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Chapter 1 

Introduction on Computation in Biology 
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As humans we have a good understanding of subjective concepts. For a computer, or 

simply a computational approach, it is much harder to deal with these subjective 

concepts as the boundaries in a subjective range are not well defined. In data 

analysis for life-sciences, we often encounter such problems and are challenged to 

find a solution that can deal with ranges of measurements in a robust manner. 

In this thesis we particularly focus on finding solutions for data-analysis in the life-

sciences. The life-sciences cover a broad field of research and approaches to deal 

with data-analysis which are typically multi-disciplinary. First one has to understand 

the particular field in of the life-sciences that the data-analysis is applied to and then, 

often, a number of techniques from statistics, mathematics, physics and computer 

science are employed to develop a solution. This multi-disciplinary approach for 

computational problems in the life-sciences is often captured under the umbrella of 

bio-informatics. One can state that bio-informatics is concerned with the analysis of 

data. As a consequence it is important to realize that the development of 

computational tools bio-informatics is therefore an implicit characteristic of this 

field. The consequence of working with experimental data and results from analysis 

is that these data need to be organized. These areas pretty much cover the field of 

bioinformatics. 

Data from experimental set-ups in biological research are not always ideal for a 

straightforward analysis. Experimental conditions and biological variation both 

contribute to ambiguity. For analysis, the volume of data is not always sufficient, 

while the distribution of the data is uneven. Moreover, the measurement device itself, 

due to its electronic components, adds noise to the raw data. All of these issues have 

to be taken into account for an analysis. In order to further explore solutions for data 

analysis and typical for data sets without well-defined boundaries between its 

constituents, we investigate how the use of fuzzy systems theory can be used to 

enhance computations for such data sets. 

Therefore, in this thesis we will explore the use of fuzzy systems theory for 

applications in bioinformatics. The theory of fuzzy systems is concerned with 

formulating decision problems in data sets that are ill-defined. It supports the 

transfer from a subjective human classification to a numerical scale. In this manner 

it affords the testing of hypothesis and separation of the classes in the data.  

The fuzzy systems theory is part of the paradigm of soft computing, a collection of 

mathematical techniques that supports computing in dealing with uncertainty, 

inaccuracy, vagueness and incompleteness in data sets. 

In the research presented in this thesis, we first formulate problems in terms of a 

fuzzy systems and then develop and test algorithms in terms of their performance 

with data from the domain of the life-sciences. From the results and the performance, 
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we will learn about the usefulness of fuzzy systems for the field, as well as the 

applicability to the kind of problems and practicality for the computation itself. 

As mentioned, computing in bioinformatics is quite interdisciplinary; therefore we 

will use this introduction to present some of the major concepts from bioinformatics 

that are important to this thesis as well as provide scope of that field. Next, we will 

address soft-computing and in particular fuzzy systems and how this links with the 

analysis of data from the domain of biology. Further to this background information, 

we will explain our development of a heuristic-based pipe-line for data analysis, 

applied to generic data analysis as well as to bio-imaging. 

 

1.1. The Scope of Bioinformatics: A Brief Introduction 

The research field of Bioinformatics has matured over the past ten years and to date 

there is consensus on a definition. In general, bioinformatics is considered as the 

application of computational techniques of analyzing, managing and interpreting 

biological information [1]. The rationale is to create added value from the data for 

the field of biology [14]. The research field of bioinformatics encompasses a wide 

range of subjects, typically referred to as “omics” data, i.e. structural biology, 

genomics, proteomics, metabolomics, transcriptomics, cytomics, and image-based 

high-throughput studies. 

In trying to understand biology, computational approaches have been probed. These 

were, in some cases essential for the understanding of phenomena, the discovery of 

inheritance by Mendel [2] in 1865 stands as a paradigm for computation in biology.  

Modern approaches to computation in biology go hand in hand with the 

development and availability of computers. The notion of bioinformatics is 

developed in the late 1960’s when molecular biologists started the compile their 

sequencing results of DNA and proteins in databases [3]. Initially, the field of 

bioinformatics was claimed by the research on the human genome but this 

progressed into the perception that bioinformatics had a much broader base.  

The term bioinformatics is attributed to Hogeweg and Hesper [4], who coined to 

term as: “the study of information processing in biotic systems”. Over the past five 

decades, however, the field of bioinformatics has evolved in that it now involves 

various tasks, focusing on the analysis and understanding [14] biological data. 

Understanding refers to the creation of added value to the data.  

Within the scope of bioinformatics different questions on biology are addressed. A 

common ground of all questions is that the starting point is a large amount of data 

from which understanding is developed in finding patterns in these data. This means 

that from the data, a systematic analysis is performed – these studies can be on 
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various levels; i.e. cellular behavior, molecular design and docking, metabolic 

networks, RNA/DNA and protein sequence alignment, RNA, DNA and protein 

structure prediction, analysis of gene expression data, just to name a few important 

fields. 

Taking the data in a bioinformatics study as a starting point, the major emphases of 

bioinformatics become evident. Having large amounts of data requires these data to 

be organized in a structured form. In the early days of bioinformatics the important 

activity was constructing databases for the different data and making these databases 

available via the web. To date, this data management is still a major activity in the 

field of bioinformatics. Thus, developing databases and tools to archive and retrieve 

data is an important activity. The data are, of course, analyzed. A next major activity 

therefore is analyzing data and developing tools to achieve the analysis. From the 

analysis a higher level aggregation can be accomplished, combining results from 

analysis and finding patterns which contribute to the further understanding of 

biology. This activity, concerns working with statistics and machine learning 

approaches; it builds upon the other activities, however, its focus is to create added 

value from the large amounts of data in a manner that is meaningful to biology.  

An important part of the field of bioinformatics is therefore the development of 

computational tools. Here there is common ground with computational biology 

where the emphasis is on theoretical models and simulations [14]. Nevertheless, 

computation and tooling is important to both fields that join forces in the quest of 

understanding the complexity in biology.  

The crux for bioinformatics is to have adequate tools for analysis and interpretation 

available. There are ample computational approaches that have been successfully 

probed in bioinformatics studies and that, to data, are part of the algorithmic 

repertoire in bioinformatics. With different datatypes, different computational 

paradigms have been used. For analysis of sequences, i.e. RNA, DNA or protein, 

different alphabets are used in string matching procedures. The concept of dynamics 

programming has been very instrumental in being able to match strings in terms of 

their similarity. The Basic Local Alignment Search Tool (BLAST), to that respect is 

a major milestone for bioinformatics as a whole. Finding patterns from data is 

resolved using machine learning techniques; to a certain extent these techniques are 

inspired by biology, i.e. neural networks, genetic algorithms. In itself, machine 

learning techniques, for clustering and classification are deeply rooted in 

mathematics. Employing these techniques requires therefore, some understanding of 

the mathematics, e.g. choosing a fitting function in a classification problem.   

Classification and clustering allows establishing relations in the data and to reason 

on behavior of biological entities. Techniques like Bayesian Clustering, Support 
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Vector Machines (SVM), neural networks and genetic algorithms represent forms of 

machine learning with and without control. It supports finding groups in the data as 

well as making predictions from new data based on prior classifications. Nowadays, 

a new revival of the concept of neural networks is embodied into so called 

convolutional neural nets, also known as deep learning. This is a very powerful 

machine learning approach that will further boost the understanding of biology from 

large amounts of data.  

An important concept in computational approaches is that of heuristics, i.e. specific 

rules, so that a problem can be confined and computational pipelines for a specific 

bioinformatics study can be designed and implemented.  

Our efforts for data analysis extend on existing approaches used in the field of 

Bioinformatics. Data from biological experiments do contain noise; and this noise 

complicates the analysis. Techniques that are based on heuristics are capable of 

confining the computation to solutions that are more probable. Heuristic-based 

techniques are therefore sometimes preferred in doing computations in large data 

volumes. Examples of such techniques are Bayesian nets, Neural networks, Fuzzy 

logic and evolutionary algorithms. In our effort to extend and improve data analysis 

in biology, we will focus on the so called fuzzy systems to see if we can reinforce 

solutions for datasets that are otherwise difficult to separate. Fuzzy systems are part 

of the soft-computing paradigm. Further explanation of this concept will be given in 

the next section. 

 

1.2. Soft Computing and Fuzzy Systems 

Soft computing [5], sometimes referred to as computational intelligence (CI), is a 

collection of methodologies that has become an area of formal study in computer 

science in the early 1990s. Soft computing differs from conventional computing in 

that it, specifically, exploits imprecision and tolerance in order to achieve tractability, 

robustness and low-cost solutions. The soft computing paradigm represents a 

number of techniques, its major constituents are the Fuzzy Systems (FS), the Rough 

Set (RS), Wavelets, Simulated Annealing (SA), the Support Vector Machine (SVM), 

the Artificial Neural Network (ANN), Evolutionary Algorithms (EAs) and Swarm 

Intelligence (SI).  

The quality of the Fuzzy Systems is that it is rather easy to implement in a system 

ranging from very small and simple to embedding in large networked systems [17] 

[18]. As part of an analysis, the fuzzy systems will be part of a specific pipeline for 

data analysis. This is exactly how we intend to employ the application of the fuzzy 

systems in analysis of biological problems – and thus the data.  
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The concepts of Fuzzy systems have been applied to a range of different fields, 

from control theory to artificial intelligence, as well as to computational biology. 

The fuzzy systems are derived from fuzzy logic and it was first introduced by Lotfi 

Zadeh [6] in a monograph on fuzzy set theory in 1965. 

In traditional computing, a system yields output(s) from the input(s), where 

conclusion is accepted to be either true or false. However, in real life situations, 

propositions are given with variable answers; for instance, degree of color between 

“yellow” and “red”, concept of “empty” and “full” in a water-filled bottle, sensation 

temperature of “cold”, “warm” and “hot” in a room, etc. In other words, we consider 

it natural to reason over a range of subjective concepts. If a certain concept cannot 

be defined exactly, an amount of quick and ambiguous definitions would develop. 

This typically happens in a group of people discussing a concept in a certain context. 

In Figure 1-1, this is exemplified, the fuzzy systems is the control methodology that 

mimics how a decision (description) is made by humans. Additionally, this decision-

making process can be achieved and speeded up on the basis of prior 

experiences/recognitions of the individual. 

 

 

  Example:  
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Figure 1-1. The application of Fuzzy Systems in the grading of human age. The grades 

of age are expressed as “Children/Adolescent”, “Adult” and “Older Adult/Elderly”; 

these are mapped by a pre-defined grading function onto an age scale. The age itself is 

ambiguous for human perspective inspection and/or sensible feeling. However, this 

sensation becomes obvious once a human-like metric is defined for the decision, e.g. 

when the grading coefficient is larger than 0.5, meaning a positive effect, vice versa. 

Since the red arrow points to zero, people within this age group (grading coefficient = 0, 

defined on Older Adult/Elder function) can be interpreted as “not old”; while the 

meanings of the age at orange (coefficient < 0.5, defined on Adult function) and blue 

(coefficient > 0.5, defined on Children/Adolescent function) arrow can be recognized as 

“fairly matured” but “still young”, simultaneously. Instead of concluding in either 

young (coefficient = 0) or old (coefficient = 1), fuzzy systems allows for decisions being 

made by users’ knowledge and experience accordingly. 

The example of Figure 1-1 demonstrates two key ideas of the fuzzy system: first, the 

fuzzy system is able to model problems from concepts to mathematical paradigms 

that are based on the understanding and experience of the decision maker; second, 

the logic in fuzzy systems accepts the uncertainties that are inherited as realistic 

inputs, and thereby it is able to cope with these uncertainties (imprecisions) in such a 

way that their effects are negligible and henceforth, the system will result in a 

“precise”, human-like, output.  

As mentioned before, fuzzy systems have been successfully applied to several areas, 

and also in bioinformatics. It helps in recognizing the hidden essentials in data by a 

degree of “truth” given by the fuzzy membership [19]. The fuzzy membership is a 

function that describes the weights for the contribution of the different levels in the 

system.  

In this manner, using the fuzzy membership function, biological information is 

analyzed and interpreted based upon previous experiences [20] so that knowledge-

based systems in biosciences are constructed by vagueness and uncertainty [21]. In 

this thesis, therefore, fuzzy systems based approaches are proposed and integrated 

into a dedicated data analysis pipeline(s). 

Images form a particular class of data in life-sciences research. The data, i.e. the 

images, result from an imaging device and are sampled to a digital image. This 

digital image is input for a first data analysis in order to get measurements out of the 

image. The measurements themselves are input for a second analysis to find patterns 

over a collection of images. In general, this collection of images comprises an 

experiment. The data in the digital image are intensity values and these are ordered 

in a regular rectangular grid, directly related to the sensor in the digital camera. The 

data analysis is therefore completely adapted to this organization. Once we obtained 

the measurements, other approaches need to be probed. In this thesis, the image 

space based approaches, as well as for the feature space based approaches are 
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addressed; while the fuzzy systems approach has the capability to augment both the 

analysis. In order to get an idea of the scope, we briefly discuss data-analysis in bio-

imaging in the next section. 

 

1.3. Data Analysis in Bio-Imaging 

The use of imaging techniques in biology is currently undergoing a revolution [7] 

with the availability of all new kinds of biological imaging techniques; i.e. 

fluorescence lifetime imaging, molecular imaging, diffusion-based imaging, X-ray 

based imaging, ultrasound-based imaging, magnetic resonance (MR) based imaging, 

etc. The in vitro and in vivo visualization of organisms, tissues, cells, proteins and 

macromolecular structures is enabled. 

In the laboratory, bright-field and fluorescence imaging are routinely used; while the 

data from experiments is obtained by bio-imaging components. Analysis of data 

from these experiments can be performed rapidly by data-science oriented scientists, 

i.e. computer scientists and bioinformaticists. The data allows for data scientists to 

test and validate hypothesis related to a range of phenomena, e.g.  cellular and 

molecular behavior, and the data can acquired in different dimensions; i.e. 2D, 3D 

and time-lapse. Imaging techniques are part of the standard repertoire of a large 

range of experimentation with a visual control. However, the observations in the 

data, i.e. images, need to be verified and to that end computational tools are needed. 

Currently, large volumes of data are more and more the norm, therefore automation 

of the analysis is absolutely necessary. Such automation will result in data that 

support the interpretation of the experiment and are an indispensable extension to 

the imaging system (cf. Figure 1-2). Designing robust and accurate methods are 

being investigated thoroughly in biosciences and bioinformatics (cf. Section 1.1, [8]). 

With advances in technology leading to high-throughput systems for imaging, 

methodology design becomes increasingly important. 

In this thesis, we consider data analysis as an extension of the imaging system 

aiming for understanding and recognizing information from biological image data. 

We distinguish a sequence of three major steps: (1) image acquisition, (2) image 

processing, and (3) data analysis. The acquisition is embedded in the imaging 

device which makes the image data available in digital form on a data repository. 

The image processing accomplishes a transformation of the raw image data to 

images from which reliable information can be extracted. In the data analysis step, 

observations are transformed to numbers and statistical representations so that 

analysis and validation can be applied. The final step in the analysis is to infer an 

interpretation from the measurements. 
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Figure 1-2. Workflow of data analysis in bright-field and fluorescence imaging system 

 

Image acquisition. In bright-field and fluorescence imaging systems, image 

acquisition procedure is accomplished with a sensor array, often a CCD chip, which 

has a rectangular layout (CCD camera) or a line layout (flatbed scanner). A CCD 

camera is mounted on the optical system [9] whereas a line scanner is used to scan 

larger surfaces such as gels. In this thesis, we use bright-field microscopy images, i.e. 

cultured cartilage cells (cf. Chapter 2), fluorescence microscopy images, i.e. 

cardiomyocytes fluorescent images (cf. Chapter 2) and scanner images, gels of 

protein compositions from a range of cell lines (cf. Chapter 5).  

For the acquisition of images, one should wish for the highest possible quality. 

However, there is a trade-off between image resolution and acquisition speed. A 

high-resolution detector allows imaging of objects whereas at lower resolution a 

significantly higher acquisition speed can be accomplished which is necessary to 

capture dynamics events. To further accelerate the dynamic acquisition numerous 

amount of efforts [10] [11] [12] have been made to attempt to acquire high-

resolution images at high speed.   

Acquired images will be stored in a repository. The increase of the data volume and 

complexity of biological experiments has made manual-workbook or generic 

databases unsuitable for keeping track of the images/data produced in experiments. 
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Therefore, image annotation, i.e. associating images with metadata, such as size, 

acquisition date, contents, is absolutely necessary for data provenance [22]. These 

metadata are often required for the further analysis to be able to understand an 

observation in context; or accomplish that an automated system can “understand” 

the context. 

Image processing. In imaging images are the carrier of information and the content, 

at some point, should be transformed to a quantitative data presentation. Images as 

obtained from imaging systems are, however, far from “clean” (noisy) and need to 

be “polished”. The practical approach is to apply restoration through image 

processing before the data are being analyzed [15]. The term “image processing”, 

means to apply basic level operations on images. This is regarded to a pre-

processing step such as enhancement, alignment and segmentation. 

A well-performed image processing strategy, to some extent, can minimize data 

variation. It is, therefore, important to utilize empirical and problem-driven image 

processing solutions. Referring to Figure 1-2, a specimen is imaged and modeled by 

the input image f(x)=g(x)+h(x)+A, where true information g(x) is masked by 

background noise h(x) and all absolute multiplicative noise A. This raw image is 

then restored using an approach that employs additional images obtained at the time 

of image capturing, or through retrospective shading correction. For the resulting 

image g̃(x), also known as the foreground image, now various other processing 

options are at hand: 1) a registration/alignment process producing ĝ (x), 2) 

segmentation/tracking process, resulting in an image s(x); or 3) an image 

modeling/simulating block with the output y(x). After these image processing steps, 

information carried within experimental raw images is now enhanced and can be 

further explored.  

Data analysis. From image processing we have obtained a restored image. Next, we 

extract features from the image. This is essentially a data reduction; we reduce the 

image elements to a set of measurements that sustain our observation. The analysis 

is in the heart of the bioinformatics methodology as it presents contextual 

approaches for data analysis, representation, and visualization. Image analysis deals 

with quantification of the amount and localization of signal, and measuring changes 

in structure over time. Data analysis can help to ensure that resulting measurements 

are accurate, objective and reproducible. Moreover, data analysis supports the 

further interpretation of the data by finding patterns in the data of an experiment or 

relating results to other experiments. In the context of biomedical research, this is 

typically the domain of bioinformatics. Commonly employed approaches involve 

target feature extraction and selection, data hypothesis test and data clustering, 

performance validation and visualization, as well as decision making. The 

decomposition and comparison of temporal biological data is not yet fully 
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understood [13]. In general, the data analysis in bioinformatics further augments the 

impact of knowledge discovery and making good predictions from the 

measurements. 

 

1.4. Research Scope and Thesis Structure 

In this thesis the capability of fuzzy systems is investigated with respect to systems 

in which simplifying an otherwise complex decision is augmented by allowing more 

hypotheses on the data. In the introduction (cf. Section1.3), we have provided a 

dedicated bioinformatics data analysis pipeline, from which subjective and tedious 

image interpretations are alleviated. This thesis will further address the fuzzy 

systems in a number of different approaches on data measurement and develop an 

understanding on how the fuzzy systems can be employed in the concepts with 

pattern recognition.  

The research described in this thesis is structured into 6 chapters. We have provided 

an introduction in Chapter 1. Chapter 2, “Biological Image Background 

Correction”, presents a strategy employing a combination of fuzzy logic and rough 

set theory to constrain a morphological image processing path during the process of 

image background correction. 

Chapter 3, “Feature Selection Strategy in Region of Interest Mask”, illustrates a 

schema of feature selection via a fuzzy criterion in a multi-objective optimization 

algorithm. From this approach, sets of candidate solutions are provided to the 

researchers so that they can make decisions based on their own 

experiences/requirements;  

Chapter 4, “Unsupervised Information Classification and Analysis”, elaborates 

on an unsupervised classification technique that hybridizes fuzzy uncertainty-based 

clustering method with swarm intelligence in order to find a good solution.   

In these three chapters (cf. 2,3,4), the performance and efficiency of these 

algorithms are comprehensively assessed using various benchmark datasets that 

cover multiple facets of real-life situations. The results are compared with several 

commonly applied approaches; most are considered state-of-the-art methodologies. 

The evaluation and validation of these algorithms are used as a theoretical 

foundation for the design of image analysis workflows for experimental data. 

Chapter 5, “A Systematic Study on One Dimensional Gel Electrophoresis 

Image Analysis”, employs the methodologies proposed in Chapter 2, Chapter 3 and 

Chapter 4 to interpret more complex biological problems in a multi-faceted manner. 

