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Effects of the Bidentate Ligand on the Photophysical Properties,
Cellular Uptake, and (Photo)cytotoxicity of Glycoconjugates Based
on the [Ru(tpy)(NN)(L)]2 ++ Scaffold
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Abstract: Ruthenium polypyridyl complexes have received

widespread attention as potential chemotherapeutics in
photodynamic therapy (PDT) and in photochemotherapy

(PACT). Here, we investigate a series of sixteen ruthenium

polypyridyl complexes with general formula [Ru(tpy)(N@
N)(L)]+ /2 + (tpy = 2,2’:6’,2’’-terpyridine, N@N = bpy (2,2’-bipyri-

dine), phen (1,10-phenanthroline), dpq (pyrazino[2,3-f]
[1,10]phenanthroline), dppz (dipyrido[3,2-a :2’,3’-c]phenazine,

dppn (benzo[i]dipyrido[3,2-a :2’,3’-c]phenazine), pmip (2-(4-

methylphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline), pymi

((E)-N-phenyl-1-(pyridin-2-yl)methanimine), or azpy (2-(phe-
nylazo)pyridine), L = Cl@ or 2-(2-(2-(methylthio)ethoxy)eth-

oxy)ethyl-b-d-glucopyranoside) and their potential for either

PDT or PACT. We demonstrate that although increased lipo-
philicity is generally related to increased uptake of these

complexes, it does not necessarily lead to increased (photo)-
cytotoxicity. However, the non-toxic complexes are excellent

candidates as PACT carriers.

Introduction

Ruthenium based anti-cancer compounds have been investi-

gated for several decades[1] as potential alternatives to the clin-

ically approved cisplatin. Cisplatin is associated with serious
side effects such as renal toxicity, neurotoxicity, and hearing

loss.[2] The most thoroughly investigated ruthenium-based
anti-cancer agents, NAMI-A and KP1019, both reached phase II

clinical trials before being abandoned.[3] More recently, the tun-
able photophysical properties of ruthenium(II) polypyridyl
complexes have been used to develop compounds combating

bacterial resistance to antibiotics,[4] or new photosensitizers for
photodynamic therapy as an alternative to, for example, Pho-
tofrin.[5] Recently, the group of McFarland have made a great
step forward in this field, by entering phase I clinical trials with

a RuII-thiophene-polypyridyl-based photosensitizer, TLD1433.[6]

Simultaneously, a great interest has been shown in the devel-

opment of sterically strained ruthenium(II) complexes for the

light-induced delivery of cytotoxic cargo.[7] This last approach

is often referred to as photo-activated chemotherapy
(PACT).[3b, 8] The proof-of-concept for ruthenium-based PACT

was first demonstrated by Etchenique’s group, who demon-

strated the photorelease of the potassium channel blocker 4-
aminopyridine (4AP) from [Ru(bpy)2(4AP)2]2+ upon visible light

irradiation.[9] Many other examples of ruthenium complexes
used as photosensitive agents releasing anticancer molecules

have been developed by the group of Turro,[10] Gasser,[11]

Glazer,[12] Kodanko,[13] and Bonnet.[14] Following up on our initial

work using thioether monodentate ligands to cage cytotoxic

aqua ruthenium complexes,[14b, 15] we report here a series of re-
lated chloride complexes [1 a]Cl–[8 a]Cl having the general for-
mula [Ru(tpy)(N@N)(Cl)]Cl with N@N = bpy (2,2’-bipyridine),
phen (1,10-phenanthroline), dpq (pyrazino[2,3-f][1,10]phenan-

throline), dppz (dipyrido[3,2-a :2’,3’-c]phenazine, dppn (ben-
zo[i]dipyrido[3,2-a :2’,3’-c]phenazine), pmip (2-(4-methylphenyl)-

1H-imidazo[4,5-f][1,10]phenanthroline), pymi ((E)-N-phenyl-1-
(pyridin-2-yl)methanimine), or azpy (2-(phenylazo)pyridine),
and of their water-soluble derivatives [Ru(tpy)(N@N)(R)](PF6)2

([1 b](PF6)2–[8 b](PF6)2), in which R = (2-(2-(2-(methylthio)ethox-
y)ethoxy)ethyl-b-d-glucopyranoside is a thioether-glucose con-

jugate (Figure 1).
On the one hand, [Ru(tpy)(bpy)(Cl)]Cl is known to be poorly

cytotoxic to cancer cells.[1d] On the other hand, we recently

demonstrated that [Ru(tpy)(dppn)(R)](PF6)2 ([5 b](PF6)2,

(Figure 1) has unique phototoxic properties based on a dual

mode-of-action involving both photosubstitution of the thio-
ether ligand and singlet oxygen generation. In this paper, we

compare the photophysical properties of all conjugates
[1 b](PF6)2–[8 b](PF6)2 and of their chloride analogues [1 a]Cl–
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[8 a]Cl in water, and correlate them to the uptake and cytotox-

icity in cancer cells. Critically, the glucose-containing ligand L
ensures that all thioether-ruthenium complexes are soluble in

water, allowing their photochemistry to be studied independent-
ly from the lipophilicity of the N@N spectator bidentate ligand.

Results

Synthesis

Chloride complexes [1 a]Cl,[16] [2 a]Cl,[17] [4 a]Cl,[18] [5 a]Cl,[14b]

[7 a]Cl,[19] [8 a]Cl,[20] and the ligand 2-(2-(2-(methylthio)ethoxy)-
ethoxy)ethyl-b-d-glucopyranoside (R)[14b] were synthesized as

reported previously. Complexes [3 a]Cl and [6 a]Cl were synthe-
sized by reacting [Ru(tpy)Cl3] with the bidentate ligand dpq or

pmip in the presence of triethylamine as a reducing agent. The
chloride complexes [1 a]Cl–[8 a]Cl were then reacted with an

excess of the thioether ligand R in the dark in water. Silica
column purification of the crude complexes, followed by size

exclusion chromatography, afforded the thioether-glucose
ruthenium conjugates [1 b](PF6)2, [2 b](PF6)2 and [4 b](PF6)2 as
orange to red solids and [8 b](PF6)2 as a purple solid. To ease

purification of the pmip complex [6 b](PF6)2, the synthesis was
carried out similarly to the previously reported synthesis of

[5 b](PF6)2
[14b] by first converting the chloride precursor [5 a]Cl

to the aqua species [Ru(tpy)(pmip)(H2O)](PF6)2 using AgNO3

and NH4PF6 followed by reaction of the thioether ligand with

the aqua complex. Similarly, the syntheses of [3 b](PF6)2 and
[7 b](PF6)2 were carried out in the presence of AgPF6 to ensure

in situ conversion of the chlorido precursor into the aqua spe-
cies before coordination of the thioether ligand. All chloride

complexes except [4 a]Cl, [5 a]Cl and [6 a]Cl and all thioether
complexes are soluble in water. As reported for the complex

[Ru(tpy)(bpy)(Hmte)](PF6)2,[21] all thioether complexes showed

an upfield shift of the methylsulfide group to about 1.5 ppm in
the 1H NMR spectra, confirming coordination of the thioether

donor atom to the ruthenium center. All new compounds
were characterized using NMR spectroscopy, thin layer chroma-

tography, electronic absorption spectroscopy, high-resolution

mass spectrometry, and elemental analysis.

