ne-tuning

of the parameters according to their speci�c tasks. Nevertheless, there are ap-

proaches [43, 59, 60] that deliver better performance by training on other models,

e.g. Clarifai [22], GoogLeNet [25], and VGG [24].
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Fine-tuning is a crucial stage for re�ning models to adapt to speci�c tasks and

datasets. In general, �ne-tuning requires class labels for the new training dataset,

which are used for computing the loss functions. In this case, all layers of the new

model will be initialized based on the pre-trained model, such as AlexNet [14],

except for the last output layer that depends on the number of class labels of

the new dataset and will therefore be randomly initialized. However, in some

occasions, it is very di�cult to obtain the class labels for any new dataset. To

address this problem, a similarity learning objective function was proposed to be

used as the loss functions without class labels [61], so the back-propagation can

work normally and allow the model to be re�ned layer by layer. There are also

many research results describing how to transfer the pre-trained model e�ciently.

A new way is de�ned to quantify the degree to which a particular layer is general

or speci�c [62], namely how well features at that layer transfers from one task

to another. They concluded that initializing a network with transferred features

from almost any number of layers can give a boost to generalization performance

after �ne-tuning to a new dataset.

In addition to the regularization methods described above, there are also other

common methods such as weight decay, weight tying and many more [17]. Weight

decay works by adding an extra term to the cost function to penalize the param-

eters, preventing them from exactly modeling the training data and therefore

helping to generalize to new examples [14]. Weight tying allows models to learn

good representations of the input data by reducing the number of parameters in

Convolutional Neural Networks [63].

One noteworthy thing is that these regularization techniques for training are not

mutually exclusive and they can be combined to boost the performance.

2.2.1.3 CNN architecture

With the recent developments of CNN schemes in the computer vision domain,

some well-known CNN models have emerged. In this section, we �rst describe the

commonly used CNN models, and then summarize their characteristics in their
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applications. The con�gurations and the primary contributions of several typical

CNN models are listed in Table 2.1.

Table 2.1: CNN models and their achievements in ILSVRC classi�cation compe-

titions.

Method Year Place Con�guration Contribution

AlexNet [14] 2012 1st Five convolutional layers +

three fully connected layers

an important CNN architecture

which set the tone for many

computer vision researches

Clarifai [22] 2013 1st Five convolutional layers +

three fully connected layers

insight into the function of in-

termediate feature layers

SPP [23] 2014 3rd Five convolutional layers +

three fully connected layers

proposed the `spatial pyramid

pooling' to remove the require-

ment of image resolution

VGG [24] 2014 2nd Thirteen/Fifteen convolu-

tional layers + three fully

connected layers

a thorough evaluation of net-

works of increasing depth

GoogLeNet [25] 2014 1st Twenty-one convolutional

layers + one fully connected

layer

increased the depth and width

without raising the computa-

tional requirements

AlexNet [14] is a signi�cant CNN architecture, which consists of �ve convolutional

layers and three fully connected layers. After inputting one �xed-size (224×224)

image, the network would repeatedly convolve and pool the activations, then

forward the results into the fully-connected layers. The network was trained on

ImageNet and integrated various regularization techniques, such as data augmen-

tation, dropout, etc. AlexNet won the ILSVRC2012 competition [21], and set the

tone for the surge of interest in deep convolutional neural networks. Nevertheless,

there are two major drawbacks of this model: 1) it requires a �xed resolution of

the image; 2) there is no clear understanding of why it performs so well.

In 2013, Zeiler et al. [22] introduced a novel visualization technique to give insight

into the inner workings of the intermediate feature layers. These visualizations

enabled them to �nd architectures that outperform AlexNet [14] on the Ima-

geNet classi�cation benchmark, and the resulting model, Clarifai, received top

performance in the ILSVRC2013 competition.
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As for the requirement of a �xed resolution, He et al. [23] proposed a new pooling

strategy, i.e. spatial pyramid pooling, to eliminate the restriction of the image

size. The resulting SPP-net could boost the accuracy of a variety of published

CNN architectures despite their di�erent designs.

In addition to the commonly used con�guration of the CNN structure (�ve convo-

lutional layers plus three fully connected layers), there are also approaches trying

to explore deeper networks. In contrast to AlexNet, VGG [24] increased the depth

of the network by adding more convolutional layers and taking advantage of very

small convolutional �lters in all layers. Similarly, Szegedy et al. [25] proposed

a model, GoogLeNet, which also has quite a deep structure (22 layers) and has

achieved leading performance in the ILSVRC2014 competition [21].

Despite top-tier classi�cation performances have been achieved by various models,

CNN-related models and applications are not limited to only image classi�cation.

Based on these models, new frameworks have been derived to address other chal-

lenging tasks, such as object detection, semantic segmentation, etc.

There are two well-known derived frameworks: RCNN (Regions with CNN fea-

tures) [44] and FCN (fully convolutional network) [60], mainly designed for object

detection and semantic segmentation respectively, as shown in Figure 2.7.

Basic Models Derived Models 

AlexNet 

Clarifai 

SPP-net 

VGG 

GoogLeNet 

Image Classification 

RCNN 

FCN 

Object Detection 

Semantic Segmentation 

Figure 2.7: CNN basic models and derived models.

The core idea of RCNN is to generate multiple object proposals, extract features

from each proposal using a CNN, and then classify each candidate window with a

category-speci�c linear SVM. The �recognition using regions� paradigm received
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encouraging performance in object detection and has gradually become the gen-

eral pipeline for recent promising object detection algorithms [64�67]. However,

the performance of RCNN relies too much on the precision of the object location,

which may limit its robustness. Besides, the generation and processing of large

number of proposals would also decrease its e�ciency. Recent developments [64�

66, 68, 69] are mainly focused on these two aspects.

RCNN takes the CNN models as feature extractor and does not make any change

to the networks. In contrast, FCN proposes to recast the CNNmodels as fully con-

volutional nets, which removes the restriction of image resolution and could pro-

duce correspondingly-sized output e�ciently. Although FCN is proposed mainly

for semantic segmentation, the technique could also be utilized in other applica-

tions, e.g. image classi�cation [70], edge detection [71] etc.

Aside from creating various models, the usage of these models also demonstrates

several characteristics:

• Large Networks

One intuitive idea is to improve the performance of CNNs by increasing their

sizes, which includes increasing the depth (the number of levels) and the width

(the number of units at each level) [25]. Both aforementioned GoogLeNet [25]

and VGG [24] utilized quite large networks, 22 layers and 19 layers respectively,

demonstrating that increasing the size is bene�cial for image recognition.

Jointly training multiple networks could lead to better performance than a single

one. There are also many researchers [43, 72, 73] who designed large networks

by combining di�erent deep structures in cascade mode, where the output of the

former networks is utilized by the latter ones, as shown in Figure 2.8.

… … … …

Figure 2.8: Combining deep structures in cascade mode.
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The cascade architecture can be utilized to handle di�erent tasks, and the func-

tion of the prior networks (i.e. the output) may vary with the tasks. For example,

Wang et al. [73] connected two networks for object extraction, and the �rst net-

work is used for object localization. Therefore, the output is the corresponding

coordinates of the object. Sun et al. [72] proposed three-level carefully designed

convolutional networks to detect facial keypoints. The �rst level provides highly

robust initial estimations, while the following two levels �ne-tune the initial pre-

diction. Similarly, Ouyang et al. [43] adopted a multi-stage training scheme pro-

posed by Zeng et al. [74], i.e. classi�ers at the previous stages jointly work with

the classi�ers at the current stage to deal with misclassi�ed samples.

• Multiple Networks

Another tendency in current applications is to combine the results of multiple

networks, where each of the networks can execute the task independently, in-

stead of designing a single architecture and jointly training the networks inside

to execute the task, as seen in Figure 2.9.

…

…

…
 

…

Figure 2.9: Combining the results of multiple networks.

Miclut et al. [75] gave some insight into how we should generate the �nal re-

sults when we have received a set of scores. Prior to the AlexNet [14], Ciresan

et al. [13] proposed a method called Multi-Column DNN (MCDNN) which com-

bines several DNN columns and averages their predictions. This model achieved
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human-competitive results on tasks such as the recognition of handwritten digits

or tra�c signs. Recently, Ouyang et al. [43] also conducted an experiment to

evaluate the performance of model combination strategies. It learnt 10 models

with di�erent settings and combined them in an averaging scheme. Results show

that models generated in this way have high diversity and are complementary to

each other in improving the detection results.

• Diverse Networks

Aside from altering the CNN structure, some researchers also attempt to intro-

duce information from other sources, e.g. combining them with shallow struc-

tures, integrating contextual information, as illustrated in Figure 2.10.

… 

Figure 2.10: Combining a deep network with information from other sources.

Shallow methods can give additional insight into the problem. In the litera-

ture, examples can be found about combining shallow methods and deep learning

frameworks [76], i.e. take a deep learning method to extract features and input

these features to the shallow learning method, e.g. an SVM. One of the most rep-

resentative and successful algorithms is the RCNN method [44], which feeds the

highly distinctive CNN features into a SVM for the �nal object detection task.

Besides, deep CNNs and Fisher Vectors (FV) are complementary [77] and can also

be combined to signi�cantly improve the accuracy of image classi�cation.

Contextual information is sometimes available for an object detection task, and it

is possible to integrate global context information with the information from the

bounding box. In the ImageNet Large Scale Visual Recognition Challenge 2014
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(ILSVRC 2014), the winning team NUS concatenated all the raw detection scores

and combined them with the outputs from a traditional classi�cation framework

by context re�nement [78]. Similarly, Ouyang et al. [43] also took the 1000-class

image classi�cation scores as the contextual features for object detection.

2.2.2 Restricted Boltzmann Machines (RBMs)

The Restricted Boltzmann Machine (RBM) is a generative stochastic neural net-

work, and was proposed by Hinton et al. in 1986 [79]. It is a variant of the Boltz-

mann Machine, with the restriction that the visible units and hidden units must

form a bipartite graph. This restriction allows for e�cient training algorithms,

in particular the gradient-based contrastive divergence algorithm [80].

Since the model is a bipartite graph, the hidden units Hand the visible units V1

are conditionally independent. Therefore,

P (H|V1) = P (H1|V1)P (H2|V1) · · ·P (Hn|V1) (2.1)

Hinton [81] gave a detailed explanation and provided a practical way to train

RBMs. Further work in [82] discussed the main di�culties of training RBMs, their

underlying reasons and proposed a new algorithm, which consists of an adaptive

learning rate and an enhanced gradient, to address those di�culties.

A well-known development of RBM can be found in [83]: the model approximates

the binary units with noisy recti�ed linear units to preserve information about

relative intensities as information travels through multiple layers of feature de-

tectors. The re�nement not only functions well in this model, but is also widely

employed in various CNN-based approaches [14, 42].

Utilizing RBMs as learning modules, we can compose the following deep models:

Deep Belief Networks (DBNs), Deep Boltzmann Machines (DBMs) and Deep

Energy Models (DEMs). The comparison between the three models is shown in

Figure 2.11.
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Figure 2.11: The comparison of DBN, DBM and DEM [27].

DBNs have undirected connections at the top two layers which form an RBM

and directed connections to the lower layers. DBMs have undirected connections

between all layers of the network. DEMs have deterministic hidden units for the

lower layers and stochastic hidden units at the top hidden layer [27].

A summary of these three deep models is provided in Table 2.2.

Table 2.2: An overview of representative RBM-based methods.

Method characteristics advantages drawbacks

DBN [8] undirected connections

at the top two lay-

ers and directed con-

nections at the lower

layers

1.Properly initializes the net-

work, which prevents poor lo-

cal optima to some extent;

2.Training is unsupervised,

which removes the necessity

of labeled data for training

Due to the initial-

ization process, it is

computationally ex-

pensive to create a

DBN model

DBM [26] undirected connections

between all layers of

the network

Deals more robustly with am-

biguous inputs by incorporat-

ing top-down feedback

The joint opti-

mization is time-

consuming

DEM [27] deterministic hidden

units for the lower

layers and stochastic

hidden units at the

top hidden layer

Produces better generative

models by allowing the lower

layers to adapt to the training

of higher layers

The learnt initial

weight may not have

good convergence

In the next sections, we will explain these models and describe their applications

to computer vision tasks respectively.
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2.2.2.1 Deep Belief Networks (DBNs)

The Deep Belief Network (DBN), proposed by Hinton [8], was a signi�cant ad-

vance in deep learning. It is a probabilistic generative model which provides

a joint probability distribution over observable data and labels. A DBN �rst

takes advantage of an e�cient layer-by-layer greedy learning strategy to initialize

the deep network, and then �ne-tunes all of the weights jointly with the desired

outputs. The greedy learning procedure has two main advantages [84]: (1) it

generates a proper initialization of the network, addressing the di�culty in pa-

rameter selection which may result in poor local optima to some extent; (2) the

learning procedure is unsupervised and requires no class labels, so it removes the

necessity of labeled data for training. However, creating a DBN model is a com-

putationally expensive task that involves training several RBMs, and it is not

clear how to approximate maximum-likelihood training to further optimize the

model [19].

DBNs successfully focused researchers' attention on deep learning and as a conse-

quence, many variants were created [85�88]. Nair et al. [88] developed a modi�ed

DBN where the top-layer model utilizes a third-order Boltzmann machine for ob-

ject recognition. The model in [85] learned a two-layer model of natural images

using sparse RBMs, in which the �rst layer learns local, oriented, edge �lters,

and the second layer captures a variety of contour features as well as corners and

junctions. To improve the robustness against occlusion and random noise, Lee

et al. [89] applied two strategies: one is to take advantage of sparse connections

in the �rst layer of the DBN to regularize the model, and the other is to develop

a probabilistic de-noising algorithm. When applied to computer vision tasks, a

drawback of DBNs is that they do not consider the 2D structure of an input

image. To address this problem, the Convolutional Deep Belief Network (CDBN)

was introduced [86]. CDBN utilized the spatial information of neighboring pixels

by introducing convolutional RBMs, generating a translation invariant generative

model that scales well with high dimensional images. The algorithm was further

extended in [90] and achieved excellent performance in face veri�cation.
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2.2.2.2 Deep Boltzmann Machines (DBMs)

The Deep Boltzmann Machine (DBM), proposed by Salakhutdinov et al. [26],

is another deep learning algorithm where the units are again arranged in layers.

Compared to DBNs, whose top two layers form an undirected graphical model

and whose lower layers form a directed generative model, the DBM has undirected

connections across its structure.

Like the RBM, the DBM is also a subset of the Boltzmann family. The di�erence

is that the DBM possesses multiple layers of hidden units, with units in odd-

numbered layers being conditionally independent of even-numbered layers, and

vice versa. Given the visible units, calculating the posterior distribution over the

hidden units is no longer tractable, resulting from the interactions between the

hidden units. When training the network, a DBM would jointly train all layers of

a speci�c unsupervised model, and instead of maximizing the likelihood directly,

the DBM uses a stochastic maximum likelihood (SML) [91] based algorithm to

maximize the lower bound on the likelihood, i.e. performing only one or a few

updates using a Markov chain Monte Carlo (MCMC) method between each pa-

rameter update. To avoid ending up in poor local minima which leave many

hidden units e�ectively dead, a greedy layer-wise training strategy is also added

into the layers when pre-training the DBM network, much in the same way as

the DBN [19].

This joint learning has brought promising improvements, both in terms of likeli-

hood and the classi�cation performance of the deep feature learner. However, a

crucial disadvantage of DBMs is the time complexity of approximate inference is

considerably higher than DBNs, which makes the joint optimization of DBM pa-

rameters impractical for large datasets. To increase the e�ciency of DBMs, some

researchers introduced an approximate inference algorithm [92, 93], which utilizes

a separate `recognition' model to initialize the values of the latent variables in all

layers, thus e�ectively accelerating the inference.

There are also many other approaches that aim to improve the e�ectiveness of

DBMs. The improvements can either take place at the pre-training stage [94, 95]

or at the training stage [96, 97]. For example, Montavon et al. [96] introduced
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the centering trick to improve the stability of a DBM and made it to be more

discriminative and generative. The multi-prediction training scheme [98] was

utilized to jointly train the DBM which outperforms the previous methods in

image classi�cation proposed in [97].

2.2.2.3 Deep Energy Models (DEMs)

The Deep Energy Model (DEM), introduced by Ngiam et al. [27], is a more recent

approach to train deep architectures. Unlike DBNs and DBMs which share the

property of having multiple stochastic hidden layers, the DEM just has a single

layer of stochastic hidden units for e�cient training and inference.

The model utilizes deep feed forward neural networks to model the energy land-

scape and is able to train all layers simultaneously. By evaluating the perfor-

mance on natural images, it demonstrated the joint training of multiple layers

yields qualitative and quantitative improvements over greedy layer-wise training.

Ngiam et al. [27] used Hybrid Monte Carlo (HMC) to train the model. There are

also other options including contrastive divergence, score matching, and others.

A similar work can be found in [99].

Although RBMs are not as suitable as CNNs for vision applications, there are

also some good examples adopting RBMs to vision tasks. The Shape Boltzmann

Machine was proposed by Eslami et al. [100] to handle the task of modeling

binary shape images, which learns high quality probability distributions over

object shapes, for both realism of samples from the distribution and generalization

to new examples of the same shape class. Kae et al. [101] combined the CRF and

the RBM to model both local and global structure in face segmentation, which has

consistently reduced the error in face labeling. A new deep architecture has been

presented for phone recognition [102] that combines a Mean-Covariance RBM

feature extraction module with a standard DBN. This approach attacks both

the representational ine�ciency issues of GMMs and an important limitation of

previous work applying DBNs to phone recognition.
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2.2.3 Autoencoder

The autoencoder is a special type of arti�cial neural network used for learning

e�cient encodings [103]. Instead of training the network to predict some target

value Y given inputs X, an autoencoder is trained to reconstruct its own inputs

X, therefore, the output vectors have the same dimensionality as the input vector.

The general process of an autoencoder is shown in Figure 2.12.

encoder 
code 

decoder 
reconstruction 

encoder decoder

error 

input 

Figure 2.12: The pipeline of an autoencoder.

During the process, the autoencoder is optimized by minimizing the reconstruc-

tion error, and the corresponding code is the learned feature.

Generally, a single layer is not able to get the discriminative and representative

features of raw data. Researchers now utilize the deep autoencoder, which for-

wards the code learnt from the previous autoencoder to the next, to accomplish

their task.

The deep autoencoder was �rst proposed by Hinton et al. [104], and is still ex-

tensively studied in recent papers [105, 106]. A deep autoencoder is often trained

with a variant of back-propagation, e.g. the conjugate gradient method. Though

often reasonably e�ective, this model could become quite ine�ective if errors

are present in the �rst few layers. This may cause the network to learn to re-

construct the average of the training data. A proper approach to remove this

problem is to pre-train the network with initial weights that approximate the

�nal solution [104]. There are also variants of autoencoder proposed to make the

representation as `constant' as possible with respect to the changes in input.

In Table 2.3, we list some well-known variants of the autoencoder, and brie�y

summarize their characteristics and advantages. In the next sections, we de-
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scribe three important variants: sparse autoencoder, denoising autoencoder and

contractive autoencoder.

Table 2.3: Variants of the autoencoder.

Method characteristics advantages

Sparse Autoen-

coder [28, 106]

Adds a sparsity penalty to

force the representation to be

sparse

1. Make the categories to be more

separable; 2. Make the complex

data more meaningful; 3. In line

with biological vision system

Denoising Autoen-

coder [29, 107]

Recovers the correct input

from a corrupted version

More robust to noise

Contractive Autoen-

coder [30]

Adds an analytic contractive

penalty to the reconstruction

error function

Better captures the local directions

of variation dictated by the data

Saturating Autoen-

coder [108]

Raises reconstruction error

for inputs not near the data

manifold

Limits the ability to reconstruct in-

puts which are not near the data

manifold

Convolutional Autoen-

coder [109�111]

Shares weights among all lo-

cations in the input, preserv-

ing spatial locality

Utilizes the 2D image structure

Zero-bias Autoen-

coder [112]

Utilizes proper shrinkage

function to train auto-

encoders without additional

regularization

More powerful in learning represen-

tations on data with very high in-

trinsic dimensionality

2.2.3.1 Sparse Autoencoder

A sparse autoencoder aims to extract sparse features from raw data. The spar-

sity of the representation can either be achieved by penalizing the hidden unit

biases [28, 85, 113] or by directly penalizing the output of hidden unit activa-

tions [114, 115].

Sparse representations have several potential advantages [28]: 1) using high-

dimensional representations increases the likelihood that di�erent categories will

be easily separable, just as in the theory of SVMs; 2) sparse representations pro-

vide us with a simple interpretation of the complex input data in terms of a
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number of `parts'; 3) biological vision uses sparse representations in early visual

areas [116].

A quite well-known variant of the sparse autoencoder is a nine-layer locally con-

nected sparse autoencoder with pooling and local contrast normalization [117].

This model allows the system to train a face detector without having to label

images as containing a face or not. The resulting feature detector is robust to

translation, scaling and out-of-plane rotation.

2.2.3.2 Denoising Autoencoder

In order to increase the robustness of the model, Vincent et al. [29, 107] proposed

a model called denoising autoencoder (DAE), which can recover the correct input

from a corrupted version, thus forcing the model to capture the structure of the

input distribution. The process of a DAE is shown in Figure 2.13.

input corrupted input reconstruction 

hidden node reconstruct error 

Figure 2.13: Denoising Autoencoder [29].

2.2.3.3 Contractive Autoencoder

Contractive Autoencoder (CAE), proposed by Rifai et al. [30], followed after the

DAE and shared a similar motivation of learning robust representations [19].

While a DAE makes the whole mapping robust by injecting noise in the training

set, a CAE achieves robustness by adding an analytic contractive penalty to the

reconstruction error function.

Although the di�erences between DAE and CAE are stated by Bengio et al. [19],

Alain et al. [118] still suggested that DAE and a form of CAE are closely related
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to each other: a DAE with small corruption noise can be valued as a type of

CAE where the contractive penalty is on the whole reconstruction function rather

than just on the encoder. Both DAE and CAE have been successfully used in

the Unsupervised and Transfer Learning Challenge [119].

2.2.4 Sparse Coding

Sparse coding intends to learn an over-complete set of basic functions to describe

the input data [120], and it has numerous advantages [31, 33, 121, 122]: (1) It

can reconstruct the descriptor better by using multiple bases and capturing the

correlations between similar descriptors which share bases; (2) the sparsity allows

the representation to capture salient properties of images; (3) it is in line with the

biological visual system, which argues that sparse features of signals are useful for

learning; (4) image statistics study shows that image patches are sparse signals;

(5) patterns with sparse features are more linearly separable.

2.2.4.1 Solving the sparse coding equation

In this subsection, we will brie�y describe how to solve the sparse coding problem.

The general objective function of sparse coding is as below.

min
D

1

T

T∑
t=1

min
h(t)

(
1

2
||x(t) −Dh(t)||22 + λ||h(t)||1) (2.2)

The �rst term of the function is the reconstruction error, while the second L1

regularization term is the sparsity penalty. The L1 norm regularization has been

veri�ed to lead to sparse representations [123]. Eq 2.2 can be solved with a regres-

sion method called LASSO (Least Absolute Shrinkage and Selection Operator).

It cannot get the analytic solution of the sparse representation. Therefore, solving

of the problem normally results in an intractable computation.

