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ABSTRACT  

 There are currently still no approved antiviral drugs to treat or prevent chikungunya 

virus (CHIKV) infections despite the fact that this arbovirus continues to cause outbreaks in 

Africa, Asia, and South- and Central-America. Thus 20 new conjugated compounds in the 

families of bis(benzofuran–1,3-thiazolidin-4-one)s and bis(benzofuran–1,3-thiazinan-4-one)s 

were designed based on the structural features of suramin. These new compounds were 

synthesized by chemical methods and their structures were confirmed spectroscopically. In 

CPE reduction assays, six of these new bis-conjugates inhibited CHIKV replication in Vero 

E6 cells with EC50 in the range of 1.9 to 2.7 µM and selectivity index values of ~75 or higher. 

These results and compounds provide a starting point for further optimization, design, and 

synthesis of new antiviral agents for this (re)emerging disease.  

1. Introduction  

 Chikungunya virus (CHIKV) is an arthrogenic alphavirus, which has infected millions 

of people since its re-emergence in 2005, when it caused large outbreaks in Asia and Africa. 

In 2013, CHIKV emerged in the Caribbean (Weaver, 2014; Weaver and Lecuit, 2015) and 

started another massive outbreak, which has thus far resulted in >1.2 million cases in the 

Americas alone. At the moment there are no approved vaccines or specific antiviral drugs to 

prevent or treat chikungunya disease (Hwu et al., 2017). Several molecules with inhibitory 

effects on CHIKV in cell culture, and in some cases in animal/mouse models, have been 

reported (Kuo et al. 2016), but none of them has advanced into clinical trials (Abdelnabi et al. 

2017).  

 Our laboratories have previously developed several new compounds with activity 

against CHIKV (Hwu et al., 2015; Albulescu et al., 2015). The first class of these 

compounds consists of uracil–coumarin–arene conjugates and the second class concerns 
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suramin (1) and its derivatives. Suramin inhibits CHIKV replication through multiple 

mechanisms (Kuo et al. 2016; Albulescu et al., 2015), mainly by interfering with an early 

step of the replication cycle, but with (minor) additional effects on later steps, like RNA 

synthesis. Recently, suramin has also been reported to inhibit Zika virus replication by 

interfering with virus attachment and release of infectious particles (Albulescu et al. 2017). 

Suramin is a symmetric molecule with a urea (NH–CO–NH) group in the center as 

the “neck”, two benzamido moieties as the “shoulder”, two methylbenzamido moieties as the 

“arms”, two naphthalene rings as the “palms”, and six sulfonate groups as the “fingers”.  A 

tetra-sulfonate derivative of suramin that lacks two sulfonate groups is less active against 

CHIKV compared with suramin (Albulescu et al., 2015), although it inhibits human and 

murine norovirus RNA-dependent RNA polymerase (RdRp) activity in vitro with an IC50 of 

28 nM (Croci et al., 2014). Of a series of eleven suramin-related analogs that were tested for 

their ability to inhibit CHIKV RNA synthesis in vitro and to inhibit CHIKV replication in 

cell culture, only three exhibited inhibitory activity. All of these had features very similar to 

suramin (Albulescu et al., 2015).  

 Several other synthetic compounds with a dimeric structure similar to suramin also 

show significant biological activities. Prominent examples include atracurium besilate 

(Hughes, 1986), cisatracurium besilate (Bryson and Faulds, 1997), cromoglicic acid 

(Penumutchu et al., 2014), daclatasvir (Press release, 2015), ombitasvir (Press release, 2014), 

and pentamidine (Nguewa et al., 2005). Among them, daclatasvir (trade name Daklinza) and 

ombitasvir (trade names Viekira Pak and Technivie) are antiviral drugs for the treatment of 

hepatitis C virus infection. The structural “widths” of these two dimeric antiviral compounds 

are around 22.4 and 24.5 Å, respectively.  