Crystal structures

Attempts to crystallize the glycoconjugates [1 b](PF6)2–
[8 b](PF6)2 were unsuccessful and usually led to the formation
of oils or colloidal suspensions. However, single crystals suita-

ble for X-ray diffraction analyses were obtained for [5 a]Cl, and
for [3 a]PF6 and [4 a]PF6 after salt metathesis of [3 a]Cl and
[4 a]Cl using aqueous NH4PF6, followed by vapor diffusion of
diethyl ether in a solution of [3 a]PF6 in acetone or acetone in

a solution of [4 a]PF6 in ethyl acetate (Figure 2). The three crys-
tal structures showed the expected distorted octahedral geom-

etry, with a reduced (<1808) N-Ru-N angle for the coordinated
terpyridine ligand (N1-Ru1-N3, 159.11–159.408, Table 1). The bi-
dentate ligands dpq, dppz and dppn are all bound perpendic-
ular to tpy, with a N4-Ru1-N5 bite angle of 79.26–80.28
(Table 1). The Ru1@Cl1 bond lengths were found to be similar

with values ranging from 2.4015 to 2.4165 a which are very
close to reported values for related complexes.[22] Selected

bond lengths and angles are given in Table 1.

Photophysical properties of the [Ru(tpy)(NN)(L)]n ++ com-
plexes

The photophysical properties of chloride complexes [1 a]Cl–
[8 a]Cl were first investigated in acetonitrile, in which the com-

Figure 1. Chemical structure of the complexes used in this study. General formula [Ru(tpy)(N@N)(R)]n + , N@N = bpy, phen, dpq, dppz, dppn, pmip, pymi or
azpy. L = Cl@ or L = R (2-(2-(2-(methylthio)ethoxy)ethoxy)ethyl-b-d-glucopyranoside).
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plexes are all soluble and do not hydrolyze. The chloride com-

plexes [1 a]Cl–[8 a]Cl show a 1MLCT bands varying between
501 and 523 nm, with molar absorptivities ranging from 9.1 V

103 to 12.8 V 103 m@1 cm@1 (Table 2), comparable to reported
values for ruthenium(II) polypyridyl complexes.[7, 12, 15c, 23] All

complexes have very low phosphorescence quantum yields

(Fp<10@4) except for [2 a]Cl, [5 a]Cl, and [6 a]Cl that are weakly
emissive (Fp = 10@3 to 10@4). The 1O2 generation quantum yield

in CD3OD are low (FD ,0.05), with the exception of [6 a]Cl
(FD = 8.2 V 10@2), which is also the most emissive complex.

The hydrophilicity of the thioether analogues [1 b](PF6)2–

[8 b](PF6)2 allowed for studying photosubstitution quantum

yields in MilliQ water using electronic absorption spectroscopy.
Monochromatic blue light (450 or 470 nm) was used to irradi-

ate the complexes in their 1MLCT absorption band. Although
all thioether complexes are thermally stable at room tempera-

ture, seven of the eight complexes, that is, [1 b](PF6)2 to
[7 b](PF6)2, showed light-induced exchange of their thioether

ligand for H2O.

The ligand photosubstitution was characterized by clear iso-
sbestic points in the UV/Vis spectra (450 to 476 nm depending

on the compound), as shown in Figure 3. For each of these re-
actions a bathochromic shift of the 1MLCT band was observed,

Figure 2. Displacement ellipsoid plots (50 % probability level) of the complex
cation [3 a]PF6, [4 a]PF6.(CH3)2CO and [5 a]Cl at 110(2) K. For [5 a]Cl only one
of the independent molecules is shown. Hydrogen atoms, counter-ions, and
lattice solvent molecules, have been omitted for clarity.

Table 1. Selected bond lengths [a] and bond angles [8] for complexes
[3 a]PF6, [4 a]PF6.(CH3)2CO and [5 a]Cl.

[3 a](PF6)2 [4 a](PF6)2 [5 a]Cl[a]

Ru1@Cl1 2.4062(5) 2.4015(7) 2.4165(17)
Ru1@N1 2.069(2) 2.053(2) 2.048(5)
Ru1@N2 1.9569(19) 1.957(2) 1.953(5)
Ru1@N3 2.058(2) 2.064(2) 2.050(5)
Ru1@N4 2.046(2) 2.044(2) 2.043(5)
Ru1@N5 2.0917(19) 2.074(2) 2.073(5)
C5@C6 1.472(3) 1.469(4) 1.469(9)
C5@N1 1.369(3) 1.372(3) 1.389(8)
C6@N2 1.355(3) 1.357(3) 1.340(7)
C10@C11 1.478(3) 1.479(4) 1.484(8)
C10@N2 1.355(3) 1.349(4) 1.340(7)
C11@N3 1.371(3) 1.372(3) 1.384(7)
C20@C21 1.446(3) 1.440(4) 1.459(8)
C20@N4 1.370(3) 1.371(3) 1.370(7)
C21@N5 1.364(3) 1.362(3) 1.379(8)
N1-Ru1-N3 159.10(8) 159.58(9) 159.67(19)
N4-Ru1-N5 79.45(8) 79.26(9) 80.2(2)

[a] Values for Ru1a.

Table 2. Lowest-energy absorption maxima [lmax] , molar absorption coefficients at lmax [emax in M@1 cm@1] and l450 [e450 in M@1 cm@1] , photosubstitution
quantum yields [F450] at 298 K, 1O2 quantum yields [FD] at 293 K, photosubstitution reactivity [x= F450 x e450] , and phosphorescence quantum yield [FP] at
293 K for complexes [1 a]Cl–[8 a]C and, [1 b](PF6)2–[8 b](PF6)2.

