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Abstract. Selectivity is an important attribute of effective and safe drugs, and prediction
of in vivo target and tissue selectivity would likely improve drug development success rates.
However, a lack of understanding of the underlying (pharmacological) mechanisms and
availability of directly applicable predictive methods complicates the prediction of selectivity.
We explore the value of combining physiologically based pharmacokinetic (PBPK) modeling
with quantitative structure-activity relationship (QSAR) modeling to predict the influence of
the target dissociation constant (KD) and the target dissociation rate constant on target and
tissue selectivity. The KD values of CB1 ligands in the ChEMBL database are predicted by
QSAR random forest (RF) modeling for the CB1 receptor and known off-targets (TRPV1,
mGlu5, 5-HT1a). Of these CB1 ligands, rimonabant, CP-55940, and Δ8-tetrahydrocanabinol,
one of the active ingredients of cannabis, were selected for simulations of target occupancy
for CB1, TRPV1, mGlu5, and 5-HT1a in three brain regions, to illustrate the principles of the
combined PBPK-QSAR modeling. Our combined PBPK and target binding modeling
demonstrated that the optimal values of the KD and koff for target and tissue selectivity were
dependent on target concentration and tissue distribution kinetics. Interestingly, if the target
concentration is high and the perfusion of the target site is low, the optimal KD value is often
not the lowest KD value, suggesting that optimization towards high drug-target affinity can
decrease the benefit-risk ratio. The presented integrative structure-pharmacokinetic-
pharmacodynamic modeling provides an improved understanding of tissue and target
selectivity.

KEY WORDS: kinetic selectivity; physiologically based pharmacokinetic modeling; quantitative
structure-activity relationship; target-mediated drug disposition; tissue selectivity.

INTRODUCTION

In the development of new therapeutics, the balance
between safety and efficacy is critical for success. The

selectivity of a new drug is therefore an important attribute,
as selective compounds are less likely to mediate side effects
(1). On the other hand, targeting multiple targets simulta-
neously is increasingly considered as a valuable option to
exert sufficient effect on a complex biological system (2,3).
Regardless of the desired degree of selectivity, understanding
and prediction of the target binding to multiple targets in
multiple tissues is essential for the optimization of pharma-
cotherapy. In this article, we differentiate between two types
of selectivity: target selectivity and tissue selectivity. Target
selectivity is defined as a difference in target binding to
different receptors, and tissue selectivity is defined as a
difference in target binding to the same target in different
tissues. Additionally, a distinction is made between equilib-
rium selectivity and kinetic selectivity. Equilibrium selectivity
refers to differential target binding while target binding is in
equilibrium with the free drug concentration around the
target. This equilibrium binding is described for single step
target binding without target turnover according to Eq. 1, in
which KD is the dissociation constant, [L] is the unbound drug
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concentration, [R] is the unbound target concentration, [LR]
is the bound drug-target complex concentration, koff is the
first order target dissociation rate constant, and kon is the
second order target association rate constant:

KD ¼ L½ �∙ R½ �
LR½ � ¼ koff

kon
ð1Þ

Equilibrium target selectivity is thus driven by differen-
tial KD values for the different targets. Kinetic selectivity,
however, is often used to describe that different koff values for
different targets can lead to a difference in the duration of
target occupancy (4). Unfortunately, kinetic selectivity is not
clearly defined and is also used to describe a difference in
in vitro koff values (5). However, differential koff values do not
always result in a differential duration of target occupancy
in vivo since the plasma and local pharmacokinetics can also
be rate-limiting for the duration of target occupancy (6,7). To
disambiguate, we define Bin vitro kinetic selectivity^ here as a
difference in in vitro koff values and we define Bin vivo kinetic
selectivity^ as a difference in target occupancy between
different targets that cannot be explained by a difference in
equilibrium binding (e.g., a difference in KD or target site
distribution).

A previous study that analyzed a minimal mechanistic
model for drug elimination, tissue distribution, and target
binding showed that an increase in drug-target affinity
decreases the chance of observing in vivo kinetic selectivity,
especially for slow tissue distribution and a high target
concentration (7). On that basis, it is expected that the
optimal KD for target and tissue selectivity is dependent on
the target concentration, tissue distribution kinetics, and
binding kinetics. This contrasts with the current practice of
drug discovery and development which often aims at a
minimal value for the KD and koff and a maximal ratio to
the off-target KD and koff value if selectivity is concerned.