This case study presents a fuzzy-system based data analysis aiming to investigate 

and understand the identity of characteristics of proteins that are distinct/ shared 
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between different subgroups of cancer cell-lines. It further demonstrates the practical 

implication of image and data analysis workflows following the fuzzy-system 

designs, as promising.  

Finally, in Chapter 6 conclusions are presented and from a discussion an outlook to 

the further application of the fuzzy systems is further described. 
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Chapter summary 

Light microscopy is one of the important techniques in bio-imaging data analysis. 

The measurements obtained from images provide information on the concentration 

of molecules in cells, tissues, as well as whole mount. Microscopy images as they 

are acquired are not ideal; images, specifically shapes and textures often suffer from 

an uneven background due to flaws in the illumination. The presence of 

inhomogeneous noise in images, which mostly attribute to factors related to the light 

path between camera and microscope, can significantly impact the accuracy of 

downstream measurements.  

In this chapter, we seek to contribute to quantitative improvement on the quality of 

light microscope readouts based on the proposed Dam-Constrained Background 

Correction (DCBC) method. The strategy we present employs a combination of 

fuzzy logic and rough set theory to constrain a morphological path at the moment 

background correction process takes place. To illustrate the competence of this 

method, a state-of-the-art shading correction based on entropy minimization (EMI) 

and the frequently used morphological rolling ball method (RBA) are compared via 

applications on three typical datasets. The reported results and extensive numerical 

analysis indicate an applausive performance on the proposed method. 
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2.1. Introduction 

The study of biological phenomena using light or fluorescent imaging has 

transformed optoelectronic signal from a qualitative localization test to quantitative 

tools for functional analysis. These give rise to, for instance, features such as 

distance, area, velocity and intensity. A digital image of a specimen is created by the 

detector in an optical system. Inevitably, errors occur in the process of image 

acquisition via the specimen, the microscope or the detector itself [1]. An important 

source of error is the inhomogeneity of the intensity in the background. Sometimes 

the fluorescence has a shorter exposure time which will result in capturing less 

emitted photons compared to a procedure of longer exposure time [2]. Collection of 

fewer photons means that the relative contribution of the noise increases. 

Additionally, background intensity will accumulate through the surrounding 

fluorescence/ light sources, which will confound experiment’s goals. This result 

leads to an undesirable contribution of the background with respect to the signal of 

interests.  

In order to apply quantitative measurements in microscopy, a notion of the 

background must be known and, if possible, it must be removed before 

measurements in the images. Henceforth, it is always desirable to correct the 

inhomogeneous background beforehand. Several techniques have become available 

to mitigate abovementioned problems, also known as intensity inhomogeneity, 

uneven background and shading (vignetting). The common approaches serve to 

reduce the amount of inhomogeneity in microscope images, are noticed as 

Background Correction Processing (BCP).  

The work in this chapter introduces a novel retrospective approach, on the basis of 

mathematical morphology to achieve better performance in a more general way. The 

proposed method is unsupervised and mostly parameter free. It employs the 

concepts of fuzzy membership, and approximation of an assumption from the rough 

set theory which is used to constrain an objective function. Subsequently, inspired 

and improved by conventional RBA [5], a morphological “dam” is constructed to 

avoid introducing a topological distortion (artefact), and to eliminate the noisy 

background while producing an enhanced foreground.  

The remainder of this chapter is organized as follows: Section 2.2 introduces 

research related to background correction methods. In Section 2.3, the notion of 

contextual knowledge is reviewed. In Section 2.4, description of the objective 

function and dam-building methodology is presented. Section 2.5 provides the 

experimental results of the evaluation, followed by discussion and conclusions in 

Section 2.6. 
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2.2. Related Work 

Existing methods in microscopy for illumination-based background correction can 

be applied while acquiring images (priori) or after acquisition (posteriori). The main 

difference between these approaches is a priori correction employs additional 

images obtained at the time of image capturing; while in posteriori correction, the 

controlled images are not available and therefore an ideal (hypothetical) background 

model has to be assumed. 

The methods of acquiring prior-knowledge usually employ the background 

(illumination) images. An additional image is often made by defocusing or removing 

the specimen from the field of view [3], just capturing the specimen in bright field or 

dark field mode [15]. Consecutive adjusting the settings of camera and microscope 

[16] is also of importance to help with resulting images. Yielding results by linear 

image calculator (transmittance as the ration of transmitted light through specimen), 

however, these methods cannot cope with objective shading, e.g. shading caused by 

variation in specimen thickness at transmission imaging or by a non-planar surface 

in reflecting imaging. More specifically, images acquired from standard or 

automated microscopes, even with white (dark) referencing, are generally adequate 

for visual inspection but not completely for quantitative image analysis [17]. 

Practically, when conditions are not carefully controlled, differences can be more 

substantial and introduced to downstream evaluations. 

Various approaches, namely retrospective (posteriori) correction, have been reported 

to extract the characteristics of background from a single image that depend on 

nothing but the actual images acquired during experiments. These methods mostly 

manipulate the data in both time-domain and frequency-domain using different sorts 

of filters, e.g. low (high)-pass-filter, linear-filter, compensated Gaussian blurring, etc. 

[18]. The drawback of these methods, however, is the limitation of the object size 

and the comparative background scale. The background is assumed to be either 

darker or brighter than the foreground. Moreover, the overlap of objects with the 

background is kind of forbidden in restoration, otherwise the mixture of foreground 

signal will be eliminated while applying the corrections in the frequency domain. 

Meanwhile, a mathematical morphology structuring element based on the image 

landscape has been introduced [4] [21] [19], i.e. the rolling ball algorithm. With a 

pre-defined radius, a virtual ball rolls over the ground of the topographical pixel-

landscape. Each pixel that contacts with the surface of the ball will be selected for 

further processing. These methods, however, have limitations in that they are 

imprecise in the estimation of a solution and portray uncertainty in the control of the 

path in the application of microscopy image sets. Another technique [2] [20] which 

assumes that the image background is more homogenous relative to foreground, and 

estimate a correction function over the background regions from original images.  
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Ideally, it is better to correct the images with a priori method as all retrospective 

approaches make assumptions over the image characteristics that are unlikely to be 

strictly satisfied in any arbitrary image. However, one should be aware that the 

reproducibility of acquiring sample images for priori correction requires laborious 

manipulation, while errors can be even introduced. In this manner, a way more 

efficient and feasible retrospective DCBC method is proposed in this chapter. 

 

2.3. Primary Notation 

A. Fuzzy theory bound 

The notion of fuzzy set was firstly introduced in 1965, and pioneered by Zadeh [7], 

fuzzy logic-based system have been successfully utilized into various application 

areas. A fuzzy set is the class of objects that contains consecutive grades of 

membership, with which value ranged from zero to one. This index assigned a 

“fuzziness” characteristic to the set, meaning a level of belonging. Particularly, a 

conventional set, referred to as the crisp set (commonly used in k- and/or c-means) 

will have either a value of zero or one; i.e. a Boolean value. The fuzzy membership 

function can be written as: 

                    µ𝐴: 𝑈 → [0, 1]   Equation 2-1 

Where A denotes the fuzzy set, and the mapping function µ𝐴, is the membership 

function of A, while U is the universe. 

 

B. Rough theory bound 

Proposed by Pawlak [8], rough set theory is an approach to assess imprecision and 

uncertainty. Objects in the universe characterized by the same information, or 

knowledge are indiscernible (similar) in the view of available information about 

them. The concept of the indiscernibility relation is the mathematical basis of rough 

set theory.  

An information system is an aggregation S= 〈U, A, V, f 〉, where U is a non-empty 

finite set of N objects  {𝑥1, 𝑥2, … , 𝑥𝑁} called the universe, and A is also a non-empty 

set of attributes. V is a value set such that 𝑎: 𝑈 → 𝑉𝑎 for every a∈V. With every 

subset of attributes B from A, we have B⊆A. We define an equivalence relation on 

U as: 

𝐼(𝐵) = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈: 𝑓𝑎(𝑥) = 𝑓𝑎(𝑦), ∀ 𝑎 ∈ 𝐵}      Equation 2-2 

Elements belonging to U that can satisfy this equation (relation) I(B) are objects with 

the same value for attributes B and therefore, these objects are indiscernible with 
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respect to B. Moreover, an equivalence class containing the element x will be 

defined as I(B)(x), in short B(x). The classes of the equivalence sets are the basic 

concept of B. Given any subset of attributes B, with concept of X∈U can be 

approximately defined by employing two exact sets respectively referred to as the 

lower and the upper approximation sets: 

                                   𝐵𝐷∗(𝑋) = {𝑥 ∈ 𝑈: 𝐵(𝑥) ⊆ 𝑋} 

              𝐵𝐷∗(𝑋) = {𝑥 ∈ 𝑈:𝐵(𝑥) ∩ 𝑋 ≠ ∅}                       Equation 2-3 

Assigning to every subset X of universe U, a subset  𝐵𝐷∗(𝑋) is referred to as the B-

lower approximation of X, which can be classified as elements of X in the concept of 

B. While 𝐵𝐷∗(𝑋) is the upper approximation which elements most probably belong 

to X given the knowledge B. The exactness based on the approximation set can be 

expressed by:  

            𝛼𝐵(𝑋) =
|𝐵𝐷∗(𝑋)|

|𝐵𝐷∗(𝑋)|
,              for 𝑋 ≠ ∅                  Equation 2-4 

This equation is referred to as the accuracy of the approximation, where |.| denotes 

the cardinality of the sets. The accuracy measure captures the degree of 

completeness of the knowledge about the set X. According to the extended report in 

[9], we obtain a measurement of the roughness index by rewriting the Equation 2-4 

as:  

                                         𝜌𝑟 = 1 − 𝛼𝐵(𝑋)                                  Equation 2-5                                                

From this normalized definition it holds that for every B and X⊆U, if  𝜌𝑟= 0, then 

the boundary region set X is empty. From this moment on, X is notated as B-

definable, e.g. X is a crisp set with respect to the knowledge B. Otherwise, if  𝜌𝑟 > 0, 

then this means X is B-undefinable, e.g. X is rough or uncertain with respect to the 

knowledge B.  

 

2.4. Dam-Constraint Background Correction Strategy 

A. Classical rolling ball concept 

The quantitative measurement of (pixel-) intensity is a mixture of signal and 

background noise. It can be well estimated by measuring the local background pixels 

in the region of interest [10]. This procedure can be written as: 

𝐹𝑜𝑏𝑗 = ∑ 𝐹𝑜𝑏𝑗 − 𝑁𝑜𝑏𝑗
∑ 𝐹𝑏𝑘𝑔

𝑛=𝑁𝑏𝑘𝑔
𝑛=1

𝑁𝑏𝑘𝑔

𝑚−𝑁𝑜𝑏𝑗

𝑚=1                   Equation 2-6 

Where F is the fluorescent signal measured at each pixel (m, n), obj is the object, 

bkg is the selected background area or volume, and N is the number of pixels in the 
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selected object or background. This equation describes the framework of the RBA 

approach by computing the contribution of the background noise per pixel. By 

taking both advantages, we aggregate the classical RBA algorithm with the concept 

of fuzzy logic and rough theory to the image domain. 

 

B. Selection of crest and toe for dam  

Tedious signals are introduced often attribute to over-processing. The main goal of 

constructing a “dam” in DCBC method is to constrain the path of the morphological 

ball rolling into either the valley or summit image landscape, which does not meet 

our anticipation (selection of proper background). In this manner, a dam with crest 

and toe are established. This can be formulated into a bimodal threshold modelling 

on the basis of the composition of objects in the microscope images (cf. Figure 2-1 

for instance, which objects foreground are assumed to consist of foreground and 

sub-foreground). Under the constraint of a dam, original information of a local 

region of interest will be preserved as much as possible, while over-segmentation 

will be limited (cf. Figure 2-2).  

For a local region of interest, we have to obtain the multi-threshold values in order 

to construct a dam with a certain crest and toe in the image-landscape. Let 𝑥𝑚𝑛 be 

the pixel value with respect to the region size m×n, and will obtain two average grey 

levels. 

                                          𝑡0 =
1

𝑖
∑ ∑ 𝑥𝑚𝑛𝑛  𝑚 ,      𝑥𝑚𝑛 < 𝑡                                                            

             𝑡1 =
1

𝑗
∑ ∑ 𝑥𝑚𝑛𝑛𝑚 ,       𝑥𝑚𝑛 ≥ 𝑡                      Equation 2-7 

where, i and j denote the number of occurrences of 𝑥𝑚𝑛 according to the threshold 

intensity-level t, and 𝑖 + 𝑗 = 𝑚 × 𝑛. Given by an initial threshold value t, the two 

average intensity-levels, 𝑡0 and  𝑡1, can be considered as a local background. In this 

manner two sets 𝑋𝑡0,  𝑋𝑡1are obtained with element x. The relationships of the pixels 

are x∈X, while their corresponding region should be directly depended on the 

change of the pixel values and the change in the local background. With respect to 

the membership function, taking the condition of these properties into account, we 

observed that the smaller the difference of the element pixel and its corresponding 

local background value, the larger the output of the membership will be. Notice that, 

it is expected one element should either belongs to set 𝑋𝑡0 or 𝑋𝑡1. Consequently, this 

will result in a membership output value in an interval of 0.5 to 1. It is clear that the 

membership value equals one only if the element belongs to a crisp set, while it 

should also be monotonous within the domain of definition. With these notions, we 

thus obtain a piecewise function 𝑔(𝑥) and its convex formulation 𝜇𝑋: 
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𝑔(𝑥) = {

𝑥𝑚𝑛−𝑡0

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛
,  𝑥𝑚𝑛 < 𝑡
 

𝑥𝑚𝑛−𝑡1

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛
,  𝑥𝑚𝑛 ≥ 𝑡

                           Equation 2-8 

𝜇𝑋(𝑥𝑚𝑛) =
1

2
[(𝑔(𝑥) − 1)2 + 1]                            Equation 2-9 

The 𝐼𝑚𝑎𝑥 and 𝐼𝑚𝑖𝑛  represent the maximum and minimum image intensity value. For 

a given value t, the membership value 𝜇𝑋 is in the interval [0.5, 1]. Moreover, the 

membership function 𝜇𝑋 has a convex shape in a line plot; this introduces a slight 

change of slope near 0.5 with much vagueness near the fuzzy centre (value 0.5), and 

a dramatic change of slope near 1 with a fast rate of convergence near the crisp point 

(value 1). 

By definition, the fuzzy set is known as an approach to access the quantitative 

analysis of membership between the elements and sets. To this regard, we can obtain 

a performance measure of the fuzzy set segmentation result. This provides a better 

image landscape than the uniformity evaluation method. This is because uniformity 

is an index of indicating a degree of variance in a segmented region and the mean 

values belonging to this region. However, a shape evaluation is summary of a 

generalized gradient value for every pixel by checking the relationship between the 

determined threshold value and the grey values of its neighbouring pixels. 

Consequently, the more appropriate the threshold is chosen, the better the 

representation of resulting image landscape will be accomplished. 

We assume that for the proposed bimodal thresholding method, the results of the 

first segmentation will separate the background and foreground, thereby containing 

the objects of interest. Then in a second segmentation of foreground, boundary 

domains (sub-foreground) will be isolated from objects. This procedure, for a better 

understanding, could take place when referring to cell cytoplasm and cell nucleus in 

cell microscope images. For our applications, the most likely shape we therefore will 

obtain is one in which all foreground pixels should contain cytoplasm and nucleus 

(cf. Figure 2-1). Successful partition of the nucleus from the maximum shape is 

required to define the boundary between the cytoplasm and the nucleus. Henceforth 

an upper-approximation set can be made as the pixels belonging to cytoplasm, 

whereas the nucleus is the lower-approximation set.  
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Figure 2-1. Illustration of rough-set reflection in a cell image. Boundary region is a 

subtraction of cytoplasm (yellow) by nucleus (red) region, while background (white) 

remains the same. 

The upper-estimation of the rough set is estimated by assessing all neighbouring 

pixels for each pixel in the local region of interest: 

𝑃𝑢𝑝𝑝𝑒𝑟(𝑥, 𝑦) =  
2

√𝑛
(∑ |𝑃𝑛−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 − 𝑃(𝑥, 𝑦)|2𝑛

𝑖=1 )
1

2    Equation 2-10 

where n is the number of n-neighbouring pixels for each pixel. Practically, n=8 

outperforms the other settings in our examination. The upper-approximation set is a 

collection of all points, which possibly belongs to one segmented region. In this 

manner, a correlation of spatial information with respect to those who have same or 

similar values is set up. The lower-approximation set contains original pixels that 

definitely belong to a class of known intensity, and therefore the roughness index ρr 

can be formulated as: 

𝜌𝑟 = 1 − 𝛼𝐵(𝑋) = 1 −
𝑃(𝑥,𝑦)

𝑃𝑢𝑝𝑝𝑒𝑟(𝑥,𝑦)
                     Equation 2-11 

The value of roughness index is large when the cardinality of the upper-

approximation is larger than the original pixel value in the selected position. This 

typically occurs when there is large variance of the selected pixel with respect to its 

surrounding pixels; i.e. the intensity variation dramatically changes if there exists a 

boundary between two objects or regions. In other cases, the roughness index will be 

small, e.g. close to zero, as there is no significant change of intensity around a 

selected pixel.  

After the two membership functions have been defined, they are combined by using 

a decision function, such as a parametric aggregation operator from the fuzzy set 

theory [11]. To simultaneously satisfy abovementioned criteria, while taken both 



Chapter 2  

  24 

advantages from fuzzy logic and rough theory, it is of great importance to aggregate 

using the product t-Norm operation.  

                                   𝜇𝑋(𝑥) = 𝐴(𝑥) = 𝜌𝑟 (𝑥)  ⊕  𝑔(𝑥)                   

Subject to        𝐴(𝑥) =  ∏ 𝐶𝑙
𝐿
𝑙=1 (𝑥)                                             Equation 2-12 

where ⊕ 
1
 is the aggregate operator and L=2. 𝐶1 and 𝐶2 correspond to  𝜌𝑟 (𝑥) and  

𝑔(𝑥) respectively. In this manner, a bi-objective function is aggregated into single-

objective one for satisfaction. Note that, regarding to Equation 2-8, which consists of 

two partial equations that are depending on the local background, as well as on a 

temporary threshold t. It is essential that a correlation index allowing a membership 

function   𝜇𝑋  continuous weighting at local domain of definition. Therefore, we 

introduce a correlation function by taking the minimum and maximum intensity 

level into account, and weight each component of membership function   𝜇𝑋 as:                    

∧=
1

2
 .  

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

𝐼𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑎𝑥
                      Equation 2-13 

In Equation 2-13, 𝐼𝑚𝑎𝑥 and 𝐼𝑚𝑖𝑛  are the maximum and minimum value of local 

region respectively, while 𝐼𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑎𝑥 is the maximum value in whole image. It is 

easily seen that the value of ∧ will be in [0, 0.5]. Afterward, the bimodal 

thresholding cost function can be formulized as: 

𝜇𝑋(𝑥𝑚𝑛) = 𝜌𝑟 (𝑥)  ⊕ (∧ .  𝑔 𝑥𝑚𝑛<𝑡(𝑥) + (1 −∧) .  𝑔 𝑥𝑚𝑛≥𝑡(𝑥)) Equation 2-14 

The appropriate measurement of uncertainty is the key to evaluate the degrees of 

vagueness whereas an element (pixel) belongs to a certain set (region) or not. 

Several approaches have been reported in recent decades, but in our case, we 

propose an evaluation based on Shannon’s function to solve abovementioned 

uncertainty problems. From the information entropy theory [12], the measured 

entropy of the vagueness can also be experienced within a slightly changed 

definition: 

𝐸(𝑋) =
1

𝑀𝑁𝑙𝑛2
∑ ∑ 𝑆(𝜇𝑋(𝑥𝑚𝑛))𝑛   𝑚                Equation 2-15 

Where M and N represent the size of the selected local region. Note that the given 

Equation 2-15 is monotonically decreasing in the interval [0.5, 1], but monotonically 

increasing in the interval [0, 0.5]. Hence, it is possible to minimize the lowest energy 

of the region rolled by the RBA ball path through Equation 2-15, while the 

definition zone is set to the interval [0.5, 1]. 

 

                                                           
1
 To avoid confusion of the ⊕ symbol used in morphological processing as dilation operator. 
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C. Dam construction strategy 

Background illumination correction based on mathematical morphology approach 

aims to find an estimation of illumination imperfections. For a “ball” rolling under 

the image landscape, it holds that those pixels the ball cannot touch will be kept in a 

smoothed foreground; e.g. the local minima and the peak. The smaller the radius of 

the ball, the deeper the topographical shape can be touched, and vice versa (cf. 