Complex lmax [nm]
(emax [M@1 cm@1])[a]

e450

[M@1 cm@1]
F450

[b] x FD
[c] FP

[c]

[1 a]Cl 504 (9.1 V 103 ) 4.6 V 103 – – 0.055 <1 V 10@5

[2 a]Cl 501 (9.1 V 103) 6.5 V 103 – – 0.048 8.5 V 10@4

[3 a]Cl 504 (9.1 V 103) 6.6 V 103 – – 0.055 <1 V 10@5

[4 a]Cl 511 (9.6 V 103) 5.6 V 103 – – 0.005 <1 V 10@5

[5 a]Cl 498 (12.0 V 103) 8.5 V 103 – – 0.023 4.3 V 10@4

[6 a]Cl 501 (1.12 V 103) 6.8 V 103 – – 0.082 3.2 V 10@3

[7 a]Cl 523 (13.0 V 103) 3.4 V 103 – – 0.012 1.4 V 10@5

[8 a]Cl 508 (12.2 V 103) 3.9 V 103 – – <0.001 1.8 V 10@5

[1 b](PF6)2 450 (7.0 V 103) 7.0 V 103 0.0084 59 0.020 (0.020) <1 V 10@5

[2 b](PF6)2 448 (6.2 V 103) 6.2 V 103 0.0065 40 0.050 (0.080) 1.2 V 10@4

[3 b](PF6)2 448 (8.9 V 103) 8.9 V 103 0.0067 60 0.030 (0.010) <1 V 10@5

[4 b](PF6)2 458 (13.1 V 103) 12.8 V 103 0.020 256 0.0010 (0.0030) <1 V 10@5

[5 b](PF6)2 458 (11.6 V 103) 11.4 V 103 0.00095 11 0.71/(0.41) <1 V 10@5

[6 b](PF6)2 460 (11.0 V 103) 10.4 V 103 0.0070 73 0.0020 <1 V 10@5

[7 b](PF6)2 472 (11.7 V 103) 11.7 V 103 0.0053 62 0. 11 (0.14) 2.5 V 10@3

[8 b](PF6)2 505 (7.2 V 103) 2.7 V 103 - - 0.0070(@) <1 V 10@5

[a In MeCN for [1 a]Cl–[8 a]Cl and in MilliQ H2O for [1 b](PF6)2–[8 b](PF6)2. [b] in H2O. lirr = 450 nm for [1 b](PF6)2–[6 b](PF6)2 and 470 nm for [7 b](PF6)2. [c] in
CD3OD.
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which is consistent with earlier reports on the formation of

monoaqua-ruthenium complexes in aqueous solution.[15a] Most
complexes have a photosubstitution quantum yield (F450) of
0.5–2 percent, leading to photosubstitution reactivities

(x=F450<mx>e450, in which e450 is the molar absorption at
450 nm) on the order of ten to hundreds (x= 11–256). Chang-

ing the bidentate ligand has thus a significant influence on the
photosubstitution rates. Interestingly, the dppz complex [4 b]2 +

has the highest photosubstitution quantum yield of the series,

which is also about 20-fold higher (F450 = 0.020) than that of
the structurally similar dppn analogue [5 b]2 + , which showed

the lowest F450 (0.00095).[14b] Furthermore, [4 b]2 + produces
minimal amounts of 1O2 (FD = 0.0010) and is poorly emissive

(FP = <1 V 10@5), which indicates that contrary to the dppn
complex [5 b]2 + for which light irradiation leads to low-lying

3pp* excited states located on the spectator bidentate li-

gand,[14b] with the dppz complex such 3pp* states are either
too high in energy to be populated, or outcompeted by a
rather quick conversion to the photodissociative metal-cen-

tered triplet state (3MC).
Another interesting observation concerned the difference in

reactivity between [7 b]2+ and [8 b]2 + . Whereas [7 b]2+ dis-
played ligand dissociation efficiency comparable to that of the

bpy complex [1 b]2+ , the azpy compound [8 b]2 + did not show

any ligand photosubstitution, indicating a strong electronic
effect of the azo ligand on the photoreactivity of its ruthenium

complex. The 1MLCT absorption maximum for [8 b]2 + is signifi-
cantly lower in energy (505 nm) than that of [7 b]2+ (472 nm),

which points to the low energy of the azo-based p* orbital of
the azpy ligand, leading to a low-lying 3MLCT state for the

Figure 3. Electronic absorption spectra of [1 b](PF6)2–[4 b](PF6)2, [6 b](PF6)2 and [7 b](PF6)2 in deoxygenated H2O upon irradiation at 450 or 470 nm for 5 min at
T = 298 K. Spectra measured every 30 s. a) [1 b](PF6)2, [Ru]tot = 1.38 V 10@4 m, lexc = 450 nm, photon flux = 1.71 V 10@7 mol s@1. b) [2 b](PF6)2, [Ru]tot = 1.15 V 10@4 m,
lexc = 450 nm, photon flux = 6.83 V 10@8 mol s@1. c) [3 b](PF6)2, [Ru]tot = 7.91 V 10@5 m, lexc = 450 nm, photon flux = 5.29 V 10@8 mol s@1. d) [4 b](PF6)2,
[Ru]tot = 8.66 V 10@5 m, lexc = 450 nm, photon flux = 2.84 V 10@8 mol s@1. e) [6 b](PF6)2, [Ru]tot = 4.75 V 10@5 m, lexc = 450 nm, photon flux = 4.97 V 10@8 mol s@1.
f) [7 b](PF6)2, [Ru]tot = 8.88 V 10@5 m, lexc = 470 nm, photon flux = 1.52 V 10@7 mol s@1. Inset depicts the evolution of ln [Ru]SRR’/[Ru]tot vs. irradiation time in s, in
which [Ru]SRR’ represents the concentration of ruthenium-thioether complex at time t, and [Ru]tot the total ruthenium concentration.
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complex. Considering that there is no steric strain in this com-
plex to lower the 3MC state,[23b] the 3MC-3MLCT energy gap is

very large in [8 b]2 + , therefore preventing photosubstitution re-
actions to occur. It should be noted that [8 b]2 + is not emissive

at all (FP<1 V 10@5) and has a negligible 1O2 generation quan-
tum yield (0.007), and thus that non-radiative decay is the

main deactivation pathway for this complex. Regarding singlet
oxygen generation, most of the other complexes produced
small amounts of 1O2 in CD3OD (FD = 0.002–0.14), with the ex-

ception of [5 b]2+ that has a very high 1O2 quantum yield of
0.71.[14b] Interestingly, its chloride analogue [5 a]+ only has a
1O2 quantum yield of 0.023 under the same conditions, empha-
sizing the critical influence of the monodentate ligand on the

photochemical and dioxygen photosensitizing properties of
this family of complexes.

