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Chapter 1

Introduction on Computation in Biology



Chapter 1

As humans we have a good understanding of subjective concepts. For a computer, or
simply a computational approach, it is much harder to deal with these subjective
concepts as the boundaries in a subjective range are not well defined. In data
analysis for life-sciences, we often encounter such problems and are challenged to
find a solution that can deal with ranges of measurements in a robust manner.

In this thesis we particularly focus on finding solutions for data-analysis in the life-
sciences. The life-sciences cover a broad field of research and approaches to deal
with data-analysis which are typically multi-disciplinary. First one has to understand
the particular field in of the life-sciences that the data-analysis is applied to and then,
often, a number of techniques from statistics, mathematics, physics and computer
science are employed to develop a solution. This multi-disciplinary approach for
computational problems in the life-sciences is often captured under the umbrella of
bio-informatics. One can state that bio-informatics is concerned with the analysis of
data. As a consequence it is important to realize that the development of
computational tools bio-informatics is therefore an implicit characteristic of this
field. The consequence of working with experimental data and results from analysis
is that these data need to be organized. These areas pretty much cover the field of
bioinformatics.

Data from experimental set-ups in biological research are not always ideal for a
straightforward analysis. Experimental conditions and biological variation both
contribute to ambiguity. For analysis, the volume of data is not always sufficient,
while the distribution of the data is uneven. Moreover, the measurement device itself,
due to its electronic components, adds noise to the raw data. All of these issues have
to be taken into account for an analysis. In order to further explore solutions for data
analysis and typical for data sets without well-defined boundaries between its
constituents, we investigate how the use of fuzzy systems theory can be used to
enhance computations for such data sets.

Therefore, in this thesis we will explore the use of fuzzy systems theory for
applications in bioinformatics. The theory of fuzzy systems is concerned with
formulating decision problems in data sets that are ill-defined. It supports the
transfer from a subjective human classification to a numerical scale. In this manner
it affords the testing of hypothesis and separation of the classes in the data.

The fuzzy systems theory is part of the paradigm of soft computing, a collection of
mathematical techniques that supports computing in dealing with uncertainty,
inaccuracy, vagueness and incompleteness in data sets.

In the research presented in this thesis, we first formulate problems in terms of a
fuzzy systems and then develop and test algorithms in terms of their performance
with data from the domain of the life-sciences. From the results and the performance,
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we will learn about the usefulness of fuzzy systems for the field, as well as the
applicability to the kind of problems and practicality for the computation itself.

As mentioned, computing in bioinformatics is quite interdisciplinary; therefore we
will use this introduction to present some of the major concepts from bioinformatics
that are important to this thesis as well as provide scope of that field. Next, we will
address soft-computing and in particular fuzzy systems and how this links with the
analysis of data from the domain of biology. Further to this background information,
we will explain our development of a heuristic-based pipe-line for data analysis,
applied to generic data analysis as well as to bio-imaging.

1.1. The Scope of Bioinformatics: A Brief Introduction

The research field of Bioinformatics has matured over the past ten years and to date
there is consensus on a definition. In general, bioinformatics is considered as the
application of computational techniques of analyzing, managing and interpreting
biological information [1]. The rationale is to create added value from the data for
the field of biology [14]. The research field of bioinformatics encompasses a wide
range of subjects, typically referred to as “omics” data, i.e. structural biology,
genomics, proteomics, metabolomics, transcriptomics, cytomics, and image-based
high-throughput studies.

In trying to understand biology, computational approaches have been probed. These
were, in some cases essential for the understanding of phenomena, the discovery of
inheritance by Mendel [2] in 1865 stands as a paradigm for computation in biology.

Modern approaches to computation in biology go hand in hand with the
development and availability of computers. The notion of bioinformatics is
developed in the late 1960’s when molecular biologists started the compile their
sequencing results of DNA and proteins in databases [3]. Initially, the field of
bioinformatics was claimed by the research on the human genome but this
progressed into the perception that bioinformatics had a much broader base.

The term bioinformatics is attributed to Hogeweg and Hesper [4], who coined to
term as: “the study of information processing in biotic systems”. Over the past five
decades, however, the field of bioinformatics has evolved in that it now involves
various tasks, focusing on the analysis and understanding [14] biological data.
Understanding refers to the creation of added value to the data.

Within the scope of bioinformatics different questions on biology are addressed. A
common ground of all questions is that the starting point is a large amount of data
from which understanding is developed in finding patterns in these data. This means
that from the data, a systematic analysis is performed — these studies can be on
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various levels; i.e. cellular behavior, molecular design and docking, metabolic
networks, RNA/DNA and protein sequence alignment, RNA, DNA and protein
structure prediction, analysis of gene expression data, just to name a few important
fields.

Taking the data in a bioinformatics study as a starting point, the major emphases of
bioinformatics become evident. Having large amounts of data requires these data to
be organized in a structured form. In the early days of bioinformatics the important
activity was constructing databases for the different data and making these databases
available via the web. To date, this data management is still a major activity in the
field of bioinformatics. Thus, developing databases and tools to archive and retrieve
data is an important activity. The data are, of course, analyzed. A next major activity
therefore is analyzing data and developing tools to achieve the analysis. From the
analysis a higher level aggregation can be accomplished, combining results from
analysis and finding patterns which contribute to the further understanding of
biology. This activity, concerns working with statistics and machine learning
approaches; it builds upon the other activities, however, its focus is to create added
value from the large amounts of data in a manner that is meaningful to biology.

An important part of the field of bioinformatics is therefore the development of
computational tools. Here there is common ground with computational biology
where the emphasis is on theoretical models and simulations [14]. Nevertheless,
computation and tooling is important to both fields that join forces in the quest of
understanding the complexity in biology.

The crux for bioinformatics is to have adequate tools for analysis and interpretation
available. There are ample computational approaches that have been successfully
probed in bioinformatics studies and that, to data, are part of the algorithmic
repertoire in bioinformatics. With different datatypes, different computational
paradigms have been used. For analysis of sequences, i.e. RNA, DNA or protein,
different alphabets are used in string matching procedures. The concept of dynamics
programming has been very instrumental in being able to match strings in terms of
their similarity. The Basic Local Alignment Search Tool (BLAST), to that respect is
a major milestone for bioinformatics as a whole. Finding patterns from data is
resolved using machine learning techniques; to a certain extent these techniques are
inspired by biology, i.e. neural networks, genetic algorithms. In itself, machine
learning techniques, for clustering and classification are deeply rooted in
mathematics. Employing these techniques requires therefore, some understanding of
the mathematics, e.g. choosing a fitting function in a classification problem.

Classification and clustering allows establishing relations in the data and to reason
on behavior of biological entities. Techniques like Bayesian Clustering, Support
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Vector Machines (SVM), neural networks and genetic algorithms represent forms of
machine learning with and without control. It supports finding groups in the data as
well as making predictions from new data based on prior classifications. Nowadays,
a new revival of the concept of neural networks is embodied into so called
convolutional neural nets, also known as deep learning. This is a very powerful
machine learning approach that will further boost the understanding of biology from
large amounts of data.

An important concept in computational approaches is that of heuristics, i.e. specific
rules, so that a problem can be confined and computational pipelines for a specific
bioinformatics study can be designed and implemented.

Our efforts for data analysis extend on existing approaches used in the field of
Bioinformatics. Data from biological experiments do contain noise; and this noise
complicates the analysis. Techniques that are based on heuristics are capable of
confining the computation to solutions that are more probable. Heuristic-based
techniques are therefore sometimes preferred in doing computations in large data
volumes. Examples of such techniques are Bayesian nets, Neural networks, Fuzzy
logic and evolutionary algorithms. In our effort to extend and improve data analysis
in biology, we will focus on the so called fuzzy systems to see if we can reinforce
solutions for datasets that are otherwise difficult to separate. Fuzzy systems are part
of the soft-computing paradigm. Further explanation of this concept will be given in
the next section.