 Benzofuran is one of the most important oxygen-containing heterocycles (Khanam 

and Shamsuzzaman, 2015). Many benzofuran derivatives display potent biological and 

pharmacological properties, such as β-adrenoceptor antagonistic (Narimatsu et al., 2003), 



 

4 

analgesic, anti-arrhythmic (Spaniol et al., 2001), anti-Alzheimer’s, anti-dermal, anti-

feedantic, anti-hyperglycemic, anti-inflammatory, anti-microbial, anti-pyretic, anti-tumor, 

immunosuppressive (Cheng et al., 2010; González–Gómez et al., 2005; Khanam and 

Shamsuzzaman, 2015; Kao and Chern, 2001), and especially antiviral activities (Naik et al., 

2015; He et al., 2015). Moreover, the broad and potent activities of 1,3-thiazolidin-4-ones 

have established these compounds as biologically important scaffolds. Their biological 

properties include anthelmintic, anti-bacterial, anti-cancer, anti-convulsant, anti-diabetic, 

anti-fungal, anti-histaminic, anti-hyperlipidemic, anti-inflammatory, anti-proliferative, anti-

tubercular, cardiovascular, follicle stimulating hormone receptor agonist, hypnotic (Verma 

and Saraf, 2008; Tripathi et al., 2014; Gouvea et al., 2016), and anti-viral activities as well 

(Barreca et al., 2002; Rao et al., 2004; Rawal et al., 2007). Recently, thiazinanone derivatives 

have been reported with medicinally important roles. These compounds show potent HIV-RT 

inhibitory, cyclooxygenase (COX-2) inhibitory (Zebardast et al., 2009), anti-dyslipidemic, 

anti-hyperglycemic, anti-tumor (Kamel et al., 2010), anti-malarial (Rudrapal et al., 2013), 

and anti-fungal activities (Verma et al., 2010; Qu et al., 2013). Accordingly, using suramin 

(1) as a model, we designed bis(benzofuran–1,3-thiazolidin-4-one) derivatives 2 and 

bis(benzofuran–1,3-thiazinan-4-one) derivatives 3 as new types of dimeric compounds, of 

which the antiviral activities were tested. Suramin (1) and bis-benzofurans 2 and 3 have a 

width of ~23.6 Å (between the two naphthalene rings), 22.7 Å, and 21.7 Å (between the two 

benzene rings), respectively, on the basis of the conformations shown in structures 1–3. Raj 

and co-workers (Raj et al., 1998) reported that the two naphthalene rings either fold closer 

to each other with a distance of ~16–20 Å or stretch away from each other at a ~28–30 Å 

distance. We aimed to use the two new types of dimeric 

conjugates to develop leads against CHIKV. In total, 20 new conjugated compounds and one 

bis-aldehyde intermediate were synthesized, six of which exhibited significant inhibitory 
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2.  Materials and methods  

A detailed description of the materials and methods is available in the supporting 

information file. 

 

 

3.  Results and discussion 

3.1 Synthesis of New Conjugated Dimers and Their Structural Identification (Scheme 

1)  

 The target compounds with the scaffolds of 2 and 3 were obtained from the 

common intermediate bisbenzofuran-2-al 7. Its preparation started with coupling 

bissalicyaldehyde 4 (Delogu et al., 2010) with commercially available bromoacetaldehyde 

diethyl ether (5) in the presence of K2CO3 (s) in dry DMF (Scheme 1). After the reaction 

mixture was heated to 120 °C, it gave the desired diacetal 6. Using acetic acid as the 

catalyst and also as the solvent, this diacetal 6 underwent sequential deacetylation, 

intramolecular aldol condensation, and acid-catalyzed dehydration at 110 °C. The desired 

benzofuran-2-al dimer 7 was generated in 88% yield and purified as yellow crystals with 

mp 150.2–151.6 °C. Then alkyl-, cycloalkyl-, aryl-, and aralkylamines 8a−j were used to 
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condense with bisbenzofuranal 7 in excess in dry methanol to give bisimines 9a−j as solids 

in 83−94% yields.  