The minimal mechanistic model that was analyzed in the
study of de Witte et al. (7) did not consider (i) the effects of
slow distribution of a drug into tissues where no target
binding takes place nor (ii) the limiting role that blood flow
can have on tissue distribution. In order to capture the
influence of these pharmacokinetic mechanisms, physiologi-
cally based pharmacokinetic (PBPK) models can be used. In
these models, a distinction is made between system-specific
properties and drug-specific properties. In this type of
analysis, the values of system-specific parameters such as
blood flows and volumes for each organ are based on the
physiological literature data, while the values of drug-specific
parameters, such as partition coefficients and protein binding
are often based on in vitro data or on quantitative structure
activity relationships (QSARs) (8). As such, these models
allow the prediction of plasma and tissue unbound drug
concentrations. The influence of drug-target binding on free
drug concentrations has been described frequently with
target-mediated drug disposition (TMDD) models (9). The
combination of PBPK and TMDD modeling has been
reported in the literature previously but is not generally used
in selectivity optimization (10–13). To obtain the drug-specific
properties that determine the values of the partitioning

parameters in PBPK models, either experimental data for
each individual drug or quantitative structure-activity rela-
tionships (QSAR) are required. These QSARs enable the
prediction of partitioning parameters from the molecular
structure. While these QSARs are often used in PBPK
modeling to predict non-specific tissue distribution parame-
ters, the prediction of specific target binding parameters is
currently not incorporated in PBPK modeling, based on the
assumption that the amount of drug bound to its biological
target is negligible relative to the total amount of drug in the
body (14–17).

QSAR models may be either regression or classification
models which predict a response variable from a set of
predictor values. In regression models, these predictor values
are related to a continuous response variable (e.g., a KD

value), while in classification models the predictor values
relate to a categorical variable (e.g., labeled Bactive^ or
Binactive^). The predictor values represent the molecular
structure and molecular properties, and the response variable
is an activity value, such as the KD in the case of affinity.
Machine learning methods such as support vector machines
(SVMs), decision trees such as random forests (RFs) and
deep neural networks (DNNs) are generally used to obtain a
predictive learning model (18–20). The training of these
models is based on prior data, which means that their
performance is greatly dependent on data quality and
availability. A suitable database for bioactivity data is
available in the ChEMBL, which can be used to obtain
predictive QSAR models (21,22).

Integration of drug-target binding prediction and phar-
macokinetic modeling allows for the prediction of the
selectivity profile for a given ligand directly from its molecular
structure. As such, this modeling approach may provide
information on a ligand’s efficacy and safety in vivo during
the early stages of drug development. This is especially
relevant in systems that contain off-targets or targets that
are also expressed in organs were no drug effect is desired.
An example of the latter system is the cannabinoid system, of
which the cannabinoid receptor CB1 is a major component.
The CB1 receptor is widely expressed throughout the body
but mainly found in the brain where it mediates a broad range
of effects in health and disease (23,24). Many off-targets have
been identified for CB1 ligands, including the vanilloid
receptor TRPV1, the metabotropic glutamate receptor
mGlu5, and the serotonin receptor 5-HT1a (25,26). Activity
at these receptors, predominantly in the brain, may amplify or
counteract effects at the CB1 receptor. TRPV1, for example,
has been suggested to have an effect opposite of that of CB1
in anxiety and depression, which are common side effects
observed for CB1 antagonists, and mGlu5 is a major player in
the GABA-system, which is the target system for CB1-
mediated therapies in Parkinson’s disease (27–29). The
mechanisms underlying functional in vivo selectivity are
diverse and complex, but computational elucidation of off-
target affinities and their integration in combined PBPK-
TMDD modeling could help to identify safety concerns early
in drug discovery and development, and to design the optimal
properties of new drugs.

This article describes an approach towards the develop-
ment of an integrative predictive modeling for drug selectiv-
ity. Firstly, the main determinants of in vivo equilibrium and
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kinetic selectivity are identified by minimal PBPK-TMDD
modeling and simulation. Secondly, the development and
validation of a Random Forest-based QSAR (QSAR-RF)
model for the prediction of KD values is described. Lastly, an
example of the use of predicted KD values in PBPK-TMDD
modeling is provided for the combined in vivo target and
tissue selectivity of rimonabant, a prototype antagonist at the
CB1 receptor.

MATERIALS AND METHODS

Software

All simulations were performed in RStudio Version
1.0.136 coupled to R version 3.4.0 (30,31). Physicochemical
property prediction and QSAR modeling were performed in
Pipeline Pilot version 2016 (32).

Pharmacological Models

Three PBPK-TMDD models were developed: a minimal
PBPK-TMDD model for simulation of target selectivity
(model I, Fig. I), a minimal PBPK-TMDD model for
simulation of tissue selectivity (model II, Fig. II), and an
integrated brain PBPK-TMDD model for simulation of
selectivity across brain regions and between targets using
KD values predicted in a QSAR-RF (3.3 QSAR) (model III,
Fig. III).

Parameters

Models I and II. All physiological values of the system-
specific parameters were obtained from literature (33–38).
The heart was used as a reference organ for the determina-
tion of distribution into and out of the binding tissue. An
overview of all model parameters is supplied in Supplemental
1. Blood flows were summed for all tissues that are lumped
and converted to rate constants using the tissue volumes.

Model III. All physiological values of the system-specific
parameters were obtained from literature (33–38). Target site
distribution in the brain was not characterized by the blood
flow but by the average effective flow through the target site
as obtained from literature values of clearance out of the
brain extra-cellular fluid due to the fluid flow as estimated for
nine drugs (39). The conversion of these values as well as an
overview of all parameters are supplied in Supplemental 1.