To optimize the sparse coding model, there is an alternating procedure between

updating the weights and inferring the feature activations of the input given the

current setting of the weights.
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1. Weight update

One commonly used algorithm for updating the weights is called projected gra-

dient algorithm [124], which renormalizes each column of the weight matrix right

after each update of the traditional Gradient descent algorithm [125]. The nor-

malization is necessary for the sparsity penalty to have any e�ect. However, gra-

dient descent using iterative projections often shows slow convergence. In 2007,

Lee et al. [126] derived a Lagrange dual method, which is much more e�cient

than gradient-based methods. Given a dictionary, the paper further proposed a

feature-sign search algorithm to learn the sparse representation. The combina-

tion of these two algorithms enabled the performance to be signi�cantly better

than the previous ones. However, it cannot e�ciently handle very large training

sets, or dynamic training data that is changing over time. Thus it inherently

accesses the whole training set at each iteration. To address this issue, an on-

line approach [127, 128] was proposed for learning dictionaries that process one

element (or a small subset) of the training set at a time. The algorithm then

updates the dictionary using block-coordinate descent [129] with warm restarts,

which does not require any learning rate tuning.

Gregor et al. [130] tried to accelerate the dictionary learning in another way: it

imports the idea of Coordinate Descent algorithm (CoD) which only updates the

"most promising" hidden units and therefore leads to dramatic reduction in the

number of iterations to reach a given code prediction error.

2. Activation inference

Given a set of the weights, we need to infer the feature activations. A popular

algorithm for sparse coding inference is the Iterative Shrinkage-Thresholding Al-

gorithm (ISTA) [131], which takes a gradient step to optimize the reconstruction

term, followed by a sparsity term which has a closed form shrinkage operation.

Although simple and e�ective, the algorithm su�ers from a severe problem that

it converges quite slowly. The problem is partly solved by the Fast Iterative

shrinkage-Thresholding Algorithm (FISTA) approach [132], which preserves the

computational simplicity of ISTA, but converges more quickly due to the in-

troduction of a `momentum' term in the dynamics (the convergence complexity
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changed from to ). Both the ISTA and FISTA inference involve some sort of iter-

ative optimization (i.e. LASSO), which is of high computational complexity. In

contrast, Kavukcuoglu et al. [133] utilized a feed-forward network to approximate

the sparse codes, which dramatically accelerated the inference process. Further-

more, the LASSO optimization stage was replaced by marginal regression in [134],

e�ectively scaling up the sparse coding framework to large dictionaries.

2.2.4.2 Developments

As we have brie�y stated how to generate the sparse representation given the

objective function, in this subsection, we will introduce some well-known algo-

rithms related to sparse coding, in particular those that are used in computer

vision tasks. The well-known sparse coding algorithms and relations, along with

their contributions and drawbacks are shown in Figure 2.14.

ScSPM SPM 

SC has less restrictive constraint  

on the assignment than VQ  

Ignore the mutual dependence 

of the local features 

LSC 

Enhance similar features has similar 

sparse codes, thus keep the mutual 

dependency in the sparse coding 

HLSC 

Define the similarity among 

the instances by a hyper graph 

LCC 

Enhance the locality by  explicitly 

encouraging the coding to be local 

LLC 

Accelerate the process 

Time consuming 

SVC 

Enhance the locality by  adopting 

a smoother coding scheme 

ASGD 

State-of-the-art on 

ImageNet prior to CNNs 

Figure 2.14: The well-known sparse coding algorithms, relations, contributions

and drawbacks
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One representative algorithm for sparse coding is Sparse coding SPM (ScSPM) [31],

which is an extension of the Spatial Pyramid Matching (SPM) method [135]. Un-

like the SPM, which uses vector quantization (VQ) for the image representation,

ScSPM utilizes sparse coding (SC) followed by multi-scale spatial max pooling.

The codebook of SC is an over-complete basis and each feature can activate a

small number of them. Compared to VQ, SC receives a much lower reconstruc-

tion error due to the less restrictive constraint on the assignment. Coates et

al. [136] further investigated the reasons for the success of SC over VQ in detail.

A drawback of ScSPM is that it deals with local features separately, thus ignores

the mutual dependence among them, which makes it too sensitive to feature

variance, i.e. the sparse codes may vary a lot, even for similar features.

To address this problem, Gao et al. [32] proposed a Laplacian Sparse Coding

(LSC) approach, in which similar features are not only assigned to optimally-

selected cluster centers, but that also guarantees the selected cluster centers to

be similar. The di�erence between K-means, Sparse Coding and Laplacian Sparse

Coding is shown in Figure 2.15.

(a) K-means (b) Sparse Coding (c) Laplacian SC

:   Features to be quantized 

:  Visual words 

Figure 2.15: The di�erence between K-means, Sparse Coding and Laplacian

Sparse Coding [32].

By adding the locality preserving constraint to the objective of sparse coding, the

LSC can keep the mutual dependency in the sparse coding procedure. Gao et

al. [137] further raised a Hyper-graph Laplacian Sparse Coding (HLSC) method,

which extends the LSC to the case where the similarity among the instances is

de�ned by a hyper graph. Both LSC and HLSC enhance the robustness of sparse

coding.
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Another way to address the sensitivity problem is the hierarchical sparse cod-

ing method proposed by Yu et al. [138]. It introduced a two-layer sparse coding

model: the �rst layer encodes individual patches, and the second layer jointly

encodes the set of patches that belong to the same group. Therefore, the model

leverages the spatial neighborhood structure by modeling the higher-order depen-

dency of patches in the same local region of an image. Besides that, it is a fully

automatic method to learn features from the pixel level, rather than for example

the hand-designed SIFT feature. The hierarchical sparse coding is utilized in an-

other research [139] to learn features for images in an unsupervised fashion. The

model is further improved by Zeiler et al. [140].

In addition to the sensitivity, another method exists for improving the ScSPM

algorithm, by considering the locality. Yu et al. [33] observed that the ScSPM

results tend to be local, i.e. nonzero coe�cients are often assigned to bases

nearby. As a result of these observations, they suggested a modi�cation to ScSPM,

called Local Coordinate Coding (LCC), which explicitly encourages the coding

to be local. They also theoretically showed that locality is more important than

sparsity. Experiments have shown that locality can enhance sparsity and that

sparse coding is helpful for learning only when the codes are local, so it is preferred

to let similar data have similar non-zero dimensions in their codes. Although LCC

has a computational advantage over classic sparse coding, it still needs to solve

the L1-norm optimization problem, which is time-consuming. To accelerate the

learning process, a practical coding method called Locality-Constrained Linear

Coding (LLC) was introduced [122], which can be seen as a fast implementation of

LCC that replaces the L1-norm regularization with L2-norm regularization.

A comparison between VQ, ScSPM and LLC [122] are shown in Figure 2.16.

#1 

#2 

(a) VQ

#1 

#2 

(b) ScSPM

#1 

#2 

(c) LLC

node assigned to #1 

node assigned to #2 

node assigned to #1 & #2 

Figure 2.16: A comparison between VQ, ScSPM, LLC [122].
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Besides LLC, there is another model, called super-vector coding (SVC) [34], which

can also guarantee local sparse coding. Given x, SVC will activate those coordi-

nates associated to the neighborhood of x to achieve the sparse representation.

SVC is a simple extension of VQ by expanding VQ in local tangent directions,

and is thus a smoother coding scheme.

A remarkable result is shown in [141], in which the proposed averaging stochastic

gradient descent (ASGD) scheme combined LCC and SVC algorithm to scale the

image classi�cation to large-scale dataset, and produced state-of-the-art results

on ImageNet object recognition tasks prior to the rise of CNN architectures.

Another well-known smooth coding method is presented in [134], called Smooth

Sparse Coding (SSC). The method incorporates the neighborhood similarity and

temporal information into sparse coding, leading to codes that represent a neigh-

borhood rather than an individual sample and that have lower mean square re-

construction error.

More recently, He et al. [142] proposed a new unsupervised feature learning frame-

work, called Deep Sparse Coding (DeepSC), which extends sparse coding to a

multi-layer architecture and has the best performance among the sparse coding

schemes described above.

2.2.5 Discussion

In order to compare and understand the above four categories of deep learning, we

summarize their advantages and disadvantages with respect to diverse properties,

as listed in Table 2.4. There are nine properties in total. In details, `General-

ization' refers to whether the approach has been shown to be e�ective in diverse

media (e.g. text, images, audio) and applications, including speech recognition,

visual recognition and so on. `Unsupervised learning' refers to the ability to learn

a deep model without supervisory annotation. `Feature learning' is the ability to

automatically learn features based on a data set. `Real-time training' and `Real-

time prediction' refer to the e�ciency of the learning and inferring processes,

respectively. `Biological understanding' and `Theoretical justi�cation' represent

36



2.3 Applications and Results

whether the approach has signi�cant biological underpinnings or theoretical foun-

dations, respectively. `Invariance' refers to whether the approach has been shown

to be robust to transformations such as rotation, scale and translation. `Small

training set' refers to the ability to learn a deep model using a small number

of examples. It is important to note that the table only represents the general

current �ndings and not future possibilities nor specialized niche cases.

Table 2.4: Comparisons among four categories of deep learning (Note: `Yes' indi-

cates that the category does well in the property; otherwise, they will be marked

by `No'. The `Yes∗' refers to a preliminary or weak ability)

Properties CNNs RBMs AutoEncoder Sparse Coding

Generalization Yes Yes Yes Yes

Unsupervised learning No Yes Yes Yes

Feature learning Yes Yes∗ Yes∗ No

Real-time training No No Yes Yes

Real-time prediction Yes Yes Yes Yes

Biological understanding No No No Yes

Theoretical justi�cation Yes∗ Yes Yes Yes

Invariance Yes∗ No No Yes

Small training set Yes∗ Yes∗ Yes Yes

2.3 Applications and Results

Deep learning has been widely adopted in various directions of computer vision,

such as image classi�cation, object detection, image retrieval, semantic segmen-

tation, and human pose estimation, which are key tasks for image understanding.

In this part, we will brie�y summarize the developments of deep learning (all

of the results are referred from the original papers), especially the CNN based

algorithms, in these �ve areas.
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2.3.1 Image Classi�cation

The image classi�cation task consists of labeling input images with a proba-

bility of the presence of a particular visual object class [143], as is shown in

Figure 2.17.

Figure 2.17: Image classi�cation examples from AlexNet [14]. Each image has

one ground truth label, followed by the top 5 guesses with probabilities.

Prior to deep learning, perhaps the most commonly used methods in image clas-

si�cation were methods based on bags of visual words (BoW) [144], which �rst

describes the image as a histogram of quantized visual words, and then feeds

the histogram into a classi�er (typically an SVM [145]). This pipeline was based

on the orderless statistics, to incorporate spatial geometry into the BoW descrip-

tors. Lazebnik et al. [135] integrated a spatial pyramid approach into the pipeline,

which counts the number of visual words inside a set of image sub-regions instead

of the whole region. Thereafter, this pipeline was further improved by importing

sparse coding optimization to the building of codebooks [141], which receives the
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best performance on the ImageNet 1000-class classi�cation in 2010. Sparse cod-

ing is one of the basic algorithms in deep learning, and it is more discriminative

than the original hand-designed ones, e.g. HOG [141] and LBP [146].

The approaches based on BoW just concern the zero order statistics (i.e. counts

of visual words), discarding a lot of valuable information of the image [143]. The

method introduced by Perronnin et al. [147] overcame this issue and extracted

higher order statistics by employing the Fisher Kernel [148], achieving the state-

of-the-art image classi�cation result in 2011.

Krizhevsky et al. [14] represented a turning point for large-scale object recognition

when a large CNN was trained on the ImageNet database [149], thus proving that

CNN could, in addition to handwritten digit recognition [35], perform well on

natural image classi�cation. The proposed AlexNet won the ILSVRC 2012, with

a top-5 error rate of 15.3%, which sparked signi�cant additional activity in CNN

research. In Figure 2.18, we present the state-of-the-art results on the ImageNet

test dataset since 2012, along with the pipeline of ILSVRC.

Figure 2.18: ImageNet classi�cation results on test dataset.

OverFeat [150] proposed a multiscale and sliding window approach, which could

�nd the optimal scale of the image and ful�ll di�erent tasks simultaneously, i.e.
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classi�cation, localization and detection. Speci�cally, the algorithm decreased

the top-5 test error to 13.6%. Zeiler et al. [22] introduced a novel visualization

technique to give insight into the function of intermediate feature layers and

further adjusted a new model, which outperformed AlexNet, reaching 11.7% top-

5 error rate, and had top performance at ILSVRC 2013.

ILSVRC 2014 witnessed the steep growth of deep learning, as most participants

utilized CNNs as the basis for their models. Again signi�cant progress had been

made in image classi�cation, as the error was almost halved since ILSVRC2013.

The SPP-net [23] model eliminated the restriction of the �xed input image size

and could boost the accuracy of a variety of published CNN architectures despite

their di�erent designs. Multiple SPP-nets further reduced the top-5 error rate

to 8.06% and ranked third in the image classi�cation challenge of ILSVRC 2014.

Along with the improvements of the classic CNN model, another characteristic

shared by the top-performing models is that the architectures became deeper, as

shown by GoogLeNet [25] (rank 1 in ILSVRC 2014) and VGG [24] (rank 2 in

ILSVRC 2014), which achieved 6.67% and 7.32% respectively.

Despite the potential capacity possessed by larger models, they also su�ered from

over�tting and under�tting problems when there is little training data or little

training time. To avoid this shortcoming, Wu et al. [57] developed new strategies,

i.e. DeepImage, for data augmentation and usage of multi-scale images. They

also built a large supercomputer for deep neural networks and developed a highly

optimized parallel algorithm, and the classi�cation result achieved a relative 20%

improvement over the previous one with a top-5 error rate of 5.33%. More Re-

cently, He et al. [9] proposed the Parametric Recti�ed Linear Unit to generate the

traditional recti�ed activation units and derived a robust initialization method.

This scheme led to 4.94% top-5 test error and surpassed human-level performance

(5.1%) for the �rst time. Similar results were achieved by Io�e et al. [151], whose

method reached a 4.8% test error by utilizing an ensemble of batch-normalized

networks.
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2.3.2 Object Detection

Object detection is di�erent from but closely related to an image classi�cation

task. For image classi�cation, the whole image is utilized as the input and the

class label of objects within the image are estimated. For object detection, be-

sides outputting the information of the presence of a given class, we also need to

estimate the position of the instance (or instances), as shown in Figure 2.19. A

detection window is regarded as correct if the outputted bounding box has su�-

ciently large overlap with the ground truth object (usually more than 50%).

Figure 2.19: Object detection examples from RCNN [44]. The red box extracts

the salient objects contains, the green box contains the prediction score.

The challenging PASCAL VOC datasets are the most widely employed for the

evaluation of object detection. There are twenty classes in this database. During

the test phase, an algorithm should predict the bounding boxes of the objects

belong to each class in a test image. In this section, we will describe the recent

developments of deep learning schemes for object detection, according to their

achievements in VOC 2007 and VOC 2012. The related advances are shown in

Table 2.5.

Before the surge of deep learning, the Deformable Part Model (DPM) [152] was

the most e�ective method for object detection. It takes advantage of deformable

part models and detects objects across all scales and locations on the image in

an exhaustive manner. After integrating with some post-processing techniques,

i.e. bounding box prediction and context rescoring, the model achieved 29.09%

average precision for VOC 2007 test set.
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Table 2.5: Object detection results of the VOC 2007 and VOC 2012 challenges

Methods Training VOC2007 (mAP) VOC2012(mAP)

data A/C-Net VGG-Net Alex-Net VGG-Net

DPM [152] 07 29.09% - - -

DetectorNet [153] 12 30.41% - - -

DeepMultiBox [154] 12 29.22% - - -

RCNN [44] 07 54.2% 62.2% - -

RCNN [44] + BB 07 58.5% 66% - -

RCNN [44] 12 - - 49.6% 59.2%

RCNN [44] + BB 12 - - 53.3% 62.4%

SPP-Net [23] 07 55.2% 60.4% - -

SPP-Net [23] 07+12 - 64.6% - -

SPP-Net [23] + BB 07 59.2% 63.1% - -

FRCN [64] 07 - 66.9% - 65.7%

FRCN [64] 07++12 - 70.0% - 68.4%

RPN [65] 07 59.9% 69.9% - -

RPN [65] 12 - - - 67%

RPN [65] 07+12 - 73.2% - -

RPN [65] 07++12 - - - 70.4%

MR_CNN [67] 07 - 74.9% - 69.1%

MR_CNN [67] 12 - - - 70.7%

FGS [69] 07 - 66.5% - -

FGS [69] + BB 07 - 68.5% - 66.4%

NoC [155] 07+12 62.9% 71.8% - 67.6%

NoC [155] + BB 07+12 - 73.3% - 68.8%

Note: Training data: �07�: VOC07 trainval; �12�: VOC2 trainval; �07+12�: VOC07

trainval union with VOC12 trainval; �07++12�: VOC07 trainval and test union

with VOC12 trainval; BB: bounding box regression; A/C-Net: approaches based on

AlexNet[6] or Clarifai [52]; VGG-Net: approaches based on VGG-Net[31]

As deep learning methods (especially the CNN-based methods) had achieved top

tier performance on image classi�cation tasks, researchers started to transfer it

to the object detection problem. An early deep learning approach for object de-

tection was introduced by Szegedy et al. [153]. The paper proposed an algorithm,
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called DetectorNet, which replaced the last layer of AlexNet [14] with a regres-

sion layer. The algorithm captured object location well and achieved competitive

results on the VOC2007 test set with the most advanced algorithms at that time.

To handle multiple instances of the same object in the image, DeepMultiBox [154]

also showed a saliency-inspired neural network model.

A general pattern for current successful object detection systems is to generate a

large pool of candidate boxes and classify those using CNN features. The most

representative approach is the RCNN scheme proposed by Girshick et al. [44]. It

utilizes selective search [156] to generate object proposals, and extracts the CNN

features for each proposal. The features are then fed into an SVM classi�er to

decide whether the related candidate windows contain the object or not. RCNNs

improved the benchmark by a large margin, and became the base model for many

other promising algorithms [64�66, 68, 69].

The algorithms derived from RCNNs are mainly divided into two categories: the

�rst category aims to accelerate the training and testing process. Although an

RCNN has excellent object detection accuracy, it is computationally intensive

because it �rst warps and then processes each object proposal independently.

Consequently, some well-known algorithms which aim to improve its e�ciency

appeared, such as SPP-net [23], FRCN [64], RPN [65], YOLO [157], etc. These

algorithms detect objects faster, while achieving comparable mAP with state-of-

the-art benchmarks.

The second category is mainly intended to improve the accuracy of RCNNs. The

performance of the `recognition using regions' paradigm is highly dependent on

the quality of object hypotheses. Currently, there are many object proposal

algorithms, such as objectness [158], selective search [156], category-independent

object proposals [159], BING [160], and edge boxes [161]. These schemes are

exhaustively evaluated in [162]. Although those schemes are good at �nding

rough object positions, they normally could not accurately localize the whole

object via a tight bounding box, which forms the largest source of detection

error [163, 164]. Therefore, many approaches have emerged that try to correct

the poor localizations.
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One important direction of these methods is to combine them with semantic seg-

mentation techniques [66, 68, 165]. For example, the SDS scheme proposed by

Hariharan et al. [68] utilizes segmentation to mask-out the background inside the

detection, resulting in improved performance for object detection (from 49.6%

to 50.7%, both without bounding box regression). On the other hand, the UDS

method [165] uni�ed the object detection and semantic segmentation process in

one framework, by enforcing their consistency and integrating context informa-

tion, the model demonstrated encouraging performance on both tasks. Similar

works come with segDeepM proposed by Zhu et al. [66] and MR_CNN in [67],

which also incorporate the segmentation along with additional evidence to boost

the accuracy of object detection.

There are also approaches which attempt to precisely locate the object in other

ways. For instance, FGS [69] addresses the localization problem via two methods:

1) develop a �ne-grained search algorithm to iteratively optimize the location;

2) train a CNN classi�er with a structured SVM objective to balance between

classi�cation and localization. The combination of these methods demonstrates

promising performance on two challenging datasets.

Aside from the e�orts in object localization, the NoC framework in [155] tries

to evolve e�orts in the object classi�cation step. In place of the commonly used

multi-layer perceptron (MLP), it explored di�erent NoC structures to implement

the object classi�ers.

It is much cheaper and easier to collect a large amount of image-level labels than it

is to collect detection data and label it with precise bounding boxes. Therefore, a

major challenge in scaling the object detection is the di�culty of obtaining labeled

images for large numbers of categories [166, 167]. Ho�man et al. [166] proposed

a Deep Detection Adaption (DDA) algorithm to learn the di�erence between

image classi�cation and object detection, transferring classi�ers for categories into

detectors, without bounding box annotated data. The method has the potential

to enable the detection for thousands of categories which lack bounding box

annotations.
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Two other promising, scalable approaches are ConceptLeaner [168] and BabyLearn-

ing [169].Both of them can learn accurate concept detectors but without the mas-

sive annotation of visual concepts. As collecting weakly labeled images is cheap,

ConceptLeaner [168] develops a max-margin hard instance learning algorithm to

automatically discover visual concepts from noisy labeled image collections. As

a result, it has the potential to learn concepts directly from the web. On the

other hand, the BabyLearning [169] approach simulates a baby's interaction with

the physical world, and can achieve comparable results with state-of-the-art full-

training based approaches with only few samples for each object category, along

with large amounts of online unlabeled videos.

From Table 2.5, we can also observe several factors that could improve the per-

formance, in addition to the algorithm itself: 1) larger training set; 2) deeper

base model; 3) Bounding Box regression.

2.3.3 Image Retrieval

Image retrieval aims to �nd images containing a similar object or scene as in the

query image, as illustrated in Figure 2.20.

Figure 2.20: Image retrieval examples using CNN features. The left images are

querying ones, and the images with green frames in the right represent the positive

retrieval candidates.

The success of AlexNet [14] suggests that the features emerging in the upper

layers of the CNN learned to classify images can serve as good descriptors for
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image classi�cation. Motivated by this, many recent studies use CNN models for

image retrieval tasks [61, 170�173]. These studies achieved competitive results

compared with the traditional methods, such as VLAD and Fisher Vector. In

the following paragraphs, we will introduce the main ideas of these CNN based

methods.

Inspired by Spatial Pyramid Matching, Gong et al. [170] proposed a kind of

`reverse SPM' idea that extracts patches at multiple scales, starting with the

whole image, and then pool each scale without regard to spatial information.

Then it aggregates local patch responses at the �ner scales via VLAD encoding.

The orderless nature of VLAD helps to build a more invariant representation.

Finally, the original global deep activations are concatenated with the VLAD

features for the �ner scales to form the new image representation.

Razavian et al. [171] used features extracted from the OverFeat network as a

generic image representation to tackle the diverse range of vision tasks, including

recognition and retrieval. First, it augments the training set by adding cropped

and rotated samples. Then for each image, it extracts multiple sub-patches of

di�erent sizes at di�erent locations. Each sub-patch is computed for its CNN

presentation. The distance between the reference and the query image is set to

the average distance of each query sub-patch to the reference image.

Given the recent successes that deep learning techniques have achieved, the re-

search presented in [61] attempts to evaluate if deep learning can bridge the

semantic gap in content-based image retrieval (CBIR). Their encouraging results

reveal that deep CNN models pre-trained on large datasets can be directly used

for feature extraction in new CBIR tasks. When being applied for feature rep-

resentation in a new domain, it was found that similarity learning can further

boost the retrieval performance. Further, by retraining the deep models with a

classi�cation or similarity learning objective on the new domain, the accuracy

can be improved signi�cantly.

A di�erent approach shown in [172] is to �rst extract object-like image patches

with a general object detector. Then, one CNN feature is extracted in each

object patch with the pre-trained AlexNet model. With many results from their
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experiments, it is concluded that their method can achieve a signi�cant accuracy

improvement with the same space consumption, and with the same time cost it

still obtains a higher accuracy.