 Subsequent ring formation through condensation of bisimines 9a−j with 2-

mercaptoacetic acid (10) in benzene at 90 °C led to the desired targets 2a−j as solids in 77–

88% yields. The structures of all these new bis(benzofuran–1,3-thiazolidin-4-one)s were 

identified on the basis of their spectroscopic characteristics. For example, the exact mass of 

compound 2g was measured as 534.1651 for M+, which is very close to its theoretical value 

of 534.1647 for the species (C29H30N2O4S2)+. The generation of two thiazolidinone rings is 

supported by presence of two NCHS protons as a doublet with a long-range coupling with 

 

Scheme 1. Synthetic procedures for generating the targets bis(benzofuran–thiazolidin-

4-one)s 2 and bis(benzofuran–thiazinan-4-one)s 3 
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only one of the two SCH2C=O protons to give a J4 = 1.2 Hz at 5.72 ppm in the 1H NMR 

spectrum (Cunico et al. 2006). The two sets of diastereotopic SCH2C=O protons in the 

thiazolidinone ring resonated at 4.00 ppm as a double of doublet with a J2 = 15.2 and J4 = 

1.2 Hz and at 3.53 ppm as a doublet with J2 = 15.2 Hz. The center of this compound 

contained a methylene joint, in which the CH2 resonated at 4.10 ppm. It also exhibited a 

multiplet at 4.33−4.26 ppm for two protons due to the two CHMe2 groups attached to two 

separated nitrogen atoms in thiazolidinone rings. The twelve methyl protons of two 

isopropyl groups showed resonance as a doublet with a J = 6.8 Hz at 1.27 and 0.87 ppm. 

The NC=O carbon resonated at 171.1 ppm in the 13C NMR spectrum and the amido C=O 

group exhibited a strong absorption band at 1673 cm–1 in the IR spectrum. These 

observations are consistent with those reported by Srivastava and co-worker (Srivastava 

et al., 2007).  

Attempts to synthesize bis(benzofuran–1,3-thiazinan-4-one)s 3 from bisimines 9a−j 

and 3-mercaptopropionic acid (11) using the same cyclization conditions described above 

(for 2a-j) resulted in low yields (<15%). After many trials, the use of N,N'-

dicyclohexylcarbodiimide (DCC, 2.5 equiv) as an activating agent (Valeur and Bradley, 

2009) in THF led to the conjugated compounds 3a−j as solids in 76–84% yields. For 

bis(benzofuran–thiazinanone) 3g, the two NCHS protons of thiazinanone rings showed a 

singlet at 5.59 ppm in the 1H NMR spectrum. The four SCH2C=O protons in the 

thiazinanone ring resonated as multiplet at 3.07–2.98 and 2.79–2.73 ppm. The NC=O 

carbon resonated at 169.0 ppm in the 13C NMR spectrum and the amido C=O group in the 

six-membered rings exhibited a strong absorption band at 1655 cm–1 in the IR spectrum.  

3.2 Evaluation of Anti-CHIKV Activity 
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 The antiviral activity of bis(benzofuran–1,3-thiazolidin-4-one)s 2 and 

bis(benzofuran–1,3-thiazinan-4-one)s 3 was first analyzed in cytopathic effect (CPE) 

reduction assays with CHIKV by testing four different concentrations (i.e., 100, 25, 6.3, 

and 1.6 µM) in two independent experiments. Only compounds that showed at least 50% 

protection against CHIKV-induced CPE in this primary screen were selected for 

validation in a secondary screen. In that case, eight 2-fold serial dilutions of compounds 

with an initial starting concentration of 200 µM were analyzed (in quadruplicate) to 

determine the EC50. Cytotoxicity was analyzed in parallel in uninfected cells to determine 

the CC50. The obtained values were used to determine the selectivity index (SI = 

CC50/EC50), a measure for the therapeutic window of the compound in the assay system.  

Among the 20 new conjugated compounds and one bisaldehyde intermediate 7 

shown in Scheme 1, three 1,3-thiazolidin-4-ones (i.e., 2f, 2g, and 2j) and three 1,3-

thiazinan-4-ones (i.e., 3f, 3g, and 3i) exhibited limited inhibition of CHIKV replication in 

Vero E6 cells. Their EC50 values ranged from ~1.5 to 2.7 µM (see Table 1) and their 

selectivity indices ranged from <32 to >100.  