Receptor densities of CB1, mGlu5, TRPV1, and 5-HT1a
in the cerebellum, hypothalamus, and frontal cortex were
obtained from the literature for all four receptors, except the
receptor concentration of mGlu5 in the hypothalamus and 5-
HT1a in the cerebellum, which were not reported in the
literature (40–44). The mGlu5 receptor concentration in the
hypothalamus was filled in with the averages of the other
brain regions since differences between brain regions for the
other receptors did not differ drastically. The 5-HT1a
receptor concentration in the cerebellum was set to the low
value of 0.01 nM as it was reported to be unidentifiable (43).
Receptor concentrations in rats and humans were used
interchangeably since no complete set of receptor densities
could be obtained for either rats or humans. Values found in

literature have shown to differ no more than tenfold (41,45).
TRPV1 concentrations were given in nanogram/milligram
lysate and converted to picomole/milligram protein by linear
conversion. For this, the receptor concentration in nanogram/
milligram lysate and femtomole/milligram protein in the
hypothalamus as reported in the literature was used (42,46).
The receptor density in the hypothalamus in femtomole/
milligram was divided by the receptor density in nanogram/
milligram lysate, and the resulting coefficient was used to
transform the receptor density in nanogram/milligram lysate
of the cerebellum, hypothalamus, and frontal cortex to the
corresponding receptor density in femtomole/milligram. CB1
and TRPV1 concentrations in picomole/milligram were then
converted to nanomolar using a conservative (i.e., the lowest
published) estimate of protein concentration in wet tissue of
100 mg/mL from literature (47–49). An overview of the target
concentrations is presented in Table I. An overview of the
conversions and all target concentrations can be found in
Supplemental 2.

Tissue-blood partition coefficients were calculated ac-
cording to Poulin & Theil 2000 (Eq. (2)) (50), and water and
lipid fractions were obtained from Poulin & Krishnan1995
(51). The required physicochemical parameters (logP, logSo)
(52) were determined in Pipeline Pilot. An overview of all
parameters is supplied in Supplemental 3.

Pt:b ¼ So �Nt½ � þ Sw � 0:7Ptð Þ þ So � 0:3Ptð Þ½ � þ Sw �W t½ �
So �Nb½ � þ Sw � 0:7Pbð Þ þ So � 0:3Pbð Þ½ � þ Sw �Wb½ �

ð2Þ

where:

Pt:b predicted value of the tissue-blood partition
coefficient

So the solubility of the ligand in n-octanol (mol*m-3)
Sw the solubility of the ligand in water (mol*m-3)
Nb the neutral lipid content of blood (as fraction of

blood volume)
Nt the neutral lipid content of the tissue (as fraction of

tissue volume)
Pb the phospholipid content of blood (as fraction of

blood volume)
Pt the phospholipid content of the tissue (as fraction

of tissue volume)
Wb the water content of blood (as fraction of blood

volume)
Wt the water content of the tissue (as fraction of tissue

volume)

Simulations

Model I. Model I was used to investigate the influence of
KD, target concentration (Rtot), and koff on in vivo target
selectivity. To this end, four different simulations (a, b, c, d)
were performed. In all four simulations, the koff at the first
target (R1) was set to 0.01 h−1 and the koff at the second
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target (R2) was set to 10 h−1 while both the KD and Rtot were
the same for both targets. An overview of the parameter
values that were varied in these simulations can be found in
Table II. An overview of all other parameters can be found in
Supplemental 1.

Model II. This model was used to perform simulations to
investigate the influence of KD, target concentration (Rtot),
and tissue distribution (kin) on in vivo tissue selectivity. To
this end, four different simulations were performed for a kin
value of 8.6 h−1 (fast tissue distribution) and for a kin value of
0.86 h−1 (slow tissue distribution). An overview of the
variable parameter values can be found in Table II. An
overview of all other parameters can be found in
Supplemental 1.

Model III. Simulations were performed for rimonabant,
Δ8 tetrahydrocannabinol (Δ8 THC), and CP-55940 in a
minimal PBPK-TMDD model (Fig. III). The KD at the
selected targets (CB1, mGlu5, TRPV1, and 5-HT1a) was
predicted by a QSAR per target model trained on the
complete pChEMBL dataset per target. A fast dissociation
from the receptor was assumed for all compounds by setting
the koff value to 10 h−1 at all receptors. Simulations were
performed for a time span of 7 days during which a dose was
administered every 24 h.

In order to investigate the influence of increasing drug-
target affinity without a change in equilibrium selectivity,
additional simulations were performed in which the ratio
between the different KD values for the different receptors
was kept the same while adjusting the absolute KD values by

a factor of 10 and 100. Simulations were performed for a time
span of 7 days with dosing once every 24 h. The dose was
scaled for the KD to obtain similar equilibrium occupancies in
all simulations.

QSAR

A Random Forest QSAR per target model was devel-
oped using the Random Forest package from CRAN (53).

