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Bayesian Inference for Correlations in the Presence of 
Measurement Error and Estimation Uncertainty
Dora Matzke*, Alexander Ly*, Ravi Selker*, Wouter D. Weeda†, Benjamin Scheibehenne‡, 
Michael D. Lee§, and Eric-Jan Wagenmakers*

Whenever parameter estimates are uncertain or observations are contaminated by measurement error, the 
Pearson correlation coefficient can severely underestimate the true strength of an association. Various 
approaches exist for inferring the correlation in the presence of estimation uncertainty and measurement 
error, but none are routinely applied in psychological research. Here we focus on a Bayesian hierarchical 
model proposed by Behseta, Berdyyeva, Olson, and Kass (2009) that allows researchers to infer the 
underlying correlation between error-contaminated observations. We show that this approach may be 
also applied to obtain the underlying correlation between uncertain parameter estimates as well as the 
correlation between uncertain parameter estimates and noisy observations. We illustrate the Bayesian 
modeling of correlations with two empirical data sets; in each data set, we first infer the posterior 
distribution of the underlying correlation and then compute Bayes factors to quantify the evidence that 
the data provide for the presence of an association.
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Introduction
Formal mathematical models are useful tools for 
analyzing data obtained from psychological experiments 
(e.g., Busemeyer & Diederich, 2010; Forstmann & 
Wagenmakers, 2015; M. D. Lee & Wagenmakers, 2013; 
Levine, 2000; Lewandowsky & Farrell, 2010). These models 
come in many flavors, ranging from simple statistical 
distributions to sophisticated cognitive process models. 
For example, in the field of response-time modeling, a 
simple statistical model is the ex-Gaussian distribution, 
while a sophisticated process model is the diffusion model 
(Ratcliff, 1978), a popular sequential sampling model 
of choice response times. Regardless of its degree of 
sophistication, the general goal of mathematical modeling 
is to capture regularities in the data using parameters 
that represent separate statistical components or distinct 
psychological variables.

Typically, investigators estimate model parameters for 
each participant separately, for instance with maximum 
likelihood (e.g., Myung, 2003; Ly, Marsman, Verhagen, 

Grasman, & Wagenmakers, in press) or Bayesian methods 
(e.g., M. D. Lee & Wagenmakers, 2013). Once the 
parameter estimates have been obtained, researchers 
are sometimes interested in assessing the association 
between parameters, or between parameters and other 
observed variables. For example, a researcher may fit 
the diffusion model to the individual data sets obtained 
from a lexical decision task and compute the correlation 
between parameter estimates that reflect participants’ 
response caution and parameter estimates that quantify 
participants’ rate of information accumulation (e.g., drift 
rate). Alternatively, a researcher may be interested in 
computing the correlation between estimates of drift rate 
and measurements of general intelligence.

The Pearson product-moment correlation coefficient 
is a popular measure of the linear relationship between 
two variables (for Bayesian solutions, see Ly, Verhagen, 
& Wagenmakers, 2016a, 2016b; Ly, Marsman, & 
Wagenmakers, 2015). Its popularity in psychology is 
illustrated by the fact that 42% of the 67 articles in the 
2012 volume of the Journal of Experimental Psychology: 
General (JEP:G) report at least one Pearson correlation 
coefficient, with 152 correlations in total, and an average 
of more than 5 correlations per article.1 Despite its 
popularity, psychology as a field seems generally unaware 
that the correlation coefficient can severely underestimate 
the true strength of the association in the presence of 
measurement error or estimation uncertainty.
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Measurement Error
It is generally recognized that most—if not all—
psychological constructs are measured imperfectly. It is 
also well-known among statisticians that measurement 
error decreases the correlation coefficient between 
two sets of observations (e.g., Charles, 2005; Spearman, 
1904). Although various approaches are available to 
obtain correlation coefficients that take into account 
measurement error, none are routinely applied in 
psychology. Indeed, out of the 28 JEP:G articles in the 2012 
volume that reported one or more correlations, only one 
acknowledged the deleterious effects of measurement 
error and corrected the observed correlation.

Attempts to remedy the problem of the attenuation 
of the correlation date back to Spearman (1904), 
who proposed to correct the correlation coefficient 
using the reliability with which the observations were 
obtained. Spearman’s attenuation formula is related 
to errors-in-variables models, which are extensions to 
standard regression models that aim to correct the bias 
in parameter estimates that results from measurement 
error (e.g., Buonaccorsi, 2010; Cheng & Van Ness, 
1999; Clayton, 1992; Fuller, 1987; Westfall & Yarkoni, 
2016; for Bayesian solutions, see Congdon, 2006; Gilks, 
Richardson, & Spiegelhalter, 1996; Gustafson, 2004; 
Lunn, Jackson, Best, Thomas, & Spiegelhalter, 2012; Muff, 
Riebler, Held, Rue, & Saner, 2015; Richardson & Gilks, 
1993). If both the criterion and the response variables are 
assumed to be measured with noise, Spearman’s method 
and the correction within standard linear regression 
models result in the same disattenuation (see Behseta 
et al., 2009, Appendix). Although these solutions take 
into account uncertainty that results from measurement 
noise, they do not explicitly address uncertainty that 
results from estimating model parameters from limited 
data.

Estimation Uncertainty
It is also generally recognized that if only limited data 
are available, model parameters are typically estimated 
with some degree of uncertainty. It is, however, rarely 
acknowledged that the correlation coefficient computed 
between two sets of uncertain parameter estimates can 
severely underestimate the true strength of the association 
between the parameters. This widespread neglect is 
puzzling because various approaches are available to 
obtain correlation coefficients that take into account 
the uncertainty of the parameter estimates. Monte Carlo 
methods that deal with the adverse consequences of 
estimation uncertainty in cognitive models have been 
described by Ratcliff and Strayer (2014). The Bayesian 
estimation of correlations between parameters in 
hierarchical regression models has been illustrated by 
Gelman and Hill (2007, p. 279). Bayesian solutions for 
inferring the correlation in the context of hierarchical 
cognitive models have been outlined by Klauer (2010), 
Matzke, Dolan, Batchelder, and Wagenmakers (2015), 
Rouder, Lu, Morey, Sun, and Speckman (2008), and Rouder 
et al. (2007). Although these solutions take into account 
uncertainty that results from parameter estimation, they 

do not explicitly address uncertainty that results from the 
measurement error associated with observed covariates.

Measurement Error and Estimation Uncertainty: A 
Bayesian Solution
Methods that remedy the attenuation of the correlation 
typically target uncertainty that results from either 
imperfect measurements or parameter estimation, but do 
not deal with both sources of uncertainty simultaneously. 
We attempt to address this limitation and describe a 
Bayesian method that allows researchers to infer the 
underlying correlation between (1) two sets of error-
contaminated observations; (2) two sets of uncertain 
parameter estimates; and (3) a set of uncertain parameter 
estimates and a set of error-contaminated observations. 
Our approach is based on the Bayesian hierarchical 
method proposed by Behseta et al. (2009) that explicitly 
models measurement error, and so can be conceived as a 
principled method for “correcting” the correlation for the 
presence of noise in the data. Our approach extends that 
of Behseta et al. so that correlations involving uncertain 
parameter estimates can be inferred.