Figure 2-2). With the existing rolling ball (RBA) method there are some problems 

that effectuate uncertainty and imprecision in the resulting image. This 

morphological selection, attributing to over segmentation, will result in a loss of 

energy and details in the original image. To that end, the proposed method intends to 

produce a much smoother image and eliminate the artefacts by employing local 

threshold values 𝑡0  and 𝑡1  conducted from the results of minimization of local 

entropy, i.e. indicating the crest (𝑡0) and toe (𝑡1) of the dam. 
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Figure 2-2. Process of constructing morphological dam in a 2D/3D image landscape. 

The ball path, with a predefine radius R (usually set in a range from 50 to 500 pixel), in 

either red line or dotted line depicts a solution of background selection. (a) classical 

rolling procedure of RBA in selecting background signal; (b) In a local region of 

interest, a vault dam is built with regard to local bi-thresholding values. The surface of 

dam is constructed on the basis of inversed equation (6). However, the extreme values 

are controlled by both 𝒕𝟎 and 𝒕𝟏; (c) illustration of background selection by means of 

approaches with and without dam-constraint, respectively.  

Intuitively, the morphological ball in the proposed DCBC method, will not roll into 

the convex area, in which this region of interest is recognized as foreground. In other 

words, a suppression will occur if the ball is forced to rolling into the region with 

grey level between 𝑡0 and 𝑡1; and completely forbidden in the area with grey value 

higher than 𝑡1 (cf. Figure 2-2). Be aware that, the smoothing factor of the foreground 

during morphological subtraction is relative to the radius of the rolling ball. Unlike 

the existing algorithm, which requires to be tuned for every step before adapting the 

ball to the object of interest, the proposed method is more robust as it includes an 

adaptive radius. The local region of interest is chosen as a sliding window with half 

the size of the original image, i.e. length and height is m/2 and n/2 respectively. 

Therefore, the radius of the ball is practically in an adaptive way, set as the minimum 

(m/2, n/2). The procedure of proposed DCBC protocol is illustrated as in Figure 2-3. 

 

 

Figure 2-3. Workflow of proposed DCBC approach. 
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2.5. Experimental Results 

A. Data acquisition 

In order to assess the performance of proposed DCBC approach compared with 

state-of-the-art EMI and typical RBA method, characteristic images are employed. 

Image Set 1 is typical bright-field imaging, depicting cartilage cell cultures with 

bright background (256 x 256 pixels, 16 bit); these images were acquired with the 

standard Zeiss Bright Filed microscope. The other sets (set 2 and set 3) are typical 

multi-channel fluorescence sets depicting cultured cardiomyocytes with dark 

background (1024 x 1024 pixels, 8 bit; and 4704 x 3584 pixels, 8 bit); these sets are 

acquired with the BD-Pathway Imager [6]. Each dataset contains 12 samples in 

different growth stages. The evaluation methods are then implemented in qualitative 

and quantitative terms.   

 

 B. Qualitative tests 

1) Artefact removal:  

Information utilized for the further processing is actually kept in the background and 

artefacts are enhanced as well. Artefacts from the connection will, in general, occur 

between the edge or the corner of an image due to the start centre of conventional 

RBA and results in an embedded effect of the rolling ball. This is shown in Figure 2-

4. (b) as irregular high energy (green and red) in shading image. The rectangular 

region in image domain, reflects a significant change before and after BCP 

procedure in image.  

 

    

(a) Original set 
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(b) RBA processing 

 

   

(c) DCBC processing 

Figure 2-4. Artefacts removal of cardiomyocytes cell image cultures. (a) Original image, 

diagonal (along the yellow line) profiling plot and global pixel histogram. (b) and (c) are 

the strategies of background correction with the resulting shading, diagonal profiling 

plot and global pixel histogram, RBA and DCBC respectively.        

2) Multilevel background subtraction effect:  

A well performed BCP procedure would eliminate background signal that present in 

the image, while preserving the valuable (foreground) signal. Figure 2-5 illustrates 

the performance of three methods on image sets of cartilage cell cultures (2 weeks, 4 

weeks and 7 weeks respectively). The original and the corrected image samples are 

in the first column, the corresponding surface diagrams (15% Gaussian smoothing 

processing) are shown in second column, while image global intensity profiles are 

depicted in the third column. Note that the specified surface plot in Figure 2-5 

describes the ability of remaining all information in original foreground and the 

smoothed and evenly distributed background.  

The partitioning of differences in background illumination and foreground is quite 

difficult in most of the fluorescence and bright-field microscopy images. However in 

the proposed DCBC method, the information is retained better on the basis of 

bimodal thresholding strategy, while the distribution of the global intensity is more 

coherent.  
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              Image                                 Surface-gram                          Histogram   

    

(a) Original set 
        

    

(b) RBA processing  

    

(c) EMI processing 

    

(d) DCBC processing 

Figure 2-5. Qualitative comparison of different background correction methods in 

terms of distribution of grey histogram.  
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C. Quantitative evaluation 

To gain insight in proposed method, a widely acceptable index referred to as 

Coefficient of Joint Variation (CJV) [13] is utilized. The CJV is characterized by 

invariance to uniform transformation, i.e., multiplicative and additive illumination. 

This can be extended to a bimodal formulation: 

𝐶𝐽𝑉(𝐼1, 𝐼2) = [𝜇(𝐼1) − 𝜇(𝐼2)]
−1[𝜎(𝐼1) + 𝜎(𝐼2)]        Equation 2-15 

Where, CJV is the sum of the standard deviations of images before 𝐼1 and after 𝐼2 

BCP procedure, normalized by the difference of their means. The performances of 

background subtraction methods are quantitatively evaluated compared with a 

baseline value, which is computed by the variation of global intensity in the intact 

(original) image. This can be derived as a limiting form of Equation 2-15 as: 

𝐶𝐽𝑉𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝐼1) = [𝜇(𝐼1)]
−1[𝜎(𝐼1)] , where post-processing image is regarded as 

shading-free (global intensity is zero in fluorescence image type, or max-bit value in 

bright-field image type; while standard deviation equal to zero as well).  

 

          

                   (a) Cartilage weekly #1                                   (b) Cartilage weekly #2 
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                      (c) Cardiomyocyte                                (d) Distribution of changes for CJV 

Figure 2-6. Performance of three methodologies compared with baseline on three 

different datasets (a), (b) and (c) respectively. The CJV values are accordingly 

evaluated and visualized in (d) 

The results of background correction are illustrated in Figure 2-6, in which each 

subfigure stands for one data set. Three representative under-evaluated 

methodologies, i.e. entropy minimization for shading correction (S-C), 

morphological correction in RBA (M-C) and proposed DCBC approach (P-S) are 

compared with baseline value (B-L). In a case of light microscope images after BCP 

procedure, an ideal distribution of image variation should have smaller global 

intensity to guarantee background signals are well-eliminated; while global 

deviation should stand, at least not larger than the intact image to make sure that 

there is not any tedious signal is introduced. This means that the methodology 

obtaining the smallest CJV value that outperforms the others. Given by box-

whiskers diagram in Figure 2-6 (d), the statistical variation of CJV is then 

investigated. 

From all independent runs, we obtain the average performance of 12 samples for 

each datasets in terms of CJV value and shown in Table 2-1. The computing time is 

then illustrated in Table 2-2 for systematically comparison. The best performances 

(except baseline index) are marked as bold italic in each table. 
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Table 2-1. Performance of background correction strategies of three dataset in CJV 

index 

 
           Set1               Set 2           Set 3 

  ∆Std ∆mean  ∆Std ∆mean ∆Std ∆mean 

RBA (M-C) 0.4489 0.6431 0.3391 0.8029 2.9065 23.688 

EMI (S-C) 6.5609 11.4812 4.2305 12.4983 51.1308 105.7754 

DCBC(P-S) 0.3547 0.5428 0.2541 0.6144 2.1814 13.7637 

Baseline (B-L) 0.1390 0.2808 0.1058 0.3388 0.6952 2.7300 

 

Table 2-2. Time complexity in average (seconds) 

 Set 1 Set 2 Set 3 

EMI (S-C) 58.67 167.23 458.73 

RBA (M-C) 1.84 2.54 4.01 

DCBC(P-S) 1.59 3.22 6.15 

 

2.6. Discussion and Conclusion 

The impacts of the qualitative comparison of BCP procedure performance are shown 

in Figure 2-4 and Figure 2-5. These results suggest the following evaluation: (i) In 

Figure 2-4. (c), compared with (b), shows a much better result in terms of the 

elimination of artefacts signal (removal of square-like high energy region). (ii) In 

both the red rectangle region in diagonal intensity plot and shown in global pixel 

histogram, the proposed method kept most information and the intensities across 

region (slope in the 2D line change) are enhanced for further analysis. (iii) In Figure 

2-5, resulting images of visualisation of cartilage cells are shown, where EMI 

processing eliminates less background than other methods do. (iv) Image after 

DCBC processing is shading-free, while has clearer and smoother foreground shape 

that contains all relevant signal. The dam- constraint strategy prevents the over 

elimination of mixed illumination, and then a more unambiguous and complete 

cartilage contour can be seen by visual inspection. 

The statistics of the three tested approaches can be investigated via Figure 2-6, Table 

2-1 and Table 2-2: (i) Evident differences of CJV expression are observed from 

Figure 2-6 (a) to (c); the likely ranges and interquartile ranges of variation indicated 

in figure 6 (d) suggests a better performance of proposed method on the three 
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datasets. (ii) All methods are accomplished in successfully reducing background, 

while DCBC method always produces better results in terms of smallest CJV value; 

specifically in set 1 and set 2, a significant improvement can be noticed with a value 

change of CJV of more than 50%. (iv) Compared with the baseline in Table 2-1, it 

can be observed that BCP procedure is essential and efficient by removal of noise 

and redundancy. (v) Proposed method always has a lower CJV value on various 

datasets, while has a lower time complexity in set 1. (vi) On the basic definition of 

prevalent EMI method, a retrospectively procedure for estimating shading 

components consumes a large time budget in application; while convergent 

parametric components play a role in equalizing original image, meaning a lesser 

variation compared with intact image and mostly unchanged global intensity. This 

results in an insufficient elimination of background in fluorescence and bright-field 

images, and yielding relatively larger CJV value. (vii) In the proposed method, a 

dam is erected to constrain a path by utilizing both the fuzzy and rough set 

framework. The membership function of fuzzy logic can handle overlapping 

partitions; whereas the lower and upper approximations of rough sets can 

characterize the vagueness and incompleteness in its bimodal class definition. This 

results in smoothing of the foreground information and a global minimization of the 

image intensity, while there is not tedious variation introduced.  

In this chapter, we propose a Dam-Constraint Background Correction (DCBC) 

algorithm, which is a novel hybridized approach. The algorithm successfully 

overcomes the drawback of existing method and includes fully automated data 

driven parameter tuning. With the innovated morphological concept in image 

domain, namely “dam-constraint”, the proposed method outperforms the widely and 

commonly utilized RBA algorithm and the EMI method in both qualitative and 

quantitative tests. The new method is very promising for application to microscopy 

images in which further analysis is hampered by undesired effects to background 

illumination. The subsequent processing steps in proposed data analysis track will be 

further illustrated in next chapters.  
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Chapter 3 

Feature Selection Strategy in Region of Interest Mask 
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Chapter summary 

Feature selection, a procedure in which most informative variables are selected for 

model generation is an important step for pattern recognition. It is also a crucial step 

that converts information acquired from a bio-imaging experiment to quantitative 

data representation. In this effort, one often tries to optimize multiple criteria such as 

discriminating power of the descriptor, performance of model, and cardinality of 

subset.  

Therefore in this chapter, a fuzzy criterion in multi-objective unsupervised feature 

selection by applying hybridized filter-wrapper approach (FC-MOFS) is proposed. 

These formulations allow for a way more efficient approach to pick features from a 

pool; and to avoid misunderstanding of overlapping features via crisp clustered 

learning in a conventional multi-objective optimization procedure. Moreover, the 

optimization problem is solved by using non-dominated sorting genetic algorithm, 

type two (NSGA-II). The performance of the proposed approach is then examined 

on six benchmark datasets including multiple disciplines, and different number of 

features. Systematic comparisons of the proposed method and representative non-

fuzzified approaches are illustrated in this work. The experimental studies show a 

superior performance of the proposed approach in terms of accuracy and feasibility. 
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3.1. Introduction 

Feature selection (FS), in some areas also referred to as dimensionality reduction, 

deals with selection of one or several optimal sets of attributes that are necessary 

and/or essential for the recognition process. The main idea of FS to choose a subset 

of available features that are used to predict the entire population is threefold, i.e. to 

overcome: (i) working with sets of data with high dimensions and scale to practical 

and computational proportions; (ii) effects of noise, irrelevant and redundant 

features that otherwise hinder correct and efficient analysis; (iii) feature dimensions 

exceeding the sample size as it will induce bias in statistical analysis [1]. 

The challenge of FS is to decide a minimum subset of features with little or no loss 

of classification/clustering accuracy. This can be formulated as a multi-objective 

optimization (MOO) problem. The task is the selection of relevant features, 

elimination of redundant features, and minimization of selected set cardinality. To 

date, a range of MOO-based FS techniques have been reported [14]. Cross-

applications the related FS approaches can be categorized into four groups: 

 Filter-supervised, i.e. class-labels known: features are selected based on their 

discriminating power with respect to the target classes. 

 Wrapper-supervised, i.e. class labels known: subsets of features are evaluated 

from a classification, at the point where comparison of resulting labels and 

actual labels occurs.   

 Filter-unsupervised, i.e. class-labels unknown: features are ranked from the 

performance histogram of all feature dimension vectors and one or several 

criteria are chosen for deciding a group of features. 

 Wrapper-unsupervised, i.e. class-labels unknown: computation of the subset of 

features is applied in terms of the performance of a clustering algorithm. In this 

case, tuning of parameters in clustering process will contribute in obtaining an 

acceptable subset of features.  

The search for proper supervised predictors can usually be regarded as a pursuit for 

optimization, where the number of wrong-predicted operators for a known dataset 

should be minimized
 
[2]. However, figuring out a similar criterion for validation in 

unsupervised schemas is a difficult task
 
[3]. It cannot be relied upon that a new-

found pattern obtained by optimizations resulting from an unsupervised algorithm, is 

able to decide if a given pattern is trustful or not. To some extent, the validity of 

pattern discovery is depended on a priori knowledge and intentions of decision 

makers. This brings us to the assumption that one often desires to employ 

unsupervised learning schemas in order to produce several candidate solutions for 

users. Additionally, some tasks in FS, cover inherent data groups and thereby omit 

features which might reveal the nature of hidden patterns. Therefore, the 
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unsupervised-based multi-objective heuristic optimization algorithm is becoming an 

attractive approach, that has been given and increasing attention this decade.  

There has been reported on development of evolutionary algorithms for multi-

objective (MOEA) for unsupervised feature selection
 
[4]. Oliveira, et al.

 
[5] 

proposed a Pareto-based approach to generate a so-called Pareto-optimal front in a 

supervised context. Sensitivity analysis and neural networks (NN) enable to 

representative evaluation of fitness values. About the same time, Kim, et al.
 
[6], used 

k-means clustering and Expectation Maximization (EM) as embedded unsupervised 

approach to evaluate a feature subset encoded in chromosomes. The MOEA 

employed in this case is called evolutionary local search algorithm (ELSA). With 

these results as a starting point, research of unsupervised learning in feature 

selection was expanded. Morita, et al.
 
[7] used the k-means clustering algorithm in a 

wrapper approach, which was encoded with Non-dominated Sorting Genetic 

Algorithm, type two (NSGA-II). Moreover, two objective functions, i.e. the number 

of features in a set, and a clustering validation (e.g. Davies-Bouldin (DB)
 
[8]) index 

are introduced. Handl and Knowles
 
[9] examined different combinations of objective 

functions and Mierswa
 
[2] investigated different indices, i.e. the normalized DB 

index. More recent work
 
[10] stated that their multi-objective unsupervised feature 

selection algorithm (MOUFSA) outperforms several other multi-objective and 

conventional single-objective methods, by using redundant measurements and 

negative epsilon-dominance. In addition, three new mutation methods are designed 

to enhance MOUFSA.  

However, the defined criteria in classical objective functions used in unsupervised 

MOEA, fail to predict the performance of clustering results, i.e. the overlapping 

information (features) in-between classes which probably highlights the essentials 

that are shared within these classes. To solve this problem, we employ fuzzy criteria 

in a hybrid filter-wrapper approach. Pioneered by Zadeh
 
[11], fuzzy logic-based 

systems have been successfully utilized to various application areas, e.g. control 

system and pattern classification
 
[12]. The comprehensibility of fuzzy criteria, 

namely the linguistic interpretability of fuzzy partitions and the simplicity of fuzzy 

if-then rules
 
[13], makes it a promising method to access qualified optimization in 

MOEA when employed into unsupervised learning. Although fuzzy criteria are 

addressed in a supervised manner
 
[14], it rarely has been reported in unsupervised 

cases, in which the natural patterns are discovered according to fuzzy clustering 

validity and fuzzy objective functions.  

In this chapter, FS procedure is optimized using the generic heuristic search 

algorithm NSGA-II, and fuzzy criteria are employed in both filter and wrapper 

approaches. In the unsupervised learning procedure a new fuzzy index is specifically 

proposed as one of the objective functions. The target functions are: (i) value of 
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Correlation Membership Measurement (CMM); and (ii) cardinality of feature subset. 

Here we intend to contribute to the further development of the hybrid methodology, 

by realizing a sensible integration of fuzzy criteria and MOEA approach in FS area  

This methodology is applied to a wide set of benchmark datasets and it is compared 

with commonly used approaches to show its general applicability and competitive 

advantages.  

The remainder of this chapter is organized as follows. In Section 3.2, we introduce 

the methodology including application of fuzzy criteria and fuzzy model in FS; 

subsequently, the utilization of NSGA-II in an unsupervised context is presented. In 

Section 3.3 experimental results are given and Section 3.4 conclusions are presented. 

 

3.2. Methodology 

A. Fuzzy entropy in filter-approach 

In information theory, entropy is a measure of chaos or uncertainty associated with 

the variables. The concept of entropy has been defined in various ways and used in 

different fields; fuzzy logic is becoming commonly used in the estimation of 

entropies. On this basis, we propose an approach embedding fuzzy c-means (FCM)
 

[15] clustering algorithm to estimate the fuzzy entropy by automatically computing 

the feature memberships. To depict the level of similarity, the feature membership 

index assigned with a fuzziness characteristic that can be expressed as: 

𝑢𝑖𝑗 = (∑ (
𝑑𝑖𝑗

𝑑𝑘𝑗
)

2

𝑚𝑓−1𝑐
𝑘=1 )−1                        Equation 3-1 

Here 𝑚𝑓 ∈ (1,∞] is a scalar that is termed fuzzifier for FCM, and 𝑑𝑖𝑗 is the product 

norm distance from object 𝑎𝑗 ∈ 𝑎1, 𝑎2, … , 𝑎𝑛 , to the cluster centroid 𝑣𝑖  ∈

 𝑣1, 𝑣2, … , 𝑣𝑚 . This membership function is subject to the following objective 

function: 

𝐽𝑓𝑐𝑚 = ∑ ∑ 𝑑𝑖𝑗(𝑢𝑖𝑗)
𝑚𝑓𝑚

𝑖=1
𝑛
𝑗=1                  Equation 3-2 

 

In this manner, according to De Luca and Termini [16], the fuzzy entropy can be 

defined as: 

            𝐻(𝑢𝑗(𝑥)) =
1

𝑛 ln2
 ∑ −𝑢𝑗(𝑥)ln𝑛

𝑗=1 𝑢𝑗(𝑥) − (1 − 𝑢𝑗(𝑥))ln (1 − 𝑢𝑗(𝑥))                                                                    

Equation 3-3 

In Equation 3-3, 𝑢𝑗(𝑥) denotes the membership index of the j
th
 feature in the feature 

pattern vector, meaning every individual feature entropy is computed along all the 
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samples x. Subsequently, the entire set of features is ranked for guiding the 

optimization procedure in the wrapping approach, via maximizing their 

corresponding fuzzy entropies. 

 

B. Fuzzy cost function in wrapping-approach 

Multi-objective function optimization, by means of a wrapper technique for 

unsupervised feature selection, relies on the use of an internal technique of cluster 

validation. In other words, clustering validation techniques have been designed 

specifically for the selection of the best clustering solution on the basis of its 

distance performance. Sometimes the clustering performance is estimated by 

considering the ratios between intra-class compactness, and inter-class separation. 