Data Selection

Bioactivity data from ChEMBL22 where used for the
development of the QSAR model (54). High-quality data was
selected by setting assay confidence at 9 and requiring an
assigned pChEMBL value for all data points (22). This means
that a direct single protein target is assigned to the ligand.
PubChem database data and potential duplicates were
excluded from the dataset. Bioactivity data from ChEMBL
was limited to four different constants: KD, Ki, IC50, and
EC50. It has been shown previously that Ki and IC50 can be
combined for modeling (55). In order to check if these
constants could be used interchangeably, a statistical analysis
of their pChEMBL values was performed. In this analysis, the
mean, standard deviation (SD), and median and median
absolute deviation (MAD) were analyzed within and between
all four constants. An overview of all results is provided in
Supplemental 4. Since from this analysis it could be concluded
that the deviation between pChEMBL values between KD

Fig. I. Schematic overview of the minimal target selectivity model (model I). ka rate of
absorption (h−1), kin inwards distribution rate (h−1), kout outwards distribution rate, kon
association rate (nM−1 h−1), koff dissociation rate (h−1), kF forward rate of elimination
constant (h−1), LR ligand-receptor complex, V tissue volume (L), nbt non-binding tissue, c
central compartment, bt binding tissue, el eliminating tissue
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and Ki do not differ significantly from the deviation within the
KD dataset, both KD and Ki values were used in the model
development.

The molecular structure of the ligands was extracted
from the molfile and physicochemical properties, and FCFP_6
circular fingerprints were calculated in Pipeline Pilot (56).
The FCFP_6 fingerprints were then converted to 768 feature
properties for use in model training. Selection was performed
based on the relative frequency of substructures per target,
where the optimal frequency was close to being present in
50% of the ligands.

The complete dataset was split into a training set (70%)
and validation set (30%). This split was performed seven
times, each time with a different seed (111, 222, …, 777) in
order to create seven different datasets. In this way, the
model training and validation could be performed seven
times, allowing for reproducibility analysis of the model
performance results.

Training

For each target, a Random Forest model consisting of
500 trees was trained using the seven different training

sets. The models were trained on a predefined set of
properties consisting of log(P), molecular weight, number
of proton donors, number of proton acceptors, number of
rotatable bonds, number of atoms, number of rings,
number of aromatic rings, molecular solubility, molecular
surface area, molecular polar surface area, and the 768
FCFP_6 fingerprint properties that describe the molecular
structure in more detail.

Validation

The model performance was validated internally and
externally using the corresponding validation dataset per
seed, as described above. Internal validation was per-
formed by an out-of-bag (OOB) estimate and presented
as the average R2 regression coefficient and the root-
mean-squared error (RMSE) (57). The OOB estimate
method uses subsamples from the training dataset to
determine the mean prediction error of the RF model.
The RMSE is a value that measures the average
magnitude of the error and is presented by the same unit
as the dependent variable, which in this case is the
pChEMBL value (-log KD/Ki in M). External validation

Fig. II. Schematic overview of the minimal tissue selectivity model (model II). ka rate of
absorption (h−1), kin inwards distribution rate (h−1), kout outwards distribution rate, kon
association rate (nM−1 h−1), koff dissociation rate (h−1), kF forward rate of elimination
constant (h−1), LR ligand-receptor complex, V tissue volume (L), nbt non-binding tissue, c
central compartment, bt binding tissue, el elimination tissue
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was performed by a regression validation of the validation
dataset against the predicted pChEMBL values. These
results are also presented as the average R2 regression
coefficient and the RMSE.

RESULTS

Model I

The simulations in Fig. IV show in vivo kinetic target
selectivity in all simulations, due to a difference in the koff
value for target 1 and target 2. However, the extent of the
observed selectivity is dependent on the KD value and
target concentration. Given that optimization is often
performed towards lower koff values, the target at which
koff is 0.01 h−1 is considered as the desired therapeutic
target. Initially, target selectivity for the off-target is
observed, but this selectivity reverses to selectivity for
the therapeutic target over time in all simulations, except
in Fig. IVb, where the KD is low and the target
concentration is high. As it would be unlikely in drug
development to develop two drugs with a 1000-fold
different binding kinetics but the same KD value, we also
performed these simulations with 100-fold different bind-
ing kinetics and 10-fold different KD values as presented
in Supplemental 5. In these figures, the same trend is
observed, although the residual selectivity is higher due to
the difference in KD values. In addition, the same
simulations as for Fig. IV were performed with repeated
dosing until steady-state was reached. In these simulations
(Fig. S3), a similar reduction in selectivity is observed as
in Fig. IV, only to a smaller extent.

In summary, we observed that the combination of a high
target concentration and a low KD value decreases the in vivo
kinetic target selectivity.