Cytotoxicity

The cytotoxic properties of the chloride complexes [1 a]Cl-
[8 a]Cl and their caged analogues [1 b](PF6)2–[8 b](PF6)2 were

evaluated against two different human cell lines: A549 (human

lung carcinoma) and MCF-7 (human breast adenocarcinoma).
Considering the photo-substitution properties of some of

these complexes, their photocytotoxicity was also tested under
blue light irradiation (3.2:0.2 J cm@2 at 454:11 nm), as de-

scribed previously for [5 b](PF6)2.[14b] Cells were seeded at t = 0,
treated after 24 h with a concentration gradient of each ruthe-

nium complex, irradiated or maintained in the dark after re-

placing the media, and further incubated in the dark for 48 h.
At t = 96 h cell viability was determined using the sulforhoda-

mine B (SRB) assay.[24] The effective concentrations (EC50), de-
fined as the concentration at which a 50 % survival rate on cell

viability is observed, are reported in Table 3. Most chloride
complexes were found to be non-cytotoxic, with the exception

of [8 a]Cl that was found moderately cytotoxic (EC50 = 28 mm)

against the MCF-7 cell line, in agreement with the value re-
ported by Reedijk and co-workers.[25] The values for [4 a]Cl

(59 mm and 34 mm against A549 and MCF-7, respectively) were
found similar to that observed for [Ru(bpy)(dppz)2]2 + ana-

logues reported by the group of Schatzschneider.[26] Based on
their results, it was expected that the structurally similar but

more lipophilic dppn complex [5 a]Cl would be cytotoxic, but
no significant toxicity was observed for this complex. On the

other hand, its EC50 could not be clearly determined due to
the poor solubility of this complex in cell culture medium.[14b]

Interestingly however, [5 a]Cl was to be found cytotoxic upon

blue light irradiation, with EC50 values of 9.7 and 3.2 mm for
A549 and MCF-7 cells, respectively, corresponding to photoin-

dexes (PI) of more than 2.6 and 7.9, respectively. This result is
unexpected, because the 1O2 quantum yield of [5 a]Cl (0.023) is

much lower than that of its glycoconjugated analogue

[5 b](PF6)2 (0.71). A possible explanation would be the partial
conversion, after uptake, of the chloride complex to its aqua-

ted counterpart [Ru(tpy)(dppn)(H2O)]2+ (Figure 4 a), which has
been demonstrated to be a good 1O2 sensitizer (its close ana-

logue [Ru(toy)(dppn)(CD3OD)]2+ has a 1O2 production quantum
yield under air of FD = 0.43).[14b] An alternative explanation

would be that a different type of PDT is occurring, such as PDT

type I, which is dependent upon the formation of radical spe-
cies without intervention of molecular oxygen.[27] Further stud-

ies would be needed to conclude on the biological mechanism
of the photocytoxicity of [5 a]Cl.

Table 3. Cytotoxicity of compounds [1 a]Cl–[8 a]Cl and [1 b](PF6)2–
[8 b](PF6)2 towards A549 and MCF-7 cells in the dark and upon blue light
irradiation (454 nm, 3.2 J cm-2). Cell-growing inhibition effective concen-
trations (EC50) are reported in mm with 95 % confidence interval (CI) in
mm. Data is the mean over three independent experiments. Photocytotox-
icity index (PI) = EC50dark/EC50light (dimensionless).

Complex[a] Light dose
[J cm-2]

A549
EC50

CI PI MCF-7
EC50

CI PI

[1 a]Cl 0 >100 – >100 –
3.2 >100 >100

[2 a]Cl 0 >100 – 64 + 12 1.2
@9.1

3.2 >100 52 + 15
@10

[3 a]Cl 0 >100 – >100 –
3.2 >100 >100

[4 a]Cl 0 59 + 31 1.3 34 + 6.0 1.1
@21 @5.1

3.2 47 + 19 31 + 4.8
@13 @4.2

[5 a]Cl 0 >25 >2.6 >25 >7.9
3.2 9.7 + 4.4 3.2 + 1.3

@2.6 @0.87
[6 a]Cl 0 >25 – >25 –

3.2 >25 >25
[7 a]Cl 0 >100 – >100 –

3.2 >100 >100
[8 a]Cl 0 >100 – 28 + 4.9 –

@4.2
3.2 – –

[1 b](PF6)2 0 >100 – >100 –
3.2 >100 >100

[2 b](PF6)2 0 >100 – >100 –
3.2 >100 >100

[3 b](PF6)2 0 >100 – >100 –
3.2 >100 >100

[4 b](PF6)2 0 >100 – >100 –
3.2 >100 >100

[4 b](PF6)2
[c] 0 64 + 17 2.4 52 + 12 2.6

@13 @9.4
3.2 27 + 6.4 20 + 2.5

@5.2 @2.2
[5 b](PF6)2

[d] 0 19 + 4.0 26 9.6 + 2.9 11
@3.3 @2.3

3.2 0.72 + 0.16 0.86 + 0.21
@0.13 @0.17

[6 b](PF6)2 0 >100 – >100 –
3.2 >100 >100

[7 b](PF6)2 0 >100 – >100 –
3.2 >100 >100

[8 b](PF6)2 0 >100 – >100 –
3.2 >100 >100

[a] Standard protocol : Cells were incubated with compound for 24 h, fol-
lowed by replacement of the media, kept in the dark, or irradiated with
blue light (5 min at 454 nm, 10.5 mW cm@2, 3.2 J cm@2) and further incu-
bated in the dark for 48 h. [b] As in standard protocol, but without re-
placing media during treatment (cells are irradiated in the presence of
compound). [c] Ref. [14b].
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None of the glycoconjugated complexes were found to be

photocytotoxic except [5 b](PF6)2, which was recently reported
to enter passively into the cells and to destroy mitochondrial

DNA by singlet oxygen generation.[14b] In our standard treat-
ment protocol, media is replaced before light irradiation. In

such conditions, photocytotoxicity can solely rely on the mole-
cules that have been taken up by the cells during incubation,

which may be a problem for highly hydrophilic glucose-conju-

gates such as [1 b](PF6)2–[8 b](PF6)2 (see below).
For compound [4 b](PF6)2, an adjustment of the protocol,

consisting in irradiating the cells without media refreshing, led
to a modest but clearly improved PI (2.4 and 2.6 for MCF-7

and A549, respectively). With such a protocol the full dose of
compound added to each well remains present during and

after irradiation, and most importantly activation may occur
outside the cell, and be followed by cellular uptake of the acti-
vated photoproduct. For [4 b](PF6)2, the observed phototoxicity

might thus be explained by the formation of the aquated spe-
cies [Ru(tpy)(dppz)(H2O)]2 + outside the cell, followed by in situ

conversion to the chloride species [4 a]Cl due to the high chlo-
ride content in media (>100 mm), followed by cellular uptake

(Figure 4 b). This interpretation is supported by the EC50 values

found for [4 a]Cl, which were not impressive but could clearly
be measured (59 and 34 mm for A549 and MCF-7 respectively).