 
 
 
Table 1. Inhibition of CHIKV by bis-benzofuran conjugates. EC50 values were determined by 

CPE reduction assays on Vero E6 cells infected with CHIKV LS3. CC50 values were 

determined in parallel and the log P value indicates the lipophilicity of each compound.  
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bis-conjugate CC50a (μM) EC50b (μM) SIc   log P 
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5.43 

 

 
>200 

 
2.3 ± 1.3 

 
>87 

 
4.07 

  
 

>800 

 
 

79 ± 12 

 
 

>10.1                           

 
 

–3.42 
 
 

aCytotoxicity of the compounds in uninfected cells, the concentration of compound that 

reduced cell viability (measured by MTS assay) to 50% of that of untreated cells. bEC50, 

the concentration of compound that resulted in 50% protection from CHIKV-induced 
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cell death (CPE) as determined in CPE reduction assays. cSelectivity index. The table lists 

the average values of two independent experiments, performed in quadruplicate. 

*Estimate, compounds were toxic and cell viability was only 60-70% viability at 

concentrations above 3-6 µM. Therefore, full protection (100% viability) was never 

observed and the concentration that gave half of the maximum effect (~30-35% viability) 

is reported. Log P values were determined as described in the text and are an average of 

three independent experiments. 

Although the CC50 values of compounds 2f, 2g, 3f, 3g, and 3i were >200 μM, many 

other conjugated compounds had clear negative effects on cell viability. Approximately 

20-30% reductions in cell viability were observed for several of these compounds starting 

already at low concentrations. As a result of this toxicity, we did not observe full 

protection (100% viability) in the CHIKV CPE reduction assays and therefore we could 

not accurately determine the true EC50 value of most of these compounds, but only 

determine the concentration that gave half of the maximum protective effect (which is 

indicated with ~ and * in Table 1). We cannot exclude that (part of) the antiviral effect of 

compounds that adversely affected the host cell metabolism is the result of pleiotropic or 

non-specific effects on the host cell. However, it should be noted that a high 

concentration (200 μM) of the most promising compound 2g, did not lead to serious 

cytotoxicity, as viability remained 77%.  

All of the 20 new compounds 2 and 3 were also screened for antiviral activity 

against the related Sindbis virus (SINV) and Semliki Forest virus (SFV) in CPE reduction 

assays. None of the compounds inhibited SINV. While compound 2h had some inhibitory 
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effect on Semliki Forest virus, this was likely related to cytotoxicity. Only bis(benzofuran–

thiazinanone) 3h protected cells from SFV-induced CPE with an EC50 of 34.8 μM and an 

SI of >5.74. The fact that none of the compounds that showed some protective effect 

against CHIKV was active against SINV or SFV suggests that the anti-CHIKV effect is not 

(only) merely due to nonspecific negative effects on the host cell. Suramin has been 

reported to interfere with binding of a variety of viruses to their host cells ((Albulescu et 

al. 2017 and references therein). Therefore, the bis-conjugated compounds that inhibit 

CHIKV replication in the CPE-based assay might do so by interfering with attachment of 

the virus to Vero E6 cells, although it cannot be excluded that these molecules (also) 

inhibit later steps of the replication cycle. Studies to elucidate the exact mode of action of 

these compounds are currently ongoing. 

3.3 Lipophilicity and Potential “Drug-like” Bis-conjugates 

The ‘‘shake–flask method’’ (Kraszni et al., 2003) was applied to obtain the 

molecular lipophilicity (quantified as log P) values of bis-conjugated compounds with 

promising activities in the antiviral assays (Table 1). Thus n-octanol and pH 7.4 phosphate 

buffer were mutually saturated and the phases were separated. Stock solutions of thebis-

conjugated compound were prepared in pH 7.4 phosphate buffer and these  were partitioned 

between n-octanol and pH 7.4 phosphate buffer. The phase mixtures were shaken for 60 min 

at constant 25 °C. After separation, the absorbance of the phosphate buffer solutions was 

measured by UV spectrophotometry. The P value corresponds to the quotient of the 

concentrations of the bis-conjugated derivatives between n-octanol and phosphate buffer.  
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Molecular lipophilicity of chemical entities often plays an important role in the 

development of drug leads (Hann et al., 2012) and log P values between −0.4 and 5.6 are 

regarded to be in a good range for “drug-like” molecules (Ghose et al., 1999).  