As reported Handl and Knowles
 
[9], this generally suffers from the bias of these 

measurements with respect to the dimensionality of the feature space. The conflict of 

this bias can be noticed when dimensionality of a given dataset is enlarged: i.e. the 

mean of the distribution tends to increase while simultaneously the variance of the 

distribution decreases. This will cause such a validation technique to be unable to 

sensitively estimate the difference between all pairs of points, especially in a high 

dimensional dataset.  

 

 

(a) 
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(b) 

 

Figure 3-1. Sketch diagram for CMM. (a) In a high dimensional feature space, two 

overlapping classes (A and B) with centroids 𝒄𝟏 and 𝒄𝟐 are projected onto two principle 

component axis PC1 and PC2. S is the distance between objects and its belonging center; 

𝒅 is the in-between cluster center distance. (b) After Fisher discriminant analysis (FDA) 

linear projection (project onto the FDA-Component axis), the corresponding 

components can be rewritten as 𝒅 (𝒄𝟏, 𝒄𝟐) ↦  𝚽(𝒖𝟏, 𝒖𝟐) and S ⟼ �⃑⃑⃑�  respectively. 

To tackle this bias, we propose a fuzzy cost function, the correlation membership 

measurement (CMM). This function employs both individual clustering information 

and shared (overlapping) information (cf. Figure 3-1 (a)). We measure the similarity 

between pairs of vectors using their scalar distance and their directions in high-

dimensional attribute space are compared via the projection onto low-dimensional 

space (cf. Figure 3-1 (b)). This is defined as:  

 

CMM = 𝑈𝐴∪𝐵 + 𝑈𝐴∩𝐵                                Equation 3-4 
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subject to 

               

{
 
 

 
 𝑈𝐴∪𝐵 =

1

𝑁
∑ 𝑆1(𝑖)+

1

𝑀
∑ 𝑆2(𝑗)

𝑀
𝑗=1

𝑁
𝑖=1

𝑑 (𝑐1,𝑐2)
                            

 

𝑈𝐴∩𝐵 =
1

𝑁𝑀
∑ ∑ {

|Ψ1
⃑⃑ ⃑⃑ ⃑⃑  ⃑(𝑖)−Ψ2

⃑⃑⃑⃑⃑⃑  (𝑖)|∙|Ψ1
⃑⃑⃑⃑⃑⃑  (𝑗)−Ψ2

⃑⃑⃑⃑⃑⃑  (𝑗)|

||Φ(𝑢1,𝑢2)||
2 }𝑀𝑁

     ,   𝑖 𝜖  A and 𝑗 𝜖  B                                                                                

Equation 3-5 

Where in the first term of equation 3-4, i.e. the dependent membership 𝑈𝐴∪𝐵 of class 

A and class B are measured, 𝑆1(𝑖) and 𝑆2(𝑗) are the distance of the vector 𝑖 and 𝑗 to 

their corresponding centroid 𝑐1 and 𝑐2; while 𝑑 (𝑐1, 𝑐2) is the distance between two 

cluster centroids, and ||.|| is distant norm as well. N and M are the numbers of the 

elements that belong to their classes. The evaluation of performance for the 

overlapping clusters can be achieved by estimating the positions of every individual 

vectors in a feature subspace. In a high-dimensional domain, however, the 

comparison of vectors in terms of directions and angles is not applicable. Therefore, 

principle projection in FDA [17] is used to find a linear combination of features that 

characterizes two or more classes. The projection matrix can be defined as: 

𝜔 = 𝑆𝑤
−1(𝑐1 − 𝑐2)                                     Equation 3-6 

 

Where                                  𝑆𝑤 = (𝑖 − 𝑐1)(𝑖 − 𝑐1)
𝑇 + (𝑗 − 𝑐2)(𝑗 − 𝑐2)

𝑇                                                                                              

Equation 3-7 

Subsequently, in the second term of Equation 3-4, i.e. in the correlated 

membership 𝑈𝐴∩𝐵, the projected vector Ψ and  Φ can be obtained by multiplying S 

norm and d norm with FDA projection matrix 𝜔 respectively. Moreover, one should 

realize that, when applied on a real dataset, the 𝑆𝑤 , i.e. the with-in class scatter 

matrix, normally is a singular matrix and thus non-invertible. We have added a tiny 

perturbation factor to prevent the projection program from being trapped and the 

projection matrix is rewritten as: 

𝜔 = (𝑆𝑤  +  휀 𝐼)−1(𝑐1 − 𝑐2)                    Equation 3-8 

Here 𝐼 is a unit diagonal matrix. The objective is to achieve proper clustering by 

minimizing the CMM index. With respect to the aim of feature selection, it is more 

efficient and direct to use the cardinality of feature subsets as a second cost function. 

However, one can observe (cf. Figure 3-3) that the CMM value decreases with 

increasing feature numbers. Therefore, a constraint is that at least one feature count 

in the second objective function should be set. 
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C. Bi-objective optimization 

In the previous section, two objective functions (the cardinality of feature subsets 

and Equation 3-4) are formulated as quality indicators for the feature extraction 

procedure. Those two objective functions are conflicting and form a combinatorial 

bi-objective optimization problem. Therefore, we aim at searching for the Pareto 

front [20], which represents the non-dominated solutions of the proposed feature 

selection procedure and which can be used to assess the trade-off. In order to 

achieve this, Evolutionary Multi-objective Optimization Algorithm (EMOA) is 

adopted due to its capability of handling combinatorial problems. We specifically 

utilized the well-known NSGA-II [22] algorithm (Non-dominated Sorting Genetic 

Algorithm) which is the multi-objective extension to the classical Genetic Algorithm 

[23]. NSGA-II has the ability to generate well-spread Pareto fronts with relatively 

low computational overhead and it is proved to be robust in real-world applications 

through numerous testing and applications. In this chapter, we omit the detailed 

discussion on the optimization procedure and use NSGA-II as a ‘standard’ multi-

objective optimizer.  

As we are dealing with combinatorial optimization problem, discrete Pareto fronts 

are obtained from NSGA-II, in which each point on the resulting Pareto front 

represents a candidate feature subset. Each candidate solution will be used for the 

clustering algorithm and the one giving the best clustering performance (cf. the 

performance indicators in Section 3.2 B) is chosen. Note that the functionality of the 

bi-objective optimization is to pre-screen the ‘bad’ candidate solutions (Pareto 

dominated feature subsets) from all the possible solutions, leaving the Pareto 

optimal candidates, the number of which is very small compared to the entire 

number of solution candidates, to be tested in clustering.  

Combining fuzzy entropy in priori evaluation of feature sets in filtering approach 

and fuzzy criterion in objective function in wrapping approach, the proposed FC-

MOFS algorithm manages to assess best candidate feature subsets using NSGA-II. 

To that end, the detailed procedure of proposed methodology is shown in Figure 3-2. 
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Figure 3-2. The overview of Fuzzy Criteria in Multi Objective Feature Selection (FC-

MOFS) process. 

 

3.3. Experimental Results 

The objective of this section is to assess the performance of integrating fuzzy criteria 

into unsupervised multi-objective feature selection procedure. Acceptable results in 

terms of developing either searching optimization or clustering validation algorithms 

has been reported in a number of papers. However, for a fair and effective validation 

of the proposed FC-MOFS method, a commonly used approach without fuzzy 

constraint
 
[9], referred to as NF-MUFS, is used. Additionally, all datasets are 

employed in Baseline, using the full feature set. The experiments are conducted on 

six publicly available datasets, representing multiple disciplines and real life 

problems (cf. Table 3-1).  
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Table 3-1. Dataset description 

Dataset Type Size Dimension Class 

Glass 

Numerical 

data 

214 9 6 

Wine 178 13 3 

WDBC 569 30 2 

Libras 270 90 15 

Sonar Voice 208 60 2 

UMIST Image 575 644 20 

 

A. Parameter setting 

In both FC-MOFS and NF-MUFS, the maximum generation and population size are 

set as same to 100 and 25 respectively; the crossover percentage is 0.9 and the 

mutation percentage is 0.4, while the rate of mutation is adaptively selected 

according to the non-dominated sorting performance and expected number of local 

optima. The clustering algorithm in unsupervised learning of FC-MOFS is fuzzy c-

means, which is substituted by k-means in NF-MUFS. 

 

B. Validation of FS approach 

Following previous works, three widely used evaluation metrics, i.e., Accuracy
 
[18] 

(ACC), Normalized Mutual Information [19] (NMI) and Rand Index [20] (RI) are 

computed in this chapter. To gain insight in the proposed method, we investigated 

some aspects that influence clustering performance after feature selection schemes. 

In the filter approach, the fuzzy entropy feature selection runs once to rank all 

features for guiding the process in NSGA-II algorithm as initialization; then the 

results of 20 independent runs of NSGA II to obtain global non-dominated features 

(cf. Figure 3-3) set are tested on six different benchmarks (cf. Table 3-2 to Table 3-

4). Setting three different evaluation strategies, i.e., the application on full sample 

population (f-s), random sampling (r-s) on the basis of bootstrapping, and uniform 

distribution sampling (u-s), the accuracy and general capability of FC-MOFSA are 

measured in overall 50 times.  
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(a) Glass 

                                                                  

(b) Wine 
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(c) WDBC 

 

(d) Libras 
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(e) Sonar 

 

(f) UMIST 

Figure 3-3. The Pareto fronts for all dataset ((a) to (f)), consisting of 20 independent 

runs for each database, including 100 generations per run; the global non-dominated 

sets are selected (red circle) from local non-dominated sets (blue cross). The vertical 

axis is CMM error w.r.t the number of features on the horizontal axis. 
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Table 3-2. Impact of fuzzy and non-fuzzy feature selection algorithms to the clustering 

results in ACC index (best-row performance is marked as bold italic) 

dataset 
Sampling 

strategy 

ACC ± std (%) 

FC-MOFSA nf NF-MUFS nf Baseline 

 f-s 53.93 ± 2.11 2 44.72 ± 2.12 2 44.20 ± 4.15 

Glass r-s 54.36 ± 3.77 2 42.61 ± 3.39 3 41.76 ± 4.43 

 u-s 55.50 ± 4.09 2 43.36 ± 2.47 1 41.85 ± 4.81 

 f-s 80.34 ± 3.15 2 75.28 ± 3.22 3 70.22 ± 2.28 

Wine r-s 80.27 ± 5.15 2 75.20 ± 3.45 10 69.02 ± 5.21 

 u-s 78.31 ± 6.34 2 74.58 ± 4.97 3 68.00 ± 7.39 

 f-s 88.40 ± 2.38 2 83.83 ± 1.85 14 85.41 ± 2.49 

WDBC r-s 88.27 ± 2.15 2 84.38 ± 1.95 14 84.51 ± 2.11 

 u-s 88.37 ± 2.54 3 84.83 ± 2.34 6 84.53 ± 2.64 

 f-s 47.79 ± 4.44 16 44.44 ± 4.29 20 44.81 ± 2.21 

Libras r-s 28.85 ± 3.35 16 27.67 ± 4.30 20 17.23 ± 2.01 

 u-s 28.46 ± 4.22 16 28.55 ± 4.31 29 17.93 ± 2.28 

 f-s 57.44 ± 2.99 15 51.44 ± 2.46 4 55.29 ± 3.85 

Sonar r-s 59.67 ± 2.89 5 54.35 ± 2.30 14 55.20 ± 3.73 

 u-s 60.67 ± 3.34 4 54.46 ± 2.70 16 56.37 ± 4.03 

 f-s 47.91 ± 4.11 167 45.78 ± 2.88 197 43.65 ± 1.48 

UMIST r-s 25.78 ± 2.39 199 22.50 ± 2.48 197 13.43 ± 1.53 

 u-s 25.56 ± 3.20 204 23.33 ± 3.05 197 13.78 ± 1.45 
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Table 3-3. Impact of fuzzy and non-fuzzy feature selection algorithms to the clustering 

results in NMI index (best-row   performance is marked as bold italic). 

dataset 
Sampling 

strategy 

NMI ± std (%) 

FC-MOFSA nf NF-MUFS nf Baseline 

 f-s 41.25 ± 4.35 2 33.12 ± 2.63 2 39.37 ± 5.42 

Glass r-s 45.14 ± 4.25 2 35.14 ± 2.93 2 38.60 ± 5.08 

 u-s 47.01 ± 3.33 2 36.62 ± 3.76 2 39.11 ± 5.50 

 f-s 52.37 ± 5.43 2 41.63 ± 5.22 10 42.87 ± 5.19 

Wine r-s 53.36 ± 0.64 2 44.60 ± 4.86 10 44.95 ± 6.40 

 u-s 52.09 ± 8.40 2 44.09 ± 5.61 7 44.95 ± 7.90 

 f-s 44.79 ± 5.35 1 38.02 ± 4.28 28 42.20 ± 5.08 

WDBC r-s 41.17 ± 5.01 1 38.56 ± 4.44 4 40.41 ± 4.32 

 u-s 39.85 ± 5.45 2 39.90 ± 5.24 6 41.42 ± 5.25 

 f-s 62.10 ± 2.83 16 56.36 ± 3.33 29 60.84 ± 3.44 

Libras r-s 25.98 ± 3.00 16 20.80 ± 3.24 16 19.93 ± 3.39 

 u-s 28. 85 ± 2.59 16 22.67 ± 3.39 29 22.01 ± 3.52 

 f-s 0.91 ± 0.81 14 0.91 ± 1.83 4 0.88 ± 0.87 

Sonar r-s 2.53 ± 0.71 5 1.82 ± 0.79 14 1.21 ± 0.73 

 u-s 2.84 ± 1.11 4 1.95 ± 1.47 16 1.64 ± 0.81 

 f-s 63.84 ± 4.04 167 64.74 ± 4.83 167 63.82 ± 1.83 

UMIST r-s 25.57 ± 3.95 199 20.17 ± 3.86 197 13.10 ± 2.12 

 u-s 28.39 ± 4.67 204 22.43 ± 4.98 197 14.86 ± 1.63 
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Table 3-4. Impact of fuzzy and non-fuzzy feature selection algorithms to the clustering 

results in RI index (best-row    performance is marked as bold italic). 

dataset 
Sampling 

strategy 

RI ± std (%) 

FC-MOFSA nf NF-MUFS nf Baseline 

 f-s 65.49 ± 2.15 2 58.94 ± 2.88 2 53.63 ± 4.32 

Glass r-s 65.97 ± 2.17 2 58.22 ±2.62 2 48.89 ± 3.60 

 u-s 65.59 ± 2.03 2 58.35 ± 2.93 2 44.35 ± 1.58 

 f-s 77.86 ± 3.02 1 73.00 ± 2.99 3 71.86 ± 5.58 

Wine r-s 78.03 ± 3.90 1 74.53 ± 3.20 3 43.66 ± 5.02 

 u-s 76.48 ± 4.90 1 74.01 ± 4.10 3 44.91 ± 5.46 

 f-s 73.79 ± 3.58 1 73.08 ± 2.99 5 75.04 ± 2.19 

WDBC r-s 74.34 ± 3.02 1 73.64 ± 2.68 14 50.70 ± 5.51 

 u-s 74.46 ± 3.89 2 74.27 ± 3.26 6 50.46 ± 5.92 

 f-s 90.40 ± 4.85 16 90.16 ± 3.25 20 90.37 ± 7.85 

Libras r-s 90.68 ± 4.76 16 91.30 ± 4.66 29 83.87 ± 7.87 

 u-s 91.55 ± 4.95 16 91.29 ± 6.26 18 82.34 ± 2.45 

 f-s 50.80 ± 6.55 4 49.70 ± 6.88 4 50.32 ± 4.19 

Sonar r-s 51.11 ± 5.98 5 50.16 ± 5.08 4 49.97 ± 3.91 

 u-s 51.18 ± 8.53 4 50.14 ± 8.78 4 49.99 ± 6.42 

 f-s 95.51 ± 6.11 198 88.51 ± 4.37 197 92.80 ± 1.48 

UMIST r-s 94.69 ± 5.24 199 86.95 ± 4.58 167 88.01 ± 1.04 

 u-s 94.40 ± 6.65 199 89.11 ± 5.12 167 85.72 ± 1.24 
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The results of bi-objective optimization are illustrated in Figure 3-3, in which each 

subfigure stands for one data set. The blue crosses in the figure represent different 

candidate feature subsets after the termination of NSGA-II optimizer. Because of the 

stochasticity of the NSGA-II optimizer, 20 independent runs are conducted for each 

data set, resulting in a ‘layering structure’ of the blue crosses. From all the 

independent runs, we only selected the non-dominated ones using the non-

dominated sorting technique. The Pareto fronts generated from 20 independent runs 

are marked by red circles in Figure 3-3. Most of the Pareto fronts are convex, except 

for Figure 3-3(a), in which only 3 features are present and which indicates the 

existence of trade-off solutions. In addition, the points on the Pareto front are well-

spread. In Figure 3-3(c), the distribution of the points is not as good as the rest, 

which suggests that using more evaluation budget in the multi-objective 

optimization might improve the quality of the Pareto front on the WDBC dataset. On 

the basis of our candidate solutions, the resulting Pareto fronts are reliable for using 

later in the clustering algorithm. 

The details of six datasets are shown in Table 3-1. The results of comparisons of 

clustering performance are listed in Table 3-2, Table 3-3 and Table 3-4. The values 

indicated in bold are the best results among the algorithms in the same situation and 

nf denotes the number of features used in the clustering. These results suggest the 

following evaluations: (1) compared with the baseline, it can be observed that the 

feature selection procedure is necessary and efficient by removal of noise and 

redundancy. (2) the best solutions of the proposed FC-MOFSA mostly have a higher 

accuracy, mutual information and RI other than the non-fuzzified feature selection 

algorithms (NF-MUFS and Baseline employment). In spite of the slightly less 

performance on WDBC, Libras and UMIST dataset, the u-s and f-s value are still 

competitive compared with the best results of other methods. (3) The average r-s 

means that even though with less samples (information) obtained from entire 

population, still, in most situations, the results of FC-MOFSA are better than those 

of NF-MUFS and Baseline. (4) The proposed method, in most cases, has the least 

numbers of features for prediction of the best results. In the second highest cases, 

FC-MOFSA still obtains the lowest cardinality of feature sets. (5) By expressing the 

descriptor of similarity in RI and descriptor of redundancy in NMI, our method 

achieves an accurate clustering performance. This is due to the exploitation of 

discriminative and overlapping information in an unsupervised context. (6) The 

accuracy and the similarity grouping capability of the experimental algorithms suffer 

from a serious degradation when down-sampling is applied on the Libras and 

UMIST dataset. The sparse distribution of these dataset complicates the 

unsupervised categorization scheme. However, it is observed that FC-MOFSA is 

superior to the rest approaches by uncovering the underlying patterns and possibly 

skewed structure. 
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3.4. Conclusion 

In this chapter, we present a new multi-objective feature selection algorithm 

utilizing the fuzzy hybrid filter-wrapper approach. We introduce a fuzzy criterion-

based manner in multi-objective optimization problems and thereby increase the 

clustering accuracy in unsupervised feature selection schemas. The proposed method 

outperforms the commonly used multi-objective feature selection method with non-

fuzzified parameters, in terms of accuracy and general capability. In addition to the 

fuzzy entropy in pre-selection, we also present a new fuzzy index called Correlation 

Membership Measurement (CMM), which produces superior results, particularly on 

sparse and skewed datasets. This methodology engages a way that attributes can be 

promisingly selected from high dimensional yet sparse and skewness dataset. The 

chosen of the sets of feature candidates provides according means for decision 

maker to efficiently and precisely draw prediction. 
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Chapter 4 

Unsupervised Information Classification and Analysis 
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Chapter summary 

This chapter presents a hybrid unsupervised clustering algorithm for biological data 

analysis, referred to as the rough fuzzy c-means (RFCM) algorithm and particle 

swarm optimization (PSO). The PSO algorithm features high quality of searching in 

the near-optimum. At the same time, in RFCM, the concept of lower and upper 

approximation can deal with uncertainty, vagueness and indiscernibility in cluster 

relations while the membership function in a fuzzy set can handle overlapping 

partitions. To illustrate the competence of this method, a number of state-of-the-art 

hybrid methods (FPSO, Fuzzy-FPSO, RCM-PSO, K-means PSO) are compared 

through application on datasets obtained from the UC Irvine Machine Learning 

Repository. The reported results and extensive numerical analysis indicate an 

excellent performance on the proposed method. 
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4.1. Introduction 

Among pattern finding methods, i.e., summarization, association and prediction etc. 

[17], information clustering is of the great importance and popularity both in 

research and implementation. Clustering analysis is a technique aiming at grouping a 

set of objects, based on the similarities and dissimilarities between the data objects. 

Clustering can be processed in a supervised, semi-supervised and unsupervised 

manner and consequently it has received considerable amount of attentions from 

researchers. 