Our method for modeling correlations involving 
parameter estimates comprises of two-steps: In the first 
step, we obtain posterior distributions for the model 
parameters of each participant. In the second step, we rely 
on hierarchical modeling to adjust the correlation for the 
uncertainty of the parameter estimates. As a result of the 
hierarchical formulation, the point estimates obtained in 
the first step are shrunk toward their corresponding group 
mean. The degree of shrinkage is determined by the relative 
uncertainty of the estimates. As a result, the correlation 
computed using the shrunken estimates is automatically 
adjusted for the additional source of variability that 
results from imperfect parameter estimation. The benefits 
of this adjustment are twofold. First, as the method 
infers the likely value of the correlation in the absence of 
estimation uncertainty, it typically increases the absolute 
value of the correlation. Second, as the method properly 
accounts for the precision of the parameter estimates, it 
increases the uncertainty of the correlation and guards 
against overconfident conclusions about the relationship 
between noisy parameter estimates.

Bayesian hierarchical modeling also allows for the 
simultaneous estimation of the participant-level model 
parameters and their correlations (e.g., Gelman & Hill, 
2007). In this approach, the individual parameters are 
assumed to follow a bivariate (or multivariate) normal 
distribution that is described by the group-level means 
and a variance-covariance matrix. The group-level and the 
participant-level parameters are estimated simultaneously 
from the data, where the group-level bivariate normal 
distribution acts as a prior to adjust extreme individual 
estimates to more moderate values. As a result of shrinkage 
of the individual parameters, the correlation automatically 
takes into account the uncertainty of the participant-level 
estimates. Note that the two-step approach presented 
in this article also relies on hierarchical modeling, but, 
in contrast to simulations hierarchical modeling where 
the model parameters and the covariance structure are 
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estimated jointly, our framework relies on a modular 
approach that uses the hierarchical structure only in the 
second step.

Our two-step procedure and the simultaneous 
hierarchical framework assume different generative 
models for the data and as such constitute different 
approaches to modeling correlations. The two-
step procedure assumes that the individual model 
parameters that generated the data are uncorrelated a 
priori. The simultaneous framework assumes a priori 
correlated parameters and automatically uses this prior 
information during the estimation of the individual 
parameters. We see merits in both approaches. The 
two-step approach is easy-to-use and can be applied 
when only point estimates—from Bayesian or non-
Bayesian procedures—and the corresponding estimation 
uncertainties are available. Moreover, the two-step 
approach can be useful in exploratory analyses of the 
correlation between model parameters and external 
observations (see also Ly, Boehm, et al., in press). The 
simultaneous modeling framework has the potential to 
correct for bias in the individual parameter estimates 
that may result from fitting a simpler but unrealistic 
model with a priori uncorrelated parameters to scarce 
data. However, in the context of theory-laden models 
with meaningful priors, one should consider whether 
the prior set-up for the multivariate normal distribution 
used in the simultaneous framework adequately 
approximates the desired prior set-up for the cognitive 
model in question (M. D. Lee & Vanpaemel, in press). 
Note that the two-step and simultaneous modeling 
frameworks yield similar results when the prior has little 
or no influence on the individual posterior distributions, 
such as in situations with a large number of observations 
per participant. Of course, if the individual parameters 
are estimated accurately and precisely, the attenuation 
of the correlation tends to be negligible.

The outline of this article is as follows. First, we 
illustrate the consequences of measurement error for 
the computation of the correlation and show that a 
similar problem applies to correlations derived between 
uncertain parameter estimates. Second, we describe 
a Bayesian hierarchical approach for inferring the 
underlying correlation in the presence of measurement 
error (Behseta et al., 2009) and show that the same 
method can also aid the recovery of the underlying 
correlation between two sets of parameter estimates. 
Third, we illustrate our approach with two empirical data 
sets: one focusing on the correlation between parameters 
of cumulative prospect theory (Tversky & Kahneman, 
1992), and the other focusing on the correlation between 
general intelligence and the drift rate parameter of the 
diffusion model (Ratcliff, 1978).

Attenuation of the Correlation
First we illustrate the deleterious consequences 
of measurement error for the computation of the 
correlation. We then show that a similar problem applies 
to correlations computed between two sets of parameter 
estimates that are obtained from scarce data.

The Consequences of Measurement Error
Let θ and β be unobserved random variables and let θ̂ and 
β̂ be the observed, error-contaminated measurements:

 
ˆ ε= + θθ θ  (1)

and

 
ˆ ,ε= + ββ β  (2)

where ϵθ and ϵβ are the measurement errors associated 
with θ and β, respectively. The measurement errors are 
uncorrelated with θ and β and with each other, and are 
assumed to be normally distributed with variance 2

εθ
σ  and 

2
εβ

σ :

 
( )2Normal 0, εε ∼

θθ σ  (3)

and

 
( )2Normal 0, ,εε ∼

ββ σ  (4)

so that

 ( )2Normal ,ˆ
ε∼
θ

θ θ σ  (5)

and

 
( )2Normal .ˆ , ε∼ ββ β σ  (6)

The correlation between the unobserved variables θ and β 
with variances 2

θσ  and 2
βσ , respectively, is given by:

 
2 2

.θβ

θ

σ
ρ

σ σ
=

β
 (7)

The correlation between the observed variables θ̂ and β̂ is 
given by:

 
( )( )2 2 2 2

.r
ε ε

=
+ +

θ β

θβ

θ β

σ

σ σ σ σ
 (8)

It follows from Equation 7 and Equation 8 that the observed 
correlation r is always lower in absolute value than the 
unobserved true correlation ρ due to the additional 
source of variability that results from measurement error2 
(see also Behseta et al., 2009, Appendix).

The Consequences of Estimation Uncertainty
In many applications of mathematical modeling, 
researchers estimate model parameters for each 
participant separately with maximum likelihood or 
Bayesian methods. In situations with only a limited 
number of observations per participant with respect to 
the number of parameters, the model tends to overfit 
the data. The resulting parameter estimates are therefore 
often overdispersed relative to the true parameters that 
generated the data (Farrell & Ludwig, 2008; Rouder, Lu, 
Speckman, Sun, & Jiang, 2005; Rouder, Sun, Speckman, 
Lu, & Zhou, 2003). In fact, we can distinguish two sources 
of variability in parameter estimates: variability that 
reflects true individual differences in model parameters 
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and variability that reflects the uncertainty of the 
estimates that results from estimating model parameters 
from limited information. The inflation of the variability 
of the estimates as a result of estimation uncertainty may 
in turn decrease the observed correlation; as shown in 
Equation 7 and Equation 8, all else being equal, the larger 
the variances, the smaller the correlation.