Among the new compounds with promising EC50 and SI values, the log P values of 

bis-conjugates 2f, 2g, 2j, 3f, 3g, and 3i fell into the range of 4.07–5.52. Therefore, these 

seven compounds have some potential as “drug-like” candidates for future development. 

3.4 Structure−Activity Relationship:  Essential Moieties and Substituents  

The bis-conjugated compounds with either two five-membered 1,3-thiazolidin-4-

one rings or two six-membered 1,3-thiazinan-4-one rings as the “arms” showed comparable 

EC50 for CHIKV and had similar log P values ( compounds 2f,g,j and 3f,g,i in Table 1). The 

substituents attached to the nitrogen atoms played a determining role in the anti-CHIKV 

activity, as all six active compounds had alkyl substituents as the “palms” such as ethyl, 

isopropyl, cyclopropyl, and methoxyethyl groups. When the palms were phenyl or 

benzyl groups with various substituents as the “fingers” in bis-conjugates 2a−e and 3a−e 

the antiviral activity was lost.  

Suramin 1 has anti-CHIKV activity and some of its structural bis-analogs that were 

designed on the basis of its skeleton also exhibited significant inhibitory activity towards 

CHIKV (see Table 1). Thus the “urea neck” in suramin can be replaced by a simple 

“methylene neck” in bis-benzofuran conjugates. Replacement of the benzamido moieties 

of suramin with benzofuran nuclei in bis-conjugates 2 and 3 as the “shoulders” allowed us 

to successfully obtain compounds 2f,g,j and 3f,g,i as anti-CHIKV drug leads. Based on the 

anti-viral activities of the tested compounds, the six-membered thiazinanone ring could be 

considered superior to the five-membered thiazolidinone ring. Moreover, the six dimeric 
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compounds in the family of bis(benzofuran–1,3-thiazolidin-4-one)s and bis(benzofuran–1,3-

thiazinan-4-one)s exhibited a ~29 -42 times more potent anti-CHIKV activity than suramin 

although their toxicity remains an issue to be solved. 

 

4. Conclusions  

With the aim to develop small molecules with anti-CHIKV activity, 20 new 

benzofuran–1,3-thiazolidin-4-one and benzofuran–1,3-thiazinan-4-one conjugated 

compounds in dimeric form were designed and synthesized. Six of them (i.e., 2f,g,j and 

3f,g,i) inhibited CHIKV replication with EC50 values in the range of 1.9–2.7 µM. These 

compounds had up to 42 times lower EC50 values than suramin. However, full protection 

against CHIKV-induced CPE was not observed due to (limited) cytotoxicity of the 

compounds at higher concentrations. Further medicinal chemistry efforts are required to 

reduce the toxicity of the compounds, while retaining or improving their antiviral effect. 

Nonetheless, these results indicate that the synthesis of the basic skeletons of dimeric 

benzofuran–1,3-N,S-heterocycle conjugates provides a new avenue in the development of 

antiviral leads. The 1,3-N,S-heterocyclic nuclei could be either a five- or a six-membered 

ring. The mechanism of action of these new CHIKV inhibitors is currently under 

investigation.  

Acknowledgements 

We thank Prof. Johan Neyts and Dr. Pieter Leyssen of the Rega Institute in 

Leuven for helpful discussions and for testing our compounds against yellow fever virus. 

For financial support, we thank the Ministry of Science and Technology (grant Nos. NSC 

103-2923-I-008-001 and MOST 103-2113-M-007-018-MY3), Ministry of Education of 



 

15 

R.O.C. (grant Nos. 104N2011E1 and 104N2016E1), and National Central University 

(grant No. 103G603-14). The work in Leiden was supported by the European Commission 

FP7 SILVER project (Grant Agreement No. 260644), the EU-FP7 project EUVIRNA (Grant 

Agreement No. 264286) and the Marie Skłodowska-Curie ETN ‘ANTIVIRALS’ (Grant 

Agreement No. 642434). 

Appendix A. Supporting Information.  

Supplementary data associated with this article can be found in the online version.  

References  

Abdelnabi, R., Neyts, J., Delang, L., 2017. Chikungunya virus infections: time to act, time 

to treat. Curr Opin Virol. 24, 25−30. 