However, the exact number of natural groups in the data is sensitive to outliers and 

local maxima or minima, algorithmic complexity, and degeneracy [11], etc., are the 

sorts of issues that cause bottlenecks in the performance of a particular clustering 

technique [3]. To tackle these problems, nowadays, an amount of approaches and 

diverse cross-discipline theories are being proposed. Specifically, optimization 

algorithms are increasingly hybridized with information clustering algorithms. 

Particle swarm optimization (PSO) was first introduced in [10]. Particle optimization 

evolved from swarm intelligence (SI). PSO is one the optimization techniques which 

has been successfully applied as an approach to a range of clustering quests. It is a 

population-based metaheuristic algorithm that is inspired by the movement of 

individuals in a bird flock. PSO consists of a collection of particles, as well as rules 

to update the status of those particles. The process of updating is based on the 

history information of the individual and the behavior of its neighbor. Based on 

these intrinsic properties of PSO, recently hybridized clustering using PSO 

approaches have been widely and successfully applied in a range of different 

disciplines [25], i.e., image clustering [18], network clustering [1], clustering 

analysis [7], and clustering in bioinformatics [23]. 

Research shows that natural behavior of group animals can be successfully used as 

an inspiration to solve clustering problems in natural systems [21].  Due to its robust 

ability to perform a global search, approaches such as K-means, K-Harmonic mean, 

Fuzzy c-means, etc., can be significantly improved with the help of PSO. 

Ahmadyfar proposed [2] a new method combining PSO with the K-means clustering 

algorithm, i.e. PSO-KM. An initial process is set up by randomly choosing k 

centroids, and PSO operates by searching all dimensions for a global optimization. 

In [6], a hybrid PSO and K-means algorithm method on document clustering is 

presented. The initial centroids are constructed via PSO and subsequently, the K-

means algorithm continues until the termination conditions are no longer satisfied. 

Alternatively, a faster convergent result can be produced [24] with a low 

computational cost, which is based on a K-Harmonic means with a PSO-based data 

clustering algorithm (KHM-PSO). The hybridization approaches in fuzzy clustering 
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problems also produce acceptable results. It is stated that [22] the clustering quality 

is highly correlated with the initialization of centroids in a typical fuzzy c-means 

(FCM) approach. Such approach is referred to as FPSO and it results in a better 

performance if centroids are initialized by PSO; traditional FCM can deal well with 

the fuzzy clustering problem. Additionally, a fuzzier, hybridized FPSO method 

named FCM-FPSO [12], is proposed to further reduce the minima in the objective 

function. Based on FPSO, this algorithm initiates an extra FCM approach to re-

search the centroid space in order to reduce the possibilities of being trapped into 

local minima. In this manner it provides a better convergence. In addition to such an 

approach, fuzzy c-means algorithm based on Picard iteration hybridized with PSO 

(PPSO-FCM) is proposed [14] in order to overcome the drawbacks of the typical 

FCM.  

The rough c-means approach has shown successful utilization in feature selection, in 

addition, in clustering analysis it can also provide good results. Rough set theory is 

pioneered and introduced by Pawlak [20]. Moreover, a method is proposed to 

combine Rough c-means with PSO [7], i.e. Rough-PSO. In this method, each cluster 

is modelled as rough set and PSO is employed to tune the threshold and the relative 

importance of upper and lower approximation of the rough set. 

In this chapter, we propose an efficient approach hybridized with evolutional PSO 

and RFCM clustering method. We intend to contribute to the further development of 

hybrid methodology, in which a sensible integration of rough and fuzzy c means 

approach with particle swarm optimization algorithm is realized. In clustering 

problems, the principle of the membership in a fuzzy set enables efficient handling 

of overlapping partitions, the lower and upper sets of rough theory deal with 

uncertainty, vagueness and incompleteness in the class definition. At the same time, 

PSO has the characteristic to be reasonably accurate and able to avoid being trapped 

into local optima. 

The remaining of this chapter is organized in the following manner: Section 4.2 

gives a primary overview of RFCM and PSO, respectively. The proposed rough 

fuzzy c-means hybridized with PSO method is illustrated in Section 4.3. Section 4.4 

elaborates experimental results, and we conclude the chapter in Section 4.5. 

 

4.2. Primary Theory Bound 

A. Rough Fuzzy C-means Algorithm 

The idea of dealing with uncertainty information in a dataset has led to a 

combination of employing both fuzzy set and rough set theory. These hybridized 

algorithms referred as rough fuzzy c-means (RFCM), [15], [16] and [13], have been 
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widely and frequently used in real life data clustering problems. In this manner, 

RFCM algorithm is elaborated as follows. 

First, fuzzy c-means is used as an partition-based algorithm that clusters a set of n 

objects {𝑥1,… , 𝑥𝑗, … , 𝑥𝑛} into c fuzzy centroids with {𝑣1,… , 𝑣𝑖, … , 𝑣𝑐}. The 

membership index assigned “fuzziness” characteristic of a set depicted as level of 

belonging, can be expressed as  𝑢𝑖𝑗. 

𝑢𝑖𝑗 = ( ∑ (
𝑑𝑖𝑗

𝑑𝑘𝑗
)

2

𝑚𝑓−1𝑐
𝑘=1  )−1                            Equation 4-1 

where mf ∈ (1,∞] is a scalar referred to as the fuzzifier for FCM algorithm and  𝑑𝑖𝑗 

is the distance from object 𝑥𝑗 to the cluster centroid 𝑣𝑖. 

Taking the advantage of FCM, the boundary domain of a cluster is roughened 

through incorporation with the approximation sets. The sets are characterized by the 

lower and upper approximations 𝑹(𝑿) and 𝑹(𝑿), respectively, with the following 

properties: (i) an object 𝒙 can be part of at most one lower approximation; (ii) if 𝒙 is 

not a part of any lower approximation, then it belongs to two or more upper 

approximations; and (iii) if 𝒙 ⊆ 𝑹(𝑿) of class X, then simultaneously 𝒙 ⊆ 𝑹(𝑿). 

Based on the defined approximations, the R-positive and R-boundary are defined: 

{
𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝑹(𝐢𝐧 𝐬𝐡𝐨𝐫𝐭 𝑃𝑅)  =  𝑹(𝑿)                    

𝑩𝒐𝒖𝒏𝒅𝒂𝒓𝒚𝑹(𝐢𝐧 𝐬𝐡𝐨𝐫𝐭 𝐵𝑅) =  𝑹(𝑿) − 𝑹(𝑿)
              Equation 4-2 

Consequently, the objective function of RFCM needs to be minimized and 

subsequently broken into three conditional equations [15]: 

𝐽 =

{
 
 
 
 

 
 
 
 

𝜔 × (∑ ∑ 𝑑𝑖𝑗
2

𝑥𝑗∈𝑃𝛿(𝑣𝑖)

𝑐

𝑖=1

) + �̃� × (∑ ∑ 𝑢𝑖𝑗
𝑚𝑓

𝑑𝑖𝑗
2

𝑥𝑗∈ 𝐵𝛿(𝑣𝑖)

𝑐

𝑖=1

) , 𝑖𝑓 𝑃𝛿(𝑣𝑖) ≠ ∅,  𝐵𝛿(𝑣𝑖) ≠ ∅

∑ ∑ 𝑑𝑖𝑗
2

𝑥𝑗∈𝑃𝛿(𝑣𝑖)

𝑐

𝑖=1

                                                                            , 𝑖𝑓 𝑃𝛿(𝑣𝑖) ≠ ∅,  𝐵𝛿(𝑣𝑖) = ∅

∑ ∑ 𝑢𝑖𝑗
𝑚𝑓

𝑑𝑖𝑗
2

𝑥𝑗∈ 𝐵𝛿(𝑣𝑖)

𝑐

𝑖=1

                                                                   , 𝑖𝑓 𝑃𝛿(𝑣𝑖) = ∅,  𝐵𝛿(𝑣𝑖) ≠ ∅

   

Equation 4-3 

where the parameters 𝜔 and �̃� = (1 − 𝜔) are the weighting factors that are tuned to 

balance the relative importance between the crisp region and fuzzy boundary. Since 

objects lying in a lower set denote definite belongings, and will be assigned with a 

higher weight 𝜔  compared with �̃�  of objects lying in a boundary set. In RFCM 

algorithm, each cluster is characterized by its own boundary set and lower 
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approximation, which influences the fuzziness of the final partition. Therefore, the 

values of the weighting factors are given by [0, 1]. In one cluster, all data are 

grouped into either lower approximation set or boundary set via a selected 

attribute 𝛿, which is practically defined as: 

𝛿 =
1

𝑛
∑ (𝑢𝑣ℎ|𝑗 − 𝑢𝑠ℎ|𝑗)

𝑛
𝑗=1                             Equation 4-4 

here n is the total number of objects, 𝑢𝑣ℎ|𝑗  and 𝑢𝑠ℎ|𝑗  are the highest and second 

highest membership indexes of object 𝑥𝑗 . The meaning of 𝛿  is to determine in a 

degree if one object is “close” enough to the center it belongs to. Therefore, a good 

clustering procedure should have a value of 𝛿 as high as possible. According to the 

definitions of lower approximation and boundary set, and based on the predefined 

attribute 𝛿, one object  𝑥𝑗 can be characterized as:  

𝑥𝑗

{
 
 

 
 

    

{

∈ 𝑃𝛿(𝑣𝑣ℎ)

∉ 𝑃𝛿(𝑣𝑠ℎ)

∉  𝐵𝛿(𝑣𝑣ℎ)

,   𝛿 < 𝑢𝑣ℎ|𝑗 − 𝑢𝑠ℎ|𝑗

{
∈  𝐵𝛿(𝑣𝑣ℎ)

∈  𝐵𝛿(𝑣𝑠ℎ)
,   𝛿 ≥ 𝑢𝑣ℎ|𝑗 − 𝑢𝑠ℎ|𝑗

          Equation 4-5 

When 𝛿 < 𝑢𝑣ℎ|𝑗 − 𝑢𝑠ℎ|𝑗, and 𝑥𝑗 ∈ 𝑃𝛿(𝑣𝑣ℎ), then the impacts of the objects in lower 

approximation of one cluster should be independent of in-between clusters and 

centroids, and should have similar influence on with-in cluster and centroid. 

Otherwise𝑥𝑗 ∈  𝐵𝛿(𝑣𝑣ℎ), the objects belonging to the boundary set in one cluster can 

also have a different influence on the other clusters and centroids. Therefore, in the 

RFCM algorithm, the membership index of an object belonging to the lower 

approximation has to be reset as 𝑢𝑖𝑗 = 1 ; while the object belonging to its 

corresponding boundary set will remain 𝑢𝑖𝑗 (according to Equation 4-1) as in FCM. 

The new i
th
 centroid is modified using equation 4-6, which also considers the effect 

of the lower and upper bounds, as well as the fuzzy membership index. In this 

manner, the extended RFCM algorithm is obtained via: 

 

𝑣𝑖 =

{
 
 
 
 

 
 
 
 𝜔 × (

1

|𝑃𝛿(𝑣𝑖)|
∑ 𝑥𝑗)

𝑥𝑗∈𝑃𝛿(𝑣𝑖)

+ �̃� × (
∑ 𝑢𝑖𝑗

𝑚𝑓
𝑥𝑗𝑥𝑗∈ 𝐵𝛿(𝑣𝑖)

∑ 𝑢𝑖𝑗
𝑚𝑓

𝑥𝑗∈ 𝐵𝛿(𝑣𝑖)

) , 𝑖𝑓 𝑃𝛿(𝑣𝑖) ≠ ∅,  𝐵𝛿(𝑣𝑖) ≠ ∅

1

|𝑃𝛿(𝑣𝑖)|
∑ 𝑥𝑗

𝑥𝑗∈𝑃𝛿(𝑣𝑖)

                                                          , 𝑖𝑓 𝑃𝛿(𝑣𝑖) ≠ ∅,  𝐵𝛿(𝑣𝑖) = ∅

∑ 𝑢𝑖𝑗
𝑚𝑓

𝑥𝑗𝑥𝑗∈ 𝐵𝛿(𝑣𝑖)

∑ 𝑢𝑖𝑗
𝑚𝑓

𝑥𝑗∈ 𝐵𝛿(𝑣𝑖)

                                                                    , 𝑖𝑓 𝑃𝛿(𝑣𝑖) = ∅,  𝐵𝛿(𝑣𝑖) ≠ ∅

    

                                                         Equation 4-6 
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where | ∙ | represents cardinality operator, and the cluster centroid 𝑣𝑖 is calculated by 

the RFCM procedure. 

 

B. Particle Swarm Optimization Prototype 

Particle swarm optimization is a population and generation based algorithm 

modelled after the movements in a “bird flock” and/or a school of fish. Sharing of 

experience and information of each individual that takes place during stochastic 

optimization in PSO procedure. Every individual (particle) in the population (swarm) 

of one generation is assumed to “fly”, in order to gain its own best fitness according 

to its neighboring individuals and prior knowledge of its former history. In this 

manner, the PSO algorithm maintains a swarm of candidate solutions of the 

optimization problem, while, each candidate solution is regarded as a particle. 

When particles are flying through search space, their positions adjusted that 

governed by the distance from their own personal best position, as well as the global 

best position of the swarm. For a swarm of n particles with D-dimension vectors, i
th
 

particle (𝑝𝑎𝑟𝑡𝑖) contains the following information (notations): 

 𝑝𝑜𝑠𝑖 = (𝑝𝑜𝑠𝑖1,  𝑝𝑜𝑠𝑖2,   …  , 𝑝𝑜𝑠𝑖𝐷), the current position of the i
th
 particle; 

 𝑣𝑒𝑙𝑖 = (𝑣𝑒𝑙𝑖1,  𝑣𝑒𝑙𝑖2,   …  , 𝑣𝑒𝑙𝑖𝐷), the current velocity (change of position) 

of the i
th
 particle; 

 𝑝𝑖 = (𝑝𝑖1,  𝑝𝑖2,   …  , 𝑝𝑖𝐷), the best previous position of the i
th
 particle; 

 𝑝𝑔, the best position of a swarm, and 𝑡 = (1, 2, … , 𝐺), the current generation. 

Every particle in a swarm is manipulated via the following updating equation: 

𝑣𝑒𝑙𝑖𝑑(𝑡 + 1) = 𝛼 ∙ 𝑣𝑒𝑙𝑖𝑑(𝑡) + 𝛽1𝑟1[𝑝𝑖𝑑(𝑡) − 𝑝𝑜𝑠𝑖𝑑(𝑡)] + 𝛽2𝑟2[𝑝𝑔𝑑(𝑡) − 𝑝𝑜𝑠𝑖𝑑(𝑡)] 

Equation 4-7                                    

 

𝑥𝑖𝑑(𝑡 + 1) = 𝑥𝑖𝑑(𝑡) + 𝑣𝑒𝑙𝑖𝑑(𝑡 + 1)                                                   Equation 4-8 

where 𝑖 = 1, 2, … , 𝑛  and 𝑑 = 1, 2, … , 𝐷 . In Equation 4-7, 𝛼  is the positive inertia 

weight, 𝛽1 and 𝛽2 are the acceleration constants, meaning the correlation between 

social and individual behavior, and 𝑟1, 𝑟2 are the displacement deviators in the range 

[0, 1]. 𝑝𝑖𝑑(𝑡) − 𝑝𝑜𝑠𝑖𝑑(𝑡)  is the personal influence, and 𝑝𝑔𝑑(𝑡) − 𝑝𝑜𝑠𝑖𝑑(𝑡) is the 

social influence on the global experience. At present, research on this simple PSO 

concept is still being performed. Its success is given by the few parameters that are 
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required for the specification of the problem, i.e. dimensionality of the data space 

and few weighted factors for control of the convergence. 

 

4.3. Rough Fuzzy C-Means and Particle Swarm Optimization Hybridized 

Method (RFM-PSO) 

Taking both RFCM clustering and the intrinsic properties of PSO into account, we 

propose an efficient model-combined algorithm, namely RFCM-PSO. In RFCM 

algorithm, each centroid is considered a vector that updates according to an iterative 

operation. A representation of the centroid vectors therefore, can refer as elements in 

particles. In other words, the i
th
 particle (𝑝𝑎𝑟𝑡𝑖)  can be defined as 𝑝𝑎𝑟𝑡𝑖 =

(𝑣1,  𝑣2,  … , 𝑣𝑖 … ,  𝑣𝑐), where 𝑣𝑖,  𝑖 = 1,2,… ,  𝑐 is the cluster center. Consequently, a 

swarm in PSO represents an amount of candidate solutions of centroids in RFCM 

algorithm. Thus a fuzzy membership function and roughness definitions are assigned 

on every single object for its clustering decision making. For each iteration in the 

RFCM-PSO procedure, the centroids in clusters change and their positions are 

updated based on the particles. Several extra notations (cf. Section 4-2.B) for 

RFCM-PSO need to be considered before employing this algorithm: 

 n, number of objects; 

 c, number of pre-defined centroids; 

 𝑣𝑖,  vectors of centroids containing 𝑝𝑜𝑠𝑖(𝑡); 

 𝑝𝑜𝑠𝑖(𝑡), the current position of the i
th
 particle at generation t; and  

 𝑢𝑖𝑗,𝑘(𝑡), the RFCM membership index of the i
th
 object with respect to the j

th
 

cluster of the k
th
 particle at generation t it belongs to. 

Due to the fast convergence and tenable setup of membership index, we suggest an 

improvement of the performance of PSO searching algorithm, is to initialize the 

swarm with FCM. The fit, or in other words the objective function, is then measured 

and minimized by Equation 4-3.  

The approximation optimization of RFCM is based on Picard iteration through 

Equation 4-1 and Equation 4-6. The process calls the training of the RFCM 

parameters which starts by randomly choosing centroids and initiating membership 

in FCM. Subsequently, it progresses in approximation evaluation for modifying   𝑢𝑖𝑗 

parameter. With a pre-set number of particles, the resulting centroids from RFCM 

are represented by particles that are given as inputs to optimization procedure of 

PSO. The best solution, i.e., global optimum, is looked for by a stochastic search 

from solution space of candidates. 
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In the proposed method, PSO performs as a standard optimizer in FES/per iteration, 

where FES represents the maximum amount of function evaluations allowed. Thus, 

time complexity cost of RFCM-PSO tends to be determined by the cost function in 

RFCM, which is O(n
2
). Furthermore, the implementation of the RFCM – PSO 

method is described in the pseudo-code as: 

     Schema 1 Rough fuzzy c-means and PSO hybrid algorithm: 

Frobnability 
Input: fuzzifer mf, weighting factor 𝜔, cluster number c, 𝛼, 𝛽1, 𝛽2 

Given: integral generation 𝑡 ∈ (1,  ∞]. 

Initializing: stochastic centroid 𝑣𝑖, membership matrix𝑢𝑖𝑗,𝑘, vel velocity,  𝑝𝑜𝑠  position 

of particles at generation t=1. 

for each t generation do  

     training RFCM parameter: 

        Compute the norm distance  𝑑𝑖𝑗  for each n objects and c clusters. 

             if δ check then 

                 Reset 𝑢𝑖𝑗,𝑘(𝑡) .  

             end if 

             Update new centroid as 𝑣𝑖 (t+1) per equation 4-6. 

             Update 𝑢𝑖𝑗,𝑘 to (t+1) via equation 4-1.  

      Optimization procedure: 

             Training the personal best and global best position, 𝑝𝑖and𝑝𝑔. 

             Update 𝑝𝑜𝑠𝑖  (t+1) and 𝑣𝑒𝑙𝑖  (t+1) for each particle using equation 4-7 and 4-8.  

      Convergence check; break 

end for 

 

4.4. Experimental Results 

The main objective of this section is to assess relative performance of clustering 

technique hybridized with particle swarm optimization algorithm. The algorithms 

that are compared with proposed method are: k-means PSO (K-PSO) [2], fuzzy c-

means PSO (FPSO) [22], fuzzy c-means and fuzzy PSO (FCM-FPSO) [12] and 

rough c-means PSO (RPSO) [7]. All the methods are coded and implemented in the 

Matlab 2014a environment running on  an  Intel (R) Core (TM) i7-3770 (CPU 

3.4GHz, 16GB RAM) machine. In practice, our input parameters produce with 

higher performance compared to other settings. We kept the input parameters 
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constant across all runs (cf. Table 4-1). To analyze the clustering performance of our 

method, two indices are introduced in the next subsection. 