Finally, without sliding windows or multiple-scale patches, Babenko et al. [173]

focus on holistic descriptors where the whole image is mapped to a single vector

with a CNN model. It found that the best performance is observed not at the

very top of the network, but rather at the layer that is two levels below the

outputs. An important result is that PCA a�ects the performance of the CNN

much less than the performance of VLADs or Fisher Vectors. Therefore PCA

compression works better for CNN features. In Table 2.6, we show the retrieval

results in several public datasets.

Table 2.6: Image retrieval results on several datasets

Methods Holidays Paris6K Oxford5K UKB

Babenko et al. [173] 74.7 - 55.7 3.43

SUN et al. [172] 79.0 - - 3.61

Gong et al. [170] 80.2 - - -

Razavian et al. [171] 84.3 79.50 68.0 -(91.1)

Wan et al. [61] - 94.7 78.3 -

There is one more interesting problem in CNN features: which layer has the

highest impact on the �nal performance? Some methods extract features in the

second fully connected layer [170, 172]. In contrast to them, other methods use the

�rst fully connected layer in their CNN model for image representation [171, 173].

Moreover, these choices may change for di�erent datasets [61]. Thus, we think

investigating the characteristics of each layer is still an open problem.

2.3.4 Semantic Segmentation

In recent years, a large number of studies focus on the semantic segmentation

task, and yield promising progress. The main reason of their success comes from

CNN models, which are capable of tackling the pixel-level predictions with the

47



2. A COMPREHENSIVE REVIEW OF DEEP LEARNING
METHODS AND APPLICATIONS

pre-trained networks on large-scale datasets. Di�erent from image-level classi�-

cation and object-level detection, semantic segmentation requires output masks

that have a 2D spatial distribution. As for semantic segmentation, recent and

advanced CNN based methods can be summarized as follows:

(1) Detection-based segmentation. The approach segments images based on the

candidate windows outputted from object detection [44, 174�176]. RCNN [44] and

SDS [68] �rst generated region proposals for object detection, and then utilized

traditional approaches to segment the region and to assign the pixels with the

class label from detection. Based on SDS [68], Hariharan et al. [176] proposed

the hyper-column at each pixel as the vector of activations, and gained large

improvement. One disadvantage of detection-based segmentation is the largely

additional expense for object detection. Without extracting regions from raw

images, Dai et al. [175] designed a convolutional feature masking (CFM) method

to extract proposals directly from the feature maps, which is e�cient as the

convolutional feature maps only need to be computed once. Even though, the

errors caused by proposals and object detection tend to be propagated to the

segmentation stage.

(2) FCN-CRFs based segmentation. In the second one, fully convolutional net-

works(FCN), replacing the fully connected layers with more convolutional layers,

has been a popular strategy and baseline for semantic segmentation [60, 174].

Long et al. [60] de�ned a novel architecture that combined semantic information

from a deep, coarse layer with appearance information from a shallow, �ne layer

to produce accurate and detailed segmentations. DeepLab [174] proposed a sim-

ilar FCN model, but also integrated the strength of conditional random �elds

(CRFs) into FCN for detailed boundary recovery. Instead of using CRFs as a

post-processing step, Lin et al. [177] jointly trains the FCN and CRFs by e�cient

piecewise training. Likewise, the work in [178] converted the CRFs as a recurrent

neural network (RNN), which can be plugged in as a part of FCN model.

(3) Weakly supervised annotations. Apart from the advancements in segmenta-

tion models, some works are focused on weakly supervised segmentation. Pa-

pandreou et al. [179] studied the more challenging segmentation with weakly

annotated training data such as bounding boxes or image-level labels. Likewise,
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the BoxSup method in [180] made use of bounding box annotations to estimate

segmentation masks, which are used to update network iteratively. These works

both showed excellent performance when combining a small number of pixel-level

annotated images with a large number of bounding box annotated images.

We compare their results on PASCAL VOC 2012 val and test set in Table 2.7.

Table 2.7: Semantic segmentation results on PASCAL VOC 2012 val and test set

Methods Train Val 2012 Test 2012

SDS [68] VOC extra 53.9 51.6

CFM [175] VOC extra 60.9 61.8

FCN-8s [60] VOC extra - 62.2

Hypercolumn [176] VOC extra 59 62.6

DeepLab [174] VOC extra 63.7 66.4

DeepLab-MSc-LargeFOV [174] VOC extra 68.7 71.6

Piecewise-DCRFs [177] VOC extra 70.3 70.7

CRF-RNN [178] VOC extra 69.6 72.0

BoxSup [180] VOC extra+COCO 68.2 71.0

Cross-Joint [179] VOC extra+COCO 71.7 73.9

2.3.5 Human Pose Estimation

Human pose estimation aims to estimate the localization of human joints from

still images or image sequences, as shown in Figure 2.21.. It is very important

for a wide range of potential applications, such as video surveillance, human

behavior analysis, human-computer interaction (HCI), and is being extensively

studied recently [181�191]. However, this task is also very challenging because

of the great variation of human appearances, complicated backgrounds, as well

as many other nuisance factors, such as illumination, viewpoint, scale, etc. In

this part, we mainly summarize deep learning schemes to estimate the human

articulation from still images, although these schemes could be incorporated with

motion features to further boost their performance in videos [181�183].
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Figure 2.21: Human pose estimation [192].

Normally, human pose estimation involves multiple problems such as recognizing

people in images, detecting and describing human body parts, and modeling their

spatial con�guration. Prior to deep learning, the best performing human pose

estimation methods were based on body part detectors, i.e. detect and describe

the human body part �rst, and then impose the contextual relations between local

parts. One typical part-based approach is pictorial structures [193], which takes

advantage of a tree model to capture the geometric relations between adjacent

parts and has been developed by various well-known part-based methods [194�

197].

As deep learning algorithms can learn high-level features which are more toler-

ant to the variations of nuisance factors, and have achieved success in various

computer vision tasks, they have recently received signi�cant attention from the

research community.

We have summarized the performance of related deep learning algorithms on two

commonly used datasets: Frames Labeled In Cinema (FLIC) [198] and Leeds

Sports Pose (LSP) [199]. FLIC consists of 3987 training images and 1016 test

images obtained from popular Hollywood movies, containing people in diverse

poses, annotated with upper-body joint labels. LSP and its extension contains

11000 training and 1000 testing images of sports people gathered from Flickr with

14 full body joints annotated. There are two widely accepted evaluation metrics
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for the evaluation: Percentage of Correct Parts (PCP) [200], which measures the

rate of correct limb detection, and Percent of Detected Joints (PDJ) [198], which

measures the rate of correct limb detection.

In the following, Table 2.8 illustrates the PDJ comparison of various deep learning

methods on FLIC dataset, with a normalized distance of 0.05, and Table 2.9 lists

out the PCP comparison on LSP dataset.

Table 2.8: The PDJ comparison on FLIC dataset

PDJ(PCK) Head Shoulder Elbow Wrist

Jain et al. [186] - 42.6 24.1 22.3

DeepPose [201] - - 25.2 26.4

Chen et al. [185] - - 36.5 41.2

DS-CNN [190] - - 30.5 36.5

Tompson et al. [187] 90.7 70.4 50.2 55.4

Tompson et al. [188] 92.6 73 57.1 60.4

Table 2.9: The PCP comparison on LSP dataset

Torso Head U.arms L.arms U.legs L.legs Mean

Ouyang et al. [189] 85.8 83.1 63.3 46.6 76.5 72.2 68.6

DeepPose [201] - - 56 38 77 71 -

Chen et al. [185] 92.7 87.8 69.2 55.4 82.9 77 75

DS-CNN [190] 98 85 80 63 90 88 84

In general, deep learning schemes in human pose estimation can be categorized

according to the handling manner of input images: holistic processing or part-

based processing.

The holistic processing methods tend to accomplish their task in a global manner,

and do not explicitly de�ne a model for each individual part and their spatial re-

lationships. One typical model is called DeepPose proposed by Toshev et al. [201].

This model formulates the human pose estimation method as a joint regression

problem and does not explicitly de�ne the graphical model or part detectors for

the human pose estimation. More speci�cally, it utilizes a two-layer architecture:
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the �rst layer addresses the ambiguity between body parts in a holistic way and

generates the initial pose estimation. The second layer re�nes the joint locations

for the estimation. This model achieved advances on several challenging datasets.

However, the holistic-based method su�ers from inaccuracy in the high-precision

region, since it is di�cult to learn direct regression of complex pose vectors from

images.

The part-based processing methods propose to detect the human body parts in-

dividually, followed with a graphic model to incorporate the spatial information.

Instead of training the network using the whole image, Chen et al. [185] utilized

the local part patches and background patches to train a DCNN, in order to

learn conditional probabilities of the part presence and spatial relationships. By

incorporating with graphic models, the algorithm gained promising performance.

Moreover, Jain et al. [186] trained multiple smaller convnets to perform inde-

pendent binary body-part classi�cation, followed with a higher-level weak spatial

model to remove strong outliers and to enforce global pose consistency. Sim-

ilarly, Tompson et al. [187] designed multi-resolution ConvNet architectures to

perform heat-map likelihood regression for each body part, followed with an im-

plicit graphic model to further promote joint consistency. The model was further

extended in [188], which argues that the pooling layers in the CNNs would limit

spatial localization accuracy and try to recover the precision loss of the pooling

process. They especially improve the method from [187] by adding a carefully

designed Spatial Dropout layer, and present a novel network which reuses hidden-

layer convolutional features to improve the precision of the spatial locality.

There are also approaches which suggesting combining both the local part ap-

pearance and the holistic view of the parts for more accurate human pose estima-

tion. For example, Ouyang et al. [189] derived a multi-source deep model from a

Deep Belief Net (DBN), which attempts to take advantage of three information

sources of human articulation, i.e. mixture type, appearance score and defor-

mation, and combine their high-level representations to learn holistic, high-order

human body articulation patterns. On the other hand, Fan et al. [190] proposed

a dual-source convolutional neutral network (DS-CNN) to integrate the holistic

and partial view in the CNN framework. It takes part patches and body patches
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as inputs to combine both local and contextual information for more accurate

pose estimation.

As most of the schemes tend to design new feed-forward architectures, Carreira

et al. [191] introduced a self-correcting model, called Iterative Error Feedback

(IEF). This model can encompass rich structure in both input and output spaces

by incorporating top-down feedback, and shows promising results.

2.4 Trends and Challenges

Along with the promising performance deep learning has achieved, the research

literature has indicated several important challenges as well as the inherent trends,

which are described next.

2.4.1 Theoretical Understanding

Although promising results in addressing computer vision tasks have been achieved

by deep learning methods, the underlying theory is not well understood, and there

is no clear understanding of which architectures should perform better than oth-

ers. It is di�cult to determine which structure, how many layers, or how many

nodes in each layer are proper for a certain task, and it also need speci�c knowl-

edge to choose sensible values such as the learning rate, the strength of the reg-

ularizer, etc. The design of the architecture has historically been determined on

an ad-hoc basis. Chu et al. [202] proposed a theoretical method for determin-

ing the optimal number of feature maps. However, this theoretical method only

worked for extremely small receptive �elds. To better understand the behavior

of the well-known CNN architectures, Zeiler et al. [22] developed a visualization

technique that gave insight into the function of intermediate feature layers. By

revealing the features in interpretable patterns, it brought further possibilities

for better architecture designs. A similar visualization was also studied by Yu et

al. [203].
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Apart from visualizing the features, RCNN [44] attempted to discover the learning

pattern of CNN. It tested the performance in a layer-by-layer pattern during the

training process, and found that the convolutional layers can learn more general

features and convey most of the CNN representational capacity, while the top

fully-connected layers are domain-speci�c. In addition to analyzing the CNN

features, Agrawal et al. [204] further investigated the e�ects of some commonly

used strategies on CNN performance, such as �ne-tuning and pre-training, and

provided evidence-backed intuitions to apply CNN models to computer vision

problems.

Despite the progress achieved in the theory of deep learning, there is signi�cant

room for better understanding in evolving and optimizing the CNN architectures

toward improving desirable properties such as invariance and class discrimina-

tion.

2.4.2 Human-level Vision

Human vision has a remarkable pro�ciency in computer vision tasks, even in sim-

ple visual representations or under changes to geometric transformations, back-

ground variation, and occlusion. Human-level vision can refer to either bridging

the semantic gap in terms of accuracy or in bringing new insights from studies of

the human brain to be integrated into machine learning architectures. Compared

with the traditional low-level features, a CNN mimics human brain structure

and builds multi-layers activations for mid-level or high-level features. The study

in [61] aimed to evaluate how much retrieval improvement can be achieved by

developing deep learning techniques, and whether deep features are a desirable

key to bridge the semantic gap in the long term. As seen in Figure 2.18, the image

classi�cation error on the ImageNet test set decreases 10%, from 15.3% [14] in

2012 to 4.82% [151] in 2015. This promising improvement veri�es the e�ciency

of CNNs. In particular, the result in [151] has exceeded the accuracy of human

raters. However, we cannot conclude that the representational performance of a

CNN rivals that of the brain [205]. For example, it is easy to produce images
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that are completely unrecognizable to humans, but one state-of-the-art CNN be-

lieves it to contain recognizable objects with 99.99% con�dence [206]. This result

highlights the di�erence between human vision and current CNN models, and

raises questions about the generality of CNNs in computer vision. The study

in [205] found that, like the IT cortex, recent CNNs could generate similar fea-

ture spaces for the same category, and distinct ones for images with di�erent

categories. This result indicates that CNNs may provide insight into understand-

ing primate visual processing. In another study [207], the authors considered a

novel approach for brain decoding for fMRI data by leveraging unlabeled data

and multi-layer temporal CNNs, which learned multiple layers of temporal �lters

and trained powerful brain decoding models. Whether CNN models that rely on

computational mechanisms are similar to the primate visual system is yet to be

determined, but it has the potential for further improvements by mimicking and

incorporating the primate visual system.

2.4.3 Training with limited data

Larger models demonstrate more potential capacity and have become the ten-

dency of recent developments. However, the shortage of training data may limit

the size and learning ability of such models, especially when it is expensive to

obtain fully labeled data. How to overcome the need for enormous amounts

of training data and how to train large networks e�ectively remains to be ad-

dressed.

Currently, there are two commonly used solutions to obtain more training data.

The �rst solution is to generalize more training data from existing data based on

various data augmentation schemes, such as scaling, rotating and cropping. On

top of these, Wu et al. [57] further adopted color casting, vignetting and lens dis-

tortion techniques, which could produce much more converted training examples

with broad coverage. The second solution is to collect more training data with

weak learning algorithms. Recently, there has been a range of articles on learning

visual concepts from image search engines [208, 209]. In order to scale up com-

puter vision recognition systems, Zhou et al. [168] proposed the ConceptLearner
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approach, which could automatically learn thousands of visual concept detectors

from weakly labeled image collections. Besides that, to reduce laborious bound-

ing box annotation costs for object detection, many weakly-supervised approaches

have emerged with image-level object-presence labeling [210]. Nevertheless, it is

promising to further develop techniques for generating or collecting more com-

prehensive training data, which could make the networks learn better features

that are robust under various changes, such as geometric transformations, and

occlusion.

2.4.4 Time complexity

The early CNNs were seen as a method that required a lot of computational

resources and were not candidates for real-time applications. One of the trends

is towards developing new architectures which allow running a CNN in real-time.

The study in [59] conducted a series of experiments under constrained time cost,

and proposed models that are fast for real-world applications, yet are competitive

with existing CNN models. In addition, �xing the time complexity also helps to

understand the impacts of factors such as depth, numbers of �lters, �lter sizes, etc.

Another study [211] eliminated all the redundant computations in the forward

and backward propagation in CNNs, which resulted in a speedup of over 1500

times. It has robust �exibility for various CNN models with di�erent designs

and structures, and reaches high e�ciency because of its GPU implementation.

Ren et al. [212] converted the key operators in deep CNNs to vectorized forms,

so that high parallelism can be achieved given basic parallelized matrix-vector

operators. They further provided a uni�ed framework for both high-level and

low-level vision applications.

2.4.5 More Powerful Models

As deep learning related algorithms have moved forward the-state-of-the-art re-

sults of various computer vision tasks by a large margin, it becomes more chal-
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lenging to make progress on top of that. There might be several directions for

more powerful models:

The �rst direction is to increase the generalization ability by increasing the size

of the networks [24, 25]. Larger networks could normally bring higher quality

performance, but care should be taken to address the issues this may cause, such

as over�tting and the need for a lot of computational resources.

A second direction is to combine the information from multiple sources. Feature

fusion has long been popular and appealing, and this fusion can be categorized

in two types. 1) Combine the features of each layer in the network. Di�er-

ent layers may learn di�erent features [44]. It is promising if we could develop

an algorithm to make the features from each layer to be complementary. For

example, DeepIndex [213] proposed to integrate multiple CNN features by mul-

tiple inverted indices, including di�erent layers in one model or several layers

from distinct models. 2) Combine the features of di�erent types. We can obtain

more comprehensive models by integrating with other type of features, such as

SIFT. To improve the image retrieval performance, DeepEmbedding [214] used

the SIFT features to build an inverted index structure, and extracted the CNN

features from the local patches to enhance the matching strength.

A third direction towards more powerful models is to design more speci�c deep

networks. Currently, almost all of the CNN-based schemes adopt a shared net-

work for their predictions, which may not be distinctive enough. A promising

direction is to train a more speci�c deep network, i.e. we should focus more on

type of object we are interested in. The study in [43] has veri�ed that object-level

annotation is more useful than image-level annotation for object detection. This

can be viewed as a kind of speci�c deep network which just focuses on the ob-

ject rather than the whole image. Another possible solution is to train di�erent

networks for di�erent categories. For instance, [215] built on the intuition that

not all classes are equally di�cult to distinguish from a true class label, and de-

signed an initial coarse classi�er CNN as well as several �ne CNNs. By adopting

a coarse-to-�ne classi�cation strategy, it achieves state-of-the-art performance on

CIFAR100.
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2.5 Conclusion

This chapter presents a comprehensive review of deep learning and develops a

categorization scheme to analyze the existing deep learning literature. It divides

the deep learning algorithms into four categories according to the basic model

they derived from: Convolutional Neural Networks, Restricted Boltzmann Ma-

chines, Autoencoder and Sparse Coding. The state-of-the-art approaches of the

four classes are discussed and analyzed in detail. For the applications in the com-

puter vision domain, the chapter mainly reports the advancements of CNN based

schemes, as it is the most extensively utilized and most suitable for images. Most

notably, some recent articles have reported inspiring advances showing that some

CNN-based algorithms have already exceeded the accuracy of human raters.

Despite the promising results reported so far, there is signi�cant room for further

advances. For example, the underlying theoretical foundation does not yet explain

under what conditions they will perform well or outperform other approaches, and

how to determine the optimal structure for a certain task. This chapter describes

these challenges and summarizes the new trends in designing and training deep

neural networks, along with several directions that may be further explored in

the future.
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Chapter 3

Convolutional Neural Networks

Features: Principal Pyramidal

Convolution

The features extracted from convolutional neural networks (CNNs) are able to

capture the discriminative part of an image and have shown superior performance

in visual recognition. Furthermore, it has been veri�ed that the CNN activations

trained from large and diverse datasets can act as generic features and be trans-

ferred to other visual recognition tasks. In this chapter, we aim to learn more

from an image and present an e�ective method called Principal Pyramidal Convo-

lution (PPC). The scheme �rst partitions the image into two levels, and extracts

CNN activations for each sub-region along with the whole image, and then aggre-

gates them together. The concatenated feature is later reduced to the standard

dimension using Principal Component Analysis (PCA) algorithm, generating the

re�ned CNN feature. When applied in image classi�cation and retrieval tasks, the

PPC feature consistently outperforms the conventional CNN feature, regardless

of the network type where they derive from.
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3. CONVOLUTIONAL NEURAL NETWORKS FEATURES:
PRINCIPAL PYRAMIDAL CONVOLUTION

3.1 Introduction

Convolutional Neural Networks (CNN) have achieved breakthrough achievements

in various visual recognition tasks and have been extensively studied in recent

years [22, 44, 45, 213]. There are several brilliant properties for the CNN fea-

ture: 1)It is highly discriminative. Related research has analyzed the behavior of

the intermediate layers of CNN and demonstrated that it can capture the most

obvious features [22], thus could achieve considerably better results in a number

of applications [22, 213]; 2) Unlike the hand-crafted features such as SIFT [1],

HOG [3], the CNN feature is generated from end-to-end, which eliminates the

human intervention; 3) it can be achieved e�ciently. In contrast to the standard

feedforward neural networks with similarly-sized layers, CNN has fewer connec-

tions and parameters, which reduces the time cost of the feature extraction; 4)

it is transferrable. Some works [45, 62] have demonstrated that CNN features

trained on large and diverse datasets, such as ImageNet [149] and Places [216],

could be transferred to other visual recognition tasks, even there are substantial

di�erences between the datasets.

Owing to those notable characters, our research focuses on reusing of the o�-

the-shelf CNN feature. But, instead of computing the CNN feature over the full

image, we ask whether we could get more information from an image and achieve

a re�ned version of the CNN feature?

An intuitive way to achieve more knowledge is to extract multiple CNN features

from one image and organize them in a proper way. In recent years, there are

a number of works attempt to extract multiple features from one image, either

in region proposals [44] or sliding windows [170]. But most of those methods are

used for object detection, not for the re�nement of CNN features. Besides, the

extraction of numerous features from overlapping regions is quite ine�cient.

Related works have been done in the past [170, 217]. In the work by Gong et

al. [170], they extract CNN activations at multiple scale levels, perform orderless

VLAD pooling separately, and concatenate them together, forming a high dimen-

sional feature vector which is more robust to the global deformations. Koskela et

al. [217] splits one image into nine regions and averages their CNN activations,
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concatenating with the activation of the entire image. The resulting spatial pyra-

mid features are certi�cated to be more e�ective in scene recognition.

Di�erent from previous works, we show that the concatenation of the CNN fea-

tures from one image could also improve the performance, without further cal-

culation or other time-consuming processes. To avoid increasing the complexity

during the test phase and keep the key components at the meanwhile, we compress

the dimension to the normal one (4096-D) using PCA scheme after the concatena-

tion and get the re�ned feature: Principal Pyramidal Convolution (PPC).

The idea of concatenating features has ever been done in the literatures. The most

representative one is the spatial pyramid matching (SPM) [135] algorithm, which

concatenates the BOF vectors of the sub-regions as well as the whole image to

import the global spatial information. SPM achieves a substantial improvement

over the traditional BOF and has long been a key component in the competition-

winning systems for visual recognition before the surge of CNN [31, 122].

In this chapter, the BOF vector of the SPM algorithm is replaced by the discrim-

inative CNN feature. Therefore, besides preserving the discrimination of CNN,

PPC also introduces some spatial information as well as preserving the most

important components. In addition, the strategy is portable, experiments show

that whichever network the CNN activations derive from, PPC strategy could

consistently improve the performance.

3.2 Principal Pyramidal Convolution

Inspired by SPM, which extracts features at multiple levels and aggregates them

together, we propose the Principal Pyramidal Convolution (PPC) method. It

divides the image into two levels and generates the �nal feature for the image by

concatenating and extracting principal components for the features at all resolu-

tions. The basic idea is illustrated in Figure 3.1.