Albulescu, I.C., Hoolwerff, M.V., Wolters, L.A., Bottaro, E., Nastruzzi, C., Yang, S.C., Tsay, 

S.C., Hwu, J.R., Snijder, E.J., van Hemert. M.J., 2015. Suramin inhibits chikungunya 

virus replication through multiple mechanisms. Antiviral Res. 121, 39−46. 

Albulescu, I.C., Kovacikova, K.; Tas, A.; Snijder, E.J., van Hemert. M.J., 2017. Suramin 

inhibits Zika virus replication by interfering with virus attachment and release of 

infectious particles. Antiviral Res. 143, 230−236. 

Barreca, M.L., Balzarini, J., Chimirri, A.,  De Clercq, E., De Luca, L., Höltje, H.D., Höltje, 

M., Monforte, A.M., Monforte, P., Pannecouque, C., Rao, A., Zappalà, M., 2002. 

Design, synthesis, structure-activity relationships, and molecular modeling studies of 

2,3-diaryl-1,3-thiazolidin-4-ones as potent anti-HIV agents. J. Med. Chem. 45, 

5410−5413. 

Bryson, H.M., Faulds, D., 1997. Cisatracurium besilate. A review of its pharmacology and 

clinical potential in anaesthetic practice. Drugs 53, 848−866. 



 

16 

Cheng, Y., Ono, M., Kimura, H., Kagawa, S., Nishii, R., Kawashima, H., Saji, H., 2010. 

Fluorinated benzofuran derivatives for PET imaging of β-amyloid plaques in 

alzheimer's disease brains. ACS Med. Chem. Lett. 1, 321–325. 

Croci, R., Pezzullo, M., Tarantino, D., Milani, M., Tsay, S.C., Sureshbabu, R., Tsai, Y.J., 

Mastrangelo, E., Rohayem, J., Bolognesi, M., Hwu J.R., 2014. Structural bases of 

norovirus RNA dependent RNA polymerase inhibition by novel suramin-related 

compounds. PLoS ONE 9, e 91765. 

Cunico, W., Capri, L.R., Gomes, C.R.B., Sizilio, R.H., Wardell, S.M.S.V., 2006. An 

Unexpected Formation of 2-Aryl-3-benzyl-1,3-thiazolidin-4-ones. Synthesis 20, 

3405–3408. 

Delogu, G., Podda, G., Corda, M., Fadda, M.B.F., Fais, A., Era, B., 2010. Synthesis and 

biological evaluation of a novel series of bis-salicylaldehydes as mushroom tyrosinase 

inhibitors. Bioorg. Med. Chem. Lett. 20, 6138–6140. 

Ghose, A.K., Viswanadhan, V.N., Wendoloski, J.J., 1999. A knowledge-based approach in 

designing combinatorial or to be medicinal chemistry libraries for drug discovery. 

1. A qualitative and quantitative characterization of known drug databases. J. 

Comb. Chem. 1, 55–68. 

González–Gómez, J.C., Santana, L., Uriarte, E., 2005. A furan ring expansion approach to 

the synthesis of novel pyridazino-psoralen derivatives. Tetrahedron 61, 4805–4810. 

Gouvea, D.P., Vasconcellos, F.A., Berwaldt, G.D.A., Neto, A.C.P.S, Fischer, G., Sakata, 

R.P., Almeida, W.P., Cunico, W., 2016. 2-Aryl-3-(2-morpholinoethyl)thiazolidin-4-

ones: synthesis, anti-inflammatory in vivo, cytotoxicity in vitro and molecular 

docking studies. Eur. J. Med. Chem. 118, 259−265. 

Hann, M.M., Keserü, G.M., 2012. Finding the sweet spot: the role of nature and nurture 

in medicinal chemistry. Nat. Rev. 11, 355–365. 



 

17 

He, S., Jain, P., Lin, B., Ferrer, M., Hu, Z., Southall, N., Hu, X., Zheng, W., Neuenswander, 

B., Cho, C.H., Chen, Y., Worlikar, S.A., Aubé, J., Larock, R.C., Schoenen, F.J., 

Marugan, J.J., Liang, T.J., Frankowski, K.J., 2015. High-throughput screening, 

discovery, and optimization to develop a benzofuran class of hepatitis C virus 

inhibitors. ACS Comb. Sci. 17, 641−652. 