 

Table 4-1: RFCM-PSO parameter settings 

Parameter settings 

Clustering mf =2 ω=0.95 

Optimizing α ∈ [0.1, 0.9] β1 = β2 = √2 Population=10 Generation=50 

 

A. Quantitative Measurement 

The problem of validation in a clustering algorithm is an important consideration 

since all of its applications have their own sets of partially successful validation 

scheme. None of any separate index can comprehensively depict the performance of 

these clustering algorithms [4] of unlabelled data. After conducting a study in 

several indexes that are used for performance validation, we propose: 

Davies-Bouldin Index: Introduced in [8] is: 

𝐷𝐵 =
1

𝑐
∑ 𝑚𝑎𝑥𝑗,𝑗≠𝑘{

𝑆(𝑣𝑗)+𝑆(𝑣𝑘)

𝑑(𝑣𝑗, 𝑣𝑘)
}𝑐

𝑗=1                        Equation 4-9 

Dunn’s Index: Given by [9] is: 

      𝐷𝑢𝑛𝑛 = 𝑚𝑖𝑛𝑗 {𝑚𝑖𝑛𝑘,  𝑘≠𝑗 {
𝑑(𝑣𝑗, 𝑣𝑘)

𝑚𝑎𝑥𝑖{∆(𝑣𝑖)}
}}                 Equation 4-10 

Validation standard build: the higher the similarities in within-cluster and 

dissimilarities in between-cluster, the lower the DB value will have; the well-

separated the clusters are, the larger the Dunn index will obtain. 

 

B. Validation of Clustering Algorithm 

The PSO-combined algorithms have been applied on several bench mark datasets 

obtained from UCI repository, which cover a range of different type of problems in 

information science.  

Five algorithms are implemented and applied on these datasets (i.e. Table 2), and the 

quality of each algorithm is investigated. The particular test dataset is Iris, with 

different pre-set cluster numbers, namely cluster = 2 and cluster = 3. The Iris dataset 

represents a four-dimensional structure that contains 50 samples in each of the three 

flower categories. One of the three clusters, Iris setosa, is well separated with the 
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other two, while there are some overlaps within the Iris sirginica cluster and the Iris 

sersicolor cluster. We have setup a separate test of the different partition strategies. 

 

Table 4-2: Attribute of selected datasets 

Dataset Feature Instance category 

Iris 4 150 3 

Glass 9 214 7 

CMC 9 1473 3 

Wine 13 178 3 

WBCD 30 569 2 

 

 

Figure 4-1. Box – plot of investigated algorithm on Iris dataset (left: DB Index and, 

right: Dunn Index, Cluster = 3. 

Performances of different algorithms are depicted in Figure 4-1. This shows that 

RFCM-PSO has better results by having the lowest DB index and the highest Dunn 

index in case of Cluster = 2 and Cluster = 3. An evident difference of the Dunn 

value occurred in case Cluster = 3. This which is a result of the fact that our method 

outperforms the others while dealing with overlapped clustering problem. The likely 

range of variation is coherent and acceptable compared to the four clustering 

methods in our evaluation. Additionally, the interquartile ranges (IQR) of FPSO and 

FCM-FPSO are smaller in the relative sense compared with RFCM-PSO. This is 

because in fuzzy c-means, the membership of an individual is inversely related to 

the relative distance from every centroid, thus tenable results of FCM-/FPSO can be 

obtained in a dataset of low dimensions. Nonetheless, it is very sensitive to noise 
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and outliers and it will easily fall into local optima when confronted with dataset of 

higher dimension.  

In the Iris dataset, there are two overlapping clusters of the three clusters in a total. 

This may sometimes result in a clustering of just two clusters. An efficient classifier 

(the clustering algorithm in unsupervised learning), however, should be able to 

identify the boundless and vague features classes. As an example, in Figure 4-2, it is 

shown as scatterplots depicting the different views of feature. It is observed that the 

three different Iris species, through inspection of the flowers can be well categorized 

using sepal width, sepal length, petal width and petal length.  
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Figure 4-2. Scatter plot result of RFCM – PSO on Iris (Cluster = 3, feature = 4). 
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(a) 

 

(b) 

 

Figure 4-3. The clustering performance in terms of Distance Error (DE). When 

convergent condition met, the DE value for RFCM – PSO (a) and FPSO (b) is 59.07 and 

60.51 respectively. 
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Figure 4-3 shows an example of the performance on RFCM – PSO and FPSO in the 

Iris dataset by minimizing the distance error of all the contained objects, considering 

cluster = 3. For all algorithms 100 independent runs per generation have been 

performed. Recorded in every generation steps, the distance error shows the 

convergence of particles in a single swarm. The distance error (DE) is calculated by 

the mean distance deviation of every single object to the centroid it belongs to after 

clustering. Depicted in Figure 4-3, the proposed RFCM – PSO outperforms the 

prevalent FPSO in terms of the smaller mean DE error in every generation, lower 

IQR, faster convergence speed and less outliers. 

A well performed clustering algorithm does not only support on its property of anti-

noise or the resultants of less outlier in clusters, but also on its capability of 

sampling scale-invariance. Applications of most clustering algorithms provide 

plausible results only on low dimensionality and small population dataset. The 

handling with sparse and skewed distributions of the samples in a certain clustering 

space remains a challenge. When sampling scale in a research population, is 

relatively small then, the higher the dimension of the attributes, the less accuracy 

and efficiency of the clustering algorithm will perform. Given the definition of DB 

Index and Dunn Index, the value of both DB and Dunn should be invariant in spite 

of a change in the of sampling scale since they have the same overall population. In 

other words, when different selection of a subset of individuals from within one 

same research population takes place, as the estimation of the performance of the 

clustering algorithm, DB and Dunn Index should produce stable results. 

The CMC dataset (cf. Table 4-2) is employed to test the capacity of scale-invariance 

of each algorithm. We utilize five different scales in the sampling population, i.e. of 

300, 600, 900, 1200 and the full population of 1473 instances. To assess a valid 

estimation of median and to derive acceptable standard errors from a complex and 

high-dimensional population, the bootstrapped sampling approach is being used. For 

each different scale, 100 bootstrap runs have been independently applied. The results 

for each run are summarized and calculated in terms of their max- and minimum, 

average value and standard deviation. From Table 4-3, one can be seen that the 

smallest standard deviation of DB and Dunn values are observed on the proposed 

RFCM – PSO. This result draws a conclusion that the proposed method has 

acceptable and steady clustering results when sampling scale are differentiated, 

although skewed and sparse distribution of sample instances are encountered. 

In Table 4-4, the performance of the different PSO hybridized clustering algorithms 

on the selected benchmark datasets are compared in terms of DB and Dunn index. 

For all five benchmark sets, every separate algorithm is applied and the value of DB 

and Dunn are computed respectively. Since the KPSO algorithm produces non-

convergent results in the DB and Dunn value of the Glass and Wine datasets, thus 
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these have not been included in Table 4-4. The results reported here, however 

convincingly confirm that the proposed method conducts more promising compared 

to the recognized methods. 

 

Table 4-3: Scale invariant evaluation results on IRIS dataset 

Algorithm 𝐷𝐵𝑚𝑎𝑥  𝐷𝐵𝑎𝑣𝑒 𝐷𝐵𝑠𝑡𝑑 𝐷𝑢𝑛𝑛𝑚𝑖𝑛 𝐷𝑢𝑛𝑛𝑎𝑣𝑒 𝐷𝑢𝑛𝑛𝑠𝑡𝑑 

KPSO 0.1457 0.1027 0.2835 13.4826 14.3864 0.9336 

FPSO 0.0594 0.0958 0.0820 20.4155 20.6475 0.1453 

FCM - FPSO 0.0595 0.0592 0.0817 20.3119 20.5035 0.1409 

RPSO 0.0590 0.0586 0.0789 19.4677 19.9972 0.3349 

RFCM - PSO 0.0547 0.0542 0.0757 21.3450 21.4935 0.0867 

 

 

Table 4-4: Performance evaluation with different dataset (average) 

Dataset KPSO   FPSO    FCM - FPSO RPSO    RFCM - PSO 

 DB Dunn DB Dunn DB Dunn DB Dunn DB Dunn 

Iris 0.241 3.130 0.248 3.567 0.245 3.568 0.249 3.556 0.216 4.382 

Glass - - 0.648 0.125 0.644 0.128 0.458 0.197 0.441 0.238 

CMC 0.0732 15.405 0.0594 20.615 0.0592 20.616 0.058 20.007 0.0544 21.494 

Wine -    - 0.00129 472.4 0.00129 474.4 0.00140 411.8 0.00124 483.9 

WBCD 0.0127 18.8 0.00476 297.6 0.00476 297.9 0.00479 267.3 0.00475 301.2 

 

4.5. Conclusion 

In this chapter, we have briefly discussed the evolution of clustering techniques 

based on Particle Swarm Optimization. A literature survey revealed that there is an 

enormous increase in the popularity of PSO based clustering techniques. In a short 

review the rough and fuzzy clustering technique is introduced. Thereafter we present 

a novel and efficient hybrid method, namely the Rough Fuzzy C-means and PSO 

(RFCM - PSO) clustering approach. The performance of proposed method is 

compared with the K- means PSO (KPSO), Fuzzy PSO (FPSO), Fuzzy C- means 

FPSO (FCM - FPSO) and Rough PSO (RPSO) algorithm. The reported results show 
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that our approach outperforms the rest of the methods in terms of its efficiency, 

reliability and solution quality based on geometrical DB and Dunn Index.  

The contribution of this chapter is in the development of a hybridized methodology, 

which carefully integrates rough and fuzzy c-means approach and the particle swarm 

optimization algorithm. In a clustering problem, the membership of fuzzy set 

enables efficient handling of overlapping partitions, the lower and upper sets of 

rough theory deal with uncertainty, vagueness and incompleteness in class definition; 

while PSO has a tenable quality to be more accurate in searching a best solution 

from candidate sets as well as avoiding being trapped into local optima. 
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Chapter 5 

A Systematic Study on One Dimensional Gel Electrophoresis Image Analysis 
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Chapter summary 

In this chapter, we focus on estimating the practical performance of fuzzy systems 

on the data analysis within the scope of protein/DNA phenotypic study. In detail, we 

are going to address the following research questions. 

1. Can the 1-dimension gel electrophoresis data be quantitatively and accurately 

assessed using newly developed fuzzy-logical based algorithm and fuzzy systems? 

2. Can we identify the essentials of protein/DNA, and validate the results of gel 

electrophoresis from published reports? 

Following the workflow of data analysis (cf. Figure 1-2), this chapter is divided into 

two major sections. First, the design of the fuzzy systems and its solutions are 

demonstrated. Each fuzzy-logic and unsupervised computing processing step is 

illustrated and their motivations behind this design are explained. In the context of 

the applied fuzzy systems and, heterogeneous methodologies are integrated into a 

global picture thereof. Second, the data from electrophoresis experiments are 

qualitatively and quantitatively evaluated. The variations in the bands/lanes are 

derived from numerical measurements. These results are then compared and 

discussed with other experiments as described in literature.  
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5.1. Introduction 

Mixtures of proteins can be separated and visualized by Sodium-dodecyl sulphate 

(SDS)-polyacrylamide gel electrophoresis (PAGE); this is a classical tool for protein 

analysis [23]. Combining this analysis with Western blotting and probing, the filter 

with specific antibodies, or the extraction of protein from gel and mass spectrometric 

(MS) analysis, make it a very powerful tool to determine relative quantities and 

identification of proteins. In addition, prior to SDS-PAGE, proteins can be 

fluorescently labeled and the resulting images can be captured by a flatbed scanner 

equipped for fluorescence. During protein sample preparation, protease inhibitors 

should be taken into consideration to prevent degradation of proteins; on the gel, 

these proteases appear as faster running protein fragments.  

A popular separation technique, capable of fast and easy analyzing less complex 

samples, is the high-resolution 1-dimensional (D) gel electrophoresis. Proteins, as 

obtained from cell lysates, are usually dissolved in a SDS containing buffer and are 

boiled before loading onto the polyacrylamide gel. Subsequently, on the authority of 

the molecular weight of proteins, they are charged by force to migrate through the 

gel under the influence of an electric field. Using this method employing SDS in 

sample buffer, there is, for most proteins a good correlation between polypeptide 

length and charge. The latter is running the samples under so-called denaturing 

conditions. On the contrast, proteins can also be separated under non-denaturing 

conditions (proteins are then still in their folded state); but then they are not only 

separated by molecular weight but also by their shape. On a gel, multiple samples 

are loaded along with molecular standards. The gel, referred to a matrix instance 

used to contain and separate target molecules, is stained (for instance, by coomassie 

brilliant blue or silver) and then visualized by a lightbox; alternatively, the 

fluorescently labeled proteins can also be visualized by a laser scanner. Afterward, 

the resulting gel images consists of several vertical lanes equal to the number of 

wells in which the protein samples were loaded; and a number of horizontal bands 

corresponding to proteins or fragments thereof, reflecting the amounts and 

characteristics of individual proteinaceous components.  

The banding patterns and the relative differential intensities of the bands can be 

converted into graphical, numerical and tenable formats through image processing 

and analysis techniques. In this manner computing with intelligent techniques 

prevents subjective and tedious image interpretation; this otherwise may lead to 

reproducibility issues. With respect to the analysis of gel electrophoresis profiles, the 

image processing requires three main steps [27] (BBS): (1) Background correction; 

(2) Bands detection, matching and quantification; (3) Similarity clustering analysis. 
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Several software systems have been developed for the automated analysis of profile 

images acquired from gel electrophoresis techniques [1-4]. Some of these platforms 

are semi-automatic and locate 1D mean profiles on peak/minima valley as either 

bands or noise for bands selection, and lack quantification on the digital description 

of bands. Other systems identify and classify lanes and/or bands via employing 

simple texture features that result in an unambiguous matching and grouping [5]. 

Nevertheless, these approaches are unable to generally face the challenges of 

extracting hidden (complexity) patterns within the bands/lanes expression in gel 

electrophoresis images via just visual examination, or simple BBS processing steps. 

However, these approaches henceforth demonstrated challenges to recognize 

objectives in terms of lane distortion, band deformity (including doublet effect 

which means two or more bands are too close together) and background noise. 

Therefore, a systematic yet precise approach in the image processing is required. 

Hence, based on proposed fuzzy-logic based methodologies (cf. Chapter 2, Chapter 

3 and Chapter 4), we introduce an elaborate fuzzy systems so as to improve the BBS 

step as follow (cf. Figure 5-1): 

 Background correction using fuzzy DCBC method [6]. 

 Normalization and fuzzy feature extraction for lanes/bands. 

 Rough fuzzy c-means and particle swarm optimization (RFCM-PSO) hybridized 

clustering analysis. 

 Functional analysis approaches. 

In brief, the work with a comprehensive way presented in this chapter contributes to 

extract qualitative and quantitative information from 1D gels, consisting of back-

ground noise subtraction, topographical normalization of bands and lanes, 

phenotypical description of bands, revealing hidden patterns recognition by dealing 

with clustering of overlapping and indiscernible information.  

The remainder of this chapter is organized as follows: in Section 5.2 we introduce 

the methodology including image acquisition and processing; i.e., several new 

innovative algorithms and analysis procedures. After image enhancement, 

phenotype measurements are obtained on each individual band of all different lanes. 

Next, the categorization of phenotypic stages using feature extraction and selection 

is illustrated. The best combination group of features is applied in a clustering 

technique to address biological questions of interest. The experimental results are 

presented in Section 5.3 via a case study example, and Section 5.4 concludes this 

chapter. 
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5.2. Methodology 

Modern gel electrophoresis techniques allow visualizing protein level structures so 

that these can be specifically subject to analysis. These techniques revolutionized the 

field of proteomics and biomarker discovery in detecting the changes in protein 

expression [7]. However, a significant amount of wet laboratory expertise is still 

required. Application of these techniques in higher volumes is beyond the capacity 

of manual processing. Therefore, image processing and machine learning are 

invoked to help recognizing patterns and to provide an automated analysis solution 

for gel electrophoresis experiments. In this section, we will introduce the image 

acquisition protocol followed by approaches for image and data analysis. 

 

 

Figure 5-1. Workflow of our 1-D electrophoresis gel image analysis system 

 

A. Image Acquisition 

Sample preparation precedes image acquisition (cf. Figure 5-1) and the image of the 

gel should reflect the differences in composition of the different samples, i.e. each 

sample represents a particular cell culture. To that end, the samples are labeled with 

a fluorescently tagged probe. Subsequently, the pre-cast gel (e.g. NuPAGE Bis-Tris) 

is put into the electrophoresis system (e.g. xCell SureLock Mini-Cell) and in each 
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well of the gel a sample is loaded.  Under an electric current (164-5050 PowerPac) 

samples migrate over the gel in a linear trajectory and proteins with different 

molecular weights produce separate bands. Once the current is stopped and the gel is 

fixed, the result is captured with an imager for the fluorescent signals; i.e. the 

Typhoon 9410 Gel and Blot Imager as used in this study. Alternatively, after 

coomassie staining, the gel can be scanned using a lightbox and photo-scanner, i.e. 

the Microtek ArtixScan F2 scanner. In our experiments described in this chapter, we 

used images containing fluorescent signals with a spatial resolution of 10 line-

pairs/mm, and with a pixel size of 10 μm that produced an image size of 4096x1024 

pixels with a 16 bit dynamic range. An example of acquiring images, accompanied 

with labels and markers is shown in Figure 5-2 and Figure 5-3 (after selection of 

region of interest) respectively. 

 

 

Figure 5-2. A sample of acquiring raw gel electrophoresis images that reveals common 

challenges for imaging processing, including geometric distortion, cell line flexion, low 

contrast and noisy illumination.
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B. Image Enhancement 

A problem that arises in gel electrophoresis imaging is the introduction of 

information that is not part of the original signal. This part of the information should 

be considered as noise and outlier. Images acquired from the optical detection 

system may inevitably suffer from the various sources of systematic and 

experimental variation, through which the “true” information is masked. Hence, a 

cropping of regions of interest, background correction and data normalization are 

required. 

Region cropping. Before loading images into preprocessing track, bands of interest 

are firstly resolved in a region that this part of image can be isolated for further 

analysis by manually cropping and adhering (cf. Figure 5-3 from Figure 5-2, this 

processing is typically operated by biologists). Cropping process should also be 

performed to remove regions of gel that show sample contamination and extreme 

distortion of cell line which could interfere with bands detection.  

Background correction. The adjustment or removal of the background signal 

should be performed to accurately quantify the fragments present in the gel image; 

i.e. the true signal. Approaches that have been suggested for such background 

correction, include global minimum subtraction from time domain, signal-pass 

filtering in wavelet domain or frequency domain and processing using mathematical 

morphology. A more comprehensive discussion on an amount of approaches can be 

found in [8] [9]. 

In our system, an estimate from the background illumination is produced by a 

morphological subtraction of the gel image. To that end, the fuzzy and rough 

concepts are employed [6] to an improved dam-based rolling ball method. In this 

manner the mutual information shared by foreground and background is balanced 

for an ideal image f (x, y), the background correction procedure can be described as 

Equation 5-2 and can also be recalled from Chapter 2. 

Raw image estimation: 

𝑓 (𝑥, 𝑦) =  𝑓 (𝑥, 𝑦) + 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 (𝑥, 𝑦)                                 Equation 5-1 

Background subtraction: 

                

𝑓 (𝑥, 𝑦) ≈ 𝑓 ̃(𝑥, 𝑦) − 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 (𝑥, 𝑦) + 𝐼 (𝑓 (𝑥, 𝑦), 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 (𝑥, 𝑦))                               

Equation 5-2 

where I represents the mutual information as defined in [10]. Figure 5-4 shows the 

comparison of selected raw gel image and enhanced gel image.  



Chapter 5  

 87 

             

   

(a) Raw gel image 

                

       

                           (b) Enhanced image after background correction 

Figure 5-4. 1D profiles (the intensity in y-axis w.r.t the location in x-axis) scanned along 

with red line.  

 

Data normalization. To make quantitative comparisons between profiles of lanes, 

and/or position of bands, it is necessary to normalize the distortion. There are two 

major steps in correcting the distortion of gel electrophoresis images. One is the 

straightening of vertical flexion of cell line, namely intra-lane alignment of bands. 

This procedure helps to recognize and relocate cell line. Various methodologies, i.e. 

interpolation based [28] and grid based [29], are reported to efficiently deform 

image shape. In this case study, the flexion in cell lines takes place out of our 

interested region, and thus can be neglected or slightly aligned from horizontal 

normalization.  
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Another normalization procedure in our study is the horizontal bands assignment, 

where several approaches have been described [20] [21]. We employ the Sparse 

Dynamic Time Warping (SDTW) method [11] to yield optimal conjunct alignments, 

as it is very efficient and can maintain the ability of searching for a more optimal 

solution. By this mean, all the separate bands are relocated into a parallel line where 

the corresponding bands have the same positions as in the different cell lines. 