Example: Step 1. Consider the following hypothetical 
scenario. A researcher is interested in the heritability 
of the latencies of speeded two-choice decisions. In 
particular, the researcher hypothesizes that fast response 
times (RTs) are positively correlated between pairs of 
homozygotic twins. The researcher tests 80 twin pairs in 
a simple letter discrimination task (e.g., Thapar, Ratcliff, 
& McKoon, 2003) with 100 trials. The researcher models 
the RT data of each participant with the ex-Gaussian 
distribution (Hohle, 1965; Matzke & Wagenmakers, 2009). 

The ex-Gaussian distribution is a popular RT distribution 
that results from the convolution of a normal and an 
exponential distribution; the ex-Gaussian µ parameter 
gives the mean of the normal component and is often used 
to quantify the latency of fast responses. The researcher 
obtains posterior distributions for the µT1 (Twin 1) and 
µT2 (Twin 2) parameter for each twin pair using Bayesian 
inference. The researcher then computes the mean of the 
posterior distribution of the parameters and uses these as 
point estimates. Lastly, the researcher obtains a Pearson 
correlation coefficient of r = 0.75 between the two sets of 
point estimates.

Suppose that—unbeknownst to the investigator—the 
true value of the µT1 and µT2 parameters that generated 
the data are known for each twin pair, and so is the true 
correlation between the parameters: ρ = 0.86. The gray 
points in the top row of Figure 1 show the point estimates 

Figure 1: Bayesian inference for the correlation in the presence of estimation uncertainty. The gray points show the 
point estimates 1T̂μ  and 2T̂μ  plotted against their true values (Step 1). The black points show the posterior means 
of the inferred µT 1 and µT 2 parameters from the hierarchical analysis plotted against their true values (Step 2). The 
horizontal black arrows indicate the range of the true values; the vertical gray and black arrows indicate the ranges 
of the point estimates and the inferred parameters, respectively. The inferred parameters are less dispersed than the 
point estimates. The bottom panel shows the posterior distribution of the correlation ρ from the hierarchical analysis: 
it more closely approximates the true correlation (dashed line) between µT1 and µT2 than the Pearson correlation 
coefficient r computed between the point estimates (dotted line).
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µ̂T1 and µ̂T2 plotted against their true values. The gray 
vertical arrows indicate the range of the point estimates; 
the black horizontal arrows indicate the range of the 
true values. The arrows show that the point estimates 
are more variable than the true values. Note that this 
result also holds in the maximum likelihood framework. 
Most importantly, as shown in the bottom panel, the 
Pearson correlation coefficient computed between the 
point estimates µ̂T1 and µ̂T2 (i.e., dotted line at ρ = 0.75) 
underestimates the true correlation between µT1 and µT2 
(i.e., dashed line at ρ = 0.86) as a result of the additional 
source of variability that results from the uncertainty of 
the point estimates.

A Bayesian Solution to Remedy the Attenuation 
of the Correlation
In this section, we outline the Bayesian approach proposed 
by Behseta et al. (2009) that allows for the estimation of 
the underlying correlation between error-contaminated 
observations. We then show that the same Bayesian model 
can also aid the recovery of the underlying correlation 
between uncertain parameter estimates.

Inferring the Correlation in the Presence of 
Measurement Error
Behseta et al.’s (2009) method for inferring the underlying 
correlation in the presence of measurement error relies 
on Bayesian hierarchical modeling (e.g., Farrell & Ludwig, 
2008; Gelman & Hill, 2007; M. D. Lee, 2011; Rouder et 
al., 2005). The graphical representation of the hierarchical 
model is shown in Figure 2. Observed variables are 
represented by shaded nodes and unobserved variables 
are represented by unshaded nodes. The graph structure 
indicates dependencies between the nodes (e.g., M. D. Lee 
& Wagenmakers, 2013).

Level I: Observed Data. As before, let θ and β represent 
the true values, θ̂ and β̂ the corresponding observed 
values, and ϵθ and ϵβ the normally distributed errors 
associated with θ and β, respectively. For each observation 
i, i = 1, …, N, θ̂i and β̂i are given by:

 
( )2Normal ,ˆ

ii i ε∼
θ

θ θ σ  (9)

and

 
( )2Normal , .ˆ

ii i ε∼
β

β β σ  (10)

The error variances 2

iεθ
σ  and 2

iεβ
σ  are assumed to be known 

a priori or are estimated from data. Note that the model 
does not assume homogenous error variances across the N 
observations. Instead, each observation i has its own error 
variance.

Level II: Inferred Variables. For each observation i, the 
inferred parameters ηi = (θi, βi) are assumed to follow a 
bivariate normal distribution, with means µ and variance-
covariance matrix Σ:

 ( )Normal , ,i ∼η μ Σ  (11)

where

 

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
= θ

β

μ
μ

μ  (12)

and

 

2

2 .
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

= θ θ β

θ β β

σ ρσ σ
ρσ σ σ

Σ  (13)

Figure 2: Graphical model for inferring the correlation in the presence of measurement error. Observed variables are 
represented by shaded nodes and unobserved variables are represented by unshaded nodes. The graph structure indi-
cates dependencies between the nodes. The node η = (θ, β) represents the unobserved true values, θ̂ and β̂ represent 
the observed variables, and 2

εθ
σ  and 2

εβ
σ  represent the observed error variances. The nodes µθ and µβ represent the 

unobserved group-level means, and σθ and σβ represent the unobserved group-level standard deviations. The node ρ 
represents the unobserved true correlation between θ and β.
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Here ρ is the underlying correlation between θ and β that 
is not contaminated by measurement error.

The group-level means µ and the three elements (i.e., 
σθ, σβ, and ρ) of the variance-covariance matrix Σ are 
estimated from data and require prior distributions. We 
use the following prior set-up:

 
( )2Normal 0, ,∼

θθ μμ σ  (14)

 
( )2Normal 0, ,∼

ββ μμ σ  (15)

 
( )Uniform 0, ,b∼

θθ σσ  (16)

 
( )Uniform 0, ,b∼

ββ σσ  (17)

where 2

θμ
σ , 2

μβσ , bσθ, and bσβ are set to large values to create 
relatively uninformative prior distributions. We follow 
Jeffreys (1961) and assign the correlation ρ a default prior 
distribution that is uniform from –1 to 1, expressing the 
belief that all values of the correlation are equally likely a 
priori:

 ( )Uniform 1,1 .∼ −ρ  (18)

A benefit of the hierarchical formulation is that the 
correlation ρ is automatically adjusted for the additional 
source of variability that results from the uncertainty 
of the observations. In particular, the observations θ̂ 
and β̂—especially those that are measured with great 
uncertainty—are shrunk toward their corresponding 
group mean. The degree of shrinkage is determined by 
the relative uncertainty of the observations, so that the 
posterior means of the inferred parameters θ and β are 
given by a weighted combination of the observations and 
the weighted group means. The inferred parameters are 
therefore less dispersed than the observed data points, 
and the inferred correlation is typically higher than the 
correlation computed with the direct observations.

