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Abstract
The Iberian Pyrite Belt (IPB; SW of the Iberian Peninsula) is one of the most important volcanogenic massive sulphide ore
deposits in the world. Cistus monspeliensis L. is a native woody shrub that grows spontaneously in non-contaminated soils as
well as in soils with multielemental contamination from the IPB. In this study, different ecophysiological parameters of
C. monspeliensis growing in soils with different levels of metal(loid)s were evaluated to assess the potential of this species for
revegetation of degraded areas. Composite samples of plants and rhizosphere soils were sampled in São Domingos and Lousal
mines and in a reference area without soil contamination (Pomarão, Portugal) (Portuguese sector of IPB). Classical characteri-
sation of the soils and quantification of their total and available metal(loid) concentrations were done. Multielemental concen-
tration was determined in plants (shoots and roots). Ecophysiological parameters were also determined in shoots: concentrations
of pigments (chlorophylls, anthocyanins and carotenoids), antioxidants (glutathione and ascorbate) and hydrogen peroxide as
well as activities of several antioxidative enzymes. Although mining soils present high total concentrations of potentially
hazardous elements, their available fractions were low and similar among studied areas. Soil pH as well as concentrations of
extractable P, total concentrations of As, Cd and Ni and concentrations of Cu, Cr, Ni, Pb and Sb in the soil available fraction
differentiate the studied areas. Only concentrations of Cd, Pb and Sb in roots and shoots were explained by the concentrations of
the same elements in the soil available fraction. Although the majority of elements were translocated from roots to shoots, the
shoots concentrations were below the toxic values for domestic animals and only As, Mn and Zn reached phytotoxic concen-
trations. Ecophysiological parameters were similar independently of the studied area. Due to its adaptability, tolerance and
standard plant features, C. monspeliensis is a good choice for rehabilitation of soils with multielemental contamination under
similar climatic characteristics.
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Introduction

Iberian Pyrite Belt (IPB; SWof the Iberian Peninsula) is one of
the most important volcanogenic massive sulphide ore de-
posits in the world (Tornos 2006). In the mines from the
Portuguese sector of IPB (PIPB), as a result of open cast and
underground mining operations, and lack of environmental
management practices, large amounts of waste materials with

high contents of metal(loid)s were exposed to weathering con-
ditions and pedogenesis (Matos and Martins 2006; Santos
et al. 2017) leading to the formation of incipient soils
(Spolic Technosols; IUSS Working Group WRB 2015).
These soils, as the mine wastes, have usually significant
chemical and physical limitations to plant development, such
as low pH and organic matter content, unfavourable texture
and structure and high total concentrations of metal(loid)s
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(Abreu and Magalhães 2009; Santos et al. 2017).
Additionally, the oxidation of the metallic sulphides from
the PIPB mine spoils results in acid mine drainage generation
with the consequent release and leaching of significant
amounts of metal(loid)s leading to the contamination, alter-
ation and destruction of the adjacent ecosystems (Abreu et al.
2010; Ferreira da Silva et al. 2005; Santos et al. 2016a, 2017).
These extreme conditions of the soils and mine wastes from
the PIPB inhibit/reduce the growth of the spontaneous vege-
tation cover contributing to the increase of hydric and wind
erosion and, consequently, the spreading of the contamination
(Abreu and Magalhães 2009; Santos et al. 2016a).

Nevertheless, it is not uncommon that Technosols devel-
oped on some types of mining wastes from the PIPB are
colonised by autochthonous plant species (e.g. genus Cistus,
Lavandula and Erica), which grow spontaneously without
any visual signs of toxicity despite the multielemental contam-
ination in soils and relative high concentrations of some met-
al(loid)s in their roots and shoots (Abreu et al. 2008, 2012a, b;
Batista et al. 2017; Freitas et al. 2004; Márquez-García and
Córdoba 2009; Pérez-López et al. 2014; Santos et al. 2012,
2014, 2016b, c). These plants provide important contributions
for natural rehabilitation of the contaminated soils, decreasing
the elements spreading by leaching and erosion (Abreu and
Magalhães 2009; Tordoff et al. 2000). Also, the establishment
of a self-sustaining vegetation, principally with pioneer spe-
cies, contributes to the ecological succession. In general, sev-
eral Cistus species growing in soils developed on mine wastes
from the IPB present adequate ecological behaviours to the
rehabilitation of these materials (Abreu et al. 2012a, b; Batista
et al. 2017; Alvarenga et al. 2004; Freitas et al. 2004; Santos
et al. 2009, 2012, 2014).

The uptake and accumulation of high contents of metal(-
loid)s in the plant tissues may often cause oxidative stress,
resulting in an increase of reactive oxygen species (ROS)
and, consequently, a significant damage at the physiological
and cellular levels. In order to withstand oxidative stress,
plants have developed several ecophysiological mechanisms/
strategies of tolerance such as, the decrease of elements ab-
sorption and/or translocation to the aboveground organs, the
intracellular sequestration as well as stimulation of the activ-
ities of antioxidative enzymes and production of non-
enzymatic compounds (e.g. glutathione, ascorbic acid, carot-
enoids) involved in the scavenging of ROS (Abreu et al. 2014;
Caverzan et al. 2012; Hall 2002; Márquez-García and
Córdoba 2009; Pang et al. 2003; Rossini Oliva et al. 2009a;
Santos et al. 2009, 2016c). Many plant species growing in
soils with multielemental contamination from the IPB mining
areas have developed these strategies (Abreu et al. 2008,
2012a, b; Pérez-López et al. 2014; Rossini Oliva et al.
2009a, b; Santos et al. 2012, 2014, 2016c).