We extract CNN features from two scale levels. The �rst level corresponds to the

full image, and the second level consists of 2 × 2 regions by equally partitioning
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Level 1: 

Principal component: 

CNN CNN 
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Level 2: 4096D 4096D 
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4096D 

Pyramid: 

Convolution: 

Figure 3.1: The procedure of PPC algorithm.

the full image. Therefore, we need to extract �ve CNN features for each image:

C0, C1, C2, C3, C4. Afterwards, we concatenate the �ve CNN features in an intu-

itive scheme: C = [C0, C1, C2, C3, C4]. The resulting C is a 5*4096-dimensional

vector. The CNN activations are achieved using the Ca�e implementation [218].

Here, we select the 4096-dimensional output of the seventh layer (i.e. the last

fully-connected layer) and L2-normalize it as the baseline CNN feature.

To eliminate the increase of computational cost, we compress the resulting feature

vector to 4096-D in the last step. For the dimension reduction, we utilize the well-

known PCA method [219], which could reduce the dimensionality of a data set

and retain as much as possible of the variation at the same time.

In addition, we also reduce the dimension to other various sizes and compare the

performance between conventional CNN and PPC for di�erent visual tasks, in-

cluding the supervised image classi�cation and unsupervised image retrieval.

3.3 Experiment

In this part, we make some comparisons between the conventional CNN feature

and PPC feature on various image classi�cation and image retrieval databases.
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3.3.1 Datasets

We present the results on four widely used datasets: Caltech-101 [220], Scene15 [135],

MIT Indoor67 database [221] and INRIA Holidays [222].

The details of the datasets are summarized in Table 3.1.

Table 3.1: Details of the datasets

Datasets Details

Caltech-101: 102 categories and a total of 9144 images, the image number per category

ranges from 31 to 800. We follow the procedure of [15] and randomly select

30 images per class for training and test on up to 50 images per class;

Scene15: 4485 greyscale images assigned to 15 categories. Each category has 200 to

400 images. We use 100 images per class for training and the rest for testing;

Indoors67: 67 categories and 15620 images in total. The standard training/test split

consists of 80 images for training and 20 images for testing per class;

Holidays: 1491 images corresponding to 500 image instances. Each instance has 2-

3 images describing the same object or location. The images have been

recti�ed to a natural orientation. 500 images of them are used as queries.

In the databases described above, the �rst three datasets are used for image

classi�cation, on which we train linear SVM classi�ers (s=0, t=0) to recognize

the test images, using the LIBSVM tool [223]. The last dataset is a standard

benchmark for image retrieval, and the accuracy is measured by the mean Average

Precision (mAP) [224].

3.3.2 Comparisons on di�erent networks

According to which database the CNN is trained on, the CNN features can be

categorized into two types: ImageNet-CNN and Places-CNN. ImageNet-CNN is

the most commonly used model which is trained on the well-known database:

ImageNet [149]. This database contains 1000 categories with around 1.3 mil-

lion images and most of the images are object-centric. Places-CNN is another

model which is trained on the recently proposed Places database and is scene-
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centric [216]. This database contains about 2.5 million images assigned to 205

scene categories.

In this chapter, we utilize the o�-the-shelf CNN features of ImageNet and Places

respectively, and compare the performance of CNN and PPC on the four datasets.

The results are shown in Table 3.2.

Table 3.2: The classi�cation accuracies of SPM and CNN, PPC on di�erent net-

works

Datasets ImageNet-CNN ImageNet-PPC Places-CNN Places-PPC SPM [135]

Caltech-101 86.44% 87.45% 61.07% 67.41% 64.6%

Scene15 84.49% 86.4% 89.11% 89.88% 81.4%

Indoor67 59.18% 64.4% 72.16% 73.36% -

Holidays 73.95% 74.9% 71.71% 73.43% -

From the table, we can see that the improvements of PPC over CNN vary from

about 1 percent to 6 percent, depending on the network and dataset. We can fur-

ther conclude that: 1) the features generated from CNN are more distinctive than

SIFT in image classi�cation, and this inherent merit brings about the improve-

ment of PPC in contrast to SPM. 2) The features derived from ImageNet-CNN

are more discriminative in classifying objects, thus perform better on the Caltech-

101 dataset. In contrast, the features achieved from the Places-CNN are better at

classifying scenes, and accordingly perform better on Scene15 and MIT Indoor67

datasets. On one hand, choosing a suitable network (i.e. choose ImageNet-CNN

for object recognition, or choose Places-CNN for scene recognition) could bring

a signi�cant improvement in the performance. As is shown by the experiment on

Caltech-101 database, the advantage of ImageNet-CNN feature over the Places-

CNN feature is more than 25 percent (86.44% and 61.07% respectively). On the

other hand, choosing an unsuitable network could highlight the bene�t of PPC

over CNN. For instance, when we utilize Places-CNN features on the Caltech-101

database, the improvement of PPC over CNN is more than 6 percent, rising from

61.07% to 67.41%. Similarly, when the ImageNet-CNN features are tested on the

Indoor67 dataset, the re�nement of PPC over CNN could also be more than 5

percent (from 59.18% to 64.4%). But no matter which type of networks is applied
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on the datasets, PPC features consistently outperform the holistic CNN features,

demonstrating the e�ectiveness of the strategy.

For both the CNN and PPC algorithms on the MIT Indoor67 dataset, we vi-

sualize the distance between the features of the top performing categories in 3-

dimensional space using the classic multidimensional scaling technique [225]. As

is shown in Figure 3.2, the axes correspond to the coordinates in the 3-dimensional

space and the categories are bu�et, cloister, �orist, inside bus.
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Figure 3.2: Top performing feature visualization of CNN(left) and PPC(right).

From the Figure 3.2, we can notice that the PPC features are more distinguishable

than the holistic CNN features. The advantage is particularly evident on the

comparisons between `�orist' and `inside bus'.

For ImageNet-CNN model, we compare the accuracy of CNN and PPC on each

category of Scene15 database, as is demonstrated in Figure 3.3. The x-axis details

the categories and the y-axis corresponds to the accuracies of this category.

It can be observed that for most categories of Scene15 (ten of the �fteen cate-

gories), PPC performs better than CNN.

3.3.3 Comparisons on di�erent dimensions

The improvement of PPC over CNN is not limited to 4096-D. To verify this, we

further reduce the dimensionality to other sizes and compare the performance of
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Figure 3.3: Accuracy of CNN and PPC on each category of Scene15.

PPC and CNN on di�erent datasets, the results are shown in Figure 3.4.
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Figure 3.4: Comparisons of CNN and PPC on di�erent dimensions

It is noticeable that the performance does not decrease even when the dimen-

sionality of features are reduced to 128-D (most of the accuracies drift within
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2 percent). On the contrary, the mAP of ImageNet-PPC on the INRIA Holi-

days dataset even rises to 78.76%, when the dimensionality is reduced to 256-D.

This indicates that the discriminatory power of both CNN and PPC will not

be greatly a�ected with the reduction of the dimensionality. Nevertheless, the

performance of PPC is mostly better than that of CNN, indicating that PPC is

more robustness than CNN.

3.4 Conclusion

CNN features have shown great promise in visual recognition. This chapter pro-

posed the Principal Pyramidal Convolution (PPC) scheme, which aggregates the

CNN features of the whole image as well as the sub-regions and then extracts the

principal components. The representation from our strategy outperforms the con-

ventional CNN feature without enlarging the feature dimensions. Furthermore,

this work makes comparisons of CNN and PPC on di�erent sizes and shows that

the PPC frequently outperforms CNN.

67



3. CONVOLUTIONAL NEURAL NETWORKS FEATURES:
PRINCIPAL PYRAMIDAL CONVOLUTION

68



Chapter 4

Bag of Surrogate Parts Feature for

Visual Recognition

Convolutional Neural Networks (CNNs) have attracted signi�cant attention in

visual recognition. Several recent studies have shown that, in addition to the

fully-connected layers, the features derived from the convolutional layers of CNNs

can also achieve promising performance in image classi�cation tasks. In this

chapter, we propose a new feature from the convolutional layers, called Bag of

Surrogate Parts (BoSP), and its spatial variant, Spatial-BoSP (S-BoSP). The

main idea is, we assume the feature maps in the convolutional layers as surrogate

parts, and densely sample and assign image regions to these surrogate parts

by observing the activation values. Together with BoSP/S-BoSP, we further

propose another two schemes to enhance the performance: scale pooling and

global-part prediction. Scale pooling aims to handle the objects with di�erent

scales and deformations, and global-part prediction combines the predictions of

global and part features. By conducting extensive experiments on generic object,

�ne-grained object and scene datasets, we �nd the proposed scheme can not only

achieve superior performance to the fully-connected feature, but also produce

competitive, or in some cases remarkably better performance than the state-of-

the-art.
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4.1 Introduction

Recently, convolutional neural networks (CNNs) have been widely used in visual

recognition evaluations and achieved top tier performance on international bench-

mark datasets [226]. There have emerged some well-known CNN models, such as

AlexNet [14], VGG [24], GoogLeNet [25] and ResNet [227]. It has been proved

that these models, pretrained on ImageNet [149], can be employed as universal

models and transferred to other visual recognition tasks [45, 228, 229].

In general, the CNN architecture consists of alternatively stacked convolutional

layers and pooling layers, followed by several fully-connected layers. Initially,

when utilizing the o�-the-shelf CNN models, researchers tend to extract the im-

age representation from the fully-connected layers, as they are reported to produce

better results than the convolutional layers [22, 204]. However, compared with

the fully-connected layers, there are several inherent advantages of the convolu-

tional layers [230]. First, the activations of the convolutional layers contain more

spatial information, because each spatial unit on the convolutional feature maps

corresponds to one receptive �eld on the input image. Second, the convolutional

features can be extracted from an image of any size and aspect ratio. Third, it has

been demonstrated that the convolutional layers contain rich semantic informa-

tion [231]. Owing to these promising advantages, many recent studies [230�235]

have shifted to fully exploit the bene�ts of the convolutional layers.

A typical usage of the convolutional layers is to encode the convolutional features

with the Bag-of-Words (BoW) variants, such as VLAD [5] and Fisher Vector [6].

This pipeline can not only preserve the high discrimination of the CNN activa-

tions, but also utilize the `bag' conception to improve the invariance property

to scale changes, location changes and occlusions. In this work, we also intend

to generate features within the BoW framework, and accordingly propose a new

feature, called Bag of Surrogate Parts (BoSP). The essential idea is: we assume

the feature maps in the convolutional layers as surrogate parts, and de�ne the

activation values on the feature maps as assignment strengths for these surrogate

parts. As each spatial unit on the feature maps corresponds to one image local

region, the one-by-one processing of these spatial units acts like densely sampling
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and assigning image regions. The �nal feature is generated by summing up the

assignment strengths of di�erent regions on the surrogate parts.

In comparison with prior research [70, 170, 230, 233, 235, 236] which also at-

tempted to incorporate BoW and CNN, BoSP has several di�erences: First, BoSP

does not need to generate the visual codebook, since the surrogate parts have al-

ready been inherently determined by the structure, i.e. the feature maps. This

eliminates the time-consuming and sensitive process of visual dictionary learn-

ing. Second, in contrast to the features encoded by the variants of BoW [70, 230],

BoSP is relatively in low dimension, making it advantageous in processing large

scale datasets. Third, the surrogate parts are more semantically meaningful than

the statistically clustered visual words. In Figure 4.1, we choose two images from

SUN397 [237] and Indoor67 [221], and overlay some feature maps on the original

images for visualization. As can be seen, the activated regions of the sampled

feature maps indicate some semantically meaningful regions. For example, the

activated region in top-left corner and top-right corner correspond to the `table'

and `bed', respectively. A similar �nding has also been presented in [231].
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Figure 4.1: The visualization of the feature maps extracted from the last pooling

layer of VGG [24].

Along with BoSP, there are three other contributions: (1) To incorporate more

spatial information, we propose Spatial-BoSP (S-BoSP), by dividing the input

image into several regions and concatenating the BoSP inside each region. (2)
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To deal with the objects of di�erent sizes and deformations, we develop a scale

pooling scheme for the assignment of the spatial units, which could improve the

performance considerably without enlarging the feature dimension and does not

introduce much extra computational cost. (3) To make a more comprehensive

prediction, we propose to multiply the global and part predictions, which con-

stantly demonstrates better results than the individuals.

4.2 Related Work

Part-based representation. Parts can be used as mid-level visual elements

to promote the object recognition process, and part-based approaches for object

recognition have recently received much interest. Generally, the part-based meth-

ods can be viewed as a two-stage problem [238]. First, discover a collection of

informative parts, and then train classi�ers to detect the response of these parts.

For example, Singh et al. [239] proposed an unsupervised method to �nd mid-

level parts, by iteratively clustering HoG features and training classi�ers. Juneja

et al. [240] utilized the image-level labels to �nd the most discriminative parts

based on entropy-rank curves, and employed BoW-based model to encode the

features. Along with the promising achievements, the two-stage approaches also

su�er from one possible drawback: the learned parts are not guarantied to be

optimal for the classi�cation task. As a consequence, several works [238, 241]

suggested to jointly learn the parts and category models. On the other hand, Liu

et al. [231] developed a scheme that did not explicitly de�ne and detect the parts,

but took the feature maps as the indicator maps of the parts, and concatenated

the local features of parts as the image-level feature. This approach delivered

encouraging results with a fraction of computational cost. Our method can be

viewed as the combination of [231] and [240], as we do not explicitly de�ne the

parts either, and utilize the Bag of Parts model in [240] to represent the surrogate

parts in [231].

BoW-based schemes with deep CNN feature. BoW-based methods have

been widely used in previous researches, and achieved state-of-the-art perfor-
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mance in various computer vision systems. In recent years, several studies [70,

170] attempted to introduce the deep CNN feature into the well-known BoW

framework, especially its variants, such as VLAD [5] and Fisher Vector (FV) [6].

For instance, Gong et al. [170] extracted multiple fully-connected activations from

three scales, and encoded them with VLAD scheme. Similarly, Yoo et al. [70] also

extracted multi-scale top layer activations, but encoded them using the Fisher ker-

nel. Additionally, Wu et al. [242] argued that the performances of FV and VLAD

might �uctuate when di�erent instant vectors were used, and proposed a more

robust D3 (discriminative distribution distance) method. Although the aforemen-

tioned approaches achieved encouraging performance on various datasets, they all

evolved a sensitive and computationally expensive process, i.e. learning the fea-

ture codebook. In comparison, the BoSP/S-BoSP are inherent features of the

architecture which can be generated without manual tuning. This avoids the

sensitive and time-consuming process of dictionary learning.

Typical usage of convolutional features. The convolutional features can be

generally leveraged in two approaches. In the �rst approach, researchers encode

the convolutional features with the variants of BoW scheme, such as VLAD and

FV. For instance, Ng et al. [235] employed VLAD to encode the convolutional fea-

tures and demonstrated that the intermediate layers could deliver better results

for the image retrieval task than the top layers. In contrast, Cimpoi et al. [233]

and Wei et al. [230] utilized FV to encode the descriptors from the intermedi-

ate layers, and also achieved promising performance. In the second approach,

researchers take advantage of the convolutional activations in a more straightfor-

ward way, by aggregating and compressing them into the �nal representation. For

example, Babenko et al. [232] aggregated the convolutional features in a simple

sum-pooling way, and achieved a substantial boost in the performance. Liu et

al. [231], on the other hand, took the feature maps as the indicator maps of parts,

and aggregated the local features of each surrogate part as the image-level repre-

sentation. Our method can be seen as the combination of these two approaches,

in which we regard the feature maps as surrogate parts, similar to [231], but we do

not explicitly concatenate the features of these parts. Instead, we only aggregate

their statistical strengths, which makes the feature dimension much lower.
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4.3 Bag of Surrogate Parts Feature

In this section, we �rst describe our proposed BoSP feature, and then give the

interpretation of the surrogate part.

4.3.1 Bag of Surrogate Parts Feature

Generally, the CNN structure consists of multiple layers. Given an image, it

will pass through several convolutional and pooling layers and generate various

feature maps. We name the activation values on the feature maps as spatial units.

As shown in Figure 4.2, one image region corresponds to multiple spatial units

located in the same position on di�erent feature maps, and the spatial units in

higher feature maps have larger receptive �elds than the lower ones.

 

Figure 4.2: The illustration of the spatial unit. The local activations in green&red

color are the responses of the green&red box surrounded image regions. For the

VGG pool5 layer, each image local region corresponds to 512 spatial units.

Intuitively, larger receptive �eld contains more semantic information. Therefore,

we extract the BoSP feature from relatively higher layers (i.e. the 4th and the 5th

pooling layer of VGG [24]. We simpli�ed them as pool4 and pool5), as demon-

strated in Figure 4.3. For the sake of clarity, we explain our method based on the

pool5 layer (For pool4 layer, we �rst make an average pooling using 2× 2 kernel

with the stride 2, and then utilize the same operation with the pool5 layer).

The speci�c procedure to extract BoSP is: we regard the feature maps as surro-

gate parts and assume that the activation values on the feature maps represent
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Figure 4.3: The framework of utilizing BoSP for image classi�cation. We extract

BoSP from the pool4 and pool5 layers of VGG. We �rst make an average pooling

of pool4 layer using 2 × 2 kernel with the stride 2, and then calculate the BoSP

features of pool4 and pool5 layers. The �nal feature is the concatenation of pool4

BoSP and pool5 BoSP.
⊕

means element-wise addition of the vectors.

the assignment strengths for the surrogate parts. Therefore, given the architec-

ture, the number of the surrogate parts is inherently determined, which equals the

number of feature maps. For the spatial units on the feature maps, we can calcu-

late their assignment strengths for the surrogate parts by observing the activation

values. The one-by-one processing of these spatial units can be viewed as densely

sampling and assigning spatial regions of the input image. Finally, we sum the

assignment strengths for the surrogate parts and form a vector accordingly, i.e.

BoSP, whose length equals the number of the feature maps.

More in detail, suppose there are M feature maps and each feature map contains

n spatial units, then we haveM surrogate parts and can densely sample n regions

from the input image (for the pool5 layer of VGG, M = 512, n = 49). The BoSP

for this image can be writen as Eq 4.1:

BoSP =
n∑

i=1

[P i
1, P

i
2, · · · , P i

j , · · · , P i
M ] (4.1)

P i
j represents the assignment strength of ith region on jth surrogate part.

To explicitly restrict the membership of the surrogate parts to [0,1], we normalize

the local activations by diving the largest component of the vector, and take the
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normalized activations as the assignment strengths, i.e.

P i
j =

Ai
j

maxj(Ai
j)

(4.2)

Ai
j means the jth element of the activation Ai (It would always be non-negative

since the activations are extracted after the ReLU layer).

To avoid using unreliable likelihood, we further adopt the idea of localized soft

assignment [243] and only keep the assignment strengths with large values, and

modify Eq 4.2 as Eq 4.3:

P i
j =

{
0 if Ai

j < meanj(A
i
j)

Ai
j

maxj(Ai
j)

if Ai
j ≥ meanj(A

i
j)

(4.3)

The proposed BoSP has the following advantages: (1) It is e�cient to be ex-

tracted. The feature is derived from the convolutional layers, which contain

fewer parameters and need fewer computations. In practical, we only need to

add up the larger normalized activation values of the feature maps. (2) It is less-

specialized to be extracted. The dimension and the assignment strengths for the

surrogate parts can be directly generated from the activation values, and there

is no parameter for us to tune, which enhances its generality. (3) It is relatively

low-dimensional. There are 512 feature maps in the pool5 layer of VGG, so the

dimension of BoSP from this layer is 512, much smaller than the schemes which

need to concatenate convolutional features [230, 231, 234].

4.3.2 Interpretation of the Surrogate Part

In Figure 4.1, we have visualized that the feature maps can be viewed as surrogate

parts. In this subsection, we try to give more insights into these surrogate parts

by analyzing their in�uences on the categorization.

Similar to [244], we utilize regularized logistic regression method to make the

prediction because it is faster and can help to evaluate the importance of the

surrogate parts explicitly.
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Logistic Regression assumes the probability for a binary classi�cation satis�es:

log
p(y = 1|x; β, w)
p(y = −1|x; β, w)

= β +
d∑

j=1

wjxj (4.4)

Where p(y = 1|x; β, w) + p(y = −1|x; β, w) = 1, x indicates the extracted BoSP

feature vector, and β, w are the parameters to learn.

From Eq 4.4, we can deduce that

p(y = 1|x; β, w) = 1

1 + exp(−[β +
∑d

j=1 wjxj])
(4.5)

By considering β = w0 and x0 = 1 , Eq 4.5 can be rewritten as:

p(y = 1|x; β, w) = 1

1 + exp(−wTx)
(4.6)

The optimal parameter w is obtained by optimizing the conditional log-likelihood

function[245]:

ŵ = argmax
w

log
∏
i

p(yi|xi;w) = argmin
w

∑
i

log(1 + exp(−yiwTxi)) (4.7)

In this work, we use a L2-regularization term to restrict large values, as written

in Eq 4.8:

ŵ = argmin
w

∑
i

log(1 + exp(−yiwTxi)) + λwTw (4.8)

Where λ > 0 is the regularization parameter.

Figure 4.4 demonstrates the learned weights for two categories (Faces_easy and

beaver) in the Caltech101 dataset, which correspond to the best-performing cat-

egory (the accuracy of Faces_easy is 100%) and worst-performing category (the

accuracy of beaver is 62.5%) for the global prediction of BoSP. We can observe

that, for di�erent categories, the weights of the surrogate parts are di�erent. A

high positive value means the related surrogate part contributes a lot to the pos-

itive class, while a high negative value means the corresponding surrogate part
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contributes a lot to the negative class. The surrogate classes with very small

weights do not distinguish well between the positive and negative classes. For

clarity, we denote the surrogate part which has the largest weight as pos_part,

while the surrogate part with the smallest weight as neg_part.
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Figure 4.4: Learned weights for Faces_easy and beaver in Caltech101.

Ideally, given an input image, it should have large response in the pos_part of its

groundtruth category, while have few response in the corresponding neg_part. To

verify this, we select one positive image (i.e. correctly classi�ed) from Faces_easy

and one negative image (i.e. wrongly classi�ed) from beaver. For these two im-

ages, we �rst draw the feature maps corresponding to the pos_part and neg_part,

and then overlay the feature maps to original images for better visualization, as

shown in Figure 4.5. The lightless on the feature maps represents the image's

response on this surrogate part.

We can notice that, for the image of category Faces_easy, quite a lot of regions

are assigned to its correct pos_part, and few regions are assigned to its neg_part,

this contributes to its correct classi�cation. In contrast, the wrongly classi�ed

image from category beaver contains quite a lot of regions assigned to its neg_part,

78



4.4 Enhancement schemes

(a) original image (b) pos_map (c) neg_map (d) pos_overlay (e) neg_overlay 

Figure 4.5: Visualization of the input images and the feature maps for the

pos_part and neg_part. Pos_map and neg_map correspond to the feature maps

which have the largest and smallest weight. Pos_overlay and neg_overlay demon-

strate the activated regions when we overlay the corresponding feature maps to

original images.

which leads to its mis-classi�cation. Furthermore, when we overlay the feature

maps to the original images, we found that these surrogate parts are semantically

meaningful, and we could observe the image regions that a�ect the most for the

classi�cation. For example, the pos_part for the beaver image is located around

the head area, while the neg_part corresponds to the `�oats', and the `�oats'

contributes the most to its bad performance.

4.4 Enhancement schemes

In this section, we describe a spatial variant of BoSP, and propose two schemes

to enhance the performance: scale pooling and global-part prediction.