Parameter estimation for the Bayesian hierarchical model 
outlined above may proceed using standard Bayesian 
statistical software, such as WinBUGS (Bayesian inference 
Using Gibbs Sampling for Windows; Lunn et al., 2012; for 
an introduction for psychologists, see Kruschke, 2010b, 
and M. D. Lee & Wagenmakers, 2013). The WinBUGS script 
(version 1.4.3) is presented in the Appendix. Note that the 
WinBUGS script requires minimal, if any, modification 
to run under OpenBUGS (Lunn, Spiegelhalter, Thomas, 
& Best, 2009) or JAGS (Plummer, 2003, 2013). The Stan 
project (Stan Development Team, 2012) provides yet 
another alternative to obtain the posterior distribution of 
ρ. For a detailed introduction to Bayesian methods, the 
reader is referred to Dienes (2011), Edwards, Lindman, 
and Savage (1963), Etz and Vandekerckhove (in press), 
Gelman and Hill (2007), Gelman et al. (2013), Kruschke 
(2010b), Kruschke (2010a), M. D. Lee and Wagenmakers 
(2013), Rouder and Lu (2005), Rouder, Speckman, Sun, 

Morey, and Iverson (2009), Wagenmakers et al. (2015), and 
Wagenmakers et al. (in press).

Inferring the Correlation in the Presence of Estimation 
Uncertainty
The Bayesian hierarchical model proposed by Behseta et al. 
(2009) may be also used to infer the correlation between 
uncertain parameter estimates. We focus on parameter 
estimates obtained with Bayesian inference because the 
resulting posterior distributions can be conveniently used 
to quantify estimation uncertainty.

In the first step, we infer the posterior distribution of 
the model parameters for each participant. We use the 
posterior mean as a point estimate for the parameters; 
we use the posterior variance as a measure of the 
uncertainty of the estimates. Moreover, we assume that 
the point estimates can be conceptualized as an additive 
combination of a true parameter value and a normally 
distributed displacement parameter (see Equations 
9–10).3 In the second step, we use the graphical model 
in Figure 2 with two minor adjustments to infer the 
underlying correlation between the model parameters. 
First, we replace the observed measurements θ̂i and 
β̂i with the point estimates (i.e., mean of the posterior 
distributions). Second, we substitute the measurement 
error variances 2

iεθ
σ  and 2

iεβ
σ  with the uncertainty of 

the point estimates (i.e., variance of the posterior 
distributions).

As a result of the hierarchical formulation, the point 
estimates are shrunk toward their corresponding group 
mean, where the degree of shrinkage is determined by 
the relative uncertainty of the estimates. The correlation 
ρ is therefore automatically adjusted for the additional 
source of variability that results from imperfect parameter 
estimation.

Example Continued: Step 2. Aware of the disadvantages 
of parameter estimation with scarce data, the researcher 
sets out to use Bayesian hierarchical modeling to infer 
the underlying correlation between µT1 and µT2. The 
researcher uses the mean of the posterior distribution 
of the individual parameters as point estimates (µ̂T1 and 
µ̂T2) and quantifies their uncertainty with the variance 
of the posteriors (

1

2

Tεμ
σ  and 

2

2

Tεμ
σ ). The researcher then 

feeds the posterior means and posterior variances into 
the hierarchical model in Figure 2 and adjusts the prior 
distribution of the group-level means and group-level 
standard deviations to match the measurement scale of 
the RT data.

The black points in the top rows of Figure 1 show the 
posterior means of the inferred µT1 and µT2 parameters 
plotted against their true values. The black vertical arrows 
indicate the range of the inferred parameters; as a result of 
shrinkage, the inferred parameters from the hierarchical 
analysis are less dispersed than the point estimates (i.e., 
gray points). Most importantly, as shown in the bottom 
panel, the posterior distribution of the correlation ρ from 
the hierarchical analysis more closely approximates the 
true correlation between µT1 and µT2 than the Pearson 
correlation coefficient r computed between the point 
estimates.
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Empirical Examples
We now turn to two examples from the existing literature. 
In the first example, we demonstrate how our Bayesian 
approach can be used to infer the underlying correlation 
between two sets of parameter estimates. In particular, we 
assess the correlation between parameters of cumulative 
prospect theory obtained at two different time points. In 
the second example, we show how the Bayesian approach 
can be used to infer the underlying correlation between a 
set of parameter estimates and a set of error-contaminated 
measurements. In particular, we assess the correlation 
between the drift rate parameter of the diffusion model 
and general intelligence as measured by the Raven 
Progressive Matrices Test.

The examples proceed as follows: We estimate the 
posterior distribution of the model parameters for 
each participant separately and use the mean of the 
posterior distributions as point estimates. To highlight 
the advantages of our approach, we then conduct two 
separate analyses. In the first analysis, we compute 
the posterior distribution of the observed correlation r 
by modeling the point estimates and the Raven scores 
directly using a bivariate normal distribution. In the 
second analysis, we take into account the uncertainty 
of the parameter estimates and the Raven scores and 
compute the posterior distribution of the inferred 
underlying correlation ρ using the hierarchical model 
in Figure 2. For both analyses, we run three MCMC 
chains with over-dispersed start values. We discard 
the first 1,000 posterior samples as burn in and retain 
only every 3rd sample to reduce autocorrelation. Results 
reported below are based on a total of 14,000 posterior 
samples. Convergence of the MCMC chains is assessed by 
visual inspection and the R̂ statistic (i.e., R̂ < 1.05 for all 
parameters; Gelman & Rubin, 1992).

Finally, for both analyses, we compute the Bayes factor 
(BF+0; Jeffreys, 1961; Kass & Raftery, 1995) to quantify the 
evidence the data provide for the presence of a positive 
association (H0: ρ = 0 vs. H+: ρ > 0). First, we determine 
the two-sided Bayes factor using the Savage-Dickey 
density ratio by computing the ratio of the height of 
the prior and the posterior distribution of ρ under the 
alternative hypothesis at ρ = 0 (e.g., Dickey & Lientz, 
1970; Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 
2010; Wetzels, Grasman, & Wagenmakers, 2010). We then 
compute the one-sided—order-restricted—Bayes factor 
as recommended by Morey and Wagenmakers (2014), 
namely by correcting the two-sided Bayes factor using the 
proportion of posterior samples that is consistent with 
the order-restriction. As the Bayes factor is sensitive to 
the choice of the prior (e.g., Bartlett, 1957; Liu & Aitkin, 
2008), we also examine the robustness of the conclusions 
with respect to the width of the prior distribution. In 
particular, we start with a Beta distribution stretched out 
between –1 and +1 with shape parameters α = β = 1.4 We 
then increase the value of α and β, creating progressively 
more informative symmetric prior distributions around 
the test value (i.e., ρ = 0). The R script (version 3.2.4; R 
Core Team, 2016) for the computation of the Bayes factor 
is available at https://osf.io/mvz29/.

Example 1: Correlation between Parameters of 
Cumulative Prospect Theory
Our first example features a data set obtained from a 
decision-making experiment reported in Glöckner and 
Pachur (2012). The 64 participants were instructed to 
choose between monetary gambles in two experimental 
sessions. The two sessions were separated by one week 
and each consisted of 138 two-outcome gambles.