Cistus monspeliensis L. is an autochthonous species, well
adapted to Mediterranean conditions (Correia 2002; Sánchez-

Blanco et al. 2002) and to less acid soils (Núñez-Olivera et al.
1995) that grows spontaneously in several mining areas from
the IPB, including São Domingos and Lousal, as well as in
uncontaminated areas in the vicinity of these mines. However,
little information exists about the ecophysiological features of
this species and its potential for natural rehabilitation of con-
taminated soils.

In this study, the ecophysiological features of
C. monspeliensis growing in soils with multielemental con-
tamination (São Domingos and Lousal mine areas) and in a
reference area without soil contamination and same climatic
conditions (Pomarão) were compared in order to evaluate the
potential of this species for the revegetation of soils with
multielemental contamination. For this, the metal(loid) stor-
age capacity in roots and shoots and elements translocation to
shoots as well as different antioxidative enzymes and antiox-
idant molecules associated to oxidative stress were evaluated.

Material and methods

Study areas and sampling

This study was carried out in two different abandoned mining
areas from PIPB, São Domingos (DatumWGS84: 37.6683, −
7.4939) and Lousal (DatumWGS84: 38.0369, − 8.4278), and
in a reference area without soil contamination located about
18 km to the South of the São Domingos mine (Datum
WGS84 37.5949, − 7,5361) (near Pomarão village).
According to Thornthwaite classification, the climate of these
areas is semiarid mesothermic (average of the minimum air
temperatures: 5–16 °C; average of the maximum air tempera-
tures: 14–33 °C; and the average of the annual precipitation:
548 mm; Climate normals 1981–2010, Beja, IPMA 2016).
The soil moisture and soil temperature regimes are considered
xeric and thermic, respectively (SSS 1999).

São Domingos mine was exploited in two periods: before
and during the Roman period for Ag, Au and Cu, and later,
from the middle of the nineteenth century until 1960 for mas-
sive sulphides and gossan, mainly for Cu, Zn and S extraction
(Matos and Martins 2006; Quental et al. 2002). The Lousal
mine was exploited between 1900 and 1988, mainly for pyrite
(Matos and Martins 2006). Mining operations in São
Domingos and Lousal caused the degradation of the natural
landscape including soils and superficial waters. In both mine
areas, high volumes of wastes were disposed irregularly af-
fecting large areas and generating acid mine drainage. Bare
wastes and some contaminated soils are, in raining periods,
subject to significant hydric erosion (Abreu et al. 2010;
Ferreira da Silva et al. 2005; Matos and Martins 2006;
Quental et al. 2002).

In the three studied areas, different sampling zones were
se l ec t ed to inc lude rep re sen t a t ive so i l s whe re
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C. monspeliensis grows (five in São Domingos mine; four in
Lousal mine and three in Pomarão). Soils in São Domingos
and Lousal are thin and were developed over spoils, com-
posed mainly by gossaneous materials and host rocks
(Spolic Toxic Technosols) (IUSS Working Group WRB
2015), or developed on schists and greywackes (Lithic
Leptosols) (IUSSWorking GroupWRB 2015) and influenced
by particulate materials and/or acid mine drainage from adja-
cent tailings. In Pomarão, the soils (Lithic Leptosols) (IUSS
Working Group WRB 2015) were developed on schists and
greywackes belonging to the Flysch Group of the Baixo
Alentejo (Oliveira et al. 1984).

Cistus monspeliensis grows in the sampling zones usually
forming isolated groups of 5–10 individuals occupying a sur-
face cover of ca. 3–10m2. Composite samples of shoots (com-
posed of leaves and twigs) and roots were collected in each
sampling zone and in at least three different adult plants with
height ranging from 1.0 to 1.5 m. In each zone, soil samples
from the surface horizon (0–20 cm depth and ≈ 3 kg of ho-
mogenate soil) were collected surrounding the rhizosphere
system of all harvested plant, obtaining a composite sample.
Sampling was performed in spring, after the rain period.

Chemical analysis of soils and plants

Soil samples were air-dried, sieved through a 2-mmmesh and
homogenised. These samples (fraction < 2mm)were analysed
for (Póvoas and Barral 1992): pH in water suspension
(1:2.5 m/V), total organic C by wet combustion, extractable
P and K using the Egner–Riehm method (LV ST ZM 82–97),
where 0.04 M calcium lactate extraction is used as an
extracting agent being acidified by hydrochloric acid up to
pH 3.5–3.7 (Egnér et al. 1960), and total N by the Kjeldahl
method (Kjeldahl 1883). The multielemental total concentra-
tion of the soils was determined by instrumental neutron acti-
vation analysis and inductively coupled plasma after acid di-
gestion with perchloric, nitric, hydrochloric and hydrofluoric
acids (Activation Laboratories 2015a). The multielemental
concentration of the soil in the available fraction was deter-
mined by inductively coupled plasma mass spectrometry
(ICP-MS) and inductively coupled plasma optical emission
spectrometry (Activation Laboratories 2015b), after extraction
by the rhizosphere-based method (Feng et al. 2005).

Plants were washed with tap water followed by distilled
water, and the roots were cut and sonicated in distilled water
in an ultrasound bath for 30min. The plant samples were dried
at 40 °C, homogenised and finely ground. Multielemental
chemical analysis of the shoot and root samples was carried
out by ICP-MS, after reducing the samples to ashes at 475 °C
followed by digestion with nitric acid (Activation
Laboratories 2015c). Quality control of the elemental analysis
of soils and plants was made by laboratory standards of the
Activation Laboratories, a certified laboratory (ISO/IEC

17025), while quality control of the other analysis was carried
out by technical replicates, use of certified standard solutions
and method reagent blank.