4.4.1 Spatial BoSP

Motivated by the well-known spatial pyramid matching (SPM) method [135],

we raise a spatial variant of BoSP, called S-BoSP. Speci�cally, we partition the

image equally into multiple sub-regions (9 regions in 3 rows and 3 columns in
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this chapter), calculate the BoSP inside each region and concatenate them into a

single feature vector. Therefore, the dimension of S-BoSP is 9 times of BoSP. For

simplicity, we conduct the partitioning process on the feature maps, rather than

directly on the input images. As the size of the feature maps for the pool5 layer

of VGG is 7× 7 , we need to divide the feature maps in an overlapping motion,

i.e. some of the spatial units would exist in multiple sub-regions. The di�erence

between BoSP and S-BoSP is illustrated in Figure 4.6.

S-BoSP: (512*9)-D BoSP: 512-D 

Figure 4.6: The illustration of BoSP feature and S-BoSP feature from the pool5

layer of VGG (Di�erent symbols represent di�erent surrogate parts, and the his-

togram represents the assignment strength to these surrogate parts).

4.4.2 Scale Pooling

The BoSP/S-BoSP aforementioned only concern the spatial units at the �nest

level, and process them in a disjoint way, which means to sample and assign

regions in input images with �xed size and position. However, the objects may

appear in di�erent positions, shapes and scales. The independent processing

of the spatial units may capture di�erent parts of the same object and have

di�culties in classifying the objects of di�erent scales. For example in Figure 4.7,

the object `water_lilly' from the two images appear in di�erent scales. In this

case, the �xed receptive region may capture di�erent parts of the object. A 2× 2

grid can capture most of the `water_lilly' for the left image, while it can only

capture some petals for the right image.
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Figure 4.7: The demonstration of objects in di�erent scale. For the left image, a

2× 2 grid can capture most of the object, while the right image needs 6× 6 grid to

cover most of the object.

To address this problem, we proposed a scale pooling scheme. It can improve the

assignment of objects with di�erent scales and deformations by handling regions

of di�erent sizes and positions, together with the max pooling operation inside

each region. The procedure of scale pooling is illustrated in Figure 4.8.
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Figure 4.8: Pipeline of the scale pooling technique for BoSP. We can extract

di�erent number of features from 7 scales. For example, there are 49 red strips for

the smallest scale, and only 1 purple strip for the largest scale. Next, we apply max

pooling on the features inside each scale and calculate the BoSP individually, then

add them up to form the �nal feature.
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Speci�cally, we partition the activations from the pool5 layer into 7 scales for

BoSP. Under di�erent scales, we derive spatial units of di�erent numbers and

di�erent sizes. For clarity, we de�ne the derived spatial units as coarse spatial

units, and the coarse spatial units in scale 1 correspond to the original spatial

units. Under scale i (i ∈ [1, 7]), we can derive (8 − i)2 coarse spatial units, and

each coarse unit contains i2 original spatial units. Therefore, the total number

of the coarse spatial units is
∑7

i=1(8 − i)2 = 140. Next, we pool these coarse

spatial units and compute their assignment strengths for the surrogate parts by

employing Eq 4.3. In this work, we utilize the max pooling operation inside

each coarse spatial unit since it has been proved to be superior for capturing

invariance in image-like data [40]. Finally, we sum the assignment strengths of the

coarse spatial units under di�erent scales together to form the re�ned assignment

strengths for the image. For S-BoSP, we utilize the scale pooling scheme inside

each sub-region, and then concatenate the resulting features together.

To demonstrate the e�ectiveness of the scale pooling, we visualize the feature

without/with scale pooling in Figure 4.9 using t-SNE technique [246], and we

can see that the feature with scale pooling is more distinguishable.

Figure 4.9: The visualization of feature without(left)/with(right) scale pooling

for the Caltch101 dataset. Di�erent symbol colors represent di�erent categories.

Overall, the scale pooling scheme is proposed to make the assignment of receptive

�elds more comprehensive, by handling the image regions across di�erent scales

and positions. Bene�ting from the max pooling operation, the scheme is robust
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to object deformation inside each coarse spatial unit. In addition, scale pooling

does not increase the feature dimension, nor does it have a signi�cant e�ect on

the computational e�ciency.

4.4.3 Global-Part Prediction

For a given image, we �rst resize it to 224 × 224, and then extract its global

feature by utilizing VGG. However, in many cases, extracting only one global

feature from the input image is not discriminative enough, and many recent

works [70, 170, 233, 235] proposed to extract multiple features from one single

image, and generate a more comprehensive feature by integrating these features

in a certain way. Without extra data, one common approach is to generate

numerous sub-images from the input image, and average the sub-image features

as augmented image feature. Although the augmented feature contains more

information, it only considers individual parts of the input image, and fails to

handle the input image entirely. To make a more comprehensive prediction,

we propose to combine the predictions of the global feature and the augmented

feature, as shown in Figure 4.10.

224 

224 

512 

X 

…
 

global prediction 

part prediction 

global-part prediction 

BoSP->LR 

BoSP 

BoSP 

LR 

Figure 4.10: The illustration of global-part prediction. The global prediction is

achieved by utilizing the global feature. The part prediction is achieved by averaging

the parts' features. The global-part prediction is the product of the global prediction

and the part prediction.
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The speci�c procedure is: given an image, we �rst resize it to 224 × 224, and

extract its global feature. This feature focuses more on the whole image, and

we can compute the global prediction based on it, denoted as Preglobal; Next,

we resize the image to make the smallest side equal to S while keeping its ratio,

and crop regions of 224× 224 with the stride of 32 pixels. Thereby, we formulate

several sub-images from the original image, and each sub-image may only contain

part of the original object. The image feature is the average of the sub-images'

features, as is the same with general approach. This feature focuses more about

parts of the image, and we can make the part prediction based on it, denoted as

Prepart. The global-part prediction is the multiplication of the global prediction

and the part prediction:

Preglobal−part = Preglobal × Prepart (4.9)

As our feature is obtained from the convolutional layers, the input image could

be of any size, and we do not need to explicitly crop sub-images. In practice, we

only need to input the resized image once to extract the part features.

4.5 Experiments

To evaluate the performance of our method, we conduct a series of experi-

ments on four datasets, Caltech101 [220], Oxford 102 Flowers (referred to as Ox-

ford102) [247], MIT Indoor67 (referred to as Indoor67) [221] and SUN397 [237],

which cover several popular topics in image classi�cation, i.e. generic object

classi�cation, �ne-grained object classi�cation, and scene classi�cation. Some

of example images are shown in Figure 4.11. The details of the datasets are

described below:

Caltech101 consists of 9144 images in 102 object categories (101 object classes

and a background class). The image number per category ranges from 31 to 800.

For each category, we randomly select 30 images for training and test on up to 50

images. There are 44 `overlap' images of the Caltech101 dataset and ImageNet

training data. We exclude these images from the test set.

84



4.5 Experiments

Caltech101: 

Oxford102: 

Indoor67: 

SUN397: 

Figure 4.11: The example images for the four datasets.

Oxford102 has 102 �ower categories and a total of 8189 images. Each category

contains 40 to 258 images. The �owers appear under various scales, pose and

illuminations. For each class we use 20 images for training and the rest for

testing.

Indoor67 contains 15620 images in 67 indoor categories. We use the standard

train/test split provided in [221], which consists of 80 training and 20 test images

per category.

SUN397 is a large scale scene dataset from a collaboration between MIT and

Brown University. It contains more than 100K images for 397 categories and is

generally considered to be at a high di�culty level and very challenging. Each

category has at least 100 images. The standard training/test splits are available

from [237], and each split contains 50 training and 50 test images per category. We

average the results of the 10 public splits as the �nal classi�cation accuracy.

For all the experiments, we employ VGG Net-D [24] as the pre-trained CNN

model to extract features. The model is implemented by the Ca�e [218] package.

For simplicity, pre-trained model weights are kept �xed without �ne-tuning. All

of the BoSP/S-BoSP features are L2 normalized before the experiment. The LR

classi�er is implemented by utilizing the open source library: LIBLINEAR [248].
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For the global-part prediction, we resize the images of Caltech101 to let its small-

est side S = 256, while S = 512 for Oxford102, Indoor67 and SUN397.

4.5.1 Analysis of our method

4.5.1.1 Which classi�er to use?

It has been demonstrated that the features delivered from CNN models are highly

discriminative, and can be combined with classi�ers to boost the image classi�-

cation performance [24, 231]. However, most of these researches, if not all, adopt

linear SVM (LSVM) classi�er for their tasks, and ignore other classi�ers which

may corporate better with the features.

As we have demonstrated that each of the convolutional layers can be viewed as

a surrogate part, we assume that it would be more reasonable if we can explicitly

consider the di�erences among the feature maps, and propose to utilize the L2-

regularized Logistic Regression (LR) classi�er to handle our feature.

To verify our assumption, in this section, we compare the performance of three

classi�ers, i.e. LSVM, histogram intersection kernel SVM (HIKSVM) [249] and

LR. All of the classi�ers take the global BoSP feature derived from the pool5

layer as the input. The results are shown in Table 4.1.

Table 4.1: The comparison of the accuracy and e�ciency (training/test time) for

di�erent classi�ers.

LSVM HIKSVM LR

Caltech101 86.68% 87.01% 88.28%

time(s) 19.17+16.27 35.16+34.39 6.46+0.13

Oxford102 72.42% 80.84% 81.28%

time(s) 10.24+27.35 13.39+40.22 3.51+0.22

Indoor67 67.46% 69.40% 69.48%

time(s) 43.92+13.14 107.84+26.13 13.49+0.05

SUN397 51.23% 53.31% 53.68%

time(s) 587.96+954.74 1791.90+1969.10 320.62+2.01
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In terms of accuracy, both the HIKSVM and LR perform better than the com-

monly used LSVM, demonstrating that we could have more options for the clas-

si�er, aside from LSVM. Particularly, the improvement of LR over LSVM is quite

remarkable, from 1.6% to 8.86%. This veri�es our assumption that, it is more

reasonable to explicitly consider the di�erences among the feature maps.

In terms of e�ciency, as HIKSVM needs to build non-linear kernels, it is the most

computationally expensive, both for training and testing. Compared to these two

classi�er, LR is signi�cantly faster due to its simple operations.

Owing to the advantages of LR, we utilized the LR classi�er in all the following

experiments. We further investigate the in�uence of the regularization parameter

λ, by ranging the values from 5 to 50. As is shown in Figure 4.12, the in�uence

on the accuracy is negligible when we change λ, and for fair comparisons, we set

a �xed regularization term λ = 20.
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Figure 4.12: The performance of di�erent regularization parameter values for

training LR.

4.5.1.2 The comparison of BoSP from di�erent layers

The proposed BoSP is achieved from the convolutional layers, and we can for-

mulate multiple BoSP features from di�erent layers of the network. Intuitively,

deeper layer activations would contain more semantic information compared to
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shallower layer activations, thus should deliver better performance. To verify this,

we evaluated the accuracy and e�ciency of global BoSP from di�erent layers of

VGG on the Caltech101 dataset.

From Figure 4.13, we can see that, in terms of accuracy, the performance of BoSP

would increase along with the layer depth, in which the feature derived from the

pool5 layer obtains the best result. This phenomenon con�rms our assumption

on the advantage of using deeper layers.
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Figure 4.13: The performances of BoSP for di�erent layers of VGG. In VGG,

there are 5 major convolutional layers. We take the last sub-layer (i.e. the pooling

layer) as the representative of the major layer.

As for the e�ciency, it also improves with the layer depth, since the deeper

feature maps are smaller than shallower ones, we need to assign fewer spatial units

for the deeper layers. To combine the visual contents from di�erent levels, we

propose to extract features from pool4 and pool5 layers (Although concatenating

more layers may further improve the performance, it would increase the feature

dimension, thus is not good for large-scale data processing). To accelerate the

feature extraction process from the pool4 layer, we �rst make an average pooling

using 2× 2 kernel with the stride 2. In this way, the resulting feature maps from

pool4 layer share the same size with those from pool5 layer.
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4.5.1.3 Evaluation of the Scale Pooling

In this part, we �rst evaluate the bene�ts brought by the proposed scale pooling

scheme, and then compare the BoSP/S-BoSP with the commonly used CNN

feature. All the features are extracted after resizing the images to 224×224.

Figure 4.14 reveals the merit of scale pooling on BoSP. For all the four datasets,

the BoSP extracted with scale pooling outperforms the corresponding BoSP with-

out it, and the advantage can be very large. For instance, for the Caltech101

dataset, scale pooling increases the pool4 BoSP, pool5 BoSP and concatenated

BoSP by 10.12%, 3.37% and 3.94% respectively. Moreover, scale pooling would

not enlarge the feature dimension, which demonstrates its great potential.
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Figure 4.14: The comparison between BoSP with and without using scale pool-

ing (The features using scaling pooling have the su�x: `_sp', and `+' means to

concatenate features).

We further compare the proposed BoSP/S-BoSP with commonly used CNN fea-

ture (i.e. the activation from the last fully connected layer) in Table 4.2. As we

can see, the BoSP/S-BoSP from the pool5 layer could already achieve remarkably

better performance than the CNN feature. After incorporating the BoSP from

the pool4 layer, the advantage become even more obvious. Take the Oxford102

as an example, the pool5 BoSP brings 5.38% accuracy increase over the CNN

feature, from 80.60% to 85.98%, while comes in much lower dimension (512 v.s.
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4096). After concatenating the pool4 BoSP, the improvement comes to 10.18%

(from 80.60% to 90.78%).

Although the scale pooling is proposed to handle the objects of di�erent scale

for the BoSP/S-BoSP, technically, it can also be employed to the average pool-

ing (AP). For a fair comparison, we list the AP with scale pooling in Table 4.2.

We can see that BoSP/S-BoSP can achieve overall better performance than AP,

especially for the concatenated features. A more detailed description of the rela-

tionship between BoSP and AP is presented in the discussion section.

Table 4.2: The comparison of AP/BoSP/S-BoSP with scale pooling and the CNN

feature extracted from the last fully-connected layer.

Dim Caltech101 Oxford102 Indoor67 SUN397

CNN 4096 89.22% 80.60% 68.06% 53.26%

pool5, with scale pooling:

AP 512 91.62% 85.82% 69.63% 53.93%

BoSP 512 91.65% 85.98% 70.45% 54.12%

S-BoSP 4608 93.99% 85.54% 71.19% 55.42%

[pool4 , pool5], with scale pooling:

AP 1024 92.49% 90.4% 70.97% 56.04%

BoSP 1024 92.55% 90.78% 72.24% 57.19%

S-BoSP 9216 94.09% 89.92% 73.21% 58.20%

From Table 4.2, we can also conclude another two �ndings: (1) Compared with

using the pool5 BoSP/S-BoSP individually, concatenating the pool4 feature would

double the feature dimension, but is always bene�cial to the accuracy. Remark-

ably, the increases on Oxford102 and SUN397 are about 5% and 3%, respectively.

(2) Except for Oxford102, S-BoSP performs better than the corresponding BoSP

on the other three datasets, which demonstrates the e�ectiveness of the spatial

scheme.
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4.5.1.4 Evaluation of the global-part prediction

In this subsection, we evaluate the proposed global-part prediction on both the

BoSP and S-BoSP features. From the results in Table 4.3, it is obvious that

the part prediction performs better than the global prediction, demonstrating

that extracting multiple features in a single image is useful. Furthermore, we

can also observe the advantage of global-part prediction over the global/part

prediction: regardless of the di�erences between the global prediction and the part

prediction, it is always bene�cial to combine them by multiplication. Notably,

the improvement on the predictions of SUN397 can be about 3%.

Table 4.3: The comparison of the di�erent predictions on BoSP and S-BoSP.

Preglobal: global prediction; Prepart: part prediction; Preg−p: global-part prediction.

The features are the concatenated features from pool4 and pool5 layer.

Caltech101 Oxford102 Indoor67 SUN397

BoSP S-BoSP BoSP S-BoSP BoSP S-BoSP BoSP S-BoSP

Preglobal 92.52% 94.09% 90.78% 89.92% 72.24% 73.21% 57.19% 58.20%

Prepart 92.62% 94.12% 93.54% 92.94% 77.46% 77.31% 60.48% 60.97%

Preg−p 93.02% 94.92% 94.02% 93.10% 78.21% 78.13% 63.21% 63.79%

4.5.2 Comparison with the state-of-the-art

In Table 4.4, we list the comparison between our scheme and the published state-

of-the-art schemes on the four datasets. All of the features are extracted based

on the VGG network. We do not list the methods which employed additional in-

formation to improve classi�cation, such as utilizing the part annotations for

Oxford102, or using the large-scale scene-speci�c Places2 dataset[250] for In-

door67/SUN397.

We observe that, for the Caltech101 dataset, our scheme obtains the top accuracy.

Notably, our BoSP feature from VGG Net-D achieves slightly better than the

published result of VGG [24], which is 92.7%. However, their result is obtained

by concatenating the fully-connected features from two models ( VGG Net-D &

VGGNet-E) and three scales (S = 256, 384, 512), making the dimension of feature
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Table 4.4: The comparison with the state-of-the-art (All of the methods are based

on the VGG Network. Best results are in bold face).

Method Caltech101 Oxford102 Indoor67 SUN397

VGG [24] 92.7% - - -

ONE [251] - 86.82% 70.13% 54.87%

CrossLayer-OConv [234] - - 74.4% -

CrossLayer-AConv [234] - - 78.2% -

Deep19-DAG [252] - - 77.5% 56.2%

FV-CNN [233, 236] - - 81% -

NML [253] - 84.3% - -

BoE [254] - - 77.63% -

D3(K=8) [242] 93.80% - 77.76% 60.22%

Best Single [255] - - 76.42% 59.71%

Dual [255] - - 79.04% 61.07%

Bayesian LS-SVM [256] 93.3% 91.5% 77.8% 56.1%

SCDA [257] - 92.1% - -

BoSP (Preglobal−part) 93.02% 94.02% 78.21% 63.21%

S-BoSP (Preglobal−part) 94.92% 93.10% 78.13% 63.79%

much larger than ours (12288 v.s. 1024). The proposed S-BoSP with global-part

prediction further improves the state-of-the-art from 93.80% to 94.92%.

For the �ne-grained Oxford102 dataset, the S-BoSP achieves inferior performance

than BoSP, suggesting that the spatial scheme does not work for this dataset. We

suspect this is because the small parts of the �ne-grained objects are similar in

appearance and do not distinguish well. Therefore, it is better to process the

input as a whole image, without partitioning. Nevertheless, both BoSP and S-

BoSP get better results than the state-of-the-art. Particularly, BoSP achieves

considerable improvement over the previous best result, from 92.1% to 94.02%,

with a dimension of 1024, demonstrating the e�ectiveness of our scheme.

For the Indoor67 dataset, the BoSP delivers competitive performance with the

state-of-the-art (FV-CNN). In contrast to FV-CNN, BoSP has a much smaller

(1K vs 64K) dimension, which can be a signi�cant advantage in many situa-

tions. Compared with another recent work [255], our method achieves better
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performance than its best single network, only slightly worse than its best dual

architectures. However, the dual architectures can only be obtained after exten-

sive comparisons, and it is not clear which two networks shall we choose before

the experiment.

It is worth noting that [234] also takes the feature maps as indicator maps of

surrogate parts, but it explicitly constructs and concatenates the features of each

surrogate part to formulate the image feature. As a consequence, the resulting

feature would be quite high dimensional, i.e. 262144-D for CrossLayer-OConv and

200000-D for CrossLayer-AConv. In contrast, we do not explicitly construct the

surrogate part features and only focus on the assignment strength for these surro-

gate parts, making the feature dimension much lower. Nevertheless, we still get

better performance than the CrossLayer-OConv, and competitive performance

with the CrossLayer-AConv.

For the large scale, general scene classi�cation on SUN397 dataset, our method

obtains remarkably better performance than the current best result, improving

the state-of-the-art from 61.07% to 63.79%.

4.6 Discussion

In this work, we regard the feature maps in convolutional layers as surrogate

parts, and propose to utilize Eq 4.3 as the soft assignment for these surrogate

parts. Under this assumption, we can also take advantage of other assignment

schemes. For example, we have done some additional experiments to test the

traditional soft assignment coding. The de�nition of traditional soft-assignment

coding [258] is:

U i
j =

exp(−β||Di
j||)∑n

k=1 exp(−β||Di
k||)

(4.10)

Where U i
j denotes the membership of the ith local feature to the jth visual word,

and ||Di
j|| is the distance between them. β is the smoothing factor controlling

the softness of the assignment.

93



4. BAG OF SURROGATE PARTS FEATURE FOR VISUAL
RECOGNITION

In our scheme, the activation value has opposite assignment meaning with the

distance, as a larger Ai
j means the ith local feature is more like to be assigned

to the jth surrogate part. Therefore, we modify the standard soft assignment

as:

U i
j = 1− exp(−βAi

j) (4.11)

Note that we do not explicitly constrain
∑n

k=1 U
i
k = 1 since there are many cases

in which Ai = 0.

For the pool5 layer of VGG, when we set β = 0.02, we can get similar results

with this work, as shown in Table 4.5. This further veri�es the reasonableness of

our assumption to regard the feature maps as surrogate parts, and demonstrates

the extensibility of our scheme.

Table 4.5: The comparison of BoSP with di�erent soft assignment schemes. The

BoSP with superscript ∗ means that we use Eq 4.11 as the soft assignment for the

surrogate parts.

Caltech101 Oxford102 Indoor67 SUN397

BoSP 91.65% 85.98% 70.45% 54.12%

BoSP∗ 91.55% 86.31% 70.45% 54.29%

Comparison to average pooling: Operationally, the straightforward assign-

ment Eq 4.3 is a special case of average pooling. When we do not normalize the

local activations and do not make them sparse, the BoSP would evolve to AP.

However, conceptually, BoSP and AP have di�erent views of the feature maps.

AP processes the feature maps individually by averaging the values on each fea-

ture map, while BoSP handles the image local regions individually by normalizing

the local activations. When we utilize other soft assignment schemes, e.g. Eq 4.11,

their fundamental di�erences would become clearer.
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4.7 Conclusion and Future Work

We proposed a new feature from the convolutional layers of VGG, which is highly

discriminative and can be e�ciently extracted. Along with the feature, we further

introduced another three schemes to enhance the performance: spatial aggrega-

tion, scale pooling and global-part prediction. In addition, we also explored the

semantic meaning of the surrogate parts and combined the BoSP feature from

di�erent layers. Our experiments in several popular classi�cation tasks demon-

strated the success of our scheme.

In the future, we would extend our work in three possible directions: (1) We

would extract the feature from more advanced network (e.g. Res [227]) for fur-

ther improvement; (2) We intend to directly utilize the scale pooling scheme for

training the deep network; (3) We would employ our proposed feature for di�erent

applications, such as object detection and image retrieval.
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Chapter 5

CNN-RNN: A Large-scale

Hierarchical Image Classi�cation

Framework

Objects are often organized in a semantic hierarchy of categories, where �ne-level

categories are grouped into coarse-level categories according to their semantic

relations. While previous works usually only classify objects into the leaf cat-

egories, we argue that generating hierarchical labels can actually describe how

the leaf categories evolved from higher level coarse-grained categories, thus can

provide a better understanding of the objects. In this chapter, we propose to

utilize the CNN-RNN framework to address the hierarchical image classi�cation

task. CNN allows us to obtain discriminative features for the input images, and

RNN enables us to jointly optimize the classi�cation of coarse and �ne labels.