We model the observed choice data with cumulative 
prospect theory (CPT; Tversky & Kahneman, 1992) and 
focus on the δ parameter that governs how individual 
decision makers weight the probability information of 
the gambles: high values of δ indicate high degree of 
risk aversion. As the CPT parameters are assumed to be 
relatively stable across short periods of time, we examine 
the correlation between the δ parameters estimated from 
data collected during the two experimental sessions. We 
infer posterior distributions for the model parameters for 
each participant, separately for the two testing occasions, 
by adapting the model used by Nilsson, Rieskamp, and 
Wagenmakers (2011).5 The prior distribution for δ covers a 
wide range of plausible values based on previous research.

The posterior distributions of the individual model 
parameters are obtained using JAGS (version 3.3.0). We 
use the posterior means as point estimates for the δ 
parameters on the two testing occasions: δ̂1 and δ̂2. For 
the estimation of the inferred correlation ρ, we use the 
variance of the posterior distributions to quantify the 
uncertainty of δ̂1 and δ̂2: 1

2
εδ

σ  and 
2

2
εδ

σ .

Results
The results are shown in Figure 3. Panel A shows 
a scatterplot between the point estimates 

1̂δ  and  

2̂δ . Panel B shows the same scatterplot but includes the 
corresponding estimation uncertainties 1δ

σε  and 2δ
σε . 

Panel C shows a scatterplot of the mean of the posterior 
distributions of the inferred η = (δ1, δ2) parameters. Panel 
D shows the posterior distribution of the observed (r) and 
the inferred (ρ) correlation.

As shown in Panel A, the Pearson correlation coefficient 
r between the point estimates is 0.62. If we take into 
account the uncertainty of the point estimates, the 
correlation increases substantially. Panel C shows that the 
posterior means of the inferred δ1 and δ2 parameters are 
shrunk toward their group mean and are associated very 
strongly. Panel D shows that the posterior distribution 
of the inferred correlation ρ is shifted to higher values 
relative to the posterior of the observed correlation r. In 
fact, after accounting for the uncertainty in δ̂1 and δ̂2, 
the mean of the posterior distribution of the correlation 
increases from 0.61 to 0.92.

One-sided Bayes factors indicate decisive evidence 
(Jeffreys, 1961) for the presence of a positive association 
for the observed r as well as the inferred ρ correlation; 
in both analyses, the data are more than 3,000,000 times 
more likely under H+ than under H0. This result is visually 
evident from the fact that both posterior distributions are 
located away from zero such that their height at ρ = 0 is 
all but negligible. The results of the robustness analyses 
for the inferred correlation ρ are shown in Figure 4. The 

https://osf.io/mvz29/
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value of the Bayes factor increases with increasing values 
of α and β; regardless of the prior distribution, the Bayes 
factor indicates overwhelming evidence in favor of H+.

The dramatic increase in the correlation is not 
unusual. Figure 5 shows the results of a simulation 
study investigating the magnitude of the attenuation for 
different values of the true correlation in a parameter 
setting that resembles the one found in the present data. 
We conducted five sets of simulations, each with a different 
value of the true correlation: 0.92 (i.e., the posterior 
mean of the inferred correlation ρ in the present data), 
0.21, 0, –0.21, and –0.92. For each set of simulations, we 
generated 1,000 synthetic data sets with N = 64, using the 
estimation uncertainties 

1

2
εδ

σ  and 
2

2
εδ

σ  and the posterior 

mean of the group-level µδ1, µδ2, 1

2
δσ , and 2

2δσ  parameters 
obtained from the Glöckner and Pachur (2012) data. We 
then computed the Pearson correlation coefficient r* in 
each synthetic data set. The gray violin plots (e.g., Hintze & 
Nelson, 1998) show the distribution of the 1,000 r* values 
for the five levels of the true correlation.

Two results are noteworthy. First, all else being equal, 
the larger the absolute value of the true correlation, the 
larger the attenuation. This relationship is also evident 
from Equation 7 and Equation 8. Secondly, considering the 
very high inferred correlation of ρ = 0.92 in the present 
data set (upper arrow), the observed Pearson correlation 
of r = 0.62 (lower arrow) seems reasonable. In particular, the 
observed Pearson r between the point estimates δ̂1 and δ̂2 

Figure 3: Observed and inferred correlation between parameters of cumulative prospect theory. Panel A shows the Pear-
son correlation coefficient r and a scatterplot between the point estimates δ̂1 and δ̂2. Panel B shows the same scat-
terplot but includes the estimation uncertainties 

1εδ
σ  and 

2εδ
σ  (gray lines). Panel C shows a scatterplot between the 

posterior means of the inferred η = (δ1, δ2) parameters. The gray lines show the standard deviation of the posterior 
distributions. The posterior means of the inferred δ1 and δ2 parameters are shrunk toward their group mean and are 
associated more strongly than the point estimates. Panel D shows that the posterior distribution of the inferred cor-
relation ρ (black density line) is shifted to higher values relative to the posterior of the observed correlation r (gray 
density line).
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Figure 4: The Bayes factor in favor of H+(BF+0) as a function of the width of the prior distribution of ρ. Increasing values 
of α and β indicate progressively more informative prior distributions around the test value (i.e., ρ = 0).

Figure 5: Expected attenuation of the correlation between the δ parameters of cumulative prospect theory. We conducted 
five sets of simulations, each with a different value of the true correlation. For each set, we generated 1,000 synthetic 
data sets. The gray violin plots show the distribution of the 1,000 Pearson correlation coefficients r* for the five values 
of the true correlation. The r* values were generated using the estimation uncertainties 

1εδ
σ  and 

2εδ
σ  and the posterior 

means of the group-level µδ1, µδ2, 1

2
δσ , and 

2

2
δσ  parameters obtained from the Glöckner and Pachur (2012) data. The 

upper arrow shows the posterior mean of the inferred correlation ρ in the observed data. The lower arrow shows the 
Pearson correlation coefficient r between the point estimates δ̂1 and δ̂2 in the observed data. The figure shows that (1) 
the attenuation increases with the absolute value of the true correlation, and (2) the observed Pearson r between the 
point estimates is well within the 2.5th and 97.5th percentile of the r* values predicted by the simulations.
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is well within the 2.5th and 97.5th percentile of the Pearson 
correlation coefficients r* predicted by the simulations.

In sum, taking into account the uncertainty of the 
point estimates resulted in a dramatic increase in the 
correlation between the CPT parameters; the mean of the 
posterior distribution of the correlation increased from 
0.61 to 0.92. The Bayes factor indicated decisive evidence 
for the presence of a positive association for the observed 
as well as the inferred correlation.