Hughes, R., 1986. Atracurium: An Overview. Br. J. Anaesth. 58, 2S−5S. 

Hwu, J.R., Kapoor, M., Tsay, S.C., Lin, C.C., Hwang, K.C., Horng, J.C., Chen, I.C., Shieh, 

F.K., Leyssen, P., Neyts, J., 2015. Benzouracil–coumarin–arene conjugates as 

inhibiting agents for chikungunya virus. Antiviral Res. 118, 103−109. 

Hwu, J.R., Pradhan, T.K., Tsay, S.C., Kapoor, M., Bachurin, S.O., Raevsky, O.A., Neyts, J., 

2017. Antiviral agents towards chikungunya virus: structures, syntheses, and isolation 

from natural sources, in: Tomioka, K., Shiori, T., Sajiki, H. (Eds.), New Horizons of 

Process Chemistry - Scalable Reactions and Technologies, Springer Nature: 

Singapore, pp 251–274. 

Kamel, M.M., Ali, H.I., Anwar, M.M., Mohamed, N.A., Soliman, A.M., 2010. Synthesis, 

antitumor activity and molecular docking study of novel sulfonamide-Schiff’s bases, 

thiazolidinones, benzothiazinones and their C-nucleoside derivatives. Eur. J. Med. 

Chem. 45, 572−580. 

Kao, C.L., Chern, J.W., 2001. A convenient synthesis of naturally occurring benzofuran 

ailanthoidol. Tetrahedron Lett. 42, 1111–1113. 

Khanam, H., Shamsuzzaman,  2015. Bioactive benzofuran derivatives: A review. Eur. J. 

Med. Chem. 97, 483−504. 

Kraszni, M.,  Bányai, I., Noszál, B., 2003. Determination of conformer-specific partition 

coefficients in octanol/water systems. J. Med. Chem. 46, 2241–2245. 



 

18 

Kuo, S.C., Wang, Y.M., Ho, Y.J., Chang, T.Y., Lai, Z.Z., Tsui, P.Y., Wu, T.Y., Lin, C.C., 

2016. Suramin treatment reduces chikungunya pathogenesis in mice. Antiviral 

Res. 134, 89–96. 

Naik, R., Harmalkar, D.S., Xu, X., Jang, K., Lee, K., 2015. Bioactive benzofuran derivatives: 

Moracins A−Z in medicinal chemistry. Eur. J. Med. Chem. 90, 379−393. 

Narimatsu, S., Takemi, C., Kuramoto, S., Tsuzuki, D., Hichiya, H., Tamagake, K., 

Yamamoto, S., 2003. Stereoselectivity in the oxidation of bufuralol, a chiral substrate, 

by human cytochrome P450s. Chirality 15, 333−339. 

Nguewa, P.A., Fuertes, M.A., Cepeda, V., Iborra, S., Carrión, J., Valladares, B., Alonso, C., 

Pérez, J.M., 2005. Pentamidine is an antiparasitic and apoptotic drug that selectively 

modifies ubiquitin. Chem. Biodivers. 2, 1387−1400. 

Penumutchu, S.R., Chou, R.H., Yu, C., 2014. Interaction between S100P and the anti-allergy 

drug cromolyn. Biochem. Biophys. Res. Commun. 454, 404−409. 

Press release, 2014. FDA approves viekira pak to treat hepatitis C. Available at. 

http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm427530.htm 

(accessed 14.07.16). 

Press release, 2015. FDA approves new treatment for chronic hepatitis C genotype 3 

infections. Available at. http://www.fda.gov/NewsEvents/Newsroom/ 

PressAnnouncements/ucm455888.htm (accessed 14.07.16). 

Qu, H., Zhang, R., Hu, Y., Ke, Y., Gao, Z., Xu, H., 2013. Synthesis and antifungal activities 

of 2-(N-arylsulfonylindol-3-yl)-3-aryl-1,3-thiazinan-4-ones. Z. Naturforsch. 68 c, 77–

81. 