1.2. Soft Computing and Fuzzy Systems

Soft computing [5], sometimes referred to as computational intelligence (Cl), is a
collection of methodologies that has become an area of formal study in computer
science in the early 1990s. Soft computing differs from conventional computing in
that it, specifically, exploits imprecision and tolerance in order to achieve tractability,
robustness and low-cost solutions. The soft computing paradigm represents a
number of techniques, its major constituents are the Fuzzy Systems (FS), the Rough
Set (RS), Wavelets, Simulated Annealing (SA), the Support Vector Machine (SVM),
the Artificial Neural Network (ANN), Evolutionary Algorithms (EAs) and Swarm
Intelligence (SI).

The quality of the Fuzzy Systems is that it is rather easy to implement in a system
ranging from very small and simple to embedding in large networked systems [17]
[18]. As part of an analysis, the fuzzy systems will be part of a specific pipeline for
data analysis. This is exactly how we intend to employ the application of the fuzzy
systems in analysis of biological problems — and thus the data.
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The concepts of Fuzzy systems have been applied to a range of different fields,
from control theory to artificial intelligence, as well as to computational biology.
The fuzzy systems are derived from fuzzy logic and it was first introduced by Lotfi
Zadeh [6] in a monograph on fuzzy set theory in 1965.

In traditional computing, a system vyields output(s) from the input(s), where
conclusion is accepted to be either true or false. However, in real life situations,
propositions are given with variable answers; for instance, degree of color between
“yellow” and “red”, concept of “empty” and “full” in a water-filled bottle, sensation
temperature of “cold”, “warm” and “hot” in a room, etc. In other words, we consider
it natural to reason over a range of subjective concepts. If a certain concept cannot
be defined exactly, an amount of quick and ambiguous definitions would develop.
This typically happens in a group of people discussing a concept in a certain context.
In Figure 1-1, this is exemplified, the fuzzy systems is the control methodology that
mimics how a decision (description) is made by humans. Additionally, this decision-
making process can be achieved and speeded up on the basis of prior
experiences/recognitions of the individual.

A )
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: |
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Figure 1-1. The application of Fuzzy Systems in the grading of human age. The grades
of age are expressed as “Children/Adolescent”, “Adult” and “Older Adult/Elderly”;
these are mapped by a pre-defined grading function onto an age scale. The age itself is
ambiguous for human perspective inspection and/or sensible feeling. However, this
sensation becomes obvious once a human-like metric is defined for the decision, e.g.
when the grading coefficient is larger than 0.5, meaning a positive effect, vice versa.
Since the red arrow points to zero, people within this age group (grading coefficient = 0,
defined on Older Adult/Elder function) can be interpreted as “not old”; while the
meanings of the age at orange (coefficient < 0.5, defined on Adult function) and blue
(coefficient > 0.5, defined on Children/Adolescent function) arrow can be recognized as
“fairly matured” but “still young”, simultaneously. Instead of concluding in either
young (coefficient = 0) or old (coefficient = 1), fuzzy systems allows for decisions being
made by users’ knowledge and experience accordingly.

The example of Figure 1-1 demonstrates two key ideas of the fuzzy system: first, the
fuzzy system is able to model problems from concepts to mathematical paradigms
that are based on the understanding and experience of the decision maker; second,
the logic in fuzzy systems accepts the uncertainties that are inherited as realistic
inputs, and thereby it is able to cope with these uncertainties (imprecisions) in such a
way that their effects are negligible and henceforth, the system will result in a
“precise”, human-like, output.

As mentioned before, fuzzy systems have been successfully applied to several areas,
and also in bioinformatics. It helps in recognizing the hidden essentials in data by a
degree of “truth” given by the fuzzy membership [19]. The fuzzy membership is a
function that describes the weights for the contribution of the different levels in the
system.

In this manner, using the fuzzy membership function, biological information is
analyzed and interpreted based upon previous experiences [20] so that knowledge-
based systems in biosciences are constructed by vagueness and uncertainty [21]. In
this thesis, therefore, fuzzy systems based approaches are proposed and integrated
into a dedicated data analysis pipeline(s).

Images form a particular class of data in life-sciences research. The data, i.e. the
images, result from an imaging device and are sampled to a digital image. This
digital image is input for a first data analysis in order to get measurements out of the
image. The measurements themselves are input for a second analysis to find patterns
over a collection of images. In general, this collection of images comprises an
experiment. The data in the digital image are intensity values and these are ordered
in a regular rectangular grid, directly related to the sensor in the digital camera. The
data analysis is therefore completely adapted to this organization. Once we obtained
the measurements, other approaches need to be probed. In this thesis, the image
space based approaches, as well as for the feature space based approaches are
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addressed; while the fuzzy systems approach has the capability to augment both the
analysis. In order to get an idea of the scope, we briefly discuss data-analysis in bio-
imaging in the next section.

1.3. Data Analysis in Bio-Imaging

The use of imaging techniques in biology is currently undergoing a revolution [7]
with the availability of all new kinds of biological imaging techniques; i.e.
fluorescence lifetime imaging, molecular imaging, diffusion-based imaging, X-ray
based imaging, ultrasound-based imaging, magnetic resonance (MR) based imaging,
etc. The in vitro and in vivo visualization of organisms, tissues, cells, proteins and
macromolecular structures is enabled.

In the laboratory, bright-field and fluorescence imaging are routinely used; while the
data from experiments is obtained by bio-imaging components. Analysis of data
from these experiments can be performed rapidly by data-science oriented scientists,
i.e. computer scientists and bioinformaticists. The data allows for data scientists to
test and validate hypothesis related to a range of phenomena, e.g. cellular and
molecular behavior, and the data can acquired in different dimensions; i.e. 2D, 3D
and time-lapse. Imaging techniques are part of the standard repertoire of a large
range of experimentation with a visual control. However, the observations in the
data, i.e. images, need to be verified and to that end computational tools are needed.
Currently, large volumes of data are more and more the norm, therefore automation
of the analysis is absolutely necessary. Such automation will result in data that
support the interpretation of the experiment and are an indispensable extension to
the imaging system (cf. Figure 1-2). Designing robust and accurate methods are
being investigated thoroughly in biosciences and bioinformatics (cf. Section 1.1, [8]).
With advances in technology leading to high-throughput systems for imaging,
methodology design becomes increasingly important.

In this thesis, we consider data analysis as an extension of the imaging system
aiming for understanding and recognizing information from biological image data.
We distinguish a sequence of three major steps: (1) image acquisition, (2) image
processing, and (3) data analysis. The acquisition is embedded in the imaging
device which makes the image data available in digital form on a data repository.
The image processing accomplishes a transformation of the raw image data to
images from which reliable information can be extracted. In the data analysis step,
observations are transformed to numbers and statistical representations so that
analysis and validation can be applied. The final step in the analysis is to infer an
interpretation from the measurements.
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Figure 1-2. Workflow of data analysis in bright-field and fluorescence imaging system

Image acquisition. In bright-field and fluorescence imaging systems, image
acquisition procedure is accomplished with a sensor array, often a CCD chip, which
has a rectangular layout (CCD camera) or a line layout (flatbed scanner). A CCD
camera is mounted on the optical system [9] whereas a line scanner is used to scan
larger surfaces such as gels. In this thesis, we use bright-field microscopy images, i.e.
cultured cartilage cells (cf. Chapter 2), fluorescence microscopy images, i.e.
cardiomyocytes fluorescent images (cf. Chapter 2) and scanner images, gels of
protein compositions from a range of cell lines (cf. Chapter 5).

For the acquisition of images, one should wish for the highest possible quality.
However, there is a trade-off between image resolution and acquisition speed. A
high-resolution detector allows imaging of objects whereas at lower resolution a
significantly higher acquisition speed can be accomplished which is necessary to
capture dynamics events. To further accelerate the dynamic acquisition numerous
amount of efforts [10] [11] [12] have been made to attempt to acquire high-
resolution images at high speed.