Not refreshing the media before light activation did not lead
to enhanced toxicity for [1 b](PF6)2–[3 b](PF6)2 and for

[6 b](PF6)2–[7 b](PF6)2, showing that keeping high concentra-
tions of the prodrug during and after light irradiation does not

necessarily lead to enhanced phototoxicity. Overall, these re-

sults demonstrate that [4 b](PF6)2 is a moderately effective
PACT agent,[3b] whereas the dppn analogues [5 a]Cl and

[5 b](PF6)2 are catalytic PDT sensitizers, which can be activated
using a low dose of blue light. They also demonstrate that ap-

parently minor differences in the treatment protocol of light-
activated drugs may lead to very different interpretation of the
cytotoxicity of light-activated compounds.

Log Po/w and uptake

To acquire more insight on the effect of glycoconjugation on
the solubility, cellular uptake, and toxicity of these complexes,
the water-octanol partition coefficients (log Po/w) were deter-

mined for all complexes according to reported standards (Fig-
ure 5 b).[28] As shown in Figure 5 b (left), the chloride com-
pounds with the smallest bidentate ligands, that is, [1 a]Cl–

[3 a]Cl, have similar log Po/w values ranging from @0.81 to @1.1,
while [7 a]Cl and [8 a]Cl have log Po/w values of @1.60 to @1.80.

For these five complexes, the chloride counter anion provides
appreciable water solubility. By contrast, the chloride com-

pounds with the largest bidentate ligands, that is, [4 a]Cl–

[6 a]Cl, are much more hydrophobic with log Po/w values rang-
ing from @0.10 to + 1.0. Although one may expect that the di-

cationic nature of [1 b](PF6)2–[8 b](PF6)2 and glycoconjugation
should necessarily improve water solubility compared to their

chloride analogues, we found that [1 b](PF6)2–[3 b](PF6)2 had
similar log Po/w values (@0.11 to @0.51, respectively) compared

Figure 4. Proposed mechanisms for light-induced toxicity for a) [5 a]Cl with media replacement, and b) [4 b](PF6)2 without media replacement. The lipid bilayer
represents the cell membrane.
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to their analogues [1 a]Cl–[3 a]Cl, whereas [7 b](PF6)2 and

[8 b](PF6)2 were slightly more hydrophobic (log Po/w =@0.20

and @0.18, respectively) than [7 a]Cl and [8 a]Cl. This result
points to the critical influence of the counterions, as the two

hexafluoridophosphate anions of the glycoconjugate com-
pounds increase lipophilicity, compared to chlorides. Further-

more, the chloride complexes are not stable in water, resulting
in (partial) conversion to the [Ru(tpy)(N@N)(H2O)]Cl2 species
which are more soluble in water than the hexafluoridophos-

phate salts of the R-substituted ruthenium complexes. The
most hydrophobic chloride complexes [4 a]Cl–[6 a]Cl, that were
much more difficult to dissolve in water, profited most from
the glycoconjugation because [4 b](PF6)2–[6 b](PF6)2 indeed
became water soluble (log Po/w =@0.84 to @0.50, respectively).
Overall glycoconjugation allowed for investigating the photo-

chemistry of all thioether complexes [1 b](PF6)2–[8 b](PF6)2 in
water.

To check whether the low toxicity of the thioether-glucose

conjugates was not simply due to a low uptake, cellular
uptake was studied for all sixteen complexes in A549 cells at a

concentration of 25 mm, using an incubation time of 24 h and
measuring intracellular ruthenium concentrations by ICP-MS.

Although no general correlation could be found between the

log Po/w values for these complexes and their cellular uptake,
very strong differences in metal uptake were observed de-

pending on the ligands and counterions (Figure 5 a). The most
hydrophobic chloride compounds [4 a]Cl, [5 a]Cl and [6 a]Cl dis-

played very high metal uptake (>1000 ng Ru per million cells),
whereas their glycoconjugates [4 b](PF6)2, [5 b](PF6)2 and

[6 b](PF6)2 displayed cellular uptake that was much lower (10–

20 ng Ru per million cells, for example, 250 times lower for

[5 b](PF6)2 compared to [5 a]Cl). Of course, this lower uptake
can partially be explained by the lower log Po/w values of the

glycoconjugates, and at least for [5 b](PF6)2, by the absence of
GLUT-based active uptake.[14b] However, [4 b](PF6)2–[6 b](PF6)2

are also taken up in 10-fold higher amounts than [1 b](PF6)2–
[3 b](PF6)2, which have comparable log Po/w values. These re-
sults may not necessarily represent the conditions experienced

by these compounds at the cell membrane, for which it is
more likely that the lipophilic PF6

@ counterions are already ex-

changed for the more abundant and more water soluble chlo-
ride or phosphate anions in the buffer, canceling the effect of

the PF6
@ anion on lipophilicity.

Discussion

Some of the chloride complexes [1 a]Cl–[8 a]Cl were thermally

unstable and therefore no photodissociation quantum yields
were determined, whereas their singlet oxygen properties

were in general very low. The phototoxicity in the series of the
most lipophilic compounds [4 a]Cl–[6 a]Cl cannot be explained

by the trends observed in cell uptake and singlet oxygen gen-

eration. [6 a]Cl has indeed a higher singlet oxygen quantum
yield (0.082) than [4 a]Cl and [5 a]Cl (0.005 and 0.023, respec-

tively), but it is not phototoxic, whereas [4 a]Cl and [5 a]Cl are,
and all three complexes are taken up in high amounts. In this

series of complexes, different intracellular localization or bio-
logical targets, coupled to unknown photoreactions of [5 a]Cl,

Figure 5. Intracellular uptake of 25 mM of [1 a]Cl–[8 a]Cl (left) and [1 b]-[8 b](PF6)2 (right) in A549 cells after 24 h. Values are reported :: SD, n = 2. b) Log Po/w

values found for [1 a]Cl--[8 a]Cl (left) and [1 b](PF6)2–[8 b](PF6)2 (right). Values are reported ::SD, n = 3.
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must explain the differences in phototoxicity between [6 a]Cl
on the one hand and [4 a]Cl and [5 a]Cl on the other.