    

 

(a) 

 

(b) 

Figure 5-5. Bands normalization procedure. The second column is the profile plots on 

red arrow that along blue direction, and profiles are normalized to have a similar 

distribution after alignment (drifts are aligned). (a) Original profiles in a gel, e.g. 

fluorescently labeled gel. (b) Mean of the warped image after band alignment 

(background between cell line-band is eliminated). 
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Segmentation of the bands. The aligned profiles of each of the lanes are put up for 

analysis by separating all of its bands. It performs as an extraction of region of 

interest mask that image information is ready to be converted to numerical matrix. 

For each band, a (binary) mask is computed by first finding a (local) peak value 

from the centerline of the lane, and then established the neighboring (local) valleys 

for every peak (cf. Figure 5-6). The mask is subsequently obtained from these 

threshold values for each of the bands in each of the lanes.  

        

 

Figure 5-6. Band detection within a cell line. After background subtraction (difference 

cf. Figure 5-4) and data normalization, the red stems denote peak value on a lane 

profile, which indicate a possibly location of bands. 

 

C. Feature Extraction and Selection 

Feature extraction aims to reduce the data dimensionality and complexity, and 

therefore its application provides an efficient way to allow more feasible statistical 

analysis. Multifactorial classes of algorithms can be applied on 2-D gel images [12], 

for instance, boundary-based techniques, region-based methods, and hybrid methods 

that combine boundary and region criteria. However, none of the general or optimal 

procedures for extraction and quantification on 1-D gel images is reported. 

Targeting on segmented bands of each cell lines, it is crucial to find certain features 

to represent the characteristics of these bands. This is the key of data analysis of 1D 

gel electrophoresis images. 

Phenotypic features are considered as the composites of observable characteristics or 

traits for an organism [13], and therefore these are employed in our work. In the 
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attempt to find prominent phenotypic features to characterize the proteins or 

fragments, two aspects should be considered: (1) features should be representative 

and relevant; and (2) features should be robust with respect to the small variations in 

bands intensities. 

Table 5-1. Basic measurements for a phenotype 

 

 

 

 

 

 

 

 

Table 5-2. Texture measurement of a phenotype (𝒙 represents the intensity value of one 

pixel, while 𝑯(𝒙) is the histogram of the intensities) 

 

Direct and indirect quantifications include determination of the selected phenotypic 

measurements (cf. Table 5-1 and Table 5-2), in which each result is calculated from 

the pixels that define the shape of lanes/bands. This procedure quantifies the 

information pattern of 1-D gel electrophoresis images into distinct measurements, 

which requires further selection of features. The manner in which prominent features 

Feature name Description  

size The surface area of object 

Intensity Amount of intensity belong to object  

Perimeter The perimeter of object 

Circularity  Area-to-perimeter ratio 

Extension Derived from 2
nd

 –order invariants of object [14][15] 

Dispersion Derived from 2
nd

 –order invariants of object [14][15] 

Elongation Derived from 2
nd

 –order invariants of object [14][15] 

Orientation Derived from 2
nd

 –order invariants of object [14][15] 

Feature 

name 

Expression Description 

Avg 𝑓1 = 𝜇 Average intensity in a region of object. 

Std 𝑓2 = √∑(𝑥 − 𝑓1)
2𝐻(𝑥)

𝑥

 
Standard deviation of intensity in a 

region of object. 

Smoothness 𝑓3 = 1 −
1

(1 + 𝑓1
2)

 
Relative smoothness of intensity in a 

region. 

Skewness 𝑓4 = ∑(𝑥 − 𝑓1)
3𝐻(𝑥)

𝑥

 Deviation from symmetry of mean 

intensity 

Uniformity 𝑓5 = ∑𝐻2(𝑥)

𝑥

 Sum of squared elements in histogram 

Entropy 𝑓6 = −𝑙𝑜𝑔2𝐻(𝑥)∑𝐻(𝑥)

𝑥

 Statistical measure of uncertainty 
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are chosen to represent the dynamics of fragments-migrating process becomes an 

important step for identification of the phenotype.  

In order to guarantee that all selected features are independent and equal of variance, 

the Mahalanobis distance [16] is chosen as the probabilistic distance criterion. 

Subsequently, we employ the methodology, the Fuzzy Criteria in Multi Objective 

Feature Selection Algorithm [17] (cf. chapter 3), which selects a subset of features 

from feature-pool that can best predict and describe the data. The resulting solutions 

from this method lead to a set of candidate feature combinations. This will facilitate 

the bio-scientist in selecting the proper features to predict a biological phenomenon 

and provide a guideline for new experimental design. In this case study, the selected 

features based on the best performance in the approach from multi-objective 

optimization, are band width, band intensity standard deviation, and lane skewness. 

The original 1-D gel electrophoresis images usually have different widths of bands 

(cf. Figure 5-1) at different positions reflecting the molecular weights of fragments. 

The “band intensity standard deviation” is a global index for a detected band; while 

the “lane skewness” is a vertical descriptor to understand the deviation from 

symmetry (cf. Figure 5-5 (a) and (b)) as fragments migrate downstream. 

 

D. Information Clustering Analysis 

The measurement information is summarized into a matrix of statistics that 

represents the patterns information. To date, various pattern finding procedures have 

been settled. However, for research implementation the information clustering is 

particularly important. In order to address biological questions accordingly, two 

issues come up: how to partition sets of samples that contain various features into 

groups among a large number of bands or lanes from electrophoresis gels; and how 

to figure out different patterns amidst samples with indistinguishable information 

and features. 

To tackle these issues, we present [18] (cf. Chapter 4) an innovative and efficient 

approach that is capable of clustering information from overlapping and otherwise 

indiscernible partitions. This method, a.k.a. Rough Fuzzy C-means and Particle 

Swarm Optimization hybridization (RFCM-PSO), combines the RFCM clustering 

algorithm [19] with an optimization technique. In RFCM, the rough approximation 

sets are employed to constrain the fuzzifier membership index. Subsequently, the 

iterative procedure of partitioning is then minimizing the RFCM objective function. 

Whereas the optimization of the clustering results occurs, the PSO procedure 

searches for the global optimum by updating the candidate centroid positions of 

partitioning solutions. The pseudo-code of RFCM-PSO is shown:  
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By taking the advantage of both the RFCM clustering method and the intrinsic 

characteristics of PSO, this combined-model can now deal with overlapping 

partitions, uncertainty and vagueness of information. At the same time, the 

optimization procedure in PSO demonstrates the ability of searching optimal 

solutions. In this case study, the information clustering takes place at two aspects: 1) 

clustering of bands and 2) clustering of cell-lines. In the first aspect, a band of all 

cell lines is selected. For instance, band number 65 in all 60 cell lines is chosen, then 

1x60 samples are obtained and will contain several selected features (e.g. band 

width, skewness, local entropy). Thereafter via a clustering of bands, we can notify 

the intrinsic property of a certain band that affect expressions (captured by 1D gel 

electrophoresis, and represented as different intensity on image data) in a variety of 

cell lines. Another implementation of the clustering technique is on the cell line. 

With little labelled cell type (cf. Figure 5-3, some types of cell lines are considered 

as null or unverified), we utilize results from the decision tree (cf. Figure 5-7), and 

cluster the cell line based upon their selected feature performance. The result of 

clustering example is shown in Figure 5-8. 

Algorithm Rough fuzzy c-means and PSO hybrid method: 

Frobnability 
Input: fuzzifier, weighting factor, cluster number, and controlling parameters in RFCM 

Given: integral population and generation in PSO 

Initializing: stochastic centroids, membership matrix, position and velocity at first 

generation 

for each generation do  

     1. training RFCM parameter: 

            Compute similarity distance for each object to its belonging cluster centroids. 

             if Rough approximation condition then 

                 Reset membership matrix from FCM.  

             end if 

             Update centroids. 

             Update membership matrix. 

     2. Optimization procedure: 

             Computing the personal best and global best positions. 

             Update position and velocity for each particle.  

      Convergence check: break main loop 

end for 
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(a) 

 

(b) 
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Figure 5-8. Clustering result of genetically distinct cancer cell lines. (a) All 60 cell lines 

should be clustered into two types, either one band should belong to “Basal” or 

“Luminal”. In Figure 3, cluster L contains all the subtypes that belong to “Luminal”, 

and, the rest of subtypes are clustered to B cloud, namely the “Basal” cloud. However, 

the Line T47D is occurred in the B cloud when it has quite similar feature properties as 

its clustered neighbors. Moreover, lines laid in red region are indiscernible, though they 

can also have a similar feature property. When checking the line information table (cf. 

figure 5-2), the abovementioned lines are number 57 to 60 respectively, and with a void 

score for their corresponding EGFR value. Here, 27 of basal bands are compared with 

33 different luminal bands based on the difference in their intrinsic feature. (b) We 

combine the selected features together, and perform a clustering analysis against the 

information table in terms of cell line type Basal and Luminal (type A in red dot means 

basal, type B in green dot means Luminal). Every green and red dot represents an 

integration of features from detected bands which belong to a list of cell lines (LCLs). 

Features are normalized, and cell lines are categorized unsupervised. For this 

particular clustering result, the F-score is 0.92 using the feature pool as reported in 

section 5-2.D. 

 

5.3. Measurements and Results 

In In this section, we apply our approaches to illustrate the fuzzy system research 

strategy on a dataset of cancer cell-lines; the cell-lines have different genotypes and 

from gene expression profiling, it becomes clear that they should be distinguished in 

different subgroups.  

To estimate and investigate how quantitatively and accurately the proposed fuzzy 

system can be employed on interpreting biological questions, dedicated solutions are 

conducted and analyzed on this dataset. The experiment consists of 60 cell-lines that 

are loaded on the PAGE gels in 60 separate lanes. After running the gel, they will 

result in a sequence of images that contains 60 lanes with 85 detected bands. For 

each band the features are measured (cf. Section 5-2.C). The preprocessing and 

normalization of the gel lanes make it possible to directly compare the bands for 

position and intensity. 

We aim at finding a pattern in a series of gel images to characterize groups of cell-

lines. To this end, we formulate a null hypothesis (𝐻0) and test if the statistical 

inference of the underlying distribution can be considered significant. In other words, 

attributes (features) of bands, within the scope of different cancer cell-lines, will be 

carefully measured by applying T-test schema. It is different from what typically 

used in student T-test, where samples contain only one or two attributes. In this case 

study, we propose a more comprehensive Hoteling T-square test [22] employing 

multi-variates (cf. features from Section 5-2.C) to obtain an accurate measurement 
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of the significance. Ultimately, the resulting p-value is used to weight the strength of 

the evidence, demonstrating the significance of protein/DNA expressions in 

different cell type groups. We have found several bands that perform significantly in 

either cell-type, subtype, or the reaction of regulator (cf. Table 5-3 and Table 5-4). 

Each band of all cell lines are compared separately, and their statistical performance 

are shown in ranges of either p≤0.05 or p≤0.01 (where bands have p value ≤0.01 are 

involved in those bands with p value ≤0.05). The latter value of p indicates a more 

significance in expression (effect) of the group (population). Table 5-3 gives an 

example of one series gel images, where the significances of detected bands are 

explored. 

In Table 5-4, accordingly, a significance test of Basal and Luminal cell line is 

conducted using top 5 best descriptors, e.g. intensity standard deviation, intensity, 

entropy, skewness, and width. For either Luminal or Basal cell lines, the detailed 

and numerical attributes of tested bands are averaged (Total) and compared with 

Luminal group average (Luminal) and Basal group average (Basal). When the total 

expression of a band (all features are counted) is close to the expression of Luminal 

group (same band), we consider this band is Luminal-significant; and vice versa for 

the band of Basal-significant. Alternatively, the value of the features in Table 5-4 

with N/A means a specific band has no expression in such groups. For example, the 

number 77 band (cf. Table 5-4), as it is recognized as UCHL1 band [26] that has 

higher significance in Basal group but lower significance in Luminal group. A bar 

plot of UCHL1expression in two separate experiment is shown in Figure 5-9. Gels 

containing both 20 cell lines and 60 cell lines (partially overlap for validation) are 

conducted on the experiments, where both T-test results depict a high significance, 

p≤0.05. The visualization of employed feature, particularly in intensity, denotes that 

band UCHL1 in some cell lines has   higher significant expression in basal group, 

and its average intensity in luminal group is lower compared with the basal one. The 

combination of the selected features provides a guide-line for clustering and 

statistical analysis of bands with respect to corresponding cell lines. These results 

have the same comparisons and validations in either mass spectrometry and/or 

reports [23] [26].  
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Table 5-3. Significant bands description in different type of cell line (85 detected bands 

in total) 

 

Table 5-4. Significance performance of bands with p ≤0.05 (basal/ luminal cell type) 

 

 ER PgR ERBB2 EGFR CK5 Basal/Luminal 

Bands description (number) 

P≤0.01 

14 
69 

46 
54 

 

Null Null 29 49 

Bands description (number) 

P≤0.05 

24 
46 
66 
71 

24 
25 
26 
36 
42 
51 
56 
82 
80 

7 
23 
27 
47 
81 

17 
46 

8 
57 
64 
74 
75 

71 
77 
78 
80 

Band Nr. Type(ave) Int Std Intensity entropy skewness width 

 

# 49 

Basal 10.461 315.509 -295.555 2.729 1.259 
Total 10.803 180.136 -159.980 1.564 0.750 

Luminal N/A N/A N/A N/A N/A 

# 71 

Basal N/A N/A N/A N/A N/A 
Total 22.274 238.182 -599.722 2.303 2.408 

Luminal 40.498 433.058 -109.040 4.187 4.378 

# 77 

Basal 198.614 3776.476 -538.034 30.059 17.518 
Total 178.773 4776.549 -846.869 32.663 18.95 

Luminal 161.353 5467.407 -109.478 34.079 19.909 
 

 

# 78 

Basal 115.256 3255.756 -291.145 9.448 9.740 

Total 117.027 4232.853 -403.740 8.965 11.008 

Luminal 117.144 4897.807 -489.061 8.560 11.803 

# 80 

Basal 27.359 2358.341 -175.230 13.616 5.314 

Total 13.108 1736.411 -86.669 6.697 2.800 

Luminal 1.449 1227.559 -14.210 1.037 0.742 
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(a) 

 

(b) 

Figure 5-10. Heat map of statistical tests on six cell-line type respectively. The y-axis 

represents the number of detected bands and six different types in x-axis are 

investigated for: (a) F-accuracy test in terms of classification using the feature 

information of bands; (b) Resulting p-value (log-transformed) from Hoteling T-square 

significant test. Brighter values indicate a higher accuracy (significance) in the classes. 
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Figure 5-10 (a) and (b) show the results of F-test and T-test of all 60 lanes with their 

detected 85 bands in one visualization. The similarity of the band with respect to its 

corresponding cell lines can be categorized under an unsupervised condition 

utilizing the proposed fuzzy system pipeline and the accuracies of bands clustering 

are verified by F-test. Additionally, for a particular cell line subtype, the entire sets 

of cell-lines are recognized as two groups, e.g. ER positive and ER negative, PgR 

positive and PgR negative, ERBB2 positive and ERBB2 negative, CK5 positive and 

CK5 negative, as well as cancer type basal and type luminal.  

The result of the F-test, as depicted in Figure 5-10 (a), reveals that the ability for 

subtype-clustering of each separate band varies with subtypes in the population of 

the cell-lines (a priori knowledge) as well as with the gel analysis results. The 

intrinsic properties of the bands are directly related to the cell subtype that they 

originate from.  Some bands exhibit extremely low F-values in all the six subtypes 

which originate from proteins indicating an absent or are not activated in the cell 

under the conditions of the experiment. In Figure 5-10 (b), it is shown that bands can 

be reported to have significant differences (p-value < 0.01) from a classification into 

the six subtypes. This indicates that the detected bands of proteins or DNA, can 

represent a uniqueness expression profiles. 
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(a) 
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(b) 
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Figure 5-11. Heat map of the 1D gel electrophoresis phenotypic analysis, where 

protein/DNA occurrence as analyzed from bands on the gel. (a) Heat map of 

normalized features of intensity and band width for group basal vs. group luminal. 

Brighter colors represent a higher response in terms of their phenotypic expression. 

The arrows indicate a specific type of cancer cell-line in group A/B with strong 

responses; (b) Hierarchical clustering analysis of essentials of detected bands (vertical) 

with respect to cancer types (60 cell-lines involved in either basal or luminal group) 

(horizontal). The colors indicate a degree of correlation between bands and subtypes. 

Experiments with gel electrophoresis support the understanding of the relationship 

between sample groups. A clustering analysis, hereby, targets to find the hidden 

patterns in data. Hierarchical clustering revealed distinct positive (blue) and negative 

(red) expression of proteins (cf. Figure 5-11 (b)) in terms of the normalized features 

quantified from gel electrophoresis images. It helps in validating predicted 

preference of cell-line type. In Figure 5-11 (a), cell-line groups of different subtypes 

are compared to examine the differences in the patterns. Two maximum variations 

of bands in conflict the subtype are pointed with arrows. 

 

5.4. Conclusions 

This chapter investigates and illustrates the ability of proposed fuzzy-logic based 

methodologies and their integrated fuzzy system pipeline for data analysis from 1-D 

PAGE gel electrophoresis. The adequate processing algorithms and heterogeneous 

information are thereof composed into a global picture. It is demonstrated via a 

practical implementation on a series of bio-imaging experiments that this system is 

reliable and is capable of qualitatively and quantitatively assessing information. 

Quintessential are the fuzziness background correction, feature extraction and 

selection of region of mask based upon fuzzy criteria. These elaborated approaches 

contribute to phenotypic quantification and henceforth unsupervised classification. 

The pattern extraction and recognition aim to support phenotype analysis. In this 

chapter, the experiment shows that employing the proposed fuzzy system it can be 

accomplished by investigating and understanding the identity of proteins 

characteristics which are distinct/shared between different subgroups of cancer cell-

lines. In addition to this case study, in protein characterization, DNA and RNA 

fragments can also be separated by 1D electrophoresis. In the same manner, the 

proposed method can also be applied for a systematic analysis of DNA and RNA 

patterns. 
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Chapter 6 

Conclusions and Outlook 
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The main contributions of this thesis, underpinning bioinformatics studies for which 

the application of image analysis is important, and are summarized as: 

1. Uncover common fuzzy principals that applied across many unsupervised 

computing systems, and highlight the features that adaptively address biological 

questions. 

2. Dedicated pipelined methodologies are proposed for formalizing, measuring and 

modeling the uncertainty and diversity in bioinformatics studies. 

3. By means of extensions and derivatives of soft computing, this work enlarges 

the depth of biological investigation, and engages width of dimensions as well. 

 

6.1. Conclusions 

In this thesis, we focus on exploring solutions for bio-imaging data analysis using 

fuzzy-computing paradigms. To gain further insight into the solutions, experiments 

are conducted on several publicly available datasets representing multiple disciplines 

and practical problems. The performance of solutions is then examined 

comprehensively and carefully using sorts of convincing index and evaluation 

strategies. The case study in this thesis further demonstrates the possibility of 

producing objective understandings of the identity of characteristics in 

proteins/DNA that are distinct/shared among different groups in phenotypic 

measurements. The conclusions of the chapters in this thesis are presented in the 

next sections. 

 

Chapter 2 Biological Image Background Correction 

In this chapter, we challenge a common interference in bio-imaging data, known as 

the inhomogeneity of illumination in the background. This effect leads to 

information contamination and loss of accuracy in both qualitative and quantitative 

work. A robust approach, the Dam-Constrained Background Correction (DCBC) is 

proposed to reduce the deviations before image datasets are subject to further 

analysis track. The fuzzy membership function in this approach, together with the 

rough set constraint, innovates constructing a morphological “dam” in the image, 

and thereby prevents over-segmentation of the background. The experimental results 

demonstrate the potential of the application on bright-field and fluorescence images, 

since further analysis will no longer be hampered by undesired vignetting. 
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Chapter 3 Feature Selection Strategy in Region of Interest Mask 

In this chapter, we present a novel feature selection strategy, namely the Fuzzy 

Criteria in Multi Objective Feature Selection Algorithm (FC-MOFSA) that selects 

potential predictors in the feature pool. In FC-MOFSA, a fuzzy-defined entropy 

measurement is used in filter-approach, meanwhile the fuzzy criteria referred to as 

Correlation Membership Measurement (CMM), is employed as a cost-function in 

wrapping-approach in the feature selection process. The proposed CMM criterion 

highlights the essentials in sparse and skewed datasets clustering procedure by 

ambiguously estimating the difference between all pairs of points in different 

clusters. Aiming at converting digital signals to numerical feature descriptors, this 

strategy further optimizes the tasks of handling data in large volumes, and data 

clarification without jeopardizing the quality of information.  