Acquired images will be stored in a repository. The increase of the data volume and
complexity of biological experiments has made manual-workbook or generic
databases unsuitable for keeping track of the images/data produced in experiments.
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Therefore, image annotation, i.e. associating images with metadata, such as size,
acquisition date, contents, is absolutely necessary for data provenance [22]. These
metadata are often required for the further analysis to be able to understand an
observation in context; or accomplish that an automated system can “understand”
the context.

Image processing. In imaging images are the carrier of information and the content,
at some point, should be transformed to a quantitative data presentation. Images as
obtained from imaging systems are, however, far from “clean” (noisy) and need to
be “polished”. The practical approach is to apply restoration through image
processing before the data are being analyzed [15]. The term “image processing”,
means to apply basic level operations on images. This is regarded to a pre-
processing step such as enhancement, alignment and segmentation.

A well-performed image processing strategy, to some extent, can minimize data
variation. It is, therefore, important to utilize empirical and problem-driven image
processing solutions. Referring to Figure 1-2, a specimen is imaged and modeled by
the input image f(x)=g(x)+h(x)+A, where true information g(x) is masked by
background noise h(x) and all absolute multiplicative noise A. This raw image is
then restored using an approach that employs additional images obtained at the time
of image capturing, or through retrospective shading correction. For the resulting
image g(x), also known as the foreground image, now various other processing
options are at hand: 1) a registration/alignment process producing g (x), 2)
segmentation/tracking process, resulting in an image s(x); or 3) an image
modeling/simulating block with the output y(x). After these image processing steps,
information carried within experimental raw images is now enhanced and can be
further explored.

Data analysis. From image processing we have obtained a restored image. Next, we
extract features from the image. This is essentially a data reduction; we reduce the
image elements to a set of measurements that sustain our observation. The analysis
is in the heart of the bioinformatics methodology as it presents contextual
approaches for data analysis, representation, and visualization. Image analysis deals
with quantification of the amount and localization of signal, and measuring changes
in structure over time. Data analysis can help to ensure that resulting measurements
are accurate, objective and reproducible. Moreover, data analysis supports the
further interpretation of the data by finding patterns in the data of an experiment or
relating results to other experiments. In the context of biomedical research, this is
typically the domain of bioinformatics. Commonly employed approaches involve
target feature extraction and selection, data hypothesis test and data clustering,
performance validation and visualization, as well as decision making. The
decomposition and comparison of temporal biological data is not yet fully

10
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understood [13]. In general, the data analysis in bioinformatics further augments the
impact of knowledge discovery and making good predictions from the
measurements.

1.4. Research Scope and Thesis Structure

In this thesis the capability of fuzzy systems is investigated with respect to systems
in which simplifying an otherwise complex decision is augmented by allowing more
hypotheses on the data. In the introduction (cf. Sectionl.3), we have provided a
dedicated bioinformatics data analysis pipeline, from which subjective and tedious
image interpretations are alleviated. This thesis will further address the fuzzy
systems in a number of different approaches on data measurement and develop an
understanding on how the fuzzy systems can be employed in the concepts with
pattern recognition.

The research described in this thesis is structured into 6 chapters. We have provided
an introduction in Chapter 1. Chapter 2, “Biological Image Background
Correction”, presents a strategy employing a combination of fuzzy logic and rough
set theory to constrain a morphological image processing path during the process of
image background correction.

Chapter 3, “Feature Selection Strategy in Region of Interest Mask”, illustrates a
schema of feature selection via a fuzzy criterion in a multi-objective optimization
algorithm. From this approach, sets of candidate solutions are provided to the
researchers so that they can make decisions based on their own
experiences/requirements;

Chapter 4, “Unsupervised Information Classification and Analysis”, elaborates
on an unsupervised classification technique that hybridizes fuzzy uncertainty-based
clustering method with swarm intelligence in order to find a good solution.

In these three chapters (cf. 2,3,4), the performance and efficiency of these
algorithms are comprehensively assessed using various benchmark datasets that
cover multiple facets of real-life situations. The results are compared with several
commonly applied approaches; most are considered state-of-the-art methodologies.
The evaluation and validation of these algorithms are used as a theoretical
foundation for the design of image analysis workflows for experimental data.

Chapter 5, “A Systematic Study on One Dimensional Gel Electrophoresis
Image Analysis”, employs the methodologies proposed in Chapter 2, Chapter 3 and
Chapter 4 to interpret more complex biological problems in a multi-faceted manner.
This case study presents a fuzzy-system based data analysis aiming to investigate
and understand the identity of characteristics of proteins that are distinct/ shared

11
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between different subgroups of cancer cell-lines. It further demonstrates the practical
implication of image and data analysis workflows following the fuzzy-system
designs, as promising.

Finally, in Chapter 6 conclusions are presented and from a discussion an outlook to
the further application of the fuzzy systems is further described.

12
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Chapter summary

Light microscopy is one of the important techniques in bio-imaging data analysis.
The measurements obtained from images provide information on the concentration
of molecules in cells, tissues, as well as whole mount. Microscopy images as they
are acquired are not ideal; images, specifically shapes and textures often suffer from
an uneven background due to flaws in the illumination. The presence of
inhomogeneous noise in images, which mostly attribute to factors related to the light
path between camera and microscope, can significantly impact the accuracy of
downstream measurements.

In this chapter, we seek to contribute to quantitative improvement on the quality of
light microscope readouts based on the proposed Dam-Constrained Background
Correction (DCBC) method. The strategy we present employs a combination of
fuzzy logic and rough set theory to constrain a morphological path at the moment
background correction process takes place. To illustrate the competence of this
method, a state-of-the-art shading correction based on entropy minimization (EMI)
and the frequently used morphological rolling ball method (RBA) are compared via
applications on three typical datasets. The reported results and extensive numerical
analysis indicate an applausive performance on the proposed method.
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2.1. Introduction

The study of biological phenomena using light or fluorescent imaging has
transformed optoelectronic signal from a qualitative localization test to quantitative
tools for functional analysis. These give rise to, for instance, features such as
distance, area, velocity and intensity. A digital image of a specimen is created by the
detector in an optical system. Inevitably, errors occur in the process of image
acquisition via the specimen, the microscope or the detector itself [1]. An important
source of error is the inhomogeneity of the intensity in the background. Sometimes
the fluorescence has a shorter exposure time which will result in capturing less
emitted photons compared to a procedure of longer exposure time [2]. Collection of
fewer photons means that the relative contribution of the noise increases.
Additionally, background intensity will accumulate through the surrounding
fluorescence/ light sources, which will confound experiment’s goals. This result
leads to an undesirable contribution of the background with respect to the signal of
interests.

In order to apply quantitative measurements in microscopy, a notion of the
background must be known and, if possible, it must be removed before
measurements in the images. Henceforth, it is always desirable to correct the
inhomogeneous background beforehand. Several techniques have become available
to mitigate abovementioned problems, also known as intensity inhomogeneity,
uneven background and shading (vignetting). The common approaches serve to
reduce the amount of inhomogeneity in microscope images, are noticed as
Background Correction Processing (BCP).

The work in this chapter introduces a novel retrospective approach, on the basis of
mathematical morphology to achieve better performance in a more general way. The
proposed method is unsupervised and mostly parameter free. It employs the
concepts of fuzzy membership, and approximation of an assumption from the rough
set theory which is used to constrain an objective function. Subsequently, inspired
and improved by conventional RBA [5], a morphological “dam” is constructed to
avoid introducing a topological distortion (artefact), and to eliminate the noisy
background while producing an enhanced foreground.

The remainder of this chapter is organized as follows: Section 2.2 introduces
research related to background correction methods. In Section 2.3, the notion of
contextual knowledge is reviewed. In Section 2.4, description of the objective
function and dam-building methodology is presented. Section 2.5 provides the
experimental results of the evaluation, followed by discussion and conclusions in
Section 2.6.
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2.2. Related Work

Existing methods in microscopy for illumination-based background correction can
be applied while acquiring images (priori) or after acquisition (posteriori). The main
difference between these approaches is a priori correction employs additional
images obtained at the time of image capturing; while in posteriori correction, the
controlled images are not available and therefore an ideal (hypothetical) background
model has to be assumed.