Example 2: Correlation between Drift Rate and 
General Intelligence
Our second example focuses on the correlation between 
the drift rate parameter of the diffusion model and general 
intelligence as measured by the total score of the 20-min 
version of the Raven Progressive Matrices Test (Hamel & 
Schmittmann, 2006; Raven, Raven & Court, 1998) in a 
data set collected by Weeda and Verouden (unpublished 
data). The data set featured RT and accuracy data from 
51 participants. The stimuli were borrowed from the 
π-paradigm (Vickers, Nettelbeck, & Willson, 1972; Jensen, 
1998), a speeded two-choice RT task and consisted of a 
series of images, each with one horizontal and two vertical 
lines (i.e.; two legs) that together formed the letter π, with 
one of the vertical lines longer than the other. The task 
was to indicate by means of a button press whether the 
left or the right leg of the π was longer. Task difficulty 
was manipulated on three levels—easy, medium, and 
difficult—by varying the difference between the length of 
the two legs.

We model the RT and accuracy data with the diffusion 
model (Ratcliff, 1978; Wagenmakers, 2009). The diffusion 
model provides a theoretical account of performance in 
speeded two-choice tasks; it assumes that participants 
accumulate noisy information over time from a 
starting point toward one of two response boundaries 
corresponding to the two response options. A response 
is initiated when one of the two response boundaries is 
reached. The four key parameters of the diffusion model 
correspond to well-defined psychological processes 
(Ratcliff & McKoon, 2008; Voss, Rothermund, & Voss, 
2004): response caution(a), bias(z), the time taken up by 
encoding and motor processes, and the rate of information 
accumulation, which is the drift rate parameter of 
interest.6 As drift rate v is often associated with higher 
cognitive functions and reasoning (e.g., Ratcliff, 
Schmiedek, & McKoon, 2008; Ratcliff, Thapar, & McKoon, 
2010; Schmiedek, Oberauer, Wilhelm, Suss, & Wittmann, 
2007; van Ravenzwaaij, Brown, & Wagenmakers, 2011),  
we examine the correlation between drift rate and general 
intelligence.

We infer the posterior distributions of the four key 
diffusion model parameters for each participant using the 
diffusion model JAGS (version 3.4.0) module (Wabersich 
& Vandekerckhove, 2014). The prior distributions of the 
model parameters are based on parameter values reported 
in Matzke and Wagenmakers (2009). As drift rate is known 
to decrease with increasing task difficulty (e.g., Ratcliff 
& McKoon, 2008), we implement the following order-
restriction: vdifficult < vmedium < veasy. For simplicity, we focus 

on the average of the drift rate parameters across the three 
task difficulty conditions (v−). The remaining parameters 
are constrained to be equal across the conditions, and we 
set 2

az = .7

Once the posterior distributions of the model 
parameters are obtained, we use the posterior means as 
point estimates for average drift rate: v−̂.8 For the estimation 
of the inferred correlation ρ, we use the variance of the 
posterior distributions to quantify the uncertainty of v−̂: 

2

v
σ
ε

. For the Raven total score g, we assume homogenous 
error variance across participants and—for illustrative 
purposes—investigate how the inferred correlation 
changes as a function of the amount of measurement 
noise assumed in the data. In particular, we examine three 
scenarios: we assumed that 5%, 25%, and 55% of the total 
variance in Raven scores is attributable to measurement 
error, corresponding to excellent, acceptable, and very 
poor reliability, respectively.9

Results
The results are shown in Figure 6. Panels A to C show 
scatterplots between the point estimates v−̂ and the Raven 
total scores ĝ . The gray lines show the corresponding 
estimation uncertainties 

vε
σ  and the standard deviation 

of the measurement error 
gε

σ  for the 5%, 25%, and 55% 
noise scenarios. Panels D to F show scatterplots between 
the mean of the posterior distributions of the inferred 
η = (v−, g) parameters for the three scenarios. Panels G 
shows the posterior distribution of the observed (r) and 
the inferred correlations (ρ) for the three scenarios.

As shown in panel A, the Pearson correlation coefficient 
between the point estimates is 0.14. Panels D to F 
show that the posterior means of the inferred v− and g 
parameters are slightly shrunk toward their group mean. 
The degree of shrinkage is determined by the amount of 
measurement noise assumed for g: the larger the noise, 
the larger the shrinkage. Panel G shows that the mean of 
the posterior distribution of the inferred correlation ρ (i.e., 
black posteriors) is progressively shifted to higher values 
relative to the posterior of the observed correlation r (i.e., 
gray posterior). As expected, the magnitude of the shift 
increases as the amount of measurement noise increases. 
Note, however, that the shift is modest even if we assume 
that the Raven total score is an extremely unreliable 
indicator of general intelligence. The mean of the posterior 
distribution of the observed correlation r equals 0.13; the 
mean of the posterior of the inferred correlation ρ equals 
0.14 in the 5% noise, 0.16 in the 25% noise, and 0.21 
in the 55% noise scenario. Note also that the posterior 
of ρ is quite spread out, a tendency that becomes more 
pronounced as the amount of measurement noise in g 
increases.

One-sided Bayes factors indicate evidence for the 
absence of an association between drift rate and general 
intelligence for the observed as well as the inferred 
correlation. The evidence, however, is “not worth more 
than a bare mention” (i.e., 1 < BF < 3), following the 
categorization of evidential strength provided by 
Jeffreys (1961). The BF0+

10 for the observed correlation 
r equals 2.13. The BF0+ for the inferred correlation ρ 
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decreases from 2.00 in the 5% noise, to 1.75 in the 25% 
noise, and to 1.32 in the 55% noise scenario. Even with 
extremely unreliable Raven scores, the data are thus 
still more likely to have occurred under H0 than under 
H+. Note however that BF0+ of 1.32—or even BF0+ of 
2.13—constitutes almost perfectly ambiguous evidence, 
indicating that the data are not sufficiently diagnostic 
to discriminate between H0 and H+. Inspection of the 
posterior distribution of the correlations suggests a 
similar conclusion: both the observed and the inferred 

correlations are estimated quite imprecisely. The results 
of the robustness analyses for the inferred correlation 
ρ are shown in Figure 7. For low values of α and β the 
Bayes factor indicates weak evidence in favor of H0, 
whereas for high values of α and β the Bayes factor 
indicates weak evidence in favor of H+ for all three 
measurement-noise levels. Nevertheless, even for the 
most informative setting (α = β = 10), the Bayes factor 
provides only anecdotal evidence for the presence of a 
positive association.