This framework can not only generate hierarchical labels for images, but also

improve the traditional leaf-level classi�cation performance due to incorporating

the hierarchical information. Moreover, this framework can be built on top of any

CNN architecture which is primarily designed for leaf-level classi�cation. Accord-

ingly, we build a high performance network based on the CNN-RNN paradigm

which outperforms the original CNN (wider-ResNet) and also the current state-

of-the-art. In addition, we investigate how to utilize the CNN-RNN framework
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to improve the �ne category classi�cation when a fraction of the training data is

only annotated with coarse labels. Experimental results demonstrate that CNN-

RNN can use the coarse-labeled training data to improve the classi�cation of �ne

categories, and in some cases it even surpasses the performance achieved by fully

annotated training data. This reveals that, CNN-RNN can alleviate the challenge

of specialized and expensive annotation of �ne labels.
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5.1 Introduction

Image classi�cation has long been an active area of research, which aims to classify

images into pre-de�ned categories, and helps people to know what kind of objects

the images contain. Traditionally, image classi�cation is mainly performed on

small datasets, by encoding local hand-crafted features and using them as input

for classi�ers [31, 122, 135].

In recent years, two fundamental changes occurred for this task: �rst, the number

of digital images has been increasing exponentially. This brings people more al-

ternatives, and more di�culties, in �nding relevant images from this large volume

of data. To help people access data, in an e�ortless and meaningful way, we need

a good semantic organization of the categories. Second, deep learning methods

have proven to be successful for image classi�cation. In recent years, researchers

have built various deep structures [24, 25, 227], and have achieved quite accurate

predictions on small datasets [236, 259].

As a consequence, the current research focus has moved to larger and more chal-

lenging datasets [260, 261], such as ImageNet [149]. Such datasets often organize

the large number of categories in a hierarchy, according to their semantic belong-

ings. The deeper one goes in the hierarchy, the more speci�c the category is. In

contrast to current approaches, which only focus on the leaf categories, we argue

that generating hierarchical labels in a coarse-to-�ne pattern can present how the

semantic categories evolve, and thus can better describe what the objects are.

For example, for Figure 5.1(c), the predicted leaf-category label is `Triceratops'.

Without specialized knowledge, we cannot learn that this category label belongs

to the higher level category label `Horned Dinosaur'.

The �rst contribution of this work is a framework capable of generating hierar-

chical labels, by integrating the powerful Convolutional Neural Networks (CNN)

and Recurrent Neural Networks (RNN). CNN is used to generate discriminative

features, and RNN is used to generate sequential labels.

There are several notable advantages for the CNN-RNN framework:
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(a) Dog       Basenji (b) Dog      Leonberg (c) Horned Dinosaur     Triceratops 

Figure 5.1: The example images with the `coarse → �ne' label.

(1) Learning things in a hierarchical way is consistent with human perception and

concept organization. By predicting the labels in a coarse-to-�ne pattern, we can

better understand what the objects are, such as depicted in Figure 5.1(c).

(2) It can exploit the relationship between the hierarchical categories, which, in

turn, helps the traditional image classi�cation task. For example, when we build

the CNN-RNN framework with wrn-28-10 [262], we can increase the accuracy of

coarse and �ne categories by 2.8% and 1.68%, respectively. To the best of our

knowledge, this is the �rst work trying to employ RNN to improve the classi�ca-

tion performance by exploiting the relationship between hierarchical labels.

(3) It is transferrable. In principle, the framework can be built on top of any CNN

architecture which is primarily intended for single-level classi�cation, and boost

the performance for each hierarchical level. To verify this, we have conducted

extensive experiments with three high-performance networks, i.e. CNN-7 [263],

wrn-28-10 [262] and our proposed wider-Resnet.

(4) The structure can be trained end-to-end. In contrast to other methods which

can only model the category relationship with pre-computed image features [264,

265], the CNN-RNN framework can jointly learn the features and relationship in

an end-to-end way, which can improve the �nal predictions considerably. For a

subset of ImageNet 2010, we compared employing pre-computed CNN features to

train the RNN with end-to-end training the CNN and RNN and demonstrated a

signi�cant improvement of the subcategory accuracy from 77.27% to 82%.

(5) The number of the hierarchical labels can be variable. The �exibility of

RNN allows us to generate hierarchical labels of di�erent lengths, i.e. more
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speci�c categories would have more hierarchical labels. We have demonstrated

this property on the widely used ImageNet 2012 dataset [21].

As the framework is transferrable, we intend to build a high performance CNN

model, and utilize its CNN-RNN variant to further boost the accuracy.

Recently, deep residual networks (ResNet) [227] have attracted great attention be-

cause of its leading performance in several image classi�cation tasks and Zagoruyko

et al. [262] further presented a thorough experimental study about several im-

portant aspects of ResNet, such as the width and depth, and proposed a wide

Resnet that obtained better performance than the original ResNet. The sec-

ond contribution of this work is, we build a wider ResNet compared to [262].

Our implementation shows that, the wider-Resnet performs better than [262] on

CIFAR-100, and also outperforms the original ResNet with thousands layers. In

addition, by utilizing the CNN-RNN framework, we obtain considerably better

results than the state-of-the-art.

The performance of deep models has bene�ted from the accurate and large-scale

annotations, such as ImageNet [149]. However, manual labeling is an excessively

tedious and expensive task, especially for the �ne-grained classes, which often

require expert knowledge (e.g. breeds of dogs, �ower species, etc.). For example,

for Figure 5.1 (a) and Figure 5.1 (b), it is easy to annotate the images with

the coarse label `dog', but it requires specialized knowledge to divide them into

subcategories `Bsenji' and `Leonberg'. One optional thought is, if a part of the

training data is only annotated with coarse category labels, whether we could

utilize the coarse-labeled training data to improve the classi�cation performance

of �ne categories?

The third contribution of this work is, we investigate how to utilize the CNN-

RNN framework to improve the subcategory classi�cation when a fraction of the

training data only has coarse labels. By training the CNN-RNN framework on

the fully annotated data in the training set, we can exploit the relationship be-

tween the coarse and �ne categories. Thereby, we can predict the �ne labels of

the coarse-labeled training data, and then re-train the CNN-RNN model. Exper-

imental results demonstrate that the coarse-labeled training data can normally
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help the subcategory classi�cation. In some cases, it can even surpass the perfor-

mance of fully annotated training data. This alleviates the expensive process of

�ne-grained labeling.

5.2 Related Work

5.2.1 Usage of CNN-RNN framework

Deep learning methods have attracted signi�cant attention [226] and achieved rev-

olutionary successes in various applications [213, 227]. Two important structures

for deep learning are CNN and RNN. CNN has proven to be successful in process-

ing image-like data, while RNN is more appropriate in modeling sequential data.

Recently, several works [266�271] have attempted to combine them together, and

built various CNN-RNN frameworks. Generally, the combination can be divided

in two types: the uni�ed combination and the cascaded combination.

The uni�ed combination often attempts to introduce a recurrent property into

the traditional CNN structure in order to increase the classi�cation performance.

For example, Zuo et al. [269] converted each image into 1D spatial sequences by

concatenating the CNN features of di�erent regions, and utilized RNN to learn

the spatial dependencies of image regions. Similar work appeared in [272]. The

proposed ReNet replaced the ubiquitous convolutional+pooling layer with four

recurrent neural networks that sweep horizontally and vertically in both directions

across the image. In order to improve the multi-label classi�cation, Wang et

al. [271] presented the CNN-RNN framework to learn a joint embedding space in

modeling semantic label dependency as well as the image-label relevance.

On the other hand, the cascaded combination would process the CNN and RNN

separately, where the RNN takes the output of CNN as input, and returns se-

quential predictions of di�erent timesteps. The cascaded CNN-RNN frameworks

are often intended for di�erent tasks, rather than image classi�cation. For exam-

ple, [10, 266, 268] employed CNN-RNN to address the image captioning task, and

[273] utilized CNN-RNN to rank the tag list based on the visual importance.
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In this chapter, we propose to utilize the cascaded CNN-RNN framework to

address a new task, i.e. hierarchical image classi�cation, where we utilize CNN to

generate discriminative image features, and utilize RNN to model the sequential

relationship of hierarchical labels.

5.2.2 Hierarchical models for image classi�cation

Hierarchical models have been used extensively for image classi�cation. For ex-

ample, Salakhutdinov et al. [274] presented a hierarchical classi�cation model to

share features between categories, and boosted the classi�cation performance for

objects with few training examples. Yan et al. [215] presented a hierarchical deep

CNN that consists of a coarse component trained over all classes as well as several

�ne components trained over subsets of classes. Instead of utilizing a �xed archi-

tecture for classi�cation, Murdock et al. [275] proposed a regularization method,

i.e. Blockout, to automatically learn the hierarchical structure.

Another pipeline to employ hierarchical models tends to improve the classi�ca-

tion performance by exploiting the relationship of the categories in the hierarchy.

For instance, Deng et al. [264] introduced HEX graphs to capture the hierarchical

and exclusive relationship between categories. Ristin et al. [265] utilized Random

Forests and proposed a regularized objective function to model the relationship

between the categories and subcategories. This type of hierarchical models can

not only improve the traditional image classi�cation performance, but also pro-

vide an alternative way to utilize the coarse-labeled training data.

In contrast to previous works, our work utilizes RNN to exploit the hierarchical

relationship between coarse and �ne categories, and aims to adapt the model to

address the hierarchical image classi�cation task, in which we simultaneously gen-

erate hierarchical labels for the images. Compared with [264, 265] that can only

process the pre-computed image features, our proposed CNN-RNN framework

can be trained end-to-end.
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5.3 Hierarchical Image Classi�cation

The goal of our approach is to simultaneously generate hierarchical labels of the

images. To this end, we can employ two types of generators: a CNN-based

generator and a CNN-RNN generator. Both of them keep the preceding layers of

the basic CNN structure except for the last layer.

5.3.1 CNN-based generator

A CNN-based generator aims to generate coarse and �ne labels by utilizing the

conventional CNN structure. It acts as the general practice to ful�ll this speci�c

task. We replace the last layer of conventional CNN with two layers, through

which to provide separate supervisory signals for both the coarse categories and

�ne categories. The two layers can be arranged either in a serial pattern (Fig-

ure 5.2: Strategy 1 & 2), or in a parallel pattern (Figure 5.2: Strategy 3).

v 

20-D 100-D 

Coarse  Loss Fine Loss 

100-D 20-D 

Coarse  Loss Fine Loss 
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Fine Loss Coarse  Loss 

100-D 
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Fine Loss 

Coarse  Loss 

v 

Strategy 1: coarse-to-fine Strategy 2: fine-to-coarse 

Strategy 3: fine-and-coarse Strategy 4: RNN 

Figure 5.2: The illustration of the four strategies which can jointly train and

generate the coarse and �ne labels.
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During the training phase, we utilize the softmax loss function to jointly optimize

the coarse and �ne label predictions, as de�ned in Eq 5.1.

Loss = − 1

N

N∑
i=1

(
C∑

j=1

1
{
xi = j

}
log pj +

F∑
k=1

1
{
yi = k

}
log pk

)
(5.1)

Where 1 {·} is the indicator function. N,C, F denote the number of the images,

coarse categories, and �ne categories, respectively. pj and pk are the softmax

probabilities of the coarse and �ne categories, respectively.

During the inference phase, we can utilize the trained network to determine the

coarse and �ne labels at the same time.

There are two potential drawbacks for the CNN-based generator: �rst, it treats

the two supervisory signals individually, and does not exploit the relationship

between them. Second, when the hierarchy is of variable length, we cannot de�ne

a universal CNN-based generator to simultaneously determine the hierarchical

labels.

5.3.2 CNN-RNN generator

A CNN-RNN generator determines hierarchical predictions using an architecture

where the last layer of CNN is replaced by RNN (Figure 5.2: Strategy 4).

RNN [276] is a class of arti�cial neural networks where connections between units

form a directed cycle, as shown in Figure 5.3. It can e�ectively model the dy-

namic temporal behavior of sequences with arbitrary lengths. Long-Short Term

Memory (LSTM) [277] is a particular form of a traditional RNN. It extends the

cell in a standard RNN by using three gates, including an input gate, a forget

gate and an output gate, to accumulate or forget relevant contextual information

in its hidden state, as shown in Figure 5.3. These gates enable LSTM to model

long-term dependencies in a sequence, and e�ectively address the gradient van-

ishing/exploding issues that commonly appear during RNN training [271].
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Figure 5.3: The pipeline of RNN(left) and LSTM(right).

In this work, we use LSTM neurons as our recurrent neurons. The de�nition of

the gates and the update of LSTM at the timestep t are as follows:

it = σ(Wxixt +Whiht−1 +Wviv + bi) (5.2)

ft = σ(Wxfxt +Whfht−1 +Wvfv + bf ) (5.3)

ot = σ(Wxoxt +Whoht−1 +Wvov + bo) (5.4)

gt = ϕ(Wxcxt +Whcht−1 +Wvcv + bc) (5.5)

ct = ft � ct−1 + it � gt (5.6)

ht = ot � ϕ(ct) (5.7)

Where � represents the product operation, σ is the sigmoid function (σ(x) =

(1+exp(−x))−1), and ϕ is the hyperbolic tangent function (ϕ(x) = exp(x)−exp(−x)
exp(x)+exp(−x)

).

The de�nition for other symbols are: it, ft, ot, gt denote the input gate, forget

gate, output gate, and input modulation gate, respectively. x, h, v and c represent

the input vector, hidden state, image visual feature, and memory cell, respectively.

We propose to impose the image visual feature v at each timestep when updating

the LSTM. W and b are the weights and bias that need to be learned.

The goal of our approach is to generate hierarchical labels for images. The labels

are ordered in a coarse-to-�ne pattern, i.e. coarser labels appear at the front of

the list. To this end, we merge the C coarse categories and F �ne categories

as C + F super categories. For di�erent timesteps, the CNN-RNN generator

takes the labels of di�erent levels as input, where the coarser-level labels appear
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at the preceding timesteps. In this way, the coarser-level labels can provide

insightful information for the prediction of �ner labels. The procedure is shown

in Figure 5.4.

Input Image 

LSTM 

LSTM 

h0 

Dog 

Poodle Dog 

LSTM Miniature Poodle 

v 

v 

v 

x0 

Dog 

Poodle Dog 

C
o

arse 
F

in
e 

CNN 

Figure 5.4: The pipeline of the CNN-RNN framework.

During the training phase, the CNN-RNN generator utilizes the groundtruth

coarser-level labels as input, and jointly optimizes the coarse and �ne predictions,

as denoted in Eq 5.8.

Loss = − 1

N

N∑
i=1

(
T∑
t=1

C+F∑
j=1

1
{
xit = j

}
log pj

)
(5.8)

During the inference phase, when the groundtruth coarser-level labels are not

available, the CNN-RNN generator �rst predicts the maximum likelihood label for

current timestep, i.e. Wt = argmaxWt−1
p(Wt−1|I), and then utilize the predicted

label as the input for the next timestep.

As the CNN-RNN generator de�nes the super categories, and it equally trains

and predicts the super categories, we do not need to design speci�c networks for

the categories of di�erent levels. Therefore, the CNN-RNN generator is robust,

and can be employed to generate hierarchical labels of di�erent lengths.
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5.4 Experiments

We perform our experiments on three well-known datasets: CIFAR-100 [278],

ImageNet 2012 [21] and a subset of ImageNet 2010 [265]. These three datasets

have provided hierarchical image labels. The characteristics of the three datasets

are summarized in Table 5.1.

Table 5.1: The characteristics of the datasets, including the depth of the hierarchy,

the number of the coarse categories and �ne categories.

Dataset Depth Coarse No. Fine No.

CIFAR-100 2 20 100

ImageNet 2012 1-9 860 1000

Subset of ImageNet 2010 2 143 387

The performance is measured based on the top-1 accuracy. All the experiments

are conducted using the Ca�e [218] library with a NVIDIA TITAN X card.

The experiments can be divided into two parts. In the �rst part, we evaluate the

performance of hierarchical predictions. In the second part, we investigate the

performance of subcategory classi�cation when only a part of the training data

is labeled with �ne labels while the rest only has coarse labels.

5.4.1 Hierarchical predictions

We evaluate the hierarchical predictions on two widely-used datasets: CIFAR-

100 [278] and ImageNet 2012 [21].

5.4.1.1 CIFAR-100

CIFAR-100 contains 100 classes, and each class has 500 training images and 100

test images. These classes are further grouped into 20 superclasses. Therefore,

each image comes with two level labels: a �ne label (the class to which it belongs)

and a coarse label (the superclass to which it belongs). For data preprocessing,
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we normalize the data using the channel means and standard deviations. The

symbol `+' means a standard data augmentation, i.e. �rst zero-padded with 4

pixels on each side, and randomly crop 32× 32 images from the padded images,

or their horizontal re�ections.

Evaluation of the hierarchical image classi�cation task.

The CNN-based generator and CNN-RNN generator are considered as two alter-

native structures to ful�ll the hierarchical image classi�cation task. In contrast

to CNN-based generator, the CNN-RNN generator can e�ectively exploit the de-

pendency of the hierarchical labels, and thereby achieving a better classi�cation

performance for both the coarse and �ne categories. We compare their perfor-

mance in Table 5.2.

Table 5.2: The comparison of the accuracy for the coarse categories and �ne

categories. `+' indicates a standard data augmentation (translation/mirroring)

C100 C100+

coarse �ne coarse �ne

coarse-to-�ne 73.88% 58.41% 78.1% 64.16%

�ne-to-coarse 75.02% 61.75% 78.16% 65.56%

�ne-and-coarse 74.72% 61.8% 77.56% 64.87%

CNN-RNN 80.81% 69.69% 83.21% 72.26%

All of the evaluations in this part are conducted based on the CNN model pro-

posed in [263], because of its high training e�ciency and decent performance on

CIFAR-100. The CNN structure is shown in Figure 5.5. We employ exactly the

same experimental con�guration as used in [263].
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Figure 5.5: The CNN baseline proposed in [263].
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As can be seen, the CNN-RNN generator can signi�cantly outperform the CNN-

based generator, both for the coarse/�ne predictions with/without data augmen-

tation. Speci�cally, for the coarse predictions, the CNN-RNN generator outper-

forms the CNN-based generator by at least 5.05%, while for the �ne predictions,

the CNN-RNN generator is even more advantageous, with an improvement of

more than 6.7%. This demonstrates that, by exploiting the latent relationship be-

tween the coarse and �ne categories, RNN can properly address the hierarchical-

based task.

Evaluation of the traditional image classi�cation task.

The traditional image classi�cation task consists of classifying images into one

pre-de�ned category, rather than multiple hierarchical categories.

As the CNN-RNN generator can simultaneously generate the coarse and �ne

labels, in this part, we further compare its performance with `coarse-speci�c'

and `�ne-speci�c' networks. The `�ne-speci�c' network uses the common CNN

structure which is speci�cally employed for the �ne category classi�cation. The

`coarse-speci�c' network shares the same preceding layers with the `�ne-speci�c'

network, where the last layer is adapted to equal the coarse category number,

e.g. 20 for CIFAR-100.

The coarse-speci�c, �ne-speci�c and CNN-RNN framework can be constructed

based on any CNN architecture. To make the comparison more general and

convincing, we evaluate the performance on three networks: CNN-7 [263], wrn-

28-10 [262] and our proposed wider-Resnet.

For wrn-28-10, we adopt the version with dropout [52], and train the network

with larger mini-batch size (i.e. 200), and more iterations (a total of 7 × 104

iterations, and the learning rate dropped at 2× 104, 4× 104, 6× 104 iterations).

Other experimental con�guration follows [262].

The structure of our proposed wider-Resnet is shown in Table 5.3. We adopt

the pre-activation residual block as in [279], and train the models for a total of

7× 104 iterations, with a mini-batch size of 200, a weight decay of 0.0005 and a
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momentum of 0.9. The learning rate is initialized with 0.1, and is dropped by 0.1

at 4× 104 and 6× 104 iterations.

Table 5.3: The framework of our proposed wider-Resnet.

Group name Output size wider-Resnet

conv1 32×32 3×3, 64

conv2 32×32


1×1, 256

3×3, 256

1×1, 256

 ×3

conv3 16×16


1×1, 512

3×3, 512

1×1, 512

 ×3

conv4 8×8


1×1, 1024

3×3, 1024

1×1, 1024

 ×3
pool5 1×1 global average pooling

The results on these three datasets are shown in Table 5.4.

Table 5.4: The comparison of the accuracy for the coarse categories and �ne

categories. `+' indicates standard data augmentation (translation/mirroring)

C100+

coarse �ne

coarse-speci�c 82.09% -

CNN-7 [263] �ne-speci�c - 72.03%

CNN-RNN 83.21% 72.26%

coarse-speci�c 82.59% -

wrn-28-10 [262] �ne-speci�c - 74.55%

CNN-RNN 85.39% 76.23%

coarse-speci�c 85.38% -

wider-Resnet �ne-speci�c - 77.97%

CNN-RNN 88.23% 79.14%
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We can see that, CNN-RNN can simultaneously generate the coarse and �ne

labels without developing two separate models, and the accuracy for both cat-

egories outperforms the speci�c networks. Take our proposed wider-Resnet as

an example, the CNN-RNN structure increases the coarse and �ne accuracy by

2.85% and 1.17% respectively, over the coarse-speci�c and �ne-speci�c networks.

This advantage demonstrates that, by exploiting the latent relationship of the

coarse and �ne categories, CNN-RNN can help the traditional image classi�ca-

tion task.

Our implementation of wrn-28-10 [262] cannot reproduce the original published

results, possibly as a result of the di�erences in the platforms (Torch v.s. Ca�e), or

the di�erences in the preprocessing step (pad with re�ections of original image v.s.

pad with zero). Nevertheless, we can still improve the coarse and �ne accuracy

by 2.8% and 1.68% respectively, through utilizing the CNN-RNN structure.

Comparison with the state-of-the-art.

We compare our wider-Resnet network, as well as its CNN-RNN variant, with

the state-of-the-art, as is shown in Table 5.5.

Through the comparison, we further demonstrate the superiority of the wider

networks on CIFAR-100 dataset, as our not-very-deep wider-Resnet network (29

layers) surpasses the performance of the ResNet with super deep layers (1001

layers). In comparison with another wide ResNet [262] with similar depth, wider-

Resnet also demonstrates great improvements and remarkably reduces the classi-

�cation error from 25.45% to 22.03%, under the same platform and pre-processing

step.

Overall, our proposed wider-Resnet achieves the best performance over previous

works, and wider-Resnet-RNN further increases the state-of-the-art to 20.86%.

Nevertheless, we are still seeking to build the CNN-RNN framework on top of

future state-of-the-art architectures to boost the classi�cation performance.
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Table 5.5: The test error of di�erent methods on the CIFAR-100 dataset with

standard data augmentation (translation/mirroring)

Method C100+

FitNet [280] 35.04%

DSN [281] 34.57%

All-CNN [282] 33.71%

Highway Network [283] 32.39%

APL [284] 30.83%

SReLU [285] 29.91%

BayesNet [286] 27.4%

Fitnet4-LSUV [287] 27.66%

ELU [288] 24.28%

MBA [289] 24.1%

ResNet-110 [227] (according to [290]) 27.22%

ResNet-110 (Stochastic Depth) [290] 24.58%

ResNet-164 (Pre-activation) [279] 24.33%

ResNet-1001 (Pre-activation) [279] 22.71%

18-layer + wide RiR [291] 22.90%

FractalNet-20 [292] 23.30%

FractalNet-40 [292] 22.49%

SwapOut V2 [293] (width×4) 22.72%

wrn-28-10 [262](our reproduced) 25.45%

wrn-28-10-RNN 23.77%

wider-Resnet 22.03%

wider-Resnet-RNN 20.86%

5.4.1.2 ImageNet 2012

One notable advantage of RNN is that it can generate sequences with variable

lengths. To demonstrate this, we investigate the CNN-RNN framework on the

widely used ImageNet 2012 dataset [21].

ImageNet is an image dataset organized according to the WordNet hierarchy [294].