The methods of acquiring prior-knowledge usually employ the background
(illumination) images. An additional image is often made by defocusing or removing
the specimen from the field of view [3], just capturing the specimen in bright field or
dark field mode [15]. Consecutive adjusting the settings of camera and microscope
[16] is also of importance to help with resulting images. Yielding results by linear
image calculator (transmittance as the ration of transmitted light through specimen),
however, these methods cannot cope with objective shading, e.g. shading caused by
variation in specimen thickness at transmission imaging or by a non-planar surface
in reflecting imaging. More specifically, images acquired from standard or
automated microscopes, even with white (dark) referencing, are generally adequate
for visual inspection but not completely for quantitative image analysis [17].
Practically, when conditions are not carefully controlled, differences can be more
substantial and introduced to downstream evaluations.

Various approaches, namely retrospective (posteriori) correction, have been reported
to extract the characteristics of background from a single image that depend on
nothing but the actual images acquired during experiments. These methods mostly
manipulate the data in both time-domain and frequency-domain using different sorts
of filters, e.g. low (high)-pass-filter, linear-filter, compensated Gaussian blurring, etc.
[18]. The drawback of these methods, however, is the limitation of the object size
and the comparative background scale. The background is assumed to be either
darker or brighter than the foreground. Moreover, the overlap of objects with the
background is kind of forbidden in restoration, otherwise the mixture of foreground
signal will be eliminated while applying the corrections in the frequency domain.
Meanwhile, a mathematical morphology structuring element based on the image
landscape has been introduced [4] [21] [19], i.e. the rolling ball algorithm. With a
pre-defined radius, a virtual ball rolls over the ground of the topographical pixel-
landscape. Each pixel that contacts with the surface of the ball will be selected for
further processing. These methods, however, have limitations in that they are
imprecise in the estimation of a solution and portray uncertainty in the control of the
path in the application of microscopy image sets. Another technique [2] [20] which
assumes that the image background is more homogenous relative to foreground, and
estimate a correction function over the background regions from original images.
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Ideally, it is better to correct the images with a priori method as all retrospective
approaches make assumptions over the image characteristics that are unlikely to be
strictly satisfied in any arbitrary image. However, one should be aware that the
reproducibility of acquiring sample images for priori correction requires laborious
manipulation, while errors can be even introduced. In this manner, a way more
efficient and feasible retrospective DCBC method is proposed in this chapter.

2.3. Primary Notation
A. Fuzzy theory bound

The notion of fuzzy set was firstly introduced in 1965, and pioneered by Zadeh [7],
fuzzy logic-based system have been successfully utilized into various application
areas. A fuzzy set is the class of objects that contains consecutive grades of
membership, with which value ranged from zero to one. This index assigned a
“fuzziness” characteristic to the set, meaning a level of belonging. Particularly, a
conventional set, referred to as the crisp set (commonly used in k- and/or c-means)
will have either a value of zero or one; i.e. a Boolean value. The fuzzy membership
function can be written as:

Ha:U - [0,1] Equation 2-1

Where A denotes the fuzzy set, and the mapping function g, is the membership
function of A, while U is the universe.

B. Rough theory bound

Proposed by Pawlak [8], rough set theory is an approach to assess imprecision and
uncertainty. Objects in the universe characterized by the same information, or
knowledge are indiscernible (similar) in the view of available information about
them. The concept of the indiscernibility relation is the mathematical basis of rough
set theory.

An information system is an aggregation S= (U, A, V, ), where U is a non-empty
finite set of N objects {x;, x,, ..., xy} called the universe, and A is also a non-empty
set of attributes. V is a value set such that a: U — V, for every acV. With every
subset of attributes B from A, we have BE A. We define an equivalence relation on
U as:

I(B) ={(x,y) eUXU:fu(x) = f,(y),Ya€B} Equation 2-2

Elements belonging to U that can satisfy this equation (relation) 1(B) are objects with
the same value for attributes B and therefore, these objects are indiscernible with
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respect to B. Moreover, an equivalence class containing the element x will be
defined as 1(B)(x), in short B(x). The classes of the equivalence sets are the basic
concept of B. Given any subset of attributes B, with concept of XU can be
approximately defined by employing two exact sets respectively referred to as the
lower and the upper approximation sets:

BD,(X) = {x € U: B(x) € X}
BD*(X) ={x e U:B(x) N X # 0} Equation 2-3

Assigning to every subset X of universe U, a subset BD, (X) is referred to as the B-
lower approximation of X, which can be classified as elements of X in the concept of
B. While BD*(X) is the upper approximation which elements most probably belong
to X given the knowledge B. The exactness based on the approximation set can be
expressed by:

_ |BD.(X)] c o
ag(X) = 500’ forX #0 Equation 2-4

This equation is referred to as the accuracy of the approximation, where |.| denotes
the cardinality of the sets. The accuracy measure captures the degree of
completeness of the knowledge about the set X. According to the extended report in
[9], we obtain a measurement of the roughness index by rewriting the Equation 2-4
as:

pr=1—ag(X) Equation 2-5

From this normalized definition it holds that for every B and XS U, if p,.= 0, then
the boundary region set X is empty. From this moment on, X is notated as B-
definable, e.g. X is a crisp set with respect to the knowledge B. Otherwise, if p, > 0,
then this means X is B-undefinable, e.g. X is rough or uncertain with respect to the
knowledge B.

2.4. Dam-Constraint Background Correction Strategy
A. Classical rolling ball concept

The quantitative measurement of (pixel-) intensity is a mixture of signal and
background noise. It can be well estimated by measuring the local background pixels
in the region of interest [10]. This procedure can be written as:

TLZkag

__ xM—Nopj Zn:l Fpkg -
Fobj - Zm:l Fobj - Nobj Tkg Equation 2-6

Where F is the fluorescent signal measured at each pixel (m, n), obj is the object,
bkg is the selected background area or volume, and N is the number of pixels in the
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selected object or background. This equation describes the framework of the RBA
approach by computing the contribution of the background noise per pixel. By
taking both advantages, we aggregate the classical RBA algorithm with the concept
of fuzzy logic and rough theory to the image domain.

B. Selection of crest and toe for dam

Tedious signals are introduced often attribute to over-processing. The main goal of
constructing a “dam” in DCBC method is to constrain the path of the morphological
ball rolling into either the valley or summit image landscape, which does not meet
our anticipation (selection of proper background). In this manner, a dam with crest
and toe are established. This can be formulated into a bimodal threshold modelling
on the basis of the composition of objects in the microscope images (cf. Figure 2-1
for instance, which objects foreground are assumed to consist of foreground and
sub-foreground). Under the constraint of a dam, original information of a local
region of interest will be preserved as much as possible, while over-segmentation
will be limited (cf. Figure 2-2).

For a local region of interest, we have to obtain the multi-threshold values in order
to construct a dam with a certain crest and toe in the image-landscape. Let x,,, be
the pixel value with respect to the region size mxn, and will obtain two average grey
levels.