Model II

For the simulations presented in Fig. V, no difference
in koff or KD values between the two target sites could be
included, since the ligand binds to the same target and the
differences in target occupancy arise due to a difference in
the target concentration. No selectivity is observed for the
higher KD values (10 and 1 nM), and only marginal
selectivity is observed for lower KD values (0.1 and
0.01 nM). Assuming that the target concentration in the
target tissue is higher than the target concentration in the

Fig. III. Schematic model of the brain PBPK-TMDD model. ka rate
constant of absorption (h−1), Q blood flow (L/h), kon association rate
constant (nM−1 h−1), koff dissociation rate constant (h−1), kF forward
rate of elimination constant (h−1), LR (with R = CB1, mGlu5,
TRPV1, or 5-HT1a) ligand-receptor complex, V tissue volume (L),
nbt non-binding tissue, c central compartment, bt binding tissue, li
liver, cer cerebellum, hyp hypothalamus, fc frontal cortex

Table I. Receptor Concentrations for the Brain PBPK-TMDD
Model

Rtot,cer (nM) Rtot,hyp (nM) Rtot,fc (nM)

CB1 527 248 529
mGlu5 5.1 16 25
TRPV1 19 13 12
5-HT1a 0.01 2.37 1.7

cer cerebellum, hyp hypothalamus, fc frontal cortex

Table II. Parameter Values for In Vivo Target Selectivity Simulations
with Model I

Model I Model II

KD Rtot koff R1 koff R2 KD Rtot1 Rtot2 koff
A 10 25 0.01 10 10 25 0.025 10
B 0.01 25 0.01 10 1 25 0.025 10
C 10 0.25 0.01 10 0.1 25 0.025 10
D 0.01 0.25 0.01 10 0.01 25 0.025 10

R1 is target 1, R2 is target 2, KD and Rtot are given in nM, and koff is
given in h−1

Vlot et al.



off-target tissue, the lowest simulated KD values showed
selectivity in the first 12 h to the off-target tissue after
which selectivity for the target tissue is observed (Fig. Vd).
Marginal selectivity for the target tissue is observed for a
KD value of 0.1 nM (Fig. Vc). Taken together, this means
that the KD and receptor concentrations influence the
extent of in vivo tissue selectivity. In addition, the same
simulations as for Fig. V were performed with repeated
dosing until steady-state was reached. In these simulations
(Fig. S4), the reduction in peak occupancy for tissue 1
compared to tissue 2, as observed in Fig. V, is reduced
and the average occupancy becomes approximately equal
in steady-state.

The simulations in Fig. V were performed for fast tissue
distribution based on the reported blood flow of well-
perfused organs in the human body (37). Figure VI shows
the simulation results for slower tissue distribution,
representing limited perfusion of the target site (e.g., in a
synaptic cleft) or the presence of diffusion barriers (e.g., for
intracellular or CNS targets). In these figures, the same
patterns are observed as for fast tissue distribution, but the
observed selectivity is greater and the affinity for maximal
selectivity for the target-rich tissue is lower. Similarly as for
Fig. V, upon repeated dosing, the difference in peak
occupancy between the two tissues decreases and the

difference in average target occupancy disappears (Fig. S5)
compared to Fig. VI.

QSAR-RF

From the simulations described above, it follows that
there is an optimal KD for both tissue selectivity and
target selectivity. To facilitate the optimization of the
KD, we aimed to predict the KD value from the
molecular structure with predictive QSAR modeling. In
this study, a QSAR-RF model was developed. The
results of the internal and external validation are given
in Fig. VII. For the OOB validation, R2 values range
from 0.57 to 0.70, with an average of 0.63 (SD 0.04) and
RMSE values range between 0.64 and 0.83 with an
average of 0.69 (SD 0.05). For external regression
validation, the R2 values range from 0.50 to 0.73 with
an average of 0.62 (SD 0.05) and RMSE values ranging
between 0.9 and 0.64 with an average of 0.71 (SD 0.06).
These values indicate good model performance, since the
error in public data is around 0.44 for pKi data.
Moreover, based on this error, it has been shown that
the theoretical maximal achievable R2 value then
becomes 0.81 for the perfect model (58–60). A full
overview of the results is supplied in Supplemental 4.

Fig. IV. Target concentration and KD determine the extent of in vivo kinetic target selectivity in model I.
Target selectivity is characterized by a difference in target occupancy between target 1 (green) and target 2
(orange). The parameter values for these simulations can be found in Supplemental 1
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Model III

To reflect a drug discovery/candidate selection scenario,
the developed QSAR model was used to predict the affinity
of the molecules rimonabant, Δ8 tetrahydrocannabinol (Δ8

THC), and CP-55940 for the four selected receptors (CB1,
TRPV1, mGlu5, 5-HT1a, Fig. VIII). These KD values were
then used to predict the selectivity over different brain
regions (cerebellum, hypothalamus, and the frontal cortex).
The results of these simulations are given in Fig. VIII. For the
target occupancy of Δ8 THC, the compound with the lowest
CB1 affinity, no selectivity is observed between brain regions.
The target occupancy for the higher affinity compounds
rimonabant and CP-55490 shows a slower increase of target
occupancy in the brain regions with the highest target
concentrations, the cerebellum and frontal cortex compared
to the hypothalamus. The difference in target occupancy
between the brain regions is similar for all targets, which
results in a change in target selectivity across brain regions.
Two days after the start of rimonabant dosing, for example,
the simulated target occupancy at TRPV1 in the hypothala-
mus is similar to the CB1 target occupancy in the cerebellum
and frontal cortex.