It is larger in scale and diversity than other image classi�cation datasets. Ima-

geNet 2012 uses a subset of ImageNet with roughly 1300 images in each of 1000
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categories. The images are annotated with hierarchical labels of di�erent lengths.

In total, there are about 1.2 million training images and 50000 validation images.

For all the experiments, we train our model on the training images, and test on

the validation images of the ImageNet 2012 dataset.

We utilize the ResNet-152 [227] as our CNN model. For simplicity, pre-trained

model weights are kept �xed without �ne-tuning. For the RNN model, we use

1000 dimensions for the embedding and the size of the LSTM memory. During

the experiments, we �rst resize all the images to 224× 224 pixels and extract the

last pooling features utilizing ResNet-152, and then send the features into LSTM

for modeling the category dependency.

n Pome 

l Apple 

ü Eating apple 

Ø Granny Smith 

ü Apodiform bird 

Ø Hummingbird 

ü Coraciiform bird 

Ø Bee eater 

ü Bullterrier 

Ø Staffordshire bullterrier 

     Predict 

l Pheasant 

ü Peafowl 

Ø Wombat 

Groundtruth 

l Pheasant 

ü Peafowl 

Ø Peacock 

    Predict 

l Feed 

ü Fortification 

Ø Castle 

Groundtruth 

l Feed 

ü Fodder 

Ø Hay 

ü Piciform bird 

Ø Jacamar 

Ø American Staffordshire terrier 

(a) (b) 

(c) (d) 

Figure 5.6: The hierarchical predictions of some example images. (a) and (c) show

some positive examples. (b) shows the examples with partly wrong predictions, e.g.

correct coarse labels & wrong �ne labels. (d) shows examples in the same category

as (c), but which have totally wrong predictions

Figure 5.6 demonstrates the hierarchical predictions for some example images,
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from which we can observe that: First, RNN is able to generate predictions with

di�erent lengths, and more speci�c categories would have more hierarchical labels.

Second, the hierarchical labels can describe how the �ne categories are evolved

from higher level coarse categories, and thus can provide us a better understand-

ing of the objects. Consider for example the upper image in Figure 5.6 (a), we

may get confused with the leaf-level label: `Granny Smith'. But when the coarse-

level labels are provided, we observe that `Granny Smith' is a breed of apple.

Third, it may be more di�cult to classify images into leaf-level categories than

branch-level categories. When we get faulty leaf-level predictions for the given

image, we might still learn what the image depicts from the coarse predictions,

as shown in Figure 5.6 (b).

5.4.2 From coarse categories to �ne categories

In the previous section, we have investigated the hierarchical classi�cation per-

formance of CNN-RNN when all of the coarse and �ne labels are available for the

training data. However, annotating �ne labels for large amounts of training data

is quite expensive, especially when it requires expert knowledge. In this subsec-

tion, we focus on a scenario in which a part of the training data is annotated with

�ne labels, while the rest only has coarse labels. This can be viewed as a special

case of weakly supervised learning, and has ever been investigated in [265].

We follow the experiment setup of [265], and conduct our experiment on a subset

of ImageNet 2010. This dataset particularly selected the classes from ImageNet

2010 that have a unique parent class, and obtained 143 coarse classes and 387

�ne ones accordingly. The reduced training set contains 487K images where each

coarse class has between 1.4K and 9.8K images, and each �ne class has between

668 and 2.4K images. The test set contains 21450 images, and each coarse class

has 150 images 1.

All of the image features are extracted from the VGG-Net [24], as was done for

the preliminary experiments in [265].

1More details about the dataset are available at

http : //www.vision.ee.ethz.ch/datasetsextra/mristin/ristinetalcvpr15data.zip
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Evaluation of the classi�cation performance when all of the training

�ne labels are available

When all of the coarse and �ne labels are available, we can directly train the RNN

on the full training set, and evaluate the classi�cation performance on the test set.

To better demonstrate the advantage of RNN, we further conduct the training

process on a fraction of the training set. In addition, we investigate how much

the performance may improve when the coarse labels are provided for the test

data, and when we train the CNN-RNN in an end-to-end way, rather than with

the o�-the-shelf image features. As a comparison with CNN-RNN framework, we

also �netune the VGG-Net on the ImageNet 2010 subset. The results are shown

in Table 5.6.

Table 5.6: Accuracy for classifying �ne labels using the ImageNet 2010 subset

described in [265]. RNN: train the RNN with extracted image features from VGG-

Net [24]; CNN: �netune the VGG-Net [24] on the ImageNet 2010 subset; CNN-

RNN: jointly train the VGG-Net[24] and RNN in an end-to-end pattern; We use

the superscript `∗' to denote that the coarse labels are provided when predicting

the �ne labels in the test phase.

Training Set Accuracy

NCM [295] S 66.02%

Multiclass SVM [296] S 71.67%

RNCMF [265] S 74.18%

0.2S 75.09%

RNN 0.4S 76.17%

S 77.27%

CNN S 76.01%

CNN-RNN S 82%

CNN-RNN∗ S 90.69%

We can notice that, training on more data results in a more powerful RNN model,

and thus can achieve better performance. Compared with the models trained on

parts of the training set, i.e. 0.2S and 0.4S, utilizing the full training set S shows

an improvement of 2.18% and 1.1%, respectively. It reveals that, a large training

dataset is essential in training the deep models.

116



5.4 Experiments

In contrast to other methods listed in [265], RNN achieves superior classi�cation

performance by inherently exploiting the relationship between the coarse and �ne

categories. Notably, RNN can deliver better performance even utilizing only 20

percent of the training data.

One additional advantage of the CNN-RNN framework is that it can be trained

end-to-end. Compared with the predictions generated with o�-the-shelf CNN

features, jointly training the CNN and RNN results in a signi�cant improvement,

from 77.27% to 82%. It is also much better than directly �netuning the VGG-

Net on the ImageNet 2010 subset (82% v.s. 76.01%). When provided the coarse

labels for the test images, CNN-RNN achieves an accuracy of 90.69%.

Evaluation of the classi�cation performance when part of the �ne labels

for training are missing

The training set S in this part are randomly divided into two disjoint sets: Scoarse

and Sfine. Scoarse has only the coarse labels, while Sfine has both coarse and �ne

labels. We vary |Sfine| ∈ {0.1|S|, 0.2|S|, 0.5|S|}, and for each Sfine, we further vary

|Scoarse| ∈ {0.1|S|, 0.2|S|, 0.5|S|}.

For each training/test con�guration, we conduct three evaluations:

1) Sfine: We train the RNN on Sfine, and evaluate on the test set;

2) Sfine + S−
coarse: We �rst train the RNN on Sfine, and use it to predict the �ne

labels of Scoarse. In this way, we obtain a new training set S−
coarse, which contains

both coarse and (predicted) �ne labels. Next, we utilize the Sfine and S−
coarse to

re-train the RNN, and evaluate on the test set.

3) Sfine + S+
coarse: We train the RNN on Sfine and S

+
coarse, and evaluate on the test

set. S+
coarse means we utilize the groundtruth �ne labels of Scoarse.

The results are shown in Figure 5.7.

In general, Sfine + S−
coarse performs better than Sfine, indicating that even some of

the �ne labels for the training data are missing, the �ne category classi�cation

can bene�t from the CNN-RNN structure.
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Figure 5.7: The classi�cation performance with di�erent training/test set.

Since the �ne labels of Scoarse are predicted by the RNN trained on Sfine, their

accuracy cannot be guaranteed. As a consequence, the second training of RNN

may be conducted on a partly wrong labeled dataset. This is particularly severe

when |Sfine| is small. As we can see in Figure 5.7(a), when |Sfine| = 0.1|S|, the
classi�cation hardly bene�ted from using Scoarse when compared to the RNN

trained solely on Sfine.

On the contrary, when |Sfine| is large, e.g. |Sfine| = 0.5|S|, we can achieve

a considerable improvement by incorporating Scoarse. Notably, when |Sfine| =
0.5|S|, |Scoarse| = 0.1|S|, Sfine + S−

coarse even performs slightly better than Sfine +

S+
coarse, demonstrating its great potential in weakly supervised classi�cation.

We further compare our method with the NN-H-RNCMF [265], which also at-

tempted to improve the classi�cation by exploiting the hierarchy. We set the

amount of coarse-labeled data to |Scoarse| = 0.5|S|, and vary the amount of �ne-

labeled data |Sfine| ∈ {0.1|S|, 0.2|S|, 0.5|S|}, and the results are shown in Ta-
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ble 5.7. It can be seen that, RNN performs much better than NN-H-RNCMF in

all con�gurations, demonstrating its great potential in exploiting the hierarchical

relationship.

Table 5.7: Accuracy in classifying �ne categories for the test set. We set the

amount of coarse-labeled data to |Scoarse| = 0.5|S|.

|Sfine|
0.1|S| 0.2|S| 0.5|S|

RNCMF [265] 68.49% 70.49% 73.07%

NN-H-RNCMF [265] 69.95% 71.41% 73.43%

RNN 74.26% 75.64% 77.12%

5.5 Conclusion

In this chapter, we proposed to integrate CNN and RNN to accomplish hierar-

chical classi�cation task. The CNN-RNN framework can be trained end-to-end,

and can be built on top of any CNN structures that are primarily intended for

leaf-level classi�cation, and further boost the prediction of the �ne categories. In

addition, we also investigated how the classi�cation would bene�t from coarse-

labeled training data, which alleviates the professional and expensive manual

process of �ne-grained annotation.

Currently, it is necessary to have hierarchical labels in the training set, in order

to train the RNN. However, this is not available for many small datasets. In

the future, we will examine taking advantage of traditional clustering methods

towards automatically constructing a hierarchy for the objects, and use CNN-

RNN to boost the classi�cation performance for general datasets.
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Chapter 6

What Convnets Make for Image

Captioning?

Nowadays, a general pipeline for the image captioning task takes advantage of im-

age representation based on convolutional neural networks (CNNs) and sequence

modeling based on recurrent neural networks (RNNs). Captioning performance

closely depends on the discriminative capacity of CNNs. Our work aims to inves-

tigate the e�ects of di�erent Convnets (CNN models) on image captioning. We

train three Convnets based on di�erent classi�cation tasks: single-label, multi-

label and multi-attribute, and feed the image features from these Convnets into

a Long Short-Term Memory (LSTM) to model the sequence of words. Since the

three Convnets focus on di�erent visual contents in one image, we propose ag-

gregating them together to generate a richer visual representation. Furthermore,

during testing, we use an e�cient multi-scale augmentation approach based on

fully convolutional networks (FCNs). Extensive experiments on MS COCO 2014

dataset provide signi�cant insights into the e�ects of Convnets. Moreover, we

achieve comparable results to the state-of-the-art for both caption generation

and image-sentence retrieval tasks.
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6.1 Introduction

Image captioning is a fundamental and important task in vision-to-language re-

search. It aims to describe an image with meaningful and sensible sentence-level

captions. The automatically generated descriptions should cover the salient con-

tent in images, including objects, actions and other relations. In early research of

image captioning, it has been converted to a retrieval-based task. Those retrieval-

based approaches [297�299] focus on mapping images to sentences based on pre-

de�ned captions. However, they fail to generate novel sentences for unseen scenes.

To address this issue, generative approaches are developed to estimate novel sen-

tences, such as Midge [300] and Baby Talk [301].

Recently, a new paradigm for image captioning is proposed in many state-of-the-

art approaches [266, 267, 302�304]. This paradigm mainly integrates a convolu-

tional neural network (CNN) and a recurrent neural network (RNN) together.

The CNN is used to capture high-level image features, while the RNN generates

a sequence of words based on the image features. In particular, a rich visual rep-

resentation contributes much to generating accurate image captions. However,

some Convnets (CNN models) are originally trained for image classi�cation, but

not for image captioning. It thus raises an important question: What Convnets

make for image captioning?

Our aim in this work is to fully investigate the e�ects of di�erent Convnets on

image captioning. We exploit three kinds of Convnets: single-label Convenet,

multi-label Convnet, and multi-attribute Convnet. (1) A single-label Convnet

indicates a CNN model pre-trained on ImageNet dataset [21], such as AlexNet [14]

and VGG-16 [24]. This Convnet can often o�er one generic image representation.

(2) A multi-label Convnet can predict multiple class labels given one image. It

is consistent with the observation that sentence-level captions often talk about

many salient objects jointly in images. Therefore, we �ne-tune a multi-label

Convnet on MS COCO 2014 [305] that consists of 80 object categories. Each

image is annotated with multiple object labels. (3) A multi-attribute Convnet

can not only re�ect multiple object classes, but also describe actions and other

relations about objects, for example jumping, sitting and interacting. Therefore,
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a multi-attribute Convnet is able to narrow the gap between vision and language.

We �ne-tune a multi-attribute Convnet based on 300 attributes derived from MS

COCO captions [305].

By observing the feature maps learned in the three Convnets, we �nd that their

maps focus on di�erent visual �elds in images. Therefore, we propose aggregating

their features together to generate a richer representation.

In addition, during the test stage, we take advantage of the e�cient fully convo-

lutional networks (FCNs) [60] for multi-scale augmentation. We use two scales

of FCNs that are interpreted from one pre-trained CNN. This augmentation ap-

proach can be applied to both the single Convnet and multi-Convnet aggregation.

Finally, we employ the Long Short-Term Memory (LSTM) [277] to build the lan-

guage model. Figure 6.1 shows an image example from MS COCO 2014 [305].

Note that the visual feature is fed to the LSTM unit at each time step.

Single-label 

Multi-label Multi-attribute 

Multi-Convnet aggregation: A man and a dog on a small boat. 

Single-label Convnet: A man is sitting on the water with a surfboard.

Multi-label Convnet: A man sitting on a boat in front of a boat.

Multi-attribute Convnet: A man and a dog on a boat.

finetune

Ground truth: A man and a dog on a small yellow boat.

Figure 6.1: Example of image captioning using di�erent Convnets. Each Convnet

shows meaningful description. As compared to the human-written ground-truth,

the multi-Convnet can generate closer result than any single Convnet.

In a nutshell, our contributions can be summarized as follows:

• We present a full comparison among the three Convnets for the image cap-

tioning task. Furthermore, we study the bene�ts of each Convnet and then

integrate multiple Convnets for a richer visual representation. Our work

can provide promising insights into deeply diagnosing and understanding

Convnets for vision-to-language tasks.
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• We employ an e�cient multi-scale augmentation approach using FCNs.

• We achieve comparable results to the state-of-the-art on MS COCO 2014

dataset, both for caption generation and image-sentence retrieval tasks.

6.2 Related Work

In this section, we summarize related image captioning approaches based on CNN-

RNN as below.

A prior work in NIC [267] employed a CNN-RNN scheme to model the image

captioning problem. CNNs are used as the �encoder� to visually represent the

input image with a �xed-length feature vector. Then RNNs, as the �decoder�, can

translate the feature vector into sentence-level captions. Similarly, other similar

approaches [266, 304, 306] followed this CNN-RNN paradigm. Instead of only

using CNN features, Jia et al. [307] added extra semantic information to each unit

of the LSTM block. Jin et al. [308] integrated scene-speci�c contexts in order to

highlight higher-level semantic information in images. In addition, Xu et al. [303]

introduced a visual attention based model inspired by human visual system. The

attention mechanism can automatically learn latent alignments between regions

and words. Apart from the whole image captioning, there were some works

focusing on image regions based captioning [302, 309, 310]. They �rst localized

salient regions in images and then described them with natural language.

Recent work in [268] began capturing attributes to represent visual content. No-

tably, Yao et al. [311] investigated the performance upper bounds based on at-

tributes for image and video captioning. However, both of these works did not

train a new CNN model based on attributes. The most similar work in [312] �ne-

tuned a CNN based on the task of image-attribute classi�cation. In comparison,

our work had several main di�erences from [312]:

First, we intended to add a multi-label Convnet as a bridge from a single-label to

a multi-attribute Convnet (see the two solid lines in Figure 6.1). Thus our multi-

attribute Convnet had two-stage �ne-tuning. In contrast, [312] directly �ne-

tuned a multi-attribute Convnet from a single-label Convnet (see the dash line
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in Figure 6.1), and failed to study the e�ects of a multi-label Convnet. Second,

we further evaluated the aggregation of multiple Convnets that has not been

studied previously in [312]. Third, we presented an e�cient multi-scale testing

approach as compared to using expensive region proposals in [312]. In addition,

their testing step was not end-to-end.

6.3 Proposed Approach

In this section, we will present our image captioning system in three aspects.

First, we show the usage of single Convnet for capturing visual representation.

Second, we �nd that integrating image features from the three Convnets is ben-

e�cial for a richer representation. Third, at the test stage, we use a multi-scale

testing approach based on FCNs.

6.3.1 Convnets for Image Captioning

This part introduces the training details about the three Convnets. Notably, the

multi-attribute Convnet also belongs to a multi-label classi�cation task, but it

has di�erent training from the multi-label Convnet.

Single-label Convnet. CNNs trained on ImageNet dataset [21] are widely used

as o�-the-shelf feature extractors, such as Alexnet [14] and VGG-16 [24]. We call

these CNNs as single-label Convnets, since they are originally trained for single-

label classi�cation, for example 1000 classes in ImageNet 2012. Here we use the

VGG-16 net as a single-label Convnet for our image captioning system. As the

left part in Figure 6.2, an image from MS COCO [305] is fed to a single-class

Convnet that outputs a 1000-Dim visual feature.

Multi-label Convnet. Image captions often focus on multiple objects in images,

instead of mentioning only one salient object. We thus train a multi-label Convnet

on MS COCO 2014 dataset [305] that consists of 80 object categories. Each image

in MS COCO is annotated by about 3 object labels on average. Instead of training

from scratch, we �ne-tune the single-label Convnet for a multi-label recognition
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Single-label 

Convnet

1000-way 

Multi-label 

Convnet

80-way

Finetune

Multi-attribute 

Convnet

300-way

Finetune

ballplayer person, baseball bat,

baseball glove.

baseball, game, young, boy, 

player, stand, catch, …

Softmax Sigmoid CrossEntropy Sigmoid CrossEntropy

Figure 6.2: Illustration of the three Convnets for visual representations. The

multi-label Convnet is �ne-tuned from the pre-trained single-label Convnet. The

multi-attribute Convnet performs two-stage �ne-tuning.

task. Note that we replace the original 1000-way layer with 80-way layer. We use

a sigmoid cross-entropy function to compute the element-wise loss. Assume that

there are K classes (e.g. 80), the total cost sums up K of sigmoid losses by

l1(x) = −
K∑
k=1

yk(x) log pk(x) + (1− yk(x)) log(1− pk(x)), (6.1)

where yk ∈ {0, 1} is the ground-truth label indicating the absence or presence of

the category k in the input image x. Pk(x) indicates the prediction probability of

containing the category k. During �ne-tuning, the parameters of the last fully-

connected layer (i.e. the multi-class prediction layer) are initialized with gaussian

�lters. We initialize the learning rate of the last fully-connected layer with 0.01.

Instead, the learning rates of other convolutional layers and fully-connected layers

(i.e. fc6 and fc7) are initialized with 0.0001 and 0.001, respectively. The learning

rate is divided by 10 after 2×104 iterations. The whole training will be terminated

after 5 × 104 iterations. Besides, we use a weight decay of 0.0001, a momentum

of 0.9, and a mini-batch size of 100. The multi-label Convnet is shown in the

middle part in Figure 6.2.

Multi-attribute Convnet. Apart from object categories, a descriptive caption

should mention more information like actions (e.g. sit, run) and other relations
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(e.g. blue, small). Hence, using a Convnet that can re�ect more attributes is

bene�cial for narrowing the gap between visual features and language words.

Based on a multi-label Convnet, we further �ne-tune a multi-attribute Convnet.

First, we build an attribute dictionary based on MS COCO captions dataset.

In [311], they summarize three groups of atoms: entity, action and attribute. We

select top-100 atoms from each group, therefore, the attribute dictionary consists

of 300 words (or attributes) in total. Note that the atoms de�ned in [311] are

renamed as attributes in our work. Then, we remake the topmost layer with a

300-way fully-connected layer, as shown in the right part in Figure 6.2. Assume

that G denotes the number of attributes (e.g. G = 300). Similarly, the sigmoid

cross-entropy loss is computed by

l2(x) = −
G∑

g=1

yg(x) log pg(x) + (1− yg(x)) log(1− pg(x)), (6.2)

where yg ∈ {0, 1} is the ground truth; Pg(x) is the prediction probability. Since

each image in MS COCO has �ve human-written captions, we merge �ve captions

together to generate the ground-truth. During �ne-tuning the multi-attribute

model, we use the same hyper-parameters as the multi-label training.

To compare the visual features from the three Convnets, we visualize their most

activated feature maps learned in the �fth convolutional layer (i.e. conv5_3), as

illustrated in Figure 6.3. Here, we regard the feature map which has the largest

average activation value as the most activated feature map. It can be seen that

the three Convnets focus on di�erent visual �elds in images. This o�ers clear

insights into diverse characteristics of the three Convnets.

Input image Single-label Convnet Multi-label Convnet Multi-attribute Convnet

Figure 6.3: Visualization of feature maps for the three Convnets. We select the

most activated feature map in conv5_3. We can see that the three Convnets focus

on di�erent visual �elds in images due to their di�erent classi�cation objectives.
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6.3.2 Multi-Convnet Aggregation

Since the three Convnets are trained for di�erent classi�cation objectives and can

represent di�erent features given the input image, we propose aggregating them

together to compensate the de�ciency of any single Convnet feature. Although

a multi-attribute Convnet may contain the same objects as in a single-label and

multi-label Convnet, the aggregation feature can further improve the accurate

prediction of object classes. Figure 6.4 illustrates the pipeline of generating image

captions based on multi-Convnet aggregation.

Single-label feature

Multi-label feature

Multi-attribute feature

LSTM LSTM LSTM LSTM…

Aggregation feature

ag(x) ag(x) ag(x) ag(x)

…

Figure 6.4: The pipeline of Image captioning based on multi-Convnet aggregation.

The three Convnet features are concatenated together to generate an aggregation

feature ag(x). At each time step, both a word xi and ag(x) are fed to the LSTM

unit whose output is a probability distribution for the next word.

First, the input image x is fed to three pre-trained Convnets to capture separate

visual features, denoted as sc(x),mc(x),ma(x). We then concatenate three kinds

of features to create an aggregation feature ag(x) (i.e. 1380-Dim vector), where

ag(x) = [sc(x),mc(x),ma(x)]. Then, we add this aggregation feature to the

following RNN unit at each time step. We employ one-layer Long Short-Term

Memory (LSTM) [277] that can alleviate the vanishing gradient problem due to

its gates mechanism. Finally, at the time step t, the formulation of LSTM units

with an aggregation feature can be summarized as below

it = σ(Wxixt +Wviag(x) +Whiht−1 + bi) (6.3)

ft = σ(Wxfxt +Wvfag(x) +Whfht−1 + bf ) (6.4)

ot = σ(Wxoxt +Wvoag(x) +Whoht−1 + bo) (6.5)
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gt = φ(Wxgxt +Wvgag(x) +Whght−1 + bg) (6.6)

ct = ft � ct−1 + it � gt (6.7)

ht = ot � φ(ct) (6.8)

pt+1 = Softmax(ht) (6.9)

where Wand b are the weight matrices and bias terms. We refer to xt as the

input word at time step t for image x. σ and φ are the sigmoid and tangent

activation functions. pt+1 is used to predict the probability distribution for the

next word. Finally, the objective in LSTMs for language modeling is to minimize

the following loss cost

−
T−1∑
t=0

log pt(xt+1|xt, ag(x)) + λ||W ||22 (6.10)

where T is the length of the input sequence of words, and λ indicates the weight

decay (In this work, we follow the con�guration of [266] and set λ equals 0). For

notational simplicity, we just give the computation of one input image and drop

the mini-batch size in the formulation. Following the hyper-parameters in [266],

both the word embedding size and hidden state size are set to 1000. We use

a mini-batch size of 100 image-sentence pairs. The learning rate is initialized

with 0.01 and decreases to one tenth of current rate after 20,000 iterations. The

whole training will be terminated after 80,000 iterations. In addition, we use a

momentum of 0.9 and clip gradients of 10.