An opposite conclusion can be drawn for the glycoconju-
gates series [4 b](PF6)2, [5 b](PF6)2 and [6 b](PF6)2. The only pho-

totoxic agent of this series, [5 b](PF6)2, has by far the highest
singlet oxygen quantum yield (0.71 vs. 0.0010 and 0.0020),

whereas all three compounds are taken up in similar amounts
(10–20 ng Ru per million cell). Hence, [5 b](PF6)2 is at least an
excellent PDT agent, whereas a PACT mode of action cannot

be ruled out considering the phototoxic properties of [5 a]Cl
and its low singlet oxygen quantum yield. The phototoxicity
observed for [4 b](PF6)2 when the protocol is slightly modified,
suggests that this compound may act as a cytotoxic PACT

agent. Furthermore [4 b](PF6)2 showed the highest photosubsti-
tution quantum yield (0.02) and no significant singlet oxygen

production. When cell-culture media was replaced before light

irradiation, the glycoconjugate compound was not taken up in
high amounts, and given the poor photodynamic properties of

the photoproduct ([4 a]+ or [Ru(tpy)(dppz)(OH2)]2+) not
enough reactive oxygen species could be generated to kill the

cells. This example demonstrates that the potential of
[4 b](PF6)2 as a PACT agent is determined by the treatment pro-

tocol, which should be taken into account in further PACT

studies. Furthermore, this complex has been shown to act has
a DNA light-switch in the presence of DNA, which might be

useful for theranostic applications.[29]

Conclusion

Overall eight chloride terpyridine complexes [1 a]Cl–[8 a]Cl with

eight different bidendate spectator chelating ligands, and their
eight thioether-glucose conjugates, were synthesized to com-

pare the corresponding photophysical properties, photoreac-
tivity, water solubility, cellular uptake, and phototoxicity.

Depending on the bidentate ligand, these complexes can be

considered either for photocaging, or for PACT and/or PDT.
Compound [8 a]Cl is not suitable for photocaging or photo-

therapy because the azo group of the azpy spectator ligand
stabilizes the 3MLCT states too much and prevents thermal

population of the 3MC state, thereby quenching photosubstitu-
tion. Singlet oxygen generation was also fully quenched in

[8 a]Cl and [8 b](PF6)2, emphasizing the poor photosensitizing
properties of this compound. The five complexes [1 a]Cl–

[3 a]Cl, [6 a]Cl, and [7 a]Cl, are non-toxic, and once substituted
by thioethers, they form complexes with similar photosubstitu-
tion quantum yields (F450 &0.01) and low 1O2 production

quantum yields (FD<0.10). As a consequence, they are excel-
lent candidates for the photocaging of thioether-based biolog-

ically active compounds, such as the antibiotics amoxicillin and
clindamycin. The exceptionally high cellular uptake measured

for [6 a]Cl is worth noticing (5220:737 ng Ru per million

cells), considering that this compound did not show any meas-
urable cytotoxicity at concentrations lower than 25 mm. It can

even turn highly hydrophilic compounds such as R into species
such as [6 b](PF6)2 that are still lipophilic enough to enter into

cancer cells. Finally, [4 a]Cl and [5 a]Cl show similar lipophilicity
compared to [6 a]Cl and comparably high cellular uptake, but

they also showed some toxicity both in the dark and after
light activation. They are therefore less interesting as PACT car-
riers and instead have better potential as a either a cytotoxic
PACT agent or for PDT, as we have recently demonstrated for
[5 b](PF6)2.

[14b] Overall, this work demonstrates that complexes
based upon the [Ru(tpy)(NN)(R)]n + scaffold are good photocag-

ing agents but poorly (photo)cytotoxic unless DNA intercala-
tors such as dppz and dppn are chosen as a bidentate ligand,
in which case they could serve as phototoxic agents.

Acknowledgements

This work was supportedby the Dutch Organization for Scien-

tific Research (NWO-CW) with a VIDI grant to S.B. The European
Research Council is kindly acknowledged for a Starting Grant
to S.B. Prof. E. Bouwman is gratefully acknowledged for her

support and input. Fons Lefeber and Dr. Karthick Sai Sankar
Gupta are acknowledged for their help with NMR spectrosco-

py. Gerwin Spijksma is gratefully acknowledged for performing
the HRMS measurements.

Conflict of interest

The authors declare no conflict of interest.

Keywords: cancer · light · photo-activated therapy (PACT) ·
photodynamic therapy (PDT) · ruthenium

[1] a) Z. Adhireksan, G. E. Davey, P. Campomanes, M. Groessl, C. M. Clavel,
H. Yu, A. A. Nazarov, C. H. Yeo, W. H. Ang, P. Droge, U. Rothlisberger, P. J.
Dyson, C. A. Davey, Nat. Commun. 2014, 5, 3462; b) M. H. Seelig, M. R.
Berger, B. K. Keppler, J. Cancer Res. Clin Oncol. 1992, 118, 195 – 200; c) M.
Colucci, M. Coluccia, P. Montemurro, M. Conese, A. Nassi, F. Loseto, E.
Alessio, G. Mestroni, N. Semeraro, Int. J. Oncol. 1993, 2, 527 – 529; d) O.
Novakova, J. Kasparkova, O. Vrana, P. M. Vanvliet, J. Reedijk, V. Brabec,
Biochemistry 1995, 34, 12369 – 12378; e) A. C. G. Hotze, H. Kooijman,
A. L. Spek, J. G. Haasnoot, J. Reedijk, New J. Chem. 2004, 28, 565 – 569.

[2] A.-M. Florea, D. Besselberg, Cancers 2011, 3, 1351.
[3] a) S. Leijen, S. A. Burgers, P. Baas, D. Pluim, M. Tibben, E. van Werkhoven,

E. Alessio, G. Sava, J. H. Beijnen, J. H. Schellens, Invest. New Drugs 2015,
33, 201 – 214; b) C. Mari, V. Pierroz, S. Ferrari, G. Gasser, Chem. Sci. 2015,
6, 2660 – 2686.

[4] G. Subramanian, P. Parakh, H. Prakash, Photochem. Photobiol. Sci. 2013,
12, 456 – 466.

[5] a) K. Davia, D. King, Y. L. Hong, S. Swavey, Inorg. Chem. Commun. 2008,
11, 584 – 586; b) F. Heinemann, J. Karges, G. Gasser, Acc. Chem. Res.
2017, 50, 2727 – 2736.