For CP-55940, it takes more than 7 days to reach the
maximal occupancies in the cerebellum and frontal cortex,
while this delay would be even more extensive for lower
doses. It should be noted that equilibrium selectivity (i.e., the
difference in KD values for the different receptors) is different
for the compounds in Fig. VIII. To obtain a better view of the
role of the value of the KD as such, rather than the KD ratio
between targets, the simulations for rimonabant were re-
peated with the same KD ratio between targets and tenfold
increased and decreased KD values, as shown in Supplemen-
tal 6, Fig. S6. Additionally, to explore the influence of error
propagation from the QSAR model into model III, simula-
tions were performed for the lowest and highest KD value
within the RMSE-based KD(±) prediction range as shown in
Supplemental 6, Fig. S7. Summarizing the results, it is
consistently found that the selectivity profile changes drasti-
cally over time while this would not be expected based on
plasma concentrations and KD values alone.

DISCUSSION

In this study, we have shown that the integration of
target binding and PBPK modeling demonstrates the

Fig. V. Tissue selectivity reverses to off-target selectivity as KD decreases in model II. kin is 8.6 h−1. Tissue
selectivity is characterized by a difference in target occupancy between tissue 1 (green) and tissue 2
(orange). The parameter values for these simulations can be found in Supplemental 1
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importance of target concentrations, target site distribution
kinetics, and the KD and koff for both in vivo target selectivity
and tissue selectivity. We observe that a low KD, in
combination with a high target concentration, decreased the
kinetic target selectivity, indicating that the duration of target
occupancy is less sensitive to the value of koff for these
conditions. Moreover, we find that an increasing KD can both
increase and decrease tissue selectivity, dependent on the
target concentration and tissue distribution. This influence of
the KD on tissue selectivity is especially relevant in the first
days after a change in dosing regimen as the difference in
average target occupancy between a relatively high and low
KD compound disappears upon reaching steady-state. The
demonstrated mechanistic modeling can thus be instrumental
to find an optimal KD value for a specific target/therapeutic
area. To utlize this approach most effectively, our QSAR
model to predict CB1 and off-target KD values can be
used to predict tissue and target selectivity directly from
the molecular structure. Using this combination of models,
our simulations for the CB1 ligands confirm that lower KD

values for all targets can decrease the CB1 and brain
region selectivity significantly during the first days of
treatment.

Our results suggest that optimization towards high drug-
target affinity and slow drug-target dissociation, as is com-
monly performed within the current drug development
paradigm, may not result in the most selective compounds.
While this study demonstrates the influence of target
concentrations on the target occupancy in different tissues,
the influence of target concentrations on the occupancy-
response relationship has previously been described as the
driving factor for tissue selectivity of partial agonists (61–63).
Also, the influence of target expression and target accesibility
on target saturation and its duration has been described in
quantitative terms before (64). Moreover, the relevance of
the koff for transient tissue selectivity has been demonstrated
before in a PBPK model for inhaled drugs (65). For the
development of more selective drugs, target concentrations of
both the intended target and off-targets as well as distribution
to the target tissue/target site should be taken into consider-
ation. In this respect, it is important to consider that
distribution to the target site is not only dependent on
distribution into the target tissue, but also on the localization
of the target within this tissue (e.g., in the bloodstream or
intracellularly). Moreover, factors such as target concentra-
tions and tissue distribution may be altered in a disease state,

Fig. VI. Slower tissue distribution amplifies the influence of KD on tissue selectivity in model II. kin is
0.86 h−1. Tissue selectivity is characterized by a difference in target occupancy between target 1 (green) and
target 2 (orange). The parameter values can be found in Supplemental 1
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Fig. VII. QSAR RF model performance regression validation. Internal out-of-bag validation
resulted in an average R2 value of 0.63 ± 0.06 (SD 0.04), with an RMSE of 0.69 ± 0.1 (SD 0.05).
External regression validation gave an average R2 value of 0.62 ± 0.12 (SD 0.05) with an RMSE of
0.71 ± 0.13 (SD 0.06)

Fig. VIII. Simulated target occupancy-profile for rimonabant in the cerebellum, frontal cortex, and hypothalamus.
Predicted KD values of Δ8-THC, rimonabant, and CP-55940 at the CB1, 5-HT1a, mGlu5, and TRPV1 receptor were
used in these simulations. koff values were assumed to be 10 h−1. The drug dose was scaled linearly for the CB1 KD

value and was administered every 24 h. Rtot,cer,CB1 = 527 nM, Rtot,cer,mGlu5 = 5.1 nM, Rtot,cer,TRPV1 = 19 nM, Rtot,cer,5-

HT1a = 0.01, Rtot,hyp,CB1 = 248 nM, Rtot,hyp,mGlu5 = 16 nM, Rtot,hyp,TRPV1 = 13 nM, Rtot,hyp,5-HT1a = 2.37, Rtot,fc,CB1 =
529 nM, Rtot,fc,mGlu5 = 25 nM, Rtot,fc,TRPV1 = 12 nM, Rtot,fc,5-HT1a = 1.7 nM

Vlot et al.



which is important for the translation from healthy volunteers
to patients (24,66–68). Finally, it should be considered that
there is an increased interest towards allosteric modulation in
CNS drug discovery due to the potential benefits with regard
to selectivity and side effects (69). However, it has also been
shown that allosteric modulators display different physico-
chemical and efficacy (Ki versus ligand efficacy) profiles
compared to orthosteric ligands (70). These parameters can
be included in the modeling approach for future studies.