6.3.3 Multi-scale Testing

During the test phase, we intend to use a multi-scale augmentation approach

to capture a more robust image representation, as shown in Figure 6.5. We

�rst extract a feature vector by inputting a 224×224 image to CNNs. Then, we

convert one CNN model to a fully convolutional networks (FCN) [60]. FCN is

quite e�cient to compute regions based predictions without decreasing the ease of

testing. Following [24], we set a smaller side to S and isotropically resize the other

side. Here we use two scales of images, including S = 256 and 320, and perform
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average pooling over the topmost layer of FCN. Finally, the multi-scale feature

is computed by averaging one CNN feature and two FCN features. Notably,

the multi-scale testing can be used for both single Convnet and multi-Convnet

aggregation. We also test more scales such as S = 384, 512, but no signi�cant

improvement is obtained.

…

…

…

224

256

320

CNN

FCN

FCN

LSTM

xt

average

transfer

transfer

Caption generation

Figure 6.5: The pipeline of multi-scale testing approach. Apart from the basic

CNN feature, we use two extra scales based on FCNs. We compute the average

over three feature vectors and feed it to LSTM units for caption generation.

6.4 Experiments

In this section, we evaluate our approach on the well-knownMS COCO dataset [305].

MS COCO consists of 82783 training images, 40504 validation images and 40775

testing images. Each image is annotated by at least �ve human-written captions.

Following most recent works [266, 302, 306, 312] , we use 5000 images as valida-

tion set to tune hyper-parameters, and another 5000 images as test set to report

results. We use the vocabulary dictionary in [266] (containing 8800 words). This

dictionary is used to encode the input sequence of words. We implemented our

approach based on the Ca�e framework [218].

6.4.1 Evaluation Con�guration

We evaluate our approaches on two tasks: caption generation and image-sentence

retrieval. For caption generation task, we evaluate our method with four metrics:
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BLEU [313], METEOR [314], ROUGE-L [315] and CIDEr [316]. For image-

sentence retrieval task, we divide it into two parts: image-to-sentence retrieval

and sentence-to-image retrieval. Following previous works [266, 302], we adopt

the evaluation metrics: R@K and Med r. All metrics are computed with the MS

COCO evaluation code [317].

We denote the three single Convnets as SL-Net, ML-Net and MA-Net.

MA_ML-Net is the combination of MA-Net and ML-Net, andMA_ML_SL-

Net indicates the method that aggregates the three Convnets.

We utilize BeamSearch when generating the sentences: iteratively consider the k

best sentences up to timestep t when generating sentences of timestep t+1. Most

of our results use a beam search of size 1 for fast evaluating. For fair comparison

with the state-of-the-art, we give the results by using a beam of size 5.

6.4.2 Results on Caption Generation

We evaluate our approach on caption generation with 5000 test images. Table 6.1

shows the single-scale and multi-scale testing of the three Convnets. We list the

dimension of the feature since it is closely related with the number of LSTM pa-

rameters. It is interesting to see that, SL-Net, which utilizes the largest dimension

feature, performs the worst among the three Convnets. This demonstrates that

increasing the number of system parameters would not necessarily improve the

performance.

For single-scale testing, ML-Net brings about 1% boost over the SL-Net for most

evaluation metrics. This improvement is marginal compared to the MA-Net,

which outperforms the SL-Net signi�cantly over all the evaluation metrics. No-

tably, the increase of CIDEr reaches 0.093, from 0.703 to 0.796. On the other

hand, the multi-scale testing using FCN shows considerable improvement over

the corresponding single-scale testing, with the same feature dimension. This is

promising, especially considering the high e�ciency of FCN.

In addition to evaluating the three Convnets individually, we also explore the

e�ect of aggregating the Convnets, as shown in Table 6.2. We build the multi-
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Table 6.1: MS COCO results on caption generation by comparing three Convnets.

Both single-scale and multi-scale testing are shown. Here we use a beam search of

size 1.

Method Dim B-1 B-2 B-3 B-4 M R C

Single-scale Testing:

SL-Net 1000 0.651 0.474 0.333 0.229 0.214 0.483 0.703

ML-Net 80 0.664 0.487 0.345 0.241 0.213 0.487 0.717

MA-Net 300 0.686 0.516 0.374 0.266 0.228 0.506 0.796

Multi-scale Testing:

SL-Net 1000 0.666 0.489 0.345 0.239 0.219 0.489 0.735

ML-Net 80 0.679 0.496 0.351 0.245 0.219 0.49 0.75

MA-Net 300 0.697 0.528 0.384 0.274 0.231 0.511 0.81

Convnet based on MA-Net since it is the best individual Convnet. Overall, both

MA_ML-Net and MA_MC_SC-Net perform better than the individual MA-Net,

indicating that aggregating the Convnet is bene�cial for the caption generation.

This is reasonable given the fact that di�erent Convnets would learn di�erent con-

tents, and aggregating them generally lead to a more comprehensive prediction.

Furthermore, we also evaluate the multi-scale performance using FCN. Similarly,

the multi-scale scheme improves the accuracy of the evaluation metric remark-

ably. Finally, MA_MC_SC-Net can yield a quite competitive result, such as

0.704 B-1 and 0.846 CIDEr.

Table 6.2: MS COCO results on caption generation by multi-Convnet aggregation.

The results are based on BLEU, METEOR (M), ROUGE-L (R) and CIDEr (C)

metrics. Here we use a beam search of size 1.

Method B-1 B-2 B-3 B-4 M R C

Single-scale Testing:

MA-Net 0.686 0.516 0.374 0.266 0.228 0.506 0.796

MA_ML-Net 0.687 0.519 0.376 0.268 0.229 0.507 0.797

MA_ML_SL-Net 0.688 0.52 0.379 0.27 0.229 0.507 0.803

Multi-scale Testing:

MA-Net 0.697 0.528 0.384 0.274 0.231 0.511 0.81

MA_ML-Net 0.703 0.537 0.393 0.282 0.234 0.516 0.846

MA_ML_SL-Net 0.704 0.54 0.398 0.287 0.236 0.519 0.848

Comparison with the state-of-the-art We compare our MA_MC_SC-Net
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result with current state-of-the-art methods in Table 6.3. It can be seen that our

results delivered better results than most existing methods. Compared to [303],

our method obtained the same result on Bleu-1 with the soft-attention model,

slightly worse than the more sophisticated hard-attention model. But for all the

other evaluation metrics, our method achieved considerably better results. Sim-

ilar situation comes with [268], with which we also achieved overall competitive

performance. It is worthwhile to say that, our method is not inherently con�icted

with these methods, and we can incorporate them together for a better achieve-

ment. Note that [312] further improved their results by extracting, clustering

and selecting a large number of region proposals. Therefore, their great gains

are achieved at the expense of algorithm complexity. In contrast, bene�ted from

the high e�ciency of FCN, our multi-scale testing strategy brings negligible extra

cost compared to the single-scale testing. We argue that a sophisticated region

detection approach [44] is also applicable to our system, but it is out of the scope

of this work. Figure 6.6 shows some captioning examples.

Table 6.3: Comparison with current state-of-the-art on MS COCO caption gen-

eration. Here we use a beam search of size 5.

Method B-1 B-2 B-3 B-4 M C

Karpathy et al. [302] 0.625 0.450 0.321 0.230 0.195 0.66

mRNN [304] 0.670 0.490 0.350 0.250 - -

NIC [267] - - - 0.277 0.237 0.855

LRCN [266] 0.669 0.489 0.349 0.249 - -

gLSTM [307] 0.670 0.491 0.358 0.264 0.227 0.813

Bi-LSTM [306] 0.672 0.492 0.352 0.244 0.208 0.666

VNet-ft-LSTM [312] 0.680 0.500 0.370 0.250 0.220 0.730

Soft-Attention [303] 0.707 0.492 0.344 0.243 0.239 -

Hard-Attention [303] 0.718 0.504 0.357 0.250 0.230 -

Jin et al. [308] 0.697 0.519 0.381 0.282 0.235 0.838

ATT-FCN [268] 0.709 0.537 0.402 0.304 0.243 -

Ours 0.707 0.548 0.410 0.304 0.238 0.895
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Ours: A man riding a wave in 

the ocean. 

GT: A man riding a wave on a 

surfboard in the ocean. 

Ours: A living room with a lot 

of furniture. 

GT: Living room with furniture 

with garage door at one end. 

Ours: A man riding a horse at a 

horse. 

GT: A horse that threw a man 

off  a horse. 

Ours:  A close up of an 

elephant with an elephant 

GT: A man getting a kiss on the  

neck from an elephant's trunk 

Figure 6.6: The caption generation results for some MS COCO examples by our

MA_MC_SC-Net method. We show both the positive and negative examples.

6.4.3 Results on Image-sentence Retrieval

We report the image-to-sentence and sentence-to-image results in Table 6.4.

There are 5000 test images and 25,000 captions in total. Overall, MA_MC_SC-

Net outperforms other state-of-the-art works on both R@K and Med r.

Table 6.4: Image-sentence retrieval results on MS COCO dataset. R@K: higher

is better; Med r: lower is better.

Image to Sentence Sentence to Image

Method R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

Karpathy et al. [302] 16.5 39.2 52.0 9.0 10.7 29.6 42.2 14.0

Bi-LSTM [306] 16.6 39.4 52.4 9.0 11.6 30.9 43.4 13.0

Ours 16.9 39.8 53.1 8.0 12.4 31.5 44.0 12.0

6.5 Conclusion

In this work, we studied the e�ects of Convnets for the image captioning task. We

employed three Convnets based on single-label, multi-label, multi-attribute clas-

si�cation. In addition, we integrated the three Convnets for an richer aggregation

feature. During the test stage, we employed an e�cient multi-scale augmentation

approach. Experiments on MS COCO dataset demonstrated that our approach

achieved competitive results for both caption generation and image-sentence re-

trieval as compared to the state-of-the-art. In the future work, we will strive to

make use of the attention mechanism.
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Chapter 7

Conclusions

7.1 Conclusions

In this thesis, we explored and designed deep learning algorithms for better image

understanding. The topic of image understanding has long been an active research

�eld, and it aims to visualize and understand the image content in a way that is

consistent with human perception. To this end, there are many related tasks, such

as image classi�cation, object detection, image retrieval and image captioning to

name a few. While all these tasks may seem disjoint, developing a good image

representation is essential for all of them.

In Chapter 2, we presented a comprehensive review of the developments of various

deep learning algorithms. This chapter is intended to be useful for general neural

computing, computer vision and multimedia researchers who are interested in the

state-of-the-art in deep learning in computer vision. Generally, the deep learning

methods can be divided into four categories according to the basic method they

are derived from: Convolutional Neural Networks (CNN), Restricted Boltzmann

Machines (RBM), Autoencoder and Sparse Coding. Among these four categories,

CNN is the most commonly used for the computer vision area and also the basis

of the work in this thesis.

Chapter 3 presents an e�ective scheme to achieve image features (referred to
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as PPC). PPC is derived from the fully-connected CNN activations (referred

to as CNN). It aims to learn more information from the image and proposes

to extract CNN features from multiple spatial sub-regions, and aggregates the

multiple CNN together. Without increasing the complexity during the test phase,

the feature is further reduced to the same dimension with CNN (i.e. 4096-D) using

PCA. Although it is straightforward to achieve, PPC consistantly delivers better

performance than the commonly-used CNN, and has the potential to be useful

for many tasks.

Initially, researchers have focused on employing CNN activations based on the

fully-connected layers. However, current research studies are giving increased at-

tention to the convolutional layers, since they can preserve the spatial information

and contain rich semantic information. A common usage of the convolutional ac-

tivations is to encode them with the Bag-of-Words (BoW) variants, such as VLAD

and Fisher Vector. This pipeline not only preserves high discrimination of the

CNN activations, but also incorporates the `bag' conception to improve the in-

variance property to scale changes, location changes and occlusions. Motivated

by this pipeline, Chapter 4 proposes a novel method to incorporate the CNN

feature with the BoW framework. In contrast to the common practice, we do

not explicitly generate the codebook, and extensively assign the features to the

generated visual words according to the similarity. Instead, we take the feature

maps as the `surrogate' pars, and take the activation values as the assignment

strengths for these surrogate parts. As a consequence, our novel feature, i.e.

BoSP, is much easier to compute, and has a signi�cantly lower dimension than

the common usage of `CNN+BoW'.

Aside from the traditional image classi�cation task, Chapter 5 suggests address-

ing the hierarchical image classi�cation task, by incorporating the Convolutional

Neural Network (CNN) and Recurrent Neural Network (RNN). This task is in-

tended to generate multiple image labels in a coarse-to-�ne pattern, and thus

can provide a better understanding of the categories, especially the �ne-grained

categories. In addition to addressing the hierarchical image classi�cation task,

the CNN-RNN paradigm also has the following potential advantages: (1) It can
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improve the traditional leaf-level classi�cation performance by exploiting the re-

lationship between hierarchical labels; (2) It can be built on top of any CNN

architecture which is primarily designed for leaf-level classi�cation. Accordingly,

we built a high-performance baseline network, i.e. wider-ResNet, based on which

the CNN-RNN paradigm achieves remarkably better performance than the state-

of-the-art on CIFAR-100. (3) It can enhance the image classi�cation performance

when part of the training data is only annotated with coarse labels. This provides

a promising direction for weakly supervised learning.

The application of CNN-RNN paradigm is not limited to the image classi�cation

task. A more common usage is for the image captioning task. As is similar with

the image classi�cation, the captioning performance is also closely dependent on

the discriminative capacity of CNNs. In Chapter 6, we investigate the e�ects of

di�erent Convnets on image captioning, i.e. single-label Convnets, multi-label

Convnets and multi-attribute Convnets. Since the three Convnets focus on dif-

ferent visual contents in one image, we propose aggregating them together to

generate a richer visual representation.

7.2 Research Limitations

Although our research has reached its aims, we cannot neglect its limitations and

weaknesses.

First, from the general point of view, deep learning is often considered as a black

box. It can generate relevant results for the given input, but it is not clear what

the �nal learned network means - under what conditions will it work correctly. In

addition, the designing and training processes of the deep neural networks may

be sensitive: some small architectural and optimization di�erences may lead to

substantial variance in the �nal result.

Second, it is not clear how well the algorithms and architectures generalize to

images from other domains, such as biological images and medical images, since

they are established based on the o�-the-shelf models which are pretrained on

the ImageNet dataset, and ImageNet consists primarily of accurately annotated
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natural images. Moreover, we only evaluated our algorithms on the relatively

clean benchmarked datasets, and therefore it is di�cult to predict how well the

methods will work on imagery containing more complexity and noise.

Third, the designing of some algorithms in this thesis has limited theoretic foun-

dation. Take the proposed BoSP feature as an example, it was inspired by the

intuition of attempting to use bag-of-words approach on the feature maps from

the learned network because bag-of-words had signi�cant success in image un-

derstanding based on salient features. However, there was no guarantee that it

would work well, nor is there strong theory which would predict the weaknesses

of the learned network.

7.3 Future Work

In the future, we will extend our work in the following directions:

Fusing hand-crafted and deep learned features for image representa-

tion: The hand-crafted feature can be seen as a particular form that a human

designer thinks can represent the images well. Before the surge of CNN, hand-

crafted feature has long been a key component in the competition-winning sys-

tems for visual understanding. In the future, we would like to employ the idea of

hand-craft features to design the deep networks, in order to make the networks

focus more on the important areas.

Image captioning with grammar supervision: Image captioning is a new

emerging research area which can describe the image with more informative con-

tents, including the objects, actions, relations and etc. In order to generate novel

sentences for unseen scenes, most of the current works employ the generative

approaches, such as Baby Talk [301] and LRCN [266]. These approaches gener-

ate the words one-by-one, and as a consequence, the whole generated sentences

may be oddly organised. To obtain sentences that are more consistent with our

language, in our future work, we propose to provide grammar supervision during

the training of the network.
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Designing more comprehensive CNN models: CNN models have achieved

signi�cant success in various computer vision tasks, including image classi�ca-

tion, object detection, image retrieval, image captioning, to name a few. These

seemingly disjoint tasks do have some fundamental similarities. For example, Liu

et al. [318] proposed to utilize the segmentation annotations to help the edge

detection. Oquab et al. [37] took advantage of the object location to improve

the image classi�cation performance. While most of these works end up with

task-speci�c CNN models, we assume that the `real' arti�cial intelligence should

be capable of tackling a broad set of computer vision problems. Therefore, in our

future work, we want to exploit the synergy between di�erent visual tasks, and

design a universal network that can solve multiple tasks,
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English Summary

It has long been the goal of computer vision researchers to develop an algorithm

capable of understanding the visual information automatically and accurately.

While this seems to be e�ortless to humans, there is no robust solution to date

due to the well-known semantic gap between low-level features and the object

or concept that is being modeled. In recent years, deep learning algorithms

have been e�ective in closing this semantic gap due largely to the sophisticated

visual representations they developed. This has resulted in major advances in

diverse visual applications, such as image classi�cation, object detection, image

captioning and etc. The purpose of this thesis is to explore and design new deep

learning algorithms for better visual understanding.

First, we present a comprehensive review of recent deep learning advances which

targets general neural computing, computer vision and multimedia researchers

who are interested in the state-of-the-art in deep learning in computer vision.

Next, we establish our research on three visual applications: traditional image

classi�cation, hierarchical image classi�cation and image captioning.

The traditional image classi�cation task involves classifying an image into one pre-

de�ned category, and has been widely studied in the computer vision community

for decades. We proposed several new features, PPC and BoSP, to address this

task. PPC is a straightforward scheme, which extracts and aggregates CNN

features from di�erent image regions, and utilizes PCA to reduce the feature

dimension. BoSP regards the feature maps as surrogate parts, and proposes to

assign the dense image regions to these surrogate parts by observing the activation
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values. Both PPC and BoSP can be achieved without signi�cantly increasing the

computational cost.

Objects are often organised in a hierarchy. While the traditional image classi�-

cation task only focuses on the leaf-level categories, we propose that providing

an evolution of the image categories can better describe what the categories are.

Accordingly, we introduce the hierarchical image classi�cation task, which at-

tempts to generate hierarchical coarse-to-�ne labels rather than one leaf label,

and develop the CNN-RNN framework to address this task. In this framework,

the CNN is used to extract discriminative image features, and the RNN exploits

the relationship between the hierarchical categories and generate sequential la-

bels. In addition, we also investigate the e�ectiveness of utilizing this framework

for the traditional image classi�cation task and weakly supervised learning.

Another usage of the CNN-RNN framework is for image captioning, which is an

important and challenging task in vision-to-language research. It aims to describe

an image with meaningful and sensible sentence-level captions. We investigate

the e�ects of di�erent Convnets on image captioning, i.e. single-label Convnet,

multi-label Convnet and multi-attribute Convnet. As these three Convnets focus

on di�erent visual contents in the image, we propose aggregating them together

for a richer visual representation. Overall, we achieve competitive results with

the state-of-the-art.
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Al geruime tijd is het doel van `Computer Vision'-onderzoekers een algoritme

te ontwikkelen dat in staat is om automatisch en accuraat visuele informatie te

begrijpen. Terwijl het lijkt dat mensen dit zonder enige inspanning kunnen is

er tot op de dag van vandaag geen robuuste oplossing beschikbaar vanwege de

bekende semantische kloof tussen het object of concept dat gemodelleerd wordt

en haar low-level features. Recentelijk, zijn `Deep Learning'-algoritmen e�ectief

gebleken om deze semantische kloof te dichten voornamelijk als gevolg van de ge-

avanceerde visuele representatie die zij hebben ontwikkeld. Dit heeft geresulteerd

in substantiële verbeteringen in verschillende visuele toepassingen zoals beeld-

classi�catie, object-detectie, beeld-ondertiteling, etc. Het doel van deze thesis is

om nieuwe `Deep Learning'-algoritmen te onderzoeken en te ontwikkelen voor een

beter begrip van visuele informatie.

Ten eerste geven we een uitgebreid en diepgaand overzicht van recente ontwik-

kelingen en vooruitgang op het gebied van `Deep Learning'. Speciaal gericht op

onderzoekers in de gebieden `Neural Computing', `Computer Vision' en `Multime-

dia' die geïnteresseerd zijn in de state-of-the-art in `Deep Learning in Computer

Vision'. Vervolgens beschrijven we ons onderzoek op het gebied van drie visuele

toepassingen: traditionele beeld-classi�catie, hiërarchische beeld-classi�catie en

beeld-beschrijving (-`captioning').

De traditionele beeld-classi�catie-taak bestaat uit het classi�ceren van een beeld

in een van te voren gede�nieerde categorie. Dit probleem is binnen de `Com-

puter Vision'-gemeenschap gedurende verschillende decennia op brede schaal on-

derzocht. Om deze taak uit te voeren hebben we verschillende nieuwe beeld-
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kenmerken voorgesteld: PPC en BoSP. PPC is een eenvoudig schema dat CNN-

kenmerken extraheert en samenneemt vanuit verschillende regio's van het beeld en

PCA toepast om de dimensie van de kenmerken te reduceren. BoSP beschouwt de

afbeeldingen van de beeld-data op de kenmerken als surrogaat-delen en wijst aan

de hand van de activatie-waarden de dichtbevolkte regio's van het beeld toe aan

deze surrogaat-delen. Zowel PPC- als BoSP-kenmerken kunnen bepaald worden

zonder een signi�cante toename in de berekeningskosten.

Objecten zijn vaak georganiseerd in een hiërarchie. Terwijl de traditionele beeld-

classi�catie-taak zich enkel richt op de categorieën op het laagste niveau in de

uiteinden van de hiërarchie, stellen wij dat de categorieën beter kunnen worden

beschreven door de evolutie van de beeld-categorieën. Daarom introduceren we

de hiërarchische beeld-classi�catie-taak, welke tracht hiërarchische labels van grof

naar �jn te genereren in plaats van een enkel label op het laagste niveau. Hiertoe

ontwikkelen we een CNN-RNN raamwerk, waarbij de CNN wordt gebruikt om

discriminatieve beeldkenmerken te extraheren en de RNN de relatie tussen de

hiërarchische categorieën exploiteert om sequentiële labels te genereren. Boven-

dien onderzoeken we de e�ectiviteit van het gebruik van dit raamwerk voor de

traditionele beeld-classi�catie-taak en `Weakly Supervised Learning'.

Een ander gebruik van het CNN-RNN raamwerk ligt bij de beschrijving van

het beeld. Dit is een belangrijke en uitdagende taak in `Vision-to-Language'-

onderzoek. Hierbij is het doel om een beeld te beschrijven met betekenisvolle

en zinnige beschrijvingen op het niveau van volledige zinnen. We onderzoeken

de e�ecten van verschillende Convnets op de beeldbeschrijvingen, d.w.z. Single

Label Convnet, Multi-Label Convnet en Multi-Attribute Convnet. Alle drie de

Convnets richten zich op verschillende delen van de visuele inhoud van het beeld.

We stellen voor om ze samen te nemen om zo een rijkere visuele representatie te

verkrijgen. Over het algemeen bereiken we competitieve resultaten in vergelijking

met de state-of-the-art.
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