[6] J. Fong, K. Kasimova, Y. Arenas, P. Kaspler, S. Lazic, A. Mandel, L. Lilge,
Photochem. Photobiol. Sci. 2015, 14, 2014 – 2023.

[7] L. M. Loftus, J. K. White, B. A. Albani, L. Kohler, J. J. Kodanko, R. P. Thum-
mel, K. R. Dunbar, C. Turro, Chem. Eur. J. 2016, 22, 3704 – 3708.

[8] a) L. Zeng, P. Gupta, Y. Chen, E. Wang, L. Ji, H. Chao, Z. S. Chen, Chem.
Soc. Rev. 2017, 46, 5771 – 5804; b) L. N. Lameijer, D. Ernst, S. L. Hopkins,
M. S. Meijer, S. H. C. Askes, S. E. Le Devedec, S. Bonnet, Angew. Chem.
Int. Ed. 2017, 56, 11549 – 11553.

[9] L. Zayat, C. Calero, P. Albores, L. Baraldo, R. Etchenique, J. Am. Chem.
Soc. 2003, 125, 882 – 883.

[10] a) M. A. Sgambellone, A. David, R. N. Garner, K. R. Dunbar, C. Turro, J.
Am. Chem. Soc. 2013, 135, 11274 – 11282; b) R. N. Garner, J. C. Gallucci,
K. R. Dunbar, C. Turro, Inorg. Chem. 2011, 50, 9213 – 9215.

Chem. Eur. J. 2018, 24, 2709 – 2717 www.chemeurj.org T 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim2716

Full Paper

https://doi.org/10.1007/BF01410134
https://doi.org/10.1007/BF01410134
https://doi.org/10.1007/BF01410134
https://doi.org/10.1021/bi00038a034
https://doi.org/10.1021/bi00038a034
https://doi.org/10.1021/bi00038a034
https://doi.org/10.1039/b313746e
https://doi.org/10.1039/b313746e
https://doi.org/10.1039/b313746e
https://doi.org/10.3390/cancers3011351
https://doi.org/10.1007/s10637-014-0179-1
https://doi.org/10.1007/s10637-014-0179-1
https://doi.org/10.1007/s10637-014-0179-1
https://doi.org/10.1007/s10637-014-0179-1
https://doi.org/10.1039/C4SC03759F
https://doi.org/10.1039/C4SC03759F
https://doi.org/10.1039/C4SC03759F
https://doi.org/10.1039/C4SC03759F
https://doi.org/10.1039/C2PP25316J
https://doi.org/10.1039/C2PP25316J
https://doi.org/10.1039/C2PP25316J
https://doi.org/10.1039/C2PP25316J
https://doi.org/10.1016/j.inoche.2008.02.023
https://doi.org/10.1016/j.inoche.2008.02.023
https://doi.org/10.1016/j.inoche.2008.02.023
https://doi.org/10.1016/j.inoche.2008.02.023
https://doi.org/10.1021/acs.accounts.7b00180
https://doi.org/10.1021/acs.accounts.7b00180
https://doi.org/10.1021/acs.accounts.7b00180
https://doi.org/10.1021/acs.accounts.7b00180
https://doi.org/10.1039/C4PP00438H
https://doi.org/10.1039/C4PP00438H
https://doi.org/10.1039/C4PP00438H
https://doi.org/10.1002/chem.201504800
https://doi.org/10.1002/chem.201504800
https://doi.org/10.1002/chem.201504800
https://doi.org/10.1039/C7CS00195A
https://doi.org/10.1039/C7CS00195A
https://doi.org/10.1039/C7CS00195A
https://doi.org/10.1039/C7CS00195A
https://doi.org/10.1002/anie.201703890
https://doi.org/10.1002/anie.201703890
https://doi.org/10.1002/anie.201703890
https://doi.org/10.1002/anie.201703890
https://doi.org/10.1021/ja0278943
https://doi.org/10.1021/ja0278943
https://doi.org/10.1021/ja0278943
https://doi.org/10.1021/ja0278943
https://doi.org/10.1021/ja4045604
https://doi.org/10.1021/ja4045604
https://doi.org/10.1021/ja4045604
https://doi.org/10.1021/ja4045604
https://doi.org/10.1021/ic201615u
https://doi.org/10.1021/ic201615u
https://doi.org/10.1021/ic201615u
http://www.chemeurj.org


[11] T. Joshi, V. Pierroz, C. Mari, L. Gemperle, S. Ferrari, G. Gasser, Angew.
Chem. Int. Ed. 2014, 53, 2960 – 2963; Angew. Chem. 2014, 126, 3004 –
3007.

[12] E. Wachter, D. K. Heidary, B. S. Howerton, S. Parkin, E. C. Glazer, Chem.
Commun. 2012, 48, 9649 – 9651.

[13] a) M. K. Herroon, R. Sharma, E. Rajagurubandara, C. Turro, J. J. Kodanko,
I. Podgorski, Biol Chem. 2016, 397, 571 – 582; b) A. Li, R. Yadav, J. K.
White, M. K. Herroon, B. P. Callahan, I. Podgorski, C. Turro, E. E. Scott,
J. J. Kodanko, Chem. Commun. 2017, 53, 3673 – 3676.

[14] a) V. H. S. van Rixel, B. Siewert, S. L. Hopkins, S. H. C. Askes, A. Busemann,
M. A. Siegler, S. Bonnet, Chem. Sci. 2016, 7, 4922 – 4929; b) L. N. Lameij-
er, S. L. Hopkins, T. G. Breve, S. H. Askes, S. Bonnet, Chem. Eur. J. 2016,
22, 18484 – 18491.

[15] a) B. Siewert, V. H. van Rixel, E. J. van Rooden, S. L. Hopkins, M. J. Moest-
er, F. Ariese, M. A. Siegler, S. Bonnet, Chem. Eur. J. 2016, 22, 10960 –
10968; b) R. E. Goldbach, I. Rodriguez-Garcia, J. H. van Lenthe, M. A. Sie-
gler, S. Bonnet, Chem. Eur. J. 2011, 17, 9924 – 9929.

[16] A. Mijatovic, B. Smit, A. Rilak, B. Petrovic, D. Canovic, Z. D. Bugarcic,
Inorg. Chim. Acta 2013, 394, 552 – 557.

[17] S. Bonnet, J. P. Collin, N. Gruber, J. P. Sauvage, E. R. Schofield, Dalton
Trans. 2003, 4654 – 4662.