Figure 6: Observed and inferred correlation between mean drift rate v− and Raven total score g. Panels A–C show scat-
terplots between the point estimates for mean drift rate v−̂ and the observed Raven total score ĝ . The gray lines show 
the corresponding estimation uncertainties 

vε
σ  and the standard deviation of the measurement error 

gε
σ  for the 

5%, 25%, and 55% measurement noise scenarios. Panel A also shows the Pearson correlation coefficient r. Panels 
D – F show scatterplots between the posterior means of the inferred η = (v−, g) parameters for the three scenarios. 
The gray lines show the standard deviations of the posterior distributions. The posterior means of the inferred v− and 
g parameters are shrunk toward their group mean, where the degree of shrinkage is determined by the amount of 
measurement noise assumed for g. Panel G shows the posterior distribution of the observed (r; gray density line) and 
the inferred correlations (ρ) for the 5% (solid black density line), 25% (dotted black density line,), and 55% (dotted-
dashed black density line) measurement noise scenarios. Note the only negligible shift is the mean of the posterior 
distribution of the inferred correlation ρ as a function of the amount of measurement noise.
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Figure 8 shows the results of a simulation study 
investigating the magnitude of the expected attenuation 
for different values of the true correlation in a parameter 
setting that resembles the one found in the present data. 
Here we present results for the most extreme scenario 
where we assumed that 55% of the total variance of 

the Raven scores is attributable to error variance. We 
conducted five sets of simulations, each with a different 
value of the true correlation: 0.92, 0.21 (i.e., the posterior 
mean of the inferred correlation ρ in the present data 
set), 0, –0.21, and –0.92. For each set of simulations, we 
generated 1,000 synthetic data sets with N = 51, using 

Figure 7: The Bayes factor in favor of H+(BF+0) as a function of the width of the prior distribution of ρ. Increasing 
values of α and β indicate progressively more informative prior distributions around the test value (i.e., ρ = 0). The 
horizontal dashed line indicates perfectly ambiguous evidence (BF+0 = 1).

Figure 8: Expected attenuation of the correlation between mean drift rate v− and Raven total score g. We conducted five 
sets of simulations, each with a different value of the true correlation. For each set, we generated 1,000 synthetic data 
sets. The gray violin plots show the distribution of the 1,000 Pearson correlation coefficients r* for the five values of 
the true correlation. The r* values were generated assuming 55% error variance in the Raven scores, using the esti-
mation uncertainties 2

v
σ
ε  and the posterior means of the group-level µv−, µg, 

2
vσ , and 2

gσ  parameters obtained from the 
Weeda and Verouden (unpublished data) data. The upper arrow shows the posterior mean of the inferred correlation 
ρ in the observed data. The lower arrow shows the Pearson correlation coefficient r between the point estimates v−̂ 
and ĝ  in the observed data. The figure shows that the median (white circle) of the Pearson correlation coefficients r* 
predicted by the simulations very closely approximates the observed Pearson r between the point estimates.
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the estimation uncertainties 2

v
σ
ε  and the posterior means 

of the group-level µv−, µg, 
2
vσ , and 2

gσ  parameters obtained 
from the Weeda and Verouden (unpublished data) data. 
We then computed the Pearson correlation coefficient r* 
in each synthetic data set. The gray violin plots show the 
distribution of the 1,000 r* values for the five levels of the 
true correlation.

As before, all else being equal, the larger the absolute 
value of the true correlation, the larger the attenuation. 
Moreover, considering the relatively low inferred 
correlation of ρ = 0.21 in the present data (upper arrow), 
the observed Pearson correlation of r = 0.14 (lower 
arrow) seems perfectly reasonable. In fact, the median 
of the Pearson correlation coefficients r* predicted by 
the simulations very closely approximates the observed 
Pearson r between v−̂ and ĝ .

In sum, taking into account the uncertainty of the 
variables resulted in negligible increase in the correlation 
between drift rate and general intelligence; even when 
assuming unrealistically unreliable Raven scores, the 
mean of the posterior distribution of the correlation 
increased only from 0.13 to 0.21. The Bayes factor indicated 
evidence for the absence of an association between drift 
rate and general intelligence for the observed as well as 
the inferred correlations, regardless of the magnitude of 
the error variance assumed for g. The evidence for H0 was, 
however, only anecdotal, a result that is attributable to the 
substantial uncertainty in the estimated correlations.

Discussion
In the psychological sciences, few researchers acknowledge 
that the Pearson correlation coefficient may underestimate 
the true strength of the association between two sets of 
observations as result of measurement error. Even fewer 
recognize that the attenuation also plagues correlation 
coefficients derived from uncertain parameter estimates. 
Although various approaches are available to infer the 
correlation in the presence of measurement error or 
estimation uncertainty, most methods do not deal with 
both sources of noise simultaneously. Our goal was 
therefore to outline a method that allows researchers to 
infer the underlying correlation between (1) two sets of 
error-contaminated observations; (2) two sets of uncertain 
parameter estimates; and (3) a set of noisy parameter 
estimates and a set of error-contaminated observations.

We illustrated the use of the Bayesian approach with 
two empirical data sets. In the first example, we assessed 
the correlation between parameters of cumulative 
prospect theory and demonstrated that taking into 
account the uncertainty of the parameter estimates can 
result in a dramatic increase in the inferred correlation: 
the mean of the posterior distribution of the correlation 
increased from 0.61 to 0.92. In the second example, we 
assessed the correlation between general intelligence and 
the drift rate parameter of the diffusion model, where we 
examined three scenarios: we assumed that 5%, 25%, and 
55% of the total variance in Raven scores is attributable to 
measurement error. The estimated correlation increased 
only marginally when the uncertainty of the variables was 
taken into account; even with extremely unreliable Raven 

scores, the posterior mean of the correlation increased 
from 0.13 to only 0.21. Importantly, although the posterior 
mean of the inferred correlation increased slightly as a 
function of the amount of measurement noise in g, so 
did the posterior standard deviation. This result is only 
logical; if we measure the variables with a great degree of 
uncertainty, we cannot be confident about the underlying 
value of the correlation either.

Our approach for inferring correlations between 
model parameters is a straightforward application of the 
hierarchical method proposed by Behseta et al. (2009) for 
modeling measurement error. The original formulation 
of the model relies on a slightly different prior set-up 
than the one used in this article. In particular, Behseta 
et al. used an Inverse-Wishart distribution to model the 
variance-covariance matrix Σ of the latent variables, 
whereas we chose to model the individual components in 
Σ rather than Σ itself. We feel that the latter specification 
is more intuitive and flexible. It allows researchers to 
adapt the range of the prior for the group-level σθ and σβ 
parameters to the measurement scale of their variables 
and to express prior knowledge about the likely values of 
the inferred correlation in a straightforward manner.

Of course, we can take into account measurement error 
only when the error variance of the observations is known 
or when it can be estimated from data. Our investigation 
of the extent of the disattenuation as a function of the 
amount of measurement noise in the Raven scores served 
merely as an illustration. In real-life applications, the 
magnitude of the error variance should not be cherry-
picked to obtain the desired (higher) correlation; rather it 
should be estimated from data. Note that the questionable 
practice of using arbitrary reliability coefficients is one 
of the major objections to Spearman’s (1904) original 
attenuation formula (e.g., Muchinsky, 1996). Luckily, our 
literature review suggested that the uncertainty of the 
observations may have been estimated for approximately 
25% of the reported correlations. This is possible, for 
example, when each observation was derived as the 
average of multiple trials in a repeated–measures design.

Similarly, we can infer the underlying correlation 
between two sets of parameter estimates only if the 
estimation uncertainty is known. Throughout this article 
we used Bayesian inference because the resulting posterior 
distributions can be automatically used to quantify the 
uncertainty of the parameter estimates. In particular, 
we treated the mean of the posterior distribution of the 
CPT and diffusion model parameters as point estimates 
and used the variance of the posterior distributions as a 
measure of the participant-specific estimation uncertainty.