1
to = ?Zmanmn o Xmn <t
1 .
t; = 72,,1 YnXmn, Xmn>t Equation 2-7

where, i and j denote the number of occurrences of x,,,, according to the threshold
intensity-level t, and i + j = m X n. Given by an initial threshold value t, the two
average intensity-levels, t, and t,, can be considered as a local background. In this
manner two sets X, , X are obtained with element x. The relationships of the pixels
are x X, while their corresponding region should be directly depended on the
change of the pixel values and the change in the local background. With respect to
the membership function, taking the condition of these properties into account, we
observed that the smaller the difference of the element pixel and its corresponding
local background value, the larger the output of the membership will be. Notice that,
it is expected one element should either belongs to set X; or X; . Consequently, this
will result in a membership output value in an interval of 0.5 to 1. It is clear that the
membership value equals one only if the element belongs to a crisp set, while it
should also be monotonous within the domain of definition. With these notions, we
thus obtain a piecewise function g(x) and its convex formulation py:
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I‘:ch__]ijin’ Ymn <t
gx) = Equation 2-8
Xmn—t1
Imax_lmin’ xmn 2 t
x (o) = 5 [(g () = 1)? +1] Equation 2-9

The L,qx and L,,;;, represent the maximum and minimum image intensity value. For
a given value t, the membership value uy is in the interval [0.5, 1]. Moreover, the
membership function uy has a convex shape in a line plot; this introduces a slight
change of slope near 0.5 with much vagueness near the fuzzy centre (value 0.5), and
a dramatic change of slope near 1 with a fast rate of convergence near the crisp point
(value 1).

By definition, the fuzzy set is known as an approach to access the quantitative
analysis of membership between the elements and sets. To this regard, we can obtain
a performance measure of the fuzzy set segmentation result. This provides a better
image landscape than the uniformity evaluation method. This is because uniformity
is an index of indicating a degree of variance in a segmented region and the mean
values belonging to this region. However, a shape evaluation is summary of a
generalized gradient value for every pixel by checking the relationship between the
determined threshold value and the grey values of its neighbouring pixels.
Consequently, the more appropriate the threshold is chosen, the better the
representation of resulting image landscape will be accomplished.

We assume that for the proposed bimodal thresholding method, the results of the
first segmentation will separate the background and foreground, thereby containing
the objects of interest. Then in a second segmentation of foreground, boundary
domains (sub-foreground) will be isolated from objects. This procedure, for a better
understanding, could take place when referring to cell cytoplasm and cell nucleus in
cell microscope images. For our applications, the most likely shape we therefore will
obtain is one in which all foreground pixels should contain cytoplasm and nucleus
(cf. Figure 2-1). Successful partition of the nucleus from the maximum shape is
required to define the boundary between the cytoplasm and the nucleus. Henceforth
an upper-approximation set can be made as the pixels belonging to cytoplasm,
whereas the nucleus is the lower-approximation set.
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<«—+————— Background (The set of objects U)

Cytoplasm  (upper-approximation)

. \ nucleus (lower-approximation)

Figure 2-1. Illustration of rough-set reflection in a cell image. Boundary region is a
subtraction of cytoplasm (yellow) by nucleus (red) region, while background (white)
remains the same.

The upper-estimation of the rough set is estimated by assessing all neighbouring
pixels for each pixel in the local region of interest:

2 1 .
Pupper(x' y) = \/_5(2?21 |Pn—neighboring — P(x, Y)lz)z Equation 2-10

where n is the number of n-neighbouring pixels for each pixel. Practically, n=8
outperforms the other settings in our examination. The upper-approximation set is a
collection of all points, which possibly belongs to one segmented region. In this
manner, a correlation of spatial information with respect to those who have same or
similar values is set up. The lower-approximation set contains original pixels that
definitely belong to a class of known intensity, and therefore the roughness index p,
can be formulated as:

P(x,y)

Pr= 1= aB(X) =1- Pupper(xry)

Equation 2-11

The value of roughness index is large when the cardinality of the upper-
approximation is larger than the original pixel value in the selected position. This
typically occurs when there is large variance of the selected pixel with respect to its
surrounding pixels; i.e. the intensity variation dramatically changes if there exists a
boundary between two objects or regions. In other cases, the roughness index will be
small, e.g. close to zero, as there is no significant change of intensity around a
selected pixel.

After the two membership functions have been defined, they are combined by using
a decision function, such as a parametric aggregation operator from the fuzzy set
theory [11]. To simultaneously satisfy abovementioned criteria, while taken both
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advantages from fuzzy logic and rough theory, it is of great importance to aggregate
using the product t-Norm operation.

px(x) = A(x) = pr (x) D g(x)
Subjectto  A(x) = [Tk, ¢, (%) Equation 2-12

where @ ' is the aggregate operator and L=2. C; and C, correspond to p, (x) and
g(x) respectively. In this manner, a bi-objective function is aggregated into single-
objective one for satisfaction. Note that, regarding to Equation 2-8, which consists of
two partial equations that are depending on the local background, as well as on a
temporary threshold t. It is essential that a correlation index allowing a membership
function uy continuous weighting at local domain of definition. Therefore, we
introduce a correlation function by taking the minimum and maximum intensity
level into account, and weight each component of membership function uy as:

A= 2. ImaxZImin Equation 2-13

2 Igiobal max

In Equation 2-13, I,y and I,,;, are the maximum and minimum value of local
region respectively, while Ig;opa; max IS the maximum value in whole image. It is
easily seen that the value of A will be in [0, 0.5]. Afterward, the bimodal
thresholding cost function can be formulized as:

.L‘X(xmn) = Pr (X) @ (/\ : gxmn<t(x) + (1 _A) . gxmnzt(x)) Equation 2-14

The appropriate measurement of uncertainty is the key to evaluate the degrees of
vagueness whereas an element (pixel) belongs to a certain set (region) or not.
Several approaches have been reported in recent decades, but in our case, we
propose an evaluation based on Shannon’s function to solve abovementioned
uncertainty problems. From the information entropy theory [12], the measured
entropy of the vagueness can also be experienced within a slightly changed
definition:

E(X) = 5o Yom Bin S (1 (Xmn)) Equation 2-15

MNIn2

Where M and N represent the size of the selected local region. Note that the given
Equation 2-15 is monotonically decreasing in the interval [0.5, 1], but monotonically
increasing in the interval [0, 0.5]. Hence, it is possible to minimize the lowest energy
of the region rolled by the RBA ball path through Equation 2-15, while the
definition zone is set to the interval [0.5, 1].

! To avoid confusion of the @ symbol used in morphological processing as dilation operator.
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C. Dam construction strategy

Background illumination correction based on mathematical morphology approach
aims to find an estimation of illumination imperfections. For a “ball” rolling under
the image landscape, it holds that those pixels the ball cannot touch will be kept in a
smoothed foreground; e.g. the local minima and the peak. The smaller the radius of
the ball, the deeper the topographical shape can be touched, and vice versa (cf.
Figure 2-2). With the existing rolling ball (RBA) method there are some problems
that effectuate uncertainty and imprecision in the resulting image. This
morphological selection, attributing to over segmentation, will result in a loss of
energy and details in the original image. To that end, the proposed method intends to
produce a much smoother image and eliminate the artefacts by employing local
threshold values t, and t; conducted from the results of minimization of local
entropy, i.e. indicating the crest (t,) and toe (t;) of the dam.

— Workpiece vault dam construction
—— Rolling ball

—%— Erosion envelop
"""" Selected background

foreground remaining

f _i'u_ﬁ‘
Y
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(a) Conventional Morphological BCP (b) Inllustration of constructing dam in 3D landscape
h
foreground remaining
—— Workpiece
—— Rolling ball

"""" Selected background without dam-constraint
— Selected background with dam-constraint
- - = Morphological dam

W

(c) Dam — constrained BCP
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Figure 2-2. Process of constructing morphological dam in a 2D/3D image landscape.
The ball path, with a predefine radius R (usually set in a range from 50 to 500 pixel), in
either red line or dotted line depicts a solution of background selection. (a) classical
rolling procedure of RBA in selecting background signal; (b) In a local region of
interest, a vault dam is built with regard to local bi-thresholding values. The surface of
dam is constructed on the basis of inversed equation (6). However, the extreme values
are controlled by both t, and ¢,; (c) illustration of background selection by means of
approaches with and without dam-constraint, respectively.