[18] A. K. M,rtensson?, P. Lincoln, Dalton Trans. 2015, 44, 3604 – 3613.
[19] A. C. Hotze, J. A. Faiz, N. Mourtzis, G. I. Pascu, P. R. Webber, G. J. Clark-

son, K. Yannakopoulou, Z. Pikramenou, M. J. Hannon, Dalton Trans.
2006, 3025 – 3034.

[20] A. E. M. Boelrijk, A. M. J. Jorna, J. Reedijk, J Mol Catal Chem. 1995, 103,
73 – 85.

[21] A. Bahreman, B. Limburg, M. A. Siegler, E. Bouwman, S. Bonnet, Inorg.
Chem. 2013, 52, 9456 – 9469.

[22] a) K. Hansongnern, U. Saeteaw, G. Mostafa, Y. C. Jiang, T. H. Lu, Anal. Sci.
2001, 17, 683 – 684; b) F. N. Rein, W. Chen, B. L. Scott, R. C. Rocha, Acta
Crystallogr. Sect. E 2015, 71, 1017 – 1021.

[23] a) B. A. Albani, C. B. Durr, C. Turro, J Phys Chem. A 2013, 117, 13885 –
13892; b) J. D. Knoll, B. A. Albani, C. Turro, Chem. Commun. 2015, 51,
8777 – 8780.

[24] V. Vichai, K. Kirtikara, Nat. Protoc. 2006, 1, 1112 – 1116.
[25] E. Corral, A. C. Hotze, H. den Dulk, A. Leczkowska, A. Rodger, M. J.

Hannon, J. Reedijk, J. Biol. Inorg. Chem. 2009, 14, 439 – 448.
[26] U. Schatzschneider, J. Niesel, I. Ott, R. Gust, H. Alborzinia, S. Wolfl, Chem-

MedChem 2008, 3, 1104 – 1109.
[27] A. P. Castano, T. N. Demidova, M. R. Hamblin, Photodiagn. Photodyn.

Ther. 2004, 1, 279 – 293.
[28] OECD, Test No. 107: Partition Coefficient (n-octanol/water): Shake Flask

Method, OECD Publishing, p. 4.
[29] M. Frasconi, Z. Liu, J. Lei, Y. Wu, E. Strekalova, D. Malin, M. W. Ambrogio,

X. Chen, Y. Y. Botros, V. L. Cryns, J. P. Sauvage, J. F. Stoddart, J. Am. Chem.
Soc. 2013, 135, 11603 – 11613.

Manuscript received: November 13, 2017

Accepted manuscript online: December 8, 2017

Version of record online: January 30, 2018

Chem. Eur. J. 2018, 24, 2709 – 2717 www.chemeurj.org T 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim2717

Full Paper

https://doi.org/10.1002/anie.201309576
https://doi.org/10.1002/anie.201309576
https://doi.org/10.1002/anie.201309576
https://doi.org/10.1002/anie.201309576
https://doi.org/10.1002/ange.201309576
https://doi.org/10.1002/ange.201309576
https://doi.org/10.1002/ange.201309576
https://doi.org/10.1039/c2cc33359g
https://doi.org/10.1039/c2cc33359g
https://doi.org/10.1039/c2cc33359g
https://doi.org/10.1039/c2cc33359g
https://doi.org/10.1039/C7CC01459G
https://doi.org/10.1039/C7CC01459G
https://doi.org/10.1039/C7CC01459G
https://doi.org/10.1039/C6SC00167J
https://doi.org/10.1039/C6SC00167J
https://doi.org/10.1039/C6SC00167J
https://doi.org/10.1002/chem.201603066
https://doi.org/10.1002/chem.201603066
https://doi.org/10.1002/chem.201603066
https://doi.org/10.1002/chem.201603066
https://doi.org/10.1002/chem.201600927
https://doi.org/10.1002/chem.201600927
https://doi.org/10.1002/chem.201600927
https://doi.org/10.1002/chem.201101541
https://doi.org/10.1002/chem.201101541
https://doi.org/10.1002/chem.201101541
https://doi.org/10.1039/b310198c
https://doi.org/10.1039/b310198c
https://doi.org/10.1039/b310198c
https://doi.org/10.1039/b310198c
https://doi.org/10.1039/b518027a
https://doi.org/10.1039/b518027a
https://doi.org/10.1039/b518027a
https://doi.org/10.1039/b518027a
https://doi.org/10.1016/1381-1169(95)00112-3
https://doi.org/10.1016/1381-1169(95)00112-3
https://doi.org/10.1016/1381-1169(95)00112-3
https://doi.org/10.1016/1381-1169(95)00112-3
https://doi.org/10.1021/ic401105v
https://doi.org/10.1021/ic401105v
https://doi.org/10.1021/ic401105v
https://doi.org/10.1021/ic401105v
https://doi.org/10.2116/analsci.17.683
https://doi.org/10.2116/analsci.17.683
https://doi.org/10.2116/analsci.17.683
https://doi.org/10.2116/analsci.17.683
https://doi.org/10.1107/S2056989015014632
https://doi.org/10.1107/S2056989015014632
https://doi.org/10.1107/S2056989015014632
https://doi.org/10.1107/S2056989015014632
https://doi.org/10.1021/jp4085684
https://doi.org/10.1021/jp4085684
https://doi.org/10.1021/jp4085684
https://doi.org/10.1039/C5CC01865J
https://doi.org/10.1039/C5CC01865J
https://doi.org/10.1039/C5CC01865J
https://doi.org/10.1039/C5CC01865J
https://doi.org/10.1038/nprot.2006.179
https://doi.org/10.1038/nprot.2006.179
https://doi.org/10.1038/nprot.2006.179
https://doi.org/10.1007/s00775-008-0460-x
https://doi.org/10.1007/s00775-008-0460-x
https://doi.org/10.1007/s00775-008-0460-x
https://doi.org/10.1002/cmdc.200800039
https://doi.org/10.1002/cmdc.200800039
https://doi.org/10.1002/cmdc.200800039
https://doi.org/10.1002/cmdc.200800039
https://doi.org/10.1016/S1572-1000(05)00007-4
https://doi.org/10.1016/S1572-1000(05)00007-4
https://doi.org/10.1016/S1572-1000(05)00007-4
https://doi.org/10.1016/S1572-1000(05)00007-4
https://doi.org/10.1021/ja405058y
https://doi.org/10.1021/ja405058y
https://doi.org/10.1021/ja405058y
https://doi.org/10.1021/ja405058y
http://www.chemeurj.org