The methods described in this study provide valuable
insights for drugs in later stages of the drug development
process. Especially for tissue selectivity, but also for target
selectivity, the intended duration of therapy needs to be taken
into account to define optimal drug properties and appropri-
ate study design. Drug therapies that are meant for short-
term dosing or to have a quick initiation of the drug effect,
such as pain killers for acute pain, anti-inflammatory and anti-
infectuous drugs, and anesthetics, are especially influenced by
the impact of target concentrations and affinity on tissue
selectivity. For drug therapies that are meant for chronic
dosing, the influence of the target concentration and the drug-
target affinity should be taken into account for evaluation of
drug candidates in the initial phase after the first and the last
drug dose. The selectivity profiles in Fig. VIII, for example,
would result in underestimation of CB1 selectivity in
(pre)clinical studies, if only the first 7 days were studied. This
might lead to the unnecessary discontinuation of the devel-
opment of valuable drug candidates. Moreover, the slowly
increasing target occupancy for high-affinity drugs such as
CP-55940 might lead to a clinically undesired delay and
unfavorable selectivity between the initiation of treatment
and the onset of the therapeutic effect. While for CP-55940
and the current dosing regime the delay is in the order of a
week which is probably acceptable in the clinic, this delay will
extend to less acceptable periods in the order of months for
drugs with even higher affinities (e.g., biologics) or for drugs
that require lower doses. This can potentially be mitigated by
a higher dose (i.e., a loading dose), which can be lowered as
soon as steady-state occupancy is reached. Since monitoring
of occupancy levels in the clinic is hardly feasible, this would
required in-depth knowledge of the mechanisms and pre-
dicted occupancy profile as described in this study. Moreover,
it should be noted that the target occupancy will decline only
slowly after discontinuation of treatment and that it might
take several days or even weeks for these high-affinity drugs
before the target occupancy is back to insignificant levels.
This could be counteracted in the clinic by administration of a
competitive antagonist or agonist to displace the drug from
the receptor and enhance the clearance out of the target
binding tissue. In Fig. VIII, we simulated the target
occupancy in different brain areas, where the CB1
receptor is expressed in high concentrations. However,
the CB1 receptor is expressed at much lower concentra-
tions in other organs, which are also involved in the
influence of CB1 antagonism on metabolic disorders
(71,72). Our results suggest that more selectivity for
peripheral CB1 receptors and less psychological side
effects could be achieved by dosing for a few days and
subsequently stopping the drug dosing until the central
CB1 occupancy is lowered to minimal levels, after which
the sequence can be repeated. The clinical benefit of such

a regimen is entirely hypothetical, but could be worth
exploring.

The simulations in this study were all based on physio-
logical parameter values as obtained from PBPK models and
target concentration literature. However, additional assump-
tions were sometimes necessary. For the simulations in
Fig. VI, the tissue distribution of the drug was not based on
the blood flow through well-perfused organs, as for the other
figures, but we assumed a delayed distribution due to, for
example, limited diffusion into a synaptic cleft or the cytosol.
The magnitude of this delay is compound and target specific,
and this assumption will thus only hold for a limited number
of compounds. Secondly, the simulation in Fig. VIII assumed
fast binding kinetics as the actual binding kinetics of
rimonabant have been reported to be complex and therefore
hard to accurately determine in in vitro studies (73,74). The
assumption of fast binding kinetics is supported by the short
dissociation half-life as reported by Packeu et al. (75).
Additionally, this assumption will be valid for any drug for
which the binding kinetics are not rate-limiting compared to
the pharmacokinetics, but slower binding kinetics could
change the outcome of the simulations, as shown in Fig. IV
and in previous studies (6,7). Thirdly, a number of assump-
tions concerning (interspecies) translatability of target densi-
ties were made in order to obtain useful target densities for
the simulations in Fig. VIII. In general, the quality of absolute
tissue-specific target concentration data, rather than relative
expression values, might be limited. This is illustrated by the
large deviations between experimental tissue density results
found in the literature between PET-studies and tissue Bno
wash^ assay experiments (41,76). In addition, basic input
parameters such as brain region volumes already come with
uncertainty and variability (77). Furthermore, the limited
amount of information on target site distribution for the
simulations in Fig. VIII limits the predictive value of these
simulations. Moreover, protein binding is not incorporated in
the simulations underlying Fig. VIII and the target binding in
our model is driven by unbound + nonspecifically bound
tissue concentrations, while for many drugs the unbound
tissue concentrations drive the drug-target binding. However,
it should be noted that the dose in Fig. VIII is adjusted to get
a desired occupancy. Inclusion of protein binding and the free
concentration as the driving factor for target binding can be
achieved by multiplying the free + nonspecifically bound drug
concentration with the fraction unbound. To get the same
target occupancy as presented in our simulations, the dose
would need to be adjusted accordingly. However, in most
cases, the kinetics and selectivity of target binding will not be
affected by protein binding and tissue partitioning, especially
not compared to our simulations for Fig. VIII since tissue
partitioning is assumed to be the same in all brain areas in
these simulations. These simulations should therefore be
considered as a prediction of the relevant parameters for
combined target and tissue selectivity for a realistic set of
target concentrations and KD values, rather than a precise
prediction of target occupancy values for the simulated CB1
ligands. One of the most striking findings in our study is that
increasing the KD in drug development can both increase and
decrease the target and tissue selectivity. This demonstrates
the relevance of target concentrations and tissue distribution,
and the valuable role of mechanistic modeling.