Intuitively, the morphological ball in the proposed DCBC method, will not roll into
the convex area, in which this region of interest is recognized as foreground. In other
words, a suppression will occur if the ball is forced to rolling into the region with
grey level between t, and t;; and completely forbidden in the area with grey value
higher than ¢, (cf. Figure 2-2). Be aware that, the smoothing factor of the foreground
during morphological subtraction is relative to the radius of the rolling ball. Unlike
the existing algorithm, which requires to be tuned for every step before adapting the
ball to the object of interest, the proposed method is more robust as it includes an
adaptive radius. The local region of interest is chosen as a sliding window with half
the size of the original image, i.e. length and height is m/2 and n/2 respectively.
Therefore, the radius of the ball is practically in an adaptive way, set as the minimum
(m/2, n/2). The procedure of proposed DCBC protocol is illustrated as in Figure 2-3.

Morphological Ball ’ Background Correction

Dam
Constraint
.Fuzzy Upper Bound
Rough: _
oug. nes.? Bi-objective Function .. wif DTl
Approximation : :
Aggregation .
ce oo 000 Cptimize
e & o & o o o. Fungicon
Fuzzy ® _ Rough Lower Bound
Membershi °
embership .. of Dam-toe (t;)

Figure 2-3. Workflow of proposed DCBC approach.
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2.5. Experimental Results
A. Data acquisition

In order to assess the performance of proposed DCBC approach compared with
state-of-the-art EMI and typical RBA method, characteristic images are employed.
Image Set 1 is typical bright-field imaging, depicting cartilage cell cultures with
bright background (256 x 256 pixels, 16 bit); these images were acquired with the
standard Zeiss Bright Filed microscope. The other sets (set 2 and set 3) are typical
multi-channel fluorescence sets depicting cultured cardiomyocytes with dark
background (1024 x 1024 pixels, 8 bit; and 4704 x 3584 pixels, 8 bit); these sets are
acquired with the BD-Pathway Imager [6]. Each dataset contains 12 samples in
different growth stages. The evaluation methods are then implemented in qualitative
and guantitative terms.

B. Qualitative tests
1) Artefact removal:

Information utilized for the further processing is actually kept in the background and
artefacts are enhanced as well. Artefacts from the connection will, in general, occur
between the edge or the corner of an image due to the start centre of conventional
RBA and results in an embedded effect of the rolling ball. This is shown in Figure 2-
4. (b) as irregular high energy (green and red) in shading image. The rectangular
region in image domain, reflects a significant change before and after BCP
procedure in image.
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Figure 2-4. Artefacts removal of cardiomyocytes cell image cultures. (a) Original image,
diagonal (along the yellow line) profiling plot and global pixel histogram. (b) and (c) are
the strategies of background correction with the resulting shading, diagonal profiling
plot and global pixel histogram, RBA and DCBC respectively.

2) Multilevel background subtraction effect:

A well performed BCP procedure would eliminate background signal that present in
the image, while preserving the valuable (foreground) signal. Figure 2-5 illustrates
the performance of three methods on image sets of cartilage cell cultures (2 weeks, 4
weeks and 7 weeks respectively). The original and the corrected image samples are
in the first column, the corresponding surface diagrams (15% Gaussian smoothing
processing) are shown in second column, while image global intensity profiles are
depicted in the third column. Note that the specified surface plot in Figure 2-5
describes the ability of remaining all information in original foreground and the
smoothed and evenly distributed background.

The partitioning of differences in background illumination and foreground is quite
difficult in most of the fluorescence and bright-field microscopy images. However in
the proposed DCBC method, the information is retained better on the basis of
bimodal thresholding strategy, while the distribution of the global intensity is more
coherent.
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Image Surface-gram Histogram
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(d) DCBC processing

Figure 2-5. Qualitative comparison of different background correction methods in
terms of distribution of grey histogram.
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C. Quantitative evaluation

To gain insight in proposed method, a widely acceptable index referred to as
Coefficient of Joint Variation (CJV) [13] is utilized. The CJV is characterized by
invariance to uniform transformation, i.e., multiplicative and additive illumination.
This can be extended to a bimodal formulation:

CIV(Uy, 1) = [u(ly) — u()] oUy) + 0(1y)] Equation 2-15

Where, CJV is the sum of the standard deviations of images before I, and after I,
BCP procedure, normalized by the difference of their means. The performances of
background subtraction methods are quantitatively evaluated compared with a
baseline value, which is computed by the variation of global intensity in the intact
(original) image. This can be derived as a limiting form of Equation 2-15 as:
CJ]Vgasetine (1) = [u(I1)]" [o(I;)], where post-processing image is regarded as
shading-free (global intensity is zero in fluorescence image type, or max-bit value in
bright-field image type; while standard deviation equal to zero as well).
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Figure 2-6. Performance of three methodologies compared with baseline on three
different datasets (a), (b) and (c) respectively. The CJV values are accordingly
evaluated and visualized in (d)

The results of background correction are illustrated in Figure 2-6, in which each
subfigure stands for one data set. Three representative under-evaluated
methodologies, i.e. entropy minimization for shading correction (S-C),
morphological correction in RBA (M-C) and proposed DCBC approach (P-S) are
compared with baseline value (B-L). In a case of light microscope images after BCP
procedure, an ideal distribution of image variation should have smaller global
intensity to guarantee background signals are well-eliminated; while global
deviation should stand, at least not larger than the intact image to make sure that
there is not any tedious signal is introduced. This means that the methodology
obtaining the smallest CJV value that outperforms the others. Given by box-
whiskers diagram in Figure 2-6 (d), the statistical variation of CJV is then
investigated.

From all independent runs, we obtain the average performance of 12 samples for
each datasets in terms of CJV value and shown in Table 2-1. The computing time is
then illustrated in Table 2-2 for systematically comparison. The best performances
(except baseline index) are marked as bold italic in each table.
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Table 2-1. Performance of background correction strategies of three dataset in CIJV
index

Setl Set 2 Set 3
AStd  Amean AStd Amean AStd Amean
RBA (M-C) 0.4489 0.6431 0.3391 0.8029 2.9065 23.688
EMI (S-C) 6.5609 11.4812  4.2305 12.4983 51.1308 105.7754
DCBC(P-S) 0.3547 0.5428 0.2541 0.6144 2.1814 13.7637
Baseline (B-L)  0.1390 0.2808 0.1058 0.3388 0.6952 2.7300

Table 2-2. Time complexity in average (seconds)

Set 1 Set 2 Set 3
EMI (S-C) 58.67 167.23 458.73
RBA (M-C) 1.84 2.54 4.01
DCBC(P-S) 1.59 3.22 6.15

2.6. Discussion and Conclusion

The impacts of the qualitative comparison of BCP procedure performance are shown
in Figure 2-4 and Figure 2-5. These results suggest the following evaluation: (i) In
Figure 2-4. (c), compared with (b), shows a much better result in terms of the
elimination of artefacts signal (removal of square-like high energy region). (ii) In
both the red rectangle region in diagonal intensity plot and shown in global pixel
histogram, the proposed method kept most information and the intensities across
region (slope in the 2D line change) are enhanced for further analysis. (iii) In Figure
2-5, resulting images of visualisation of cartilage cells are shown, where EMI
processing eliminates less background than other methods do. (iv) Image after
DCBC processing is shading-free, while has clearer and smoother foreground shape
that contains all relevant signal. The dam- constraint strategy prevents the over
elimination of mixed illumination, and then a more unambiguous and complete
cartilage contour can be seen by visual inspection.

The statistics of the three tested approaches can be investigated via Figure 2-6, Table
2-1 and Table 2-2: (i) Evident differences of CJV expression are observed from
Figure 2-6 (a) to (c); the likely ranges and interquartile ranges of variation indicated
in figure 6 (d) suggests a better performance of proposed method on the three
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datasets. (ii) All methods are accomplished in successfully reducing background,
while DCBC method always produces better results in terms of smallest CJV value;
specifically in set 1 and set 2, a significant improvement can be noticed with a value
change of CJV of more than 50%. (iv) Compared with the baseline in Table 2-1, it
can be observed that BCP procedure is essential and efficient by removal of noise
and redundancy. (v) Proposed method always has a lower CJV value on various
datasets, while has a lower time complexity in set 1. (vi) On the basic definition of
prevalent EMI method, a retrospectively procedure for estimating shading
components consumes a large time budget in application; while convergent
parametric components play a role in equalizing original image, meaning a lesser
variation compared with intact image and mostly unchanged global intensity. This
results in an insufficient elimination of background in fluorescence and bright-field
images, and yielding relatively larger CJV value. (vii) In the proposed method, a
dam is erected to constrain a path by utilizing both the fuzzy and rough set
framework. The membership function of fuzzy logic can handle overlapping
partitions; whereas the lower and upper approximations of rough sets can
characterize the vagueness and incompleteness in its bimodal class definition. This
results in smoothing of the foreground information and a global minimization of the
image intensity, while there is not tedious variation introduced.