Soil–plant transfer and translocation coefficients were cal-
culated. The translocation coefficient ([total shoots element]/
[total roots element]) indicates the translocation capacity of an
element from roots to shoots (Huang and Cunningham 1996),
while soil–plant transfer coefficient ([total shoots element]/
[total soil element]) characterises the accumulation behaviour,
i.e. if the plants can be considered as accumulators (transfer
coefficient > 1) or excluders/non-accumulators (transfer coef-
ficient < 1) of an element (Brooks 1998).

Plant physiological analysis

The physiologica l analyses were carr ied out in
C. monspeliensis leaves, frozen in liquid nitrogen at the mo-
ment of collection and kept at − 80 °C in a deep freezer, in
order to prevent changes in physiological composition.

The extraction of the pigments was carried out by macera-
tion of leaf samples in acetone:Tris-HCl 100 mM (80:20). The
concentrations of chlorophyll a (chl a), chlorophyll b (chl b),
total chlorophyll (chl total), anthocyanins and carotenoids
were assayed by spectrophotometry (microplate reader
Sinergy HT, Biotec, Winooski, USA) at 537, 647, 663 and
470 nm, using the equations described by Sims and Gamon
(2002) and then expressed in μmol g−1 fresh weight
(Richardson et al. 2002).

Reduced (GSH) and oxidised (GSSG) glutathione were
analysed colorimetrically by the 2-vinylpiridine method
(Anderson et al. 1992). Absorbance was recorded at 412 nm.
The percentage of reduction corresponds to the percentage of
GSH in the total glutathione pool and is defined as GSH/
(GSH +GSSG) × 100.

Ascorbic (AsA) and dehydroascorbic (DAsA) acids were
assayed using a method adapted from Okamura (1980) by
Carvalho and Amâncio (2002). Absorbance was recorded at
525 nm. Standard curves of AsA in the range of 10–60 mM
were prepared in 5% metaphosphoric acid. The concentration
of DAsAwas calculated by subtracting the AsA concentration
measured from the total ascorbate assayed.

Hydrogen peroxide production was determined using a flu-
orometric horseradish peroxidase (HRP) linked assay
(Amplex Red assay kit, Invitrogen). Leaf material was ground
over activated charcoal in the presence of liquid nitrogen
(Creissen et al. 1999). Absorbance was measured at 570 nm.

Total protein was extracted using an extraction buffer com-
posed of TRIS 0.2 M (pH 8) containing 2% SDS (sodium
dodecyl sulphate), 5 mM EDTA (ethylenediaminetetraacetic
acid), 5 mMMgCl2, 10% glycerol and 2% 2-mercaptoethanol.
At the moment of extract ion, 2 mg mL−1 PMSF
(phenylmethylsulphonyl f luoride) and 3% PVPP
(polyvinylpolypyrrolidone) were added. Activated charcoal
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was added to all the extracts and the supernatants were used
for the assays. Total protein was quantified using Bradford’s
(1976) method with a commercial kit (Bio-Rad, Hercules,
CA) according to the manufacturer’s instructions.

The enzyme activities were analysed using ca. 14 μg of
protein in the case of ascorbate peroxidase (APX),
monodehydroascorbate reductase (MDHAR) and superoxide
dismutase (SOD) and ca. 35 μg of protein for glutathione
reductase (GR), dehydroascorbate reductase (DHAR) and cat-
alase (CAT). The activity of APX (EC 1.11.1.11) was assayed
using a modified method of Hossain and Asada (1984). The
reaction mixture contained 50 mM potassium phosphate–
KOH (pH 7.5), 0.625 mM AsA and 0.125 mM EDTA. The
oxidation rate of AsA was followed at 290 nm for 60 s after
starting the reaction by adding of 0.2 mM H2O2 (ε290 =
2.8 mM−1 cm−1).

The activity of MDHAR (EC 1.6.5.4) was assayed by re-
duction of the absorbance at 340 nm due to the oxidation of
NADH (ε340 = 6.22 mM−1 cm−1) (Arrigoni et al. 1981). The
reactionmixture contained 50mMTris-HCl (pH 7.5), 0.2 mM
NADH and 2.5 mMAsA. This reaction generates MDAsA by
the ascorbate/ascorbate oxidase system (Arrigoni et al. 1981).
To assay MDHAR activity, the rate of MDAsA-independent
NADH oxidation (without AsA and ascorbate oxidase) was
subtracted from the initial MDAsA dependent NADH oxida-
tion rate (with AsA and ascorbate oxidase).

The determination of the activity of DHAR (EC 1.8.5.1)
was based on the increase of the absorbance at 265 nm due to
the formation of ascorbate (ε265 = 14 mM−1 cm−1) (Dalton
et al. 1993). The reaction mixture contained 0.1 M Hepes-
KOH buffer (pH 7.0), 2.5 mM GSH, 0.5 mM DAsA and
0.1 mM EDTA. The reaction rate was corrected for the non-
enzymatic reduction of DAsA by GSH. A correction factor of
0.98 was applied in the assessment of enzyme activity to com-
pensate for GSSG absorbance (Hernández-Jiménez et al.
2002; Redondo et al. 2009).