Raj, P.A., Marcus, E., Rein, R., 1998. Confomational requirements of suramin to target 

angiogenic growth factors. Angiogenesis 2, 183–199. 

http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm427530.htm
http://www.fda.gov/NewsEvents/Newsroom/%20PressAnnouncements/ucm455888.htm
http://www.fda.gov/NewsEvents/Newsroom/%20PressAnnouncements/ucm455888.htm


 

19 

Rao, A., Balzarini, J., Carbone, A., Chimirri, A., De Clercq, E., Monforte, A.M., Monforte, 

P., Pannecouque, C., Zappalà, M., 2004. 2-(2,6-Dihalophenyl)-3-(pyrimidin-2-yl)-1,3-

thiazolidin-4-ones as non-nucleoside HIV-1 reverse transcriptase inhibitors. Antiviral 

Res. 63, 79–84. 

Rawal, R.K., Tripathi, R., Katti, S.B., Pannecouquec, C., De Clercq, E., 2007. Synthesis and 

evaluation of 2-(2,6-dihalophenyl)-3-pyrimidinyl-1,3-thiazolidin-4-one analogues as 

anti-HIV-1 agents. Bioorg. Med. Chem. 15, 3134–3142. 

Rudrapal, M., Chetia, D., Prakash, A., 2013. Synthesis, antimalarial-, and antibacterial 

activity evaluation of some new 4-aminoquinoline derivatives. Med. Chem. Res. 22, 

3703–3711. 

Spaniol, M., Bracher, R., Ha, H.R., Follath, F., Krähenbühl, S., 2001. Toxicity of amiodarone 

and amiodarone analogues on isolated rat liver mitochondria. J. Hepatol, 35, 

628−636. 

Srivastava, T., Haq, W., Katti, S.B., 2002. Carbodiimide mediated synthesis of 4-

thiazolidinones by one-pot three-component condensation. Tetrahedron 58, 7619–

7624. 

Tripathi, A.C., Gupta, S.J., Fatima, G.N., Sonar, P.K., Verma, A., Saraf, S.K., 2014. 4-

Thiazolidinones: The advances continue. Eur. J. Med. Chem. 72, 52−77. 

Valeur, E., Bradley, M., 2009. Amide bond formation: beyond the myth of coupling reagents. 

Chem. Soc. Rev. 38, 606–631. 

Verma, A., Saraf, S.K., 2008. 4-Thiazolidinone − A biologically active scaffold. Eur. J. Med. 

Chem. 43, 897−905. 

Verma, A., Verma, S.S., Saraf, S.K., 2010. A DIC mediated expeditious small library 

synthesis and biological activity of thiazolidin-4-one and 1,3-thia-zinan-4-one 

derivatives. J. Heterocycl. Chem. 47, 1084−1089. 



 

20 

Weaver, S.C., 2014. Arrival of chikungunya virus in the new world: Prospects for spread and 

impact on public health. PLoS Negl. Trop. Dis. 8, e2921. 

Weaver, S.C., Lecuit, M., 2015. Chikungunya Virus and the global Spread of a mosquito-

borne disease. N. Engl. J. Med. 372, 1231–1239. 

Zebardast, T., Zarghi, A., Daraie, B., Hedayati, M., Dadrass, O.G., 2009. Design and 

synthesis of 3-alkyl-2-aryl-1,3-thiazinan-4-one derivatives as selective 

cyclooxygenase (COX-2) inhibitors. Bioorg. Med. Chem. Lett. 19, 3162−3165. 


	Corresponding Author
	Keywords
	Suramin is a symmetric molecule with a urea (NH–CO–NH) group in the center as the “neck”, two benzamido moieties as the “shoulder”, two methylbenzamido moieties as the “arms”, two naphthalene rings as the “palms”, and six sulfonate groups as the “fing...
	3.2 Evaluation of Anti-CHIKV Activity
	The antiviral activity of bis(benzofuran–1,3-thiazolidin-4-one)s 2 and bis(benzofuran–1,3-thiazinan-4-one)s 3 was first analyzed in cytopathic effect (CPE) reduction assays with CHIKV by testing four different concentrations (i.e., 100, 25, 6.3, and ...
	3.3 Lipophilicity and Potential “Drug-like” Bis-conjugates
	3.4 StructureActivity Relationship:  Essential Moieties and Substituents
	Acknowledgements
	Appendix A. Supporting Information.