Target and tissue selectivity prediction by integrated



The prediction error that is observed for the KD

predictions of the developed QSAR model introduces an
extra level of uncertainty into the overall reliability of the
selectivity predictions. The largest RMSE value in this study
was found for the mGlu5 QSAR, with an average value of
0.8. This value relates to the deviation of the predictions from
the actual pChEMBL value, and has the same unit as the
dependent variable, which in this case is the -log KD. This
uncertainty is therefore carried on into the pharmacological
simulations. From the simulations performed with the highest
and lowest value within the KD prediction range of
rimonabant, it can be concluded that this propagation of
error does influence the observed selectivity profile. This
error is limited to the extent of selectivity and the distribution
across brain regions during the first 1 to 4 days. However, part
of this error is already present in the public data that was
used to train our QSAR model, in which a larger standard
deviation is found compared to the rimonabant predictions at
the CB1 receptor from the QSAR model (Supplemental 4,
Fig. SI). Additionally, having the ability to predict the
selectivity profile in the earliest stages of drug disovery
justifies the use of predictions with significant uncertainty.
Moreover, both the overrepresentation and underrepresenta-
tion of structural features or scaffolds in the ChEMBL
database might decrease the predictive power for new
compounds that do not share these structural features.

Although the predictive value of the presented models is
limited by the assumptions we made, the presented insight
into the influence of the target concentration and tissue
distribution kinetics is in line with the previous analysis of
more simple models with only one target and one tissue (7).
Moreover, the relevance of incorporating target binding in
PBPK models for the accurate prediction of tissue concen-
trations has been demonstrated before (13). The basic
principle behind the role of the KD and target concentration
on the duration of occupancy is the high concentration of the
target compared to unbound drug concentrations at the target
site. This leads to a depletion of the free drug concentration
during drug-target association after initiation of drug admin-
istration and a replenishment of the free drug concentration
during drug-target dissociation after termination of the drug
administration. The depletion of free drug concentrations can
be local and can be hard to observe from systemic plasma
concentrations, as demonstrated for the simulations of CP-
55940 in Fig. S8. This is mainly relevant for drugs with a high
KD and target concentration and at a target occupancy that is
not completely saturated. If this target occupancy is increas-
ing, drug-target association will deplete the unbound target
site concentration, and if the occupancy is decreasing, drug-
target dissociation will increase the unbound target site
concentration compared to plasma concentrations.

In summary, the information presented in this study
provides new insights into the mechanisms underlying in vivo
target and tissue selectivity, specifically in relation to drug-
target affinity, target concentration, tissue and target site
distribution, as well as binding kinetics. The study provides
situations in which selectivity is expected to occur, which may
aid as a lead towards creating ligands with the desired
selectivity profile. Additionally, the demonstrated integration
of mechanistic modeling and machine learning could enable
the incorporation of these insights in the earliest phases of

drug discovery. The need for this model-based selectivity
optimization is especially valuable for therapeutic areas in
which an optimal target or tissue selectivity profile is difficult
to obtain (e.g., in oncology) and might be less valuable for
therapeutic areas were selectivity is less challenging and the
traditional minimization of the KD is desired (e.g., for
antibiotic/antiviral targets that are not expressed in human
cells).

CONCLUSIONS

Simulations performed in semi-physiological pharmaco-
logical models with target binding revealed an important role
for the target concentration and tissue distribution, next to
the KD and koff values, in determining the extent of
selectivity. Interestingly, it was observed that the optimal
selectivity is not observed for the drug that displays the
highest drug-target affinity when assuming that the desired
target concentrations are high and the desired binding
kinetics are slow. Additionally, it was observed that kinetic
selectivity is unlikely when the target concentrations and the
drug-target affinity are high, while tissue selectivity is first
increased and then decreased for increasing target concen-
trations and drug-target affinities. The context-dependent
optimum of drug-target affinity in determining the extent of
selectivity demonstrates the value of KD prediction for drug
development. Taken together, this study demonstrates the
potential of integrative predictive modeling in providing
improved strategies to optimize drug candidates for maximal
in vivo selectivity.
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