The determination of the activity of GR (EC 1.6.4.2) was
based on the reduction of the absorbance at 340 nm due to the
oxidation of NADPH (ε340 = 6.22 mM−1 cm−1) (Schaedle and
Bassham 1977). The reaction mixture contained 50 mM Tris-
HCl (pH 7.5), 0.15 mM NADPH, 0.5 mM GSSG and 3 mM
MgCl2.

The activity of SOD (EC 1.15.1.1) was assayed at 550 nm
using the ferrocytochrome c method and xanthine/xanthine
oxidase as sources of superoxide radicals (McCord and
Fridovich 1969). The reaction mixture contained 50 mM po-
tassium phosphate–KOH buffer (pH 7.6), 0.1 mM EDTA,
0.01 mM cytochrome c, 0.05 mM xanthine and 0.03 units of
xanthine oxidase.

The activity of CAT (EC 1.11.1.6) was assayed directly by
the decomposition of H2O2 at 240 nm in a reaction mixture
containing 50 mM potassium phosphate–KOH buffer (pH
7.0) and 10 mM H2O2 (Carvalho et al. 2006).

Statistical analysis

The data obtained were analysed with the statistical program
IBM-SPSS Statistics 23 for Windows. Data were checked for
normality (Shapiro–Wilk test) and homogeneity of variances
(Levene test) and, when possible, a simple ANOVA and
Tukey test (p < 0.05) was applied. Data not satisfying these
assumptions were analysed using a non-parametric analysis of
Kruskal–Wallis test (p < 0.05) and the Man-Whitney U Test
for comparison among areas. Principal component analysis
(PCA) was applied to the data set for identifying the possible
relations among chemical properties of the soils,
multielemental concentrations in roots and shoots and in the
available fraction of the soil, and multielemental concentra-
tions in shoots and physiological parameters. For statistical
purposes, the results below the detection limit were assumed
as half of the detection limit.

Results and discussion

Chemical soil characteristics

Chemical characteristics of the soils are shown in Table 1.
Mine soils were developed on heterogeneous mixtures of host
rocks, influenced by acid mine drainage and/or different waste
materials, which consequently influenced the characteristics
of the soils. Due to this heterogeneity of the materials, chem-
ical characteristics of soils from mining areas presented, in
general, a wide range of values.

The pH values of the soils from both mine areas are very
acid-to-acid due to mine wastes from which they were devel-
oped. These pH values were significantly lower than those
from Pomarão. Independently of the studied area, no signifi-
cant differences were found among electrical conductivities as
well as the concentrations of total N, organic C and extractable
K. However, concentrations of extractable P in soils from São
Domingos and Lousal mines were lower than in soils collect-
ed in Pomarão (Table 1).

The soils from São Domingos and Lousal mine had very
high total concentrations of As (only São Domingos), Cu, Pb
and Sb, which are in contrast with the total concentrations of
the same elements in the soils collected in Pomarão. Besides,
the highest total concentration of Zn was obtained in Lousal
soils while the highest total concentrations of Mn were found
in soils from Pomarão. No significant differences were ob-
served between the concentrations of Cr, Ni and Cd in the
different studied areas (Table 1).

According to different reference guidelines for metal(loid)
levels in soils (CCME 2007; VROM 2009), the total concen-
trations of As, Sb, Cu, Cr, Pb and Sb in soils from both mine
areas (Table 1) exceeded the intervention values and maxi-
mum permitted levels for the protection of ecosystems and
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human health as well as commercial and industrial land use.
The total concentrations of metal(loid)s in the soils from
Pomarão (reference area) did not exceed those levels, except
for As and Cr (CCME 2007). Nonetheless, the concentrations
of these elements are within the range of values for non-
contaminated soils from region and developed on the same
geological substratum (Abreu et al. 2008, 2012b; Santos
et al. 2012; Tavares et al. 2008).

Although the total concentrations of the elements in the
mine soils were higher, compared to those in Pomarão soils,
the element concentrations in the available fraction of the soils
were low (< 13.3% of the total concentrations) independently
of the studied area. Moreover, no significant differences in the
concentrations of As, Cd, Cr, Ni, Pb and Zn in the available
fraction were obtained among the three studied areas, al-
though some soils from São Domingos and Lousal can reach
higher concentrations compared to Pomarão soils (Table 1).
The concentrations of Cu and Sb in the available fractions of
the mine soils were significantly higher than those in Pomarão

soils. Besides, Mn concentrations in the available fraction of
soils from Pomarão and Lousal were significantly higher than
those in soils of São Domingos (Table 1).

The analysis of the PCA for soil characteristics (Fig. 1a) led
to a reduction of the initial dimension of the dataset to two
components, which explain 55.2% of the data variation (PC1
22.7%; and PC2 32.49% of the variance). The PC1 indicates
that pH affects negatively the available contents of Cu, Sb and
Pb in soils while available concentrations ofMn and Ni can be
related to their total concentrations. Through PCA analysis, it
was possible to obtain a clear separation of the studied areas.
Thus, the soils from Pomarão, with high values of pH and
extractable P contents as well as low concentrations of As,
Cd and Ni in the total fraction and Cu, Cr, Ni, Pb and Sb in
the available fraction, are differentiated from the mine soils,
which have opposite characteristics.Within soil mines, Lousal
soils are grouped especially by their high total concentrations
of Ni and the concentrations of Cr and Ni in the available
fraction, while São Domingos soils are distinguished mainly

Table 1 Chemical leftacteristics of soils from São Domingos and Lousal mines (contaminated areas) and Pomarão (reference area)