In this chapter, we propose a Dam-Constraint Background Correction (DCBC)
algorithm, which is a novel hybridized approach. The algorithm successfully
overcomes the drawback of existing method and includes fully automated data
driven parameter tuning. With the innovated morphological concept in image
domain, namely “dam-constraint”, the proposed method outperforms the widely and
commonly utilized RBA algorithm and the EMI method in both qualitative and
guantitative tests. The new method is very promising for application to microscopy
images in which further analysis is hampered by undesired effects to background
illumination. The subsequent processing steps in proposed data analysis track will be
further illustrated in next chapters.
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Feature Selection Strategy in Region of Interest Mask

This chapter is based on the following publication:

Cai, Fuyu, et al. "Fuzzy Criteria in Multi-objective Feature Selection for Unsupervised Learning."
Procedia Computer Science 102 (2016): 51-58
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Chapter summary

Feature selection, a procedure in which most informative variables are selected for
model generation is an important step for pattern recognition. It is also a crucial step
that converts information acquired from a bio-imaging experiment to quantitative
data representation. In this effort, one often tries to optimize multiple criteria such as
discriminating power of the descriptor, performance of model, and cardinality of
subset.

Therefore in this chapter, a fuzzy criterion in multi-objective unsupervised feature
selection by applying hybridized filter-wrapper approach (FC-MOFS) is proposed.
These formulations allow for a way more efficient approach to pick features from a
pool; and to avoid misunderstanding of overlapping features via crisp clustered
learning in a conventional multi-objective optimization procedure. Moreover, the
optimization problem is solved by using non-dominated sorting genetic algorithm,
type two (NSGA-II). The performance of the proposed approach is then examined
on six benchmark datasets including multiple disciplines, and different number of
features. Systematic comparisons of the proposed method and representative non-
fuzzified approaches are illustrated in this work. The experimental studies show a
superior performance of the proposed approach in terms of accuracy and feasibility.
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3.1. Introduction

Feature selection (FS), in some areas also referred to as dimensionality reduction,
deals with selection of one or several optimal sets of attributes that are necessary
and/or essential for the recognition process. The main idea of FS to choose a subset
of available features that are used to predict the entire population is threefold, i.e. to
overcome: (i) working with sets of data with high dimensions and scale to practical
and computational proportions; (ii) effects of noise, irrelevant and redundant
features that otherwise hinder correct and efficient analysis; (iii) feature dimensions
exceeding the sample size as it will induce bias in statistical analysis [1].

The challenge of FS is to decide a minimum subset of features with little or no loss
of classification/clustering accuracy. This can be formulated as a multi-objective
optimization (MOO) problem. The task is the selection of relevant features,
elimination of redundant features, and minimization of selected set cardinality. To
date, a range of MOO-based FS techniques have been reported [14]. Cross-
applications the related FS approaches can be categorized into four groups:

o Filter-supervised, i.e. class-labels known: features are selected based on their
discriminating power with respect to the target classes.

o Wrapper-supervised, i.e. class labels known: subsets of features are evaluated
from a classification, at the point where comparison of resulting labels and
actual labels occurs.

e Filter-unsupervised, i.e. class-labels unknown: features are ranked from the
performance histogram of all feature dimension vectors and one or several
criteria are chosen for deciding a group of features.

e Wrapper-unsupervised, i.e. class-labels unknown: computation of the subset of
features is applied in terms of the performance of a clustering algorithm. In this
case, tuning of parameters in clustering process will contribute in obtaining an
acceptable subset of features.

The search for proper supervised predictors can usually be regarded as a pursuit for
optimization, where the number of wrong-predicted operators for a known dataset
should be minimized [2]. However, figuring out a similar criterion for validation in
unsupervised schemas is a difficult task [3]. It cannot be relied upon that a new-
found pattern obtained by optimizations resulting from an unsupervised algorithm, is
able to decide if a given pattern is trustful or not. To some extent, the validity of
pattern discovery is depended on a priori knowledge and intentions of decision
makers. This brings us to the assumption that one often desires to employ
unsupervised learning schemas in order to produce several candidate solutions for
users. Additionally, some tasks in FS, cover inherent data groups and thereby omit
features which might reveal the nature of hidden patterns. Therefore, the
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unsupervised-based multi-objective heuristic optimization algorithm is becoming an
attractive approach, that has been given and increasing attention this decade.

There has been reported on development of evolutionary algorithms for multi-
objective (MOEA) for unsupervised feature selection [4]. Oliveira, et al. [5]
proposed a Pareto-based approach to generate a so-called Pareto-optimal front in a
supervised context. Sensitivity analysis and neural networks (NN) enable to
representative evaluation of fitness values. About the same time, Kim, et al. [6], used
k-means clustering and Expectation Maximization (EM) as embedded unsupervised
approach to evaluate a feature subset encoded in chromosomes. The MOEA
employed in this case is called evolutionary local search algorithm (ELSA). With
these results as a starting point, research of unsupervised learning in feature
selection was expanded. Morita, et al. [7] used the k-means clustering algorithm in a
wrapper approach, which was encoded with Non-dominated Sorting Genetic
Algorithm, type two (NSGA-II). Moreover, two objective functions, i.e. the number
of features in a set, and a clustering validation (e.g. Davies-Bouldin (DB) [8]) index
are introduced. Handl and Knowles [9] examined different combinations of objective
functions and Mierswa [2] investigated different indices, i.e. the normalized DB
index. More recent work [10] stated that their multi-objective unsupervised feature
selection algorithm (MOUFSA) outperforms several other multi-objective and
conventional single-objective methods, by using redundant measurements and
negative epsilon-dominance. In addition, three new mutation methods are designed
to enhance MOUFSA.

However, the defined criteria in classical objective functions used in unsupervised
MOEA, fail to predict the performance of clustering results, i.e. the overlapping
information (features) in-between classes which probably highlights the essentials
that are shared within these classes. To solve this problem, we employ fuzzy criteria
in a hybrid filter-wrapper approach. Pioneered by Zadeh [11], fuzzy logic-based
systems have been successfully utilized to various application areas, e.g. control
system and pattern classification [12]. The comprehensibility of fuzzy criteria,
namely the linguistic interpretability of fuzzy partitions and the simplicity of fuzzy
if-then rules [13], makes it a promising method to access qualified optimization in
MOEA when employed into unsupervised learning. Although fuzzy criteria are
addressed in a supervised manner [14], it rarely has been reported in unsupervised
cases, in which the natural patterns are discovered according to fuzzy clustering
validity and fuzzy objective functions.

In this chapter, FS procedure is optimized using the generic heuristic search
algorithm NSGA-II, and fuzzy criteria are employed in both filter and wrapper
approaches. In the unsupervised learning procedure a new fuzzy index is specifically
proposed as one of the objective functions. The target functions are: (i) value of
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Correlation Membership Measurement (CMM); and (ii) cardinality of feature subset.
Here we intend to contribute to the further development of the hybrid methodology,
by realizing a sensible integration of fuzzy criteria and MOEA approach in FS area
This methodology is applied to a wide set of benchmark datasets and it is compared
with commonly used approaches to show its general applicability and competitive
advantages.