 

Chapter 4 Unsupervised Information Classification and Analysis 

In this chapter, we present a dedicated classification algorithm, the Rough Fuzzy C-

Means and Particle Swarm Optimization (RFCM-PSO). In the information 

clustering process, the concept employed in the RFCM handles with uncertain, 

vague and sparse data processing. PSO is able to optimize searching procedure and 

avoids the results from being trapped into local optimum. To demonstrate the 

potential of this method, a number of state-of-the-art algorithms are compared. The 

extensive numerical analysis and reported results indicate the good performance in 

revealing hidden patterns and exploring relations or attributes between clusters.  

 

Chapter 5 A Systematic Study on One Dimensional Gel Electrophoresis Image 

Analysis 

In this chapter, we present the feasibility and capability of proposed fuzzy-system 

and unsupervised computing based methodologies pipeline in protein phenotypic 

quantification and subsequent classification. The mixtures of protein in a cell lysate 

can be separated, visualized and analyzed by classical one dimensional (1D) gel 

electrophoresis. Subsequently, the resulting gel images can consist of several 

vertical lanes (number of wells in which the protein samples were loaded), and a 

number of horizontal bands (corresponding to proteins or fragments thereof). The 

data reflects the amounts and characteristics of individual proteinaceous components. 

This case study is one of the first attempts to reveal the intrinsic properties of bands 

from which cell subtype they are originated. 

The work in this chapter, compared to the conventional phenotypic analysis system, 

improves gel data analysis into a four-stage strategy. Dedicated algorithms ensure 
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that the measurements are summarized into a matrix of primary representing the 

information of patterns. Therefore, the employment of fuzzy systems plays an 

important role in unambiguously uncovering patterns hidden in the data, yet yielding 

precise evaluation. In terms of unsupervised computing, it is also objective that the 

correlation of data clusters is qualitatively assessed.  

 

6.2. Outlook 

This thesis has explored and discussed solutions for addressing biological questions 

by building fuzzy logic-based and rule-based systems. The results are promising, but 

should be refined and expanded in further studies. In the next paragraphs we 

elucidate what aspects need additional attention. 

 

Data acquisition 

Modern bio-imaging systems are often synchronized with other computer or human 

controlled equipment and software. This on-the-fly system allows auto- or semi-

automated adaption for experimental preparation, e.g. focusing lens, position of 

specimen, signal acquisition and transformation. However, the quality of data 

obtained via this adaption in controlling system is always subjected from heuristic 

mechanisms of objects and intrinsic algorithms. This mechanism can introduce 

either frequency noise (cf. Chapter 5) or out-of-focus background illumination (cf. 

Chapter 2). Additionally, based upon biological experimental design, the resolution 

of acquiring data is often sacrificed in exchange of a better image quality, or 

acquisition speed. These issues are hardware related and could be significantly 

improved by the development of imaging techniques. 

Methodology design 

The fuzzy systems, involved in soft computing paradigms, has been successfully 

employed to interpret biological questions. There are several reasons accounting for 

the trend of its increasing use in bio-sciences, and a few aspects could also be further 

improved. The most significant reason for accelerating a bioinformatics study is that 

fuzzy theory permits approximation instead of high-precision which sometimes 

arrives at an expensive computational budget. Optimization algorithms could play a 

very important role in helping fuzzy systems search the “best available” solutions 

from sparse and skewed data. As an ingredient from fuzzy rule-based model, 

adequate optimization strategies might further reduce computational overhead. 

Second, but not less important, is that fuzzy theory reduces complexity and thereby 

simplifies system modeling when empirical knowledge and behavior are not known. 

The concept of fuzzy systems offers a simple but effective way to arrive at a 
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definitive conclusion on the basis of ambiguous, imprecise, noisy or missing input 

information. Moreover, this mechanism can benefit most from new advances in deep 

learning. For instance, if a few ground truth (labels) are known, then a sophisticated 

weakly supervised fuzzy systems might have a significant improvement on accuracy 

and efficiency compared to the unsupervised ones. Another possibility to improve 

the proposed system is that the methodologies of measurements should meet 

biological description. This means a question-driven experiment design is strongly 

recommended.  

To sum up, fuzzy logic and unsupervised computing based systems, constitute a 

very promising analysis direction in the field of bioinformatics. The experiments in 

this thesis carefully and comprehensively investigate how this proposed system 

could be applied to biological questions. We have accomplished a good start in this 

direction and further progress from research efforts can potentially be anticipated.
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Summary 

In this thesis the application of the fuzzy systems in the domain of bioinformatics is 

investigated. In the past decades, bioinformatics has gained an increasing interest by 

both biologists and computer scientists. Biologists because they produce vast 

amounts of data that need be analyzed in an accurate and robust manner. Computer 

scientists because they embark on the challenge of creating added value to these 

large data volumes by developing and designing  methodologies through which such 

accurate and robust analysis can be applied.  

Data from life-sciences research in their native, raw form are known to be vague, 

ambiguous, imprecise, and sometimes points within the data are missing or unknown. 

In order to cope with the notion that data are not perfect, several new approaches 

need to be studied and implemented. The Fuzzy systems is a relatively new heuristic 

technique that has the capability of simplifying an otherwise complex decision by 

allowing more hypotheses in the analysis of the data. In other words, the logic in 

fuzzy systems acknowledges the fact that significance is the most important factor in 

modelling, while in other systems precision is acknowledges as such.  

The Fuzzy systems is regarded to have potential for data analysis; therefore, the 

research described in this thesis intends to focus on designing efficient and reliable 

heuristic solutions for analysis to uncover the hidden information from biological 

experiments. Our research aims to build dedicated analysis pipelines based on the 

fuzzy systems; in the research chapters of this thesis, three different perspectives are 

elaborated. Finally, we integrate these three different uses of the fuzzy systems into 

an analysis pipeline illustrated with a case study. 

 (1) We have used the Fuzzy systems in background illumination correction. An 

image resulting from microscopy contains noise and other effects that do not 

contribute to the real signal that is needed to be measured. Apart from random shot 

noise caused by the electronics of the device, uneven illumination affects the 

analysis of the image. In order to diminish the impact of this illumination in the 

background, an appropriate correction must be performed.  

In Chapter 2 of this thesis, a background correction method based on mathematical 

morphology, hybridized with fuzzy and rough constraints is proposed to eliminate 

shading effects. Compared with most generally used EMI method and the, in 

commercial software, often employed Rolling Ball algorithm, the DCBC that we 

developed has demonstrated a robust performance for typical images from 

biomedical microscopy. 

(2) We have studied the fuzzy systems in relation with feature selection and 

redundancy removal in a data set. The procedure for feature selection plays an 
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important role in converting phenotypic data to a statistical representation in a 

matrix form. With respect to this problem, there are two aspects that should be 

considered: 1) selection of the smallest amount features to best describe dataset and 

from which predictions can be inferred; 2) reduction of the dataset dimensionality by 

removal of tedious information.  

In Chapter 3 of this thesis we proposed a filter-wrapped feature selection approach 

in which fuzzy criteria are employed as one of the cost functions. Alongside, a 

multi-objective evolutionary algorithm is used to produce optimal solutions at the 

Pareto-front. This approach is different from other feature selection strategies in that 

the method introduced in our work provides a set of candidates feature combinations. 

From these combinations, the decision maker can benefit in choosing the most 

valuable ones for their cases. 

(3) We have explored the use of fuzzy systems with information clustering analysis. 

Among pattern extracting methods, i.e. summarization, association and prediction, 

information clustering is of the great importance; it is popular in both in research 

and daily practice. This is especially the case for a dataset which has little or no 

labels.  

In Chapter 4 of this thesis we have accomplished a novel clustering methodology 

that combines the fuzzy rough c-means approach and particle swarm optimization 

(PSO) algorithm. This combination integrates into sensible global results. The 

concept of fuzzy logic can cope with uncertainty, vagueness and overlapping 

partitions in the dataset, while the PSO algorithm helps with searching for near-

optimum solutions. 

(4) We have investigated fuzzy systems for a dedicated data analysis pipeline which 

is a concatenation of approaches presented in previous chapters. The applicability is 

demonstrated by a case study.  

In Chapter 5 of this thesis we describe a case study which focuses on the overall 

analysis of data from one dimensional gel electrophoresis. The proposed fuzzy-

system based data analysis pipeline has shown to be capable of precise extraction of 

features from gel images of proteins that are typical to cancer cells. Gel images 

themselves are far from ideal; therefore a number of corrections need to be applied 

so that accurate measurements can be extracted from these images. These 

measurements can be employed to distinguish and characterize the significance 

differences between cancer cell lines and their corresponding group and sub-group. 

This contributes to the further understanding of cancer development. Additionally, 

the resulting pipeline can contribute to a better understanding of protein/DNA 

migrations and expressions with respect to their characteristic features.  
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In conclusion, the research described in this thesis aims at investigating the use of 

fuzzy systems, in combination with pattern recognition in the field on bioinformatics. 

By studying the existing methodologies, an ensemble of fuzzy logic and 

unsupervised based algorithms are designed and integrated together as an analysis 

pipeline to understand and address biology-oriented questions and pattern-matching 

problems
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Samenvatting (Dutch Summary) 

In dit proefschift wordt de toepassing van het fuzzy systeem onderzocht in het 

bijzonder in het domain van bioinformatica. In de afgelopen tientallen jaren is de 

belangstelling voor bioinformatica bij zowel biologen als computerwetenschappers 

fors toegenomen. Dit geldt voor biologen omdat zij in hun onderzoek grote 

hoeveelheden data produceren die op een robuste en accurate manier moeten worden 

geanalyseerd. Dit geldt voor computerwetenschappers omdat zij ingaan op de 

uitdaging toegevoegde waarde voor deze grote data volumes te creëren door het 

ontwikkelen en ontwerpen van methodologieën waarmee zulke accurate en robuste 

analyses kunnen worden gerealiseed. 

Data uit het onderzoek in de levenswetenschappen zijn in oorssronkelijke ruwe vorm, 

notoir vaag, dubbelzinnig, onnauwkeurig, en soms missen er data of zijn er delen 

niet bekend. Om met het begrip dat data niet perfect zijn om te kunnen gaan, is het 

nodig dat er veschillende nieuwe benaderingen worden bestudeerd en 

geïmplementeerd. Het Fuzzy Systeem – gebaseerd op zogenaamde “vage” logica -  

is een relatief nieuwe heuristieke benadering die de geschikt is voor het 

simplificeren van een anders complexe beslissing, door het toestaan van meerdere 

hypotheses in de data analyse. Met andere woorden, de logica van het fuzzy systeem 

erkent het feit dat significantie de belangrijkste factor in het modelleren van data is; 

dit terwijl in andere benaderingen aan precisie meer waarde wordt toegekend. 

De fuzzy systeem benadering wordt geacht potentie te hebben voor data analyse, 

vandaar dat het onderzoek beschreven in dit proefschift de intentie heeft de nadruk 

te leggen op het ontwerpen van efficiënte en betrouwbare heuristieke oplossingen 

voor analyse om daarmee verborgen informatie in biologische experimenten te 

ontdekken. Ons onderzoek heeft als doel een speciale analysemethodiek te bouwen 

gebaseerd op fuzzy systemen; in de onderzoekshoofdstukken van dit proefschrift 

worden daartoe drie verschillende perspectieven uitgewerkt. Uiteindelijk integreren 

we deze drie verschillende benaderingen van fuzzy systemen in een 

analysemethodiek die wordt geïllustreerd aan de hand van een voorbeeld studie. 

(1) We hebben fuzzy systemen gebruikt voor de correctie van achtergrondbelichting. 

Een microscoopbeeld bevat ruis en andere effecten die niet bijdragen aan het 

daadwerkelijke signaal dat wordt gemeten. Behalve willekeurige ruis die wordt 

veroorzaakt door de electronica van het apparaat, wordt het beeld beïnvloed door 

ongelijke belichting. Om de invloed van deze ongelijke belichting te reduceren moet 

er een achtergrondcorrectie worden uitgevoerd. 

In Hoofdstuk 2 van dit proefschrift wordt een achtergrondcorrectie methode 

voorgesteld die gebaseerd is op mathematische morfologie en deze wordt 
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samengevoegd met randvoorwaarden uit de fuzzy logica, waarmee het 

achtergrondverloop wordt geëlimineerd. Vergeleken met de algemeen gebruikte 

EMI methode en het, in commercieële software veel gebruikte, “rolling ball” 

algoritme, demonstreert de door ons ontwikkelde DCBC methode robuuste 

prestaties met beelden die karakteristiek zijn voor biomedische microscopie. 

(2) We hebben fuzzy systemen bestudeerd in relatie tot kenmerkselectie (eng. 

feature selection) en verwijderen van overtollige data. De procedure van 

kenmerkselectie speelt een belangrijke rol in het omzetten van fenotypische 

waarnemingen naar een matrixvorm voor statistische berekingen. Hierbij dienen 

twee aspecten onder ogen gezien te worden: (i) selectie van de kleinste hoeveelheid 

kenmerken waarmee de dataset het best kan worden beschreven en waaruit 

voorspellingen kunnen worden afgeleid; (ii) reductie van de dimensionaliteit van de 

dataset door het verwijderen van overbodige informatie. 

In Hoofdstuk 3 van dit proefschrift wordt een filter-gestuurde aanpak voor 

kenmerkselectie aangedragen, waarin criteria uit de fuzzy logica worden gebruikt als 

één van de kostenfuncties. Daarbij wordt een zogenaamd multi-objectief 

evolutionair algoritme gebruikt voor het produceren van optimale oplossingen langs 

de Pareto grens. Deze aanpak verschilt van andere strategieën, daar de door ons  

werk geïntroduceerde methode voorziet in een set van kandidaat kenmerk 

combinaties. Met deze combinaties kan de besluitvormer zijn voordeel doen door de 

voor het specifieke geval meest waardevolle combinatie te kiezen. 

(3) We hebben het gebruik van fuzzy systemen verkend voor het clusteren van 

informatie. Onder de patroonextractie methoden, i.e. samenvatting, associatie en 

predictie, is het clusteren van informatie van groot belang; dat geldt voor onderzoek 

alsook voor de dagelijkse praktijk. Dit is met name het geval voor een dataset die 

weinig of geen labels heeft. 

In Hoofdstuk 4 van dit proeftschrift hebben we een nieuwe clustering methode 

verwezenlijkt waarbij de zogenaamde fuzzy rough c-means benadering en het 

deeltjes zwerm optimalizatie (PSO) algoritme worden gecombineerd. Deze 

combinatie integreert tot een zinnig globaal resultaat. Het concept van fuzzy logica 

kan omgaan met onzekerheid, vaagheid en partities die in de dataset overlappen, 

terwijl het PSO algoritme helpt met het zoeken naar vrijwel optimale oplossingen. 

(4) We hebben fuzzy systemen onderzocht als onderdeel van een speciale 

analysemethodiek, dit is een samenvoeging van de benaderingen die in de vorige 

hoofdstukken behandeld zijn. De toepasbaarheid wordt gedemonstreerd aan de hand 

van een casus. 
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In Hoofdstuk 5 van dit proefschrift beschrijven we een case studie die gericht is op 

een overkoepelende data analyse van een 1-dimensionale gel-electroforese 

experiment. De voorgestelde analysemethodiek gebaseerd op fuzzy systemen heeft 

laten zien in staat te zijn tot nauwkeurige extractie van kenmerken uit beelden van 

eiwitgels die karakteristiek voor kankercellen. De beelden van de eiwitgels zijn 

verre van ideaal, vandaar dat een aantal correcties moeten worden toegepast zodat er 

juiste metingen uit deze beelden kunnen worden verkregen. Deze metingen kunnen 

worden gebruikt om de significante verschillen tussen kankercel-lijnen, en de daarbij 

horende groepen en subgroepen te onderscheiden en te karakteriseren. Dit draagt bij 

aan het verdere begrip met betrekking tot de ontwikkeling van kanker. Daarenboven 

kan de analysemethodiek worden gebruikt voor het verkijgen van begrip in 

eiwit/DNA patronen en hun karakteristieken zoals die in gelbeelden worden gezien. 

Concluderend, het onderzoek beschreven in dit proefschrift heeft als doel het 

onderzoeken van fuzzy systemen in combinatie met patroonherkenning in het 

onderzoeksveld van de bioinformatica. Uit het bestuderen van bestaande 

methodologieën is een ensemble van fuzzy logica en unsupervised algortimen 

ontworpen en geïntgreerd in een analysemethodiek waarmee vragen met een 

oriëntatie in de biologie en in patroonherkenning kunnen worden begrepen en 

aangepakt.



 

 

 

 



   论文扼要  (Chinese Summary) 

 

 118 

论文扼要  (Chinese Summary) 

本文主要研究了模糊系统在生物信息学领域内的应用。在过去的几十年里，越

来越多的科研工作者将目光投入到生物信息学领域。因为在生物学领域，生物

实验数据需要被精准而又不失鲁莽地分析；而在计算机领域，对不同类型的数

据进行有价值的分析和开发以及设计出高效的处理算法是具有挑战的研究难点。 

通常生命科学等领域研究得到的数据不精确或存在缺失，使其具有模糊性和未

知性。针对生物数据的特性，模糊系统被应用到相关的研究中。模糊系统是一

种较新的启发式算法，相较于其他更加关注计算结果精准度的算法，其更加注

重计算结果的重要性。模糊系统是通过在分析数据时提出更多的假设条件，从

而有效的简化分析数据中的复杂且非唯一性问题。 

本文着重于设计高效可靠的启发式分析算法去挖掘并理解隐藏在生物实验数据

中的重要信息。本文设计了一个基于模糊系统的数据分析流程，并在文中不同

章节处详细阐述了模糊系统在不同场景的应用及其前景。最后，通过案例分析

来展示本文所提出的数据处理的流程。本文亮点如下： 

（1）本文使用模糊算法处理图像背景的噪声。通常，显微成像的数字图像会

受到例如电子设备引起的工频噪声，或者实验过程中光照不均带来的叠加伪影

的影响。所以，为了解决以上问题，一种新的基于图像形态学和模糊及粗糙系

统的图像背景去除算法在本文第二章中被提出。与大多数使用的 EMI 方法以

及商业软件中频繁使用的滚球算法相比，本文提出的 DCBC 算法被验证对于

传统生物显微图像更具有鲁棒性。 

（2）本文对模糊系统在数据中的特征提取和冗余信息剔除做了学习和研究。

这个过程对于数据分析中的表象型数据到经典的统计数据模型的转换是至关重

要的：一，该过程可以选择最少的特征去最优地描述整个数据集；二，通过去

除冗余的信息来降低数据集的维度，从而一定程度上减少后期分析的计算量。

在本文第三章中，一个基于模糊标准函数的“过滤”并“包装” 模式的特征提取

算法被提出。与此同时，文中还采用了多目标优化函数来帮助原算法在“帕洛

托”前沿寻找最优解析解。本文所提出的算法与一般特征提取算法不同之处在

于，文中的算法可以给出一组最优解的解集让决策者根据自己的经验、需求选

择相对应的可以描述原数据的特征集合。 

（3）本文对模糊系统在信息聚类分析中的应用进行了研究。因为在所有模式

提取流程中，即信息概述、信息联合、信息预测和信息聚类等，其中信息聚类

是至关重要的一个环节；而且由于生活中的数据大多数是不带有或是带有少量

标签信号，所以该聚类分析的方法论在科学研究及日常生产管理中都有着十分
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广泛的应用。在本文第四章，通过结合模糊粗糙聚类算法和粒子群算法，提出

了一种全新的且对于获得全局最优解非常敏锐的聚类算法。在这个新的算法中，

模糊粗糙的概念可以有效地处理原数据中不确定的、模糊的以及重叠覆盖的成

分；与此同时，粒子群理论又可以帮助聚类算法找到所有不同聚类结果中的最

优解。 

（4）本文基于前几章的研究内容与所设计的算法，整合并提出了一个新的以

模糊系统为蓝本的数据处理流程。该处理流程包括图像的预处理（第二章），

图像特征提取和选择分析（第三章）以及数据的聚类分析（第四章），并且该

分析流程的可行性研究将通过一个特有的案例进行分析。在本文第五章，通过

对一维电泳胶体成像数据的分析和研究来进一步了解文中提出的模糊分析系统

对癌症细胞（蛋白和 RNA 等）数据处理流程的帮助。对这些电泳胶体成像结

果的处理和分析有助于提取，分析和鉴别不同的细胞系（类）在图像中的表达

特征。而通过研究图像中细胞蛋白/RNA 的位移和表达变化可以帮助理解并预

测案例中关于癌症细胞的发展。 

综上所述，本篇论文旨在研究与模式识别相结合的模糊系统在生物信息学领域

中的应用。通过对已有的文献的考究，结合模糊逻辑与无监督学习的概念搭建

了一个高效且鲁莽的数据处理流程平台，并在文末的案例分析中得以用来理解

研究以生物学或模式识别为导向的问题。 
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