São Domingos Lousal Pomarão

Minimum Maximum Average Minimum Maximum Average Minimum Maximum Average

pHH2O 3.76 4.49 4.12b 4.09 5.40 4.55b 6.08 6.32 6.29a

Organic C (g kg−1) 5.90 22.4 15.1a 7.80 27.3 14.1a 6.90 14.90 10.7a

Total N (g kg−1) 0.47 1.93 1.10a 0.73 1.69 1.02a 0.34 0.75 0.56a

Extractable P (mg kg−1) 0.34 2.52 1.18b 1.35 2.49 2.00b 7.30 10.50 9.00a

Extractable K (mg kg−1) 45.7 90.9 69.9a 23.3 101 55.2a 70.0 138 95.0a

Electrical conductivity (μS cm−1) 130 520 235a 152 1191 495a 271 321 301a

Element Total (mg kg−1)

As 711 3030 1662a 62 662 460b 18 19 19c

Cd 0.3 1.3 1.0a 0.3 1.2 0.7a 0.3 0.3 0.3a

Cr 72 91 81a 71 128 106a 77 113 91a

Cu 203 342 253a 79 526 325a 25 47 32b

Mn 100 575 327b 500 1060 690ab 713 898 813a

Ni 10 48 34a 45 55 50a 31 42 35a

Pb 666 9210 3489a 95 2280 961a 28 50 39b

Sb 55 496 163a 21 189 74a 1.5 2.2 1.8b

Zn 36 186 129b 166 878 456a 92 123 104b

Element Available fraction (mg kg−1)

As 0.15 1.89 0.97a 0.03 0.45 0.26a 0.03 0.09 0.05a

Cd 0.01 0.07 0.04a 0.02 0.05 0.03a 0.01 0.03 0.02a

Cr 0.02 0.05 0.03a 0.03 0.07 0.05a 0.03 0.05 0.04a

Cu 2.68 9.95 5.11a 0.76 9.26 5.31a 0.09 2.16 0.78b

Mn 1.84 46.8 14.7b 26.1 49.3 46.5a 40.7 50.0 44.7a

Ni 0.06 0.39 0.27a 0.24 0.64 0.39a 0.08 0.29 0.15a

Pb 0.23 4.04 1.66a 0.05 0.98 0.51a 0.07 0.65 0.27a

Sb 0.03 0.22 0.14a 0.02 0.24 0.09a < 0.01 0.01 0.01b

Zn 2.04 7.36 4.97a 5.90 15.8 10.8a 0.50 7.10 2.73a

Average data followed by a different letter indicates significance differences among areas (p < 0.05)
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by their high total concentrations of As, Cd and Pb in the total
fraction and the concentrations of As and Pb in the available
fraction.

In general, concentrations of metal(loid)s in the total and
available fractions as well as other chemical properties of the
soils are in agreement with the range of values obtained in
previous studies performed in the same areas (Abreu et al.
2008, 2012a, b; Alvarenga et al. 2012; Batista et al. 2017;
Ferreira da Silva et al. 2005; Freitas et al. 2004; Pérez-López
et al. 2014; Santos et al. 2012, 2014, 2016c).

Concentrations of metal(loid)s in plants

The concentrations of metal(loid)s in shoots and roots of
C. monspeliensis are shown in Table 2. Independently of the

area, the concentrations of the elements in roots and shoots
were higher than the concentrations of the same elements in
the available fraction of the soils (Table 1), except for Sb in
roots. In general, the concentrations of metal(loid)s in shoots
and roots inC. monspeliensis growing in bothmines showed a
great heterogeneity, as also observed for other Cistus species
growing inmining areas from the IPB (e.g. Abreu et al. 2012a,
b; Santos et al. 2012, 2014 and references therein).

Cistus monspeliensis from Pomarão showed the highest
concentrations of Cr and Ni in roots and Ni, Cr and Mn in
shoots. However, concentrations of As, Cu, and Sb in roots
and As and Zn in shoots from São Domingos and Cd and Zn
in shoots from Lousal were higher than those in Pomarão
(reference area). Similar behaviour was observed in other spe-
cies growing in contaminated and non-contaminated areas

a b
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of soils from the three studied areas; and c metal(loid) concentrations in
shoots ofC. monspeliensis and pigments. Arrows and circles indicate and
group the most relevant results of the PCA explained in the text. Element

total: metal(loid) total concentration; element avail: metal(loid) available
concentration; element shoot: metal(loid) shoot concentration; element
root: metal(loid) root concentration; EC: electrical conductivity; OC:
organic C; N: total N; K: extractable K; P: extractable P; Chl a:
chlorophyll a; Chl b: chlorophyll b; Chl total: total chlorophyll; Antho:
anthocyanins; Carot: carotenoids
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from the IPB, as Cistus ladanifer L. (As and Zn in shoots),
Cistus salviifolius L. (e.g. As and Sb in shoots and roots) and
Lavandula pedunculata (Mill.) Cav. (Abreu et al. 2012a;
Santos et al. 2012, 2016c; Trigueros et al. 2012), as well as
in Erica andevalensis (Cabezudo & J. Rivera) and Erica
australis L. (Abreu et al. 2008; Pérez-López et al. 2014).

The PCA analysis (Fig. 1b) done to assess the possible
relationship between the concentrations of metal(loid)s in
the soil available fraction, and roots and shoots of
C. monspeliensis can explain 52.9% of the data variation.
The PC1, which explains 33.0% of the variance, shows that
the concentrations of Pb and Sb in roots and shoots can be

explained by the concentrations of the same elements in the
available fraction of the soils. The same was obtained for Cd
in PC2, which explains 19.9% of the variance. Also, PC2
shows a possible synergistic interaction Cd–Zn as reported
by Kabata-Pendias (2011).