With scarce data, however, the posterior distribution 
of the individual parameters can be sensitive to the 
choice of the prior. As a result, estimation uncertainty—
expressed in terms of the variance of the posterior—can 
depend on the prior setting used to derive the individual 
estimates. It follows that the inferred correlation can only 
be interpreted given the particular prior setting used to 
obtain the individual parameter estimates. The present 
two-step framework should therefore be considered as 
a post-hoc method for inferring correlations: in the first 
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step we obtain posterior distributions for the model 
parameters under a particular prior setting; in the second 
step we infer the correlation between the estimates given 
the estimation uncertainties obtained under the prior 
setting used in the first step. In the context of theory-
laden models, such as the CPT and the diffusion model, 
we do not consider prior sensitivity as a shortcoming 
of the two-step approach; we consider the prior as part 
of the model which should come from theory just as 
the likelihood does (M. D. Lee & Vanpaemel, in press; 
Vanpaemel & Lee, 2012).

The present two-step approach is not the only analysis 
strategy that can account for measurement error or 
estimation uncertainty. For instance, structural equation 
models (e.g., Hoyle, 2012; Cole & Preacher, 2014; for 
Bayesian solutions, see Kaplan & Depaoli, 2012; S.-Y. 
Lee, 2007; Song & Lee, 2012), factor models (e.g., Lopes 
& West, 2004; Ghosh & Dunson, 2009; Turner, Wang, 
& Merkle, 2017), and cognitive latent variable models 
(Vandekerckhove, 2014) provide more sophisticated 
avenues for the estimation and testing of covariance 
structures in the presence of noise in the data. Moreover, 
as discussed earlier, within the Bayesian framework we 
are not limited to the two-step procedure illustrated 
here. Bayesian hierarchical modeling allows for the 
simultaneous estimation of the individual parameters 
and their correlations (Gelman & Hill, 2007; Klauer, 2010; 
Matzke et al., 2015; Rouder et al., 2008, 2007).

Nevertheless, estimating covariance structures in 
the context of cognitive models is often not trivial. For 
instance, estimating the pair-wise correlations between 
model parameters using the simultaneous hierarchical 
approach has computational consequences; the 
simultaneous approach can result in highly complex 
models with undesirable estimation properties (e.g., 
Turner et al., 2017). We view our two-step method as an 
easy-to-use and flexible complement to more principled 
approaches, one that is especially valuable in exploratory 
analyses of the correlation between model parameters and 
external observations (see also Ly, Boehm, et al., in press). 
For instance, the two-step approach allows researchers 
to explore the relationship between model parameters 
and covariates without the considerable computational 
costs involved in re-fitting the cognitive model. Similarly, 
the two-step approach may be a computationally 
efficient complement to recently developed multivariate 
approaches for modeling the relationship between 
parameters and covariates in cognitive models (Boehm, 
Steingroever, & Wagenmakers, in press). In particular, the 
two-step approach may be extended to multiple regression 
problems by replacing the multivariate structure in the 
second step of the analysis by the appropriate regression 
equation. On a more theoretical level, we argue that the 
two-step method often provides a more flexible and 
tractable approach to specifying prior distributions in the 
context of theory-laden models than more sophisticated 
simultaneous methods (M. D. Lee & Vanpaemel, in press). 
For instance, the multivariate normal distribution typically 
assumed in the simulations hierarchical approach may 
not necessarily reflect the desired prior set-up for the 
cognitive model in question.

Conclusion
Our literature review showed that 42% of the articles 
published in the 2012 volume of the Journal of 
Experimental Psychology: General reported at least one 
Pearson product-moment correlation coefficient. Despite 
the wide-spread use of correlations, most researchers fail 
to acknowledge that the correlation computed between 
noisy observations or uncertain parameter estimates 
often underestimates the true strength of the relationship 
between the variables. Here we outlined a Bayesian 
method that allows researchers to infer the underlying 
correlation in the presence of measurement error and 
estimation uncertainty. Of course, the measurement error 
of the observations and the uncertainty of the parameter 
estimates are not always readily available. Also, our 
simulations confirmed that for relatively low underlying 
correlations, correcting the attenuation is likely to have 
only a small effect. We nevertheless encourage researchers 
to carefully consider the issue of attenuation and 
whenever sensible take into account the uncertainty that 
accompanies parameter estimation and psychological 
measurement.

Data Accessibility Statement
The WinBUGS and R code for the computation of the 
inferred correlation and the corresponding Bayes factor, 
and a detailed summary of the literature review of 
correlations published in the 2012 volume of the Journal 
of Experimental Psychology: General are available on the 
Open Science Framework at https://osf.io/mvz29/.

Additional File
The additional file for this article can be found as follows:

•	 Appendix. WinBUGS Implementation. DOI: https://
doi.org/10.1525/collabra.78.s1

Notes
 1 The numbers are based on an non-systematic literature 

review conducted by the third author. The results of 
the literature review are available at https://osf.io/
mvz29/.

 2 Theoretically, as 2
θσ  and 2

βσ  are typically unknown and 
must be replaced by their sample estimates, r can be 
larger than ρ.

 3 Naturally, this assumption is sensible only if the 
posterior distribution is approximately normally 
distributed.

 4 Note that this distribution is the same as the uniform 
distribution we use for estimating ρ.

 5 The CPT account of performance in the Glöckner and 
Pachur (2012) data set is merely an illustration; we do 
not suggest that the CPT with the present parameter 
setting provides the best description of the data of 
the individual participants. Note also that Glöckner 
and Pachur reported the results from fitting a slightly 
different model than the one used in the present 
article.

 6 In addition to these key parameters, the diffusion 
model also features parameters that describe the trial-
to-trial variability of the key parameters.

https://osf.io/mvz29/
https://doi.org/10.1525/collabra.78.s1
https://doi.org/10.1525/collabra.78.s1
https://osf.io/mvz29/
https://osf.io/mvz29/
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 7 The diffusion model account of performance in the 
Weeda and Verouden data set (unpublished data) 
is merely an illustration; we do not suggest that 
the diffusion model with the present parameter 
constraints provides the best description of the data of 
the individual participants.

 8 Note that the scale of both drift rate and general 
intelligence is bounded: v− can take on values 
between 0 and 5.86 (i.e., prior range) and the Raven 
total score can take on values between 0 and 36. The 
use of the bivariate normal group-level distribution 
shown in Figure 2 is therefore theoretically 
unjustified. As a solution, we may transform the 
drift rate parameters and the Raven scores to the 
real line using a probit transformation. Additional 
analyses not reported here confirmed that using 
the transformed v− and g values yields results that 
are very similar to the ones obtained using the 
untransformed drift rates and Raven scores. For 
simplicity, here we report the results of modeling 
the untransformed parameters.

 9 Note that this is only an illustration; the reliability 
of the Raven is well documented and is considered 
adequate (internal consistency ~ 0.90 and test-retest 
reliability ~ 0.82).

 10 The subscript 0+ indicates the the Bayes factor 
quantifies evidence in favor of H0; BF0+ is computed as 
1/BF+0.
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