Intra- and inter-population differences were observed in the
translocation behaviour (Table 3) of the elements in the plants.
In general, plants from the three populations mainly
translocated As, Cd, Cu, Mn, Ni, Sb and Zn from roots to
shoots (Translocation coefficient > 1). This translocation be-
haviour differ to other species of the genus Cistus, such as
C. populifolius, C. salviifolius and C. ladanifer, which mainly

Table 2 Metal(loid) concentrations (mg kg−1) in roots and shoots of C. monspeliensis collected in São Domingos and Lousal mines (contaminated
areas) and Pomarão (reference area)

Element São Domingos Lousal Pomarão Literature values

Minimum Maximum Average Minimum Maximum Average Minimum Maximum Average

Roots (mg kg−1)

As 8.31 13.6 11.4a 0.84 3.70 2.29b 0.50 0.78 0.66b –

Cd 0.29 2.21 1.32a 0.70 1.73 1.24a 1.02 1.32 1.16a –

Cr 0.79 1.30 0.97c 0.94 3.22 1.90b 5.25 8.97 6.86a –

Cu 17.4 34.6 26.7a 4.33 13.0 9.32b 9.52 13.7 11.2b –

Mn 192 1963 764a 144 728 401a 478 769 575a –

Ni 0.88 5.62 3.08b 0.94 2.12 1.54b 5.15 6.56 5.83a –

Pb 3.74 90.7 35.0a 1.83 28.9 10.1a 4.78 9.34 7.72a –

Sb 0.03 0.38 0.14a 0.02 0.15 0.06ab 0.01 0.02 0.01b –

Zn 48.1 118 91.0a 64.3 187 117a 74.9 98.9 90.6a –

Shoots (mg kg−1)

As 2.22 75.8 29.7a 0.55 5.34 2.63b 1.06 1.22 1.05b 7.83(1)

1.3–2.1(2)

10–71(3)

Cd 0.37 2.57 1.56b 2.48 4.68 3.45a 1.39 1.90 1.45b –

Cr 0.59 4.86 3.14a 1.22 2.02 1.40b 2.43 2.57 2.38a –

Cu 8.34 46.1 26.8a 7.60 16.9 13.8a 28.7 30.4 28.6a 42.9 ± 0.79(1)

5.2–16.0(2)

27–80(3)

Mn 200 1991 1165ab 174 1387 815b 1721 1991 1828a 29.2 ± 5.1(1)

1009–1045(3)

Ni 1.24 5.62 4.02b 2.41 6.36 4.14b 7.10 8.21 8.20a 0.72(1)

3.3–5.9(2)

Pb 4.53 35.8 15.6a 2.54 9.76 6.13a 2.85 3.19 2.83a 9.14 ± 2.79(1)

20.0–20.7(2)

15–23(3)

Sb 0.04 0.87 0.25a 0.01 0.22 0.10a 0.06 0.08 0.07a –

Zn 153 308 217b 259 531 408a 157 169 151c 319 ± 185(1)

142.3–343.2(2)

328–357 (3)

Values found in the literature for C. monspeliensis: (1) de la Fuente et al. (2010), shoots from Rio Tinto mining area; (2) Freitas et al. (2004), leaves and
twigs from São Domingos mine; (3) Batista et al. (2017), leaves from São Domingos mine. For each element, average data followed by a different letter
indicates significance differences among populations (p < 0.05)
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accumulated metal(loid)s in roots (Abreu et al. 2012a, b;
Alvarenga et al. 2004; Santos et al. 2014). However, in gen-
eral, the concentrations of the studied elements in
C. monspeliensis shoots from the three populations were be-
low the toxicity limit and/or within the range considered
sufficient/normal for plants, except for As in plants from São
Domingos, and Mn and Zn in plants from the three areas
(Table 2) which present values considered as phytotoxic
(Kabata-Pendias 2011). Despite these concentrations, no visu-
al symptoms of toxicity were observed (data not shown).
Moreover, an additional important aspect is that elemental
concentrations in the shoots were below the toxicity limits
for domestic animals (NRC 2005) and did not represent any
environmental risk.

Otherwise, plants from Pomarão mainly stored Cr and Pb
in roots (Translocation coefficient < 1). The storage in roots
and/or decrease of the translocation of the potentially hazard-
ous elements from roots to shoots can be considered a toler-
ance mechanism (Abreu et al. 2014; Hossain et al. 2012).

Taking into account the few published studies on the con-
centrations of potentially toxic elements in C. monspeliensis
(Batista et al. 2017; De la Fuente et al. 2010; Freitas et al.
2004) (Table 2), C. monspeliensis shoots present a wide range
of element concentrations. Nonetheless, most of the element
concentrat ions obtained in the present study for

C. monspeliensis are in the same range than for other species
of the genus Cistus (e.g. As in C. salviifolius shoots from São
Domingos, Cu in C. ladanifer roots from Lousal) growing in
the same mine areas (Abreu et al. 2012a, b; Freitas et al. 2004;
Santos et al. 2009, 2012, 2014).

Concerning the plant accumulation behaviour, evaluated
by the soil–plant transfer coefficient (Table 3), plants from
the three populations were Zn, Mn and Cd accumulators but
not hyperaccumulators. For the other studied elements and
independently of the population, the plants can be considered
non-accumulators.

Concentration of pigments in leaves

Pigment concentrations in the leaves of C. monspeliensis are
shown in Fig. 2a, b, c. In general, the excess of potentially
hazardous elements in leaves can modify the concentration of
pigments, which are usually associated to visual symptoms of
plant disease and impaired photosynthetic activity (Kabata-
Pendias 2011; Márquez-García and Córdoba 2009; Pang
et al. 2003; Santos et al. 2016c; Tewari et al. 2008).
However, independently of the population, no visual alter-
ation in leaf colour was observed.

Although intra-population variation can be pointed out, no
significant differences were obtained between the

Table 3 Metal(loid) translocation from roots to shoots and metal(loid) soil–plant transfer coefficients of C. monspeliensis collected in São Domingos
and Lousal mines (contaminated areas) and Pomarão (reference area)

Element São Domingos Lousal Pomarão

Minimum Maximum Median Minimum Maximum Median Minimum Maximum Median

Translocation coefficient

As 0.20 6.09 2.13 0.65 1.44 0.95 1.10 2.12 1.77

Cd 0.82 2.21 1.28 2.06 4.39 2.78 1.04 1.44 1.22

Cr 1.67 5.23 3.26 0.37 1.26 0.93 0.27 0.49 0.34

Cu 0.33 1.65 1.19 1.23 1.76 1.58 1.95 3.19 2.75

Mn 0.89 2.26 2.18 1.20 3.25 1.58 2.31 4.16 3.60

Ni 0.22 2.41 2.02 2.10 3.07 2.78 1.25 1.61 1.38

Pb 0.30 1.21 0.60 0.31 1.73 1.15 0.27 0.60 0.34

Sb 0.57 2.29 1.57 0.50 2.33 1.49 3.00 8.00 6.00

Zn 1.68 3.92 2.61 2.82 5.44 3.44 1.30 2.09 1.72

Soil–plant transfer coefficient

As 0.01 0.04 0.02 < 0.01 0.01 0.01 0.05 0.07 0.06

Cd 0.28 4.83 2.07 3.10 10.23 4.92 3.53 6.33 4.63

Cr 0.02 0.07 0.05 0.01 0.02 0.02 0.02 0.03 0.03

Cu 0.04 0.23 0.08 0.03 0.10 0.05 0.57 1.22 1.15

Mn 2.00 5.19 3.29 0.29 2.31 1.03 1.97 2.79 2.08

Ni 0.05 0.17 0.12 0.05 0.12 0.09 0.22 0.26 0.22

Pb 0.00 0.02 0.01 < 0.01 0.03 0.02 0.06 0.09 0.08

Sb < 0.01 < 0.01 < 0.01 < 0.01 0.01 0.01 0.03 0.05 0.03

Zn 1.05 4.25 1.60 0.54 1.56 1.16 1.34 1.71 1.37

6450 Environ Sci Pollut Res (2018) 25:6443–6455



concentrations of chlorophylls (a, b and total), anthocyanins
and carotenoids in the leaves from the three populations (Fig.
2a, b, c). Similar results were observed between contents of
carotenoids in leaves of E. australis, C. ladanifer and
L. pedunculata collected in different mining areas from IPB
and in non-contaminated areas (Márquez-García and Córdoba
2009; Santos et al. 2013, 2016c).

A PCAwas carried out to evaluate the possible influence of
the contents of metal(loid)s on pigments in C. monspeliensis
shoots (Fig. 1c), which was determined only for PC1 (43.99%
of variance). The results showed that only Cd concentrations
in shoots can affect negatively the concentrations of all studied
pigments. Thus, the low contents of chlorophylls, anthocya-
nins and carotenoids in C. monspeliensis in the three studied
areas might be attributed to the high level of solar radiation, air
temperature and low humidity, stress factors associated to the
Mediterranean conditions that occur in these areas (Correia
2002; Santos et al. 2013).

Concentration of H2O2

Hydrogen peroxide content in the shoots of C. monspeliensis
is shown in Fig. 2d. Plants under normal physiological condi-
tions produce significant amounts of H2O2 as a by-product of
their metabolism and, under various stress factors, namely
high concentrations of metal(loid)s, H2O2 levels tend to in-
crease due to its speed of formation exceed the capacity for
scavenging (Caverzan et al. 2012). On the other hand, plants
can eliminate H2O2, through detoxification mechanisms, in
order to limit the peroxidation reactions of the membrane
lipids (Howlett and Avery 1997). The lowest levels of H2O2

in C. monspeliensis from mining areas, especially in some
plants from São Domingos (Fig. 2d) can suggest the rapid
elimination of this compound.

Comparing the studied populations, no significant differ-
ences were obtained due to the high variability of H2O2 con-
centrations in C. monspeliensis. Similar H2O2 concentrations
were also reported in leaves of E. australis growing in mine
wastes and uncontaminated soils from Spanish IPB (Márquez-
García and Córdoba 2009). The PCA analysis indicates that

Fig. 2 a Chlorophyll (total, a and
b); b anthocyanins; c carotenoids;
and d hydrogen peroxide (H2O2)
contents in shoots of
C. monspeliensis in each studied
area. Box plot data distribution
(min, Q1, median, Q3, max) for
each parameter is indicated for
each studied area. Black bars
show the maximum and
minimum values in each studied
populations. Values with same
letter (lowercase letter, lowercase
italic or uppercase letter) indicate
that there are no significant
differences for each parameter
among studied areas (p < 0.05)

Fig. 3 a Concentrations of reduced (AsA) and oxidised (DAsA) ascor-
bate and b reduced (GSH) and oxidised (GSSG) glutathione in shoots of
C. monspeliensis from the different studied areas. Box plot data distribu-
tion (min, Q1, median, Q3, max) for each parameter is indicated for each
studied area. Black bars show the maximum and minimum values in each
studied populations. Values with same letter (lowercase letter, or lower-
case italic) indicate that there are no significant differences for each pa-
rameter among studied areas (p < 0.05)
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this ecophysiological parameter is not explained by the con-
centrations of the studied metal(loid)s in the shoots.

Antioxidative enzymes and antioxidant molecules

Ascorbate and glutathione contents in the leaves of
C. monspeliensis are shown in Fig. 3. No significant differ-
ences in the concentrations of ascorbate and glutathione were
obtained among plants of the three studied populations.
Similar concentrations of glutathione in leaves of
P. lanceolata and C. arenosa from contaminated and non-
contaminated areas were also reported by Nadgórska-Socha
et al. (2013).

When assessing the levels of reduced and oxidised
ascorbate (AsA and DAsA, respectively) in leaves of
C. monspeliensis from the three studied areas (Fig. 3),
the reduction state was high in all cases. Generally, the
maintaining of a high percentage of AsA is essential for
the proper scavenging of ROS in cells (Mittler 2002), so
the results obtained for ascorbate are a good indication of
the cell’s redox state. The percentages of AsA reduction
in the three populations was in the same range varying

between 73.1 and 97.1%. Nevertheless, the reduction state
of glutathione (GSH) was generally low and the only pa-
rameter significantly lower in plants from Lousal (39.5–
46.1%) and São Domingos (47.2–57.2%) than in plants
collected in Pomarão (58.8–78.5%). These results can in-
dicate that the plants from mines can be under oxidative
stress that impaired the normal functioning of the reduc-
tion cycle of glutathione.

Activities of antioxidative enzymes in the leaves of
C. monspeliensis are shown in Fig. 4. In general, under
oxidative stress, plants can also stimulate the activity of
antioxidative enzymes, which remove and neutralise ROS
(Pang et al. 2003; Santos et al. 2009). However, no sig-
nificant differences in the antioxidative enzyme activities
were obtained among the studied populations. These re-
sults suggest that C. monspeliensis plants from the three
studied areas are able to adapt their enzyme activities and
concentrations of antioxidant molecules to the concentra-
tions of metal(loid)s in their shoots, showing high toler-
ance to these elements. Therefore, the potential toxicity
caused by toxic elements did not trigger the activities of
antioxidative enzymes. Similar activities of some

Fig. 4 Total soluble enzyme
activities in shoots of
C. monspeliensis from the
different studied areas: a catalase
(CAT), b superoxide dismutase
(SOD), c ascorbate peroxidase
(APX), d monodehydroascorbate
reductase (MDHAR), e
dehydroascorbate reductase
(DHAR), f glutathione reductase
(GR). Box plot data distribution
(min, Q1, median, Q3, max) for
each parameter is indicated for
each studied area. Black bars
show the maximum and
minimum values in each studied
populations. Values with same
letter indicate that there are no
significant differences for each
parameter among studied areas
(p < 0.05)
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antioxidative enzymes were also observed in E. australis
(e .g . CAT and APX), C. ladani fer (e .g . SOD),
L. pedunculata (e.g. SOD) and P. lanceolata (e.g. SOD)
and C. arenosa (e.g. SOD) growing in soils affected and
not affected by multielemental contamination of the min-
ing activity (Márquez-García and Córdoba 2009;
Nadgórska-Socha et al. 2013; Santos et al. 2009, 2016c).

Conclusions

The soils from São Domingos and Lousal mining areas
showed low values of pH and high total metal(loid)s concen-
trations, mainly As, Sb, Cu, Zn and Pb. However a clear
separation (PCA) of the soils from the studied areas was ob-
tained through pH, concentrations of extractable P, total con-
centrations of As, Cd and Ni and concentrations of Cu, Cr, Ni,
Pb and Sb in the available fraction of the soils.

Only some soil parameters explained the availability of the
elements in the soils, namely pH values (availability of Cu, Sb
and Pb) and the total concentrations ofMn and Ni (availability
of the same elements). In spite of the high total concentrations
of the potentially hazardous elements in the mining soils, the
concentrations of these elements in the available fraction were
low and similar independently of the studied areas. This fact
could explain the general tendency to the similar concentra-
tions of the same elements in shoots and roots of
C. monspeliensis growing in soils with different levels of
multielemental contamination and in non-contaminated soils.

In general, C. monspeliensis from the three studied popu-
lations were accumulators of Zn, Cd and Mn but not
hyperaccumulators. Although the majority of the metal(loid)s
and nutrients were translocated from roots to shoots, only
some elements reached phytotoxic concentrations in the
shoots (As in shoots from São Domingos; Mn and Zn in some
plants from the three populations).

Independently of the mine area and soil characteristics,
C. monspeliensis colonised the contaminated soils showing
great tolerance and adaptability to limiting conditions for plant
growth and oxidative stress as shown by the ecophysiological
parameters. Taking into account the metal(loid) concentra-
tions in shoots, which were under the toxicity limits for do-
mestic animals, and the lack of phytotoxicity symptoms, as
well as the dense soil cover and considerable deep root sys-
tem, C. monspeliensis have potential for natural soil rehabili-
tation or to be used in assisted soil recovery programs leading
to revegetation of degraded and abandoned mine areas under
Mediterranean conditions.
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