The remainder of this chapter is organized as follows. In Section 3.2, we introduce
the methodology including application of fuzzy criteria and fuzzy model in FS;
subsequently, the utilization of NSGA-II in an unsupervised context is presented. In
Section 3.3 experimental results are given and Section 3.4 conclusions are presented.

3.2. Methodology
A. Fuzzy entropy in filter-approach

In information theory, entropy is a measure of chaos or uncertainty associated with
the variables. The concept of entropy has been defined in various ways and used in
different fields; fuzzy logic is becoming commonly used in the estimation of
entropies. On this basis, we propose an approach embedding fuzzy c-means (FCM)
[15] clustering algorithm to estimate the fuzzy entropy by automatically computing
the feature memberships. To depict the level of similarity, the feature membership
index assigned with a fuzziness characteristic that can be expressed as:

djjo—2— .
u;j = (Zﬁﬂ(aj,-)mf_l) 1 Equation 3-1

Here mf € (1, o] is a scalar that is termed fuzzifier for FCM, and d;; is the product
norm distance from object a; € a,ay,...,a, , to the cluster centroid v; €

Vi1,V ..., Uy . This membership function is subject to the following objective
function:

]fcm = ?:1 Z:’il dij (uij)mf Equation 3-2

In this manner, according to De Luca and Termini [16], the fuzzy entropy can be
defined as:

H(uj(x)) =

5 Ty~ (O g @) — (1 - 4 ()L - ()
Equation 3-3

In Equation 3-3, u;(x) denotes the membership index of the " feature in the feature
pattern vector, meaning every individual feature entropy is computed along all the
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samples x. Subsequently, the entire set of features is ranked for guiding the
optimization procedure in the wrapping approach, via maximizing their
corresponding fuzzy entropies.

B. Fuzzy cost function in wrapping-approach

Multi-objective function optimization, by means of a wrapper technique for
unsupervised feature selection, relies on the use of an internal technique of cluster
validation. In other words, clustering validation techniques have been designed
specifically for the selection of the best clustering solution on the basis of its
distance performance. Sometimes the clustering performance is estimated by
considering the ratios between intra-class compactness, and inter-class separation.
As reported Handl and Knowles [9], this generally suffers from the bias of these
measurements with respect to the dimensionality of the feature space. The conflict of
this bias can be noticed when dimensionality of a given dataset is enlarged: i.e. the
mean of the distribution tends to increase while simultaneously the variance of the
distribution decreases. This will cause such a validation technique to be unable to
sensitively estimate the difference between all pairs of points, especially in a high
dimensional dataset.
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Figure 3-1. Sketch diagram for CMM. (a) In a high dimensional feature space, two
overlapping classes (A and B) with centroids ¢; and c, are projected onto two principle
component axis PC1 and PC2. S is the distance between objects and its belonging center;
d is the in-between cluster center distance. (b) After Fisher discriminant analysis (FDA)
linear projection (project onto the FDA-Component axis), the corresponding
components can be rewritten as d (¢4, c;) » ®(uy,u,;) and S+— P respectively.

To tackle this bias, we propose a fuzzy cost function, the correlation membership
measurement (CMM). This function employs both individual clustering information
and shared (overlapping) information (cf. Figure 3-1 (a)). We measure the similarity
between pairs of vectors using their scalar distance and their directions in high-
dimensional attribute space are compared via the projection onto low-dimensional
space (cf. Figure 3-1 (b)). This is defined as:

CMM = Uy, + Usnp Equation 3-4
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subject to
( U R SO+ S0)
AUB d(ClJCZ) . .
S , ieAandje B
_ 1 W1 (D= [P1()N-¥2 ()|
|Vans = 7 S Sl O 2R =0l
Equation 3-5

Where in the first term of equation 3-4, i.e. the dependent membership U, g of class
A and class B are measured, S; (i) and S, (j) are the distance of the vector i and j to
their corresponding centroid ¢, and c,; while d (¢4, ¢;) is the distance between two
cluster centroids, and ||.|| is distant norm as well. N and M are the numbers of the
elements that belong to their classes. The evaluation of performance for the
overlapping clusters can be achieved by estimating the positions of every individual
vectors in a feature subspace. In a high-dimensional domain, however, the
comparison of vectors in terms of directions and angles is not applicable. Therefore,
principle projection in FDA [17] is used to find a linear combination of features that
characterizes two or more classes. The projection matrix can be defined as:

w= Syl(c; —cy) Equation 3-6
Where Sw=0—c)—c)"+(—c)(—c)"
Equation 3-7

Subsequently, in the second term of Equation 3-4, i.e. in the correlated
membership Uy, the projected vector W and @ can be obtained by multiplying S
norm and d norm with FDA projection matrix w respectively. Moreover, one should
realize that, when applied on a real dataset, the S,,, i.e. the with-in class scatter
matrix, normally is a singular matrix and thus non-invertible. We have added a tiny
perturbation factor to prevent the projection program from being trapped and the
projection matrix is rewritten as:

w= (S, + e c; —cp) Equation 3-8

Here I is a unit diagonal matrix. The objective is to achieve proper clustering by
minimizing the CMM index. With respect to the aim of feature selection, it is more
efficient and direct to use the cardinality of feature subsets as a second cost function.
However, one can observe (cf. Figure 3-3) that the CMM value decreases with
increasing feature numbers. Therefore, a constraint is that at least one feature count
in the second objective function should be set.
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C. Bi-objective optimization

In the previous section, two objective functions (the cardinality of feature subsets
and Equation 3-4) are formulated as quality indicators for the feature extraction
procedure. Those two objective functions are conflicting and form a combinatorial
bi-objective optimization problem. Therefore, we aim at searching for the Pareto
front [20], which represents the non-dominated solutions of the proposed feature
selection procedure and which can be used to assess the trade-off. In order to
achieve this, Evolutionary Multi-objective Optimization Algorithm (EMOA) is
adopted due to its capability of handling combinatorial problems. We specifically
utilized the well-known NSGA-II [22] algorithm (Non-dominated Sorting Genetic
Algorithm) which is the multi-objective extension to the classical Genetic Algorithm
[23]. NSGA-II has the ability to generate well-spread Pareto fronts with relatively
low computational overhead and it is proved to be robust in real-world applications
through numerous testing and applications. In this chapter, we omit the detailed
discussion on the optimization procedure and use NSGA-II as a ‘standard’ multi-
objective optimizer.

As we are dealing with combinatorial optimization problem, discrete Pareto fronts
are obtained from NSGA-II, in which each point on the resulting Pareto front
represents a candidate feature subset. Each candidate solution will be used for the
clustering algorithm and the one giving the best clustering performance (cf. the
performance indicators in Section 3.2 B) is chosen. Note that the functionality of the
bi-objective optimization is to pre-screen the ‘bad’ candidate solutions (Pareto
dominated feature subsets) from all the possible solutions, leaving the Pareto
optimal candidates, the number of which is very small compared to the entire
number of solution candidates, to be tested in clustering.

Combining fuzzy entropy in priori evaluation of feature sets in filtering approach
and fuzzy criterion in objective function in wrapping approach, the proposed FC-
MOFS algorithm manages to assess best candidate feature subsets using NSGA-II.
To that end, the detailed procedure of proposed methodology is shown in Figure 3-2.
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Figure 3-2. The overview of Fuzzy Criteria in Multi Objective Feature Selection (FC-
MOFS) process.

3.3. Experimental Results

The objective of this section is to assess the performance of integrating fuzzy criteria
into unsupervised multi-objective feature selection procedure. Acceptable results in
terms of developing either searching optimization or clustering validation algorithms
has been reported in a number of papers. However, for a fair and effective validation
of the proposed FC-MOFS method, a commonly used approach without fuzzy
constraint [9], referred to as NF-MUFS, is used. Additionally, all datasets are
employed in Baseline, using the full feature set. The experiments are conducted on
six publicly available datasets, representing multiple disciplines and real life
problems (cf. Table 3-1).
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Table 3-1. Dataset description

Dataset Type Size Dimension Class
Glass 214 9 6
Wine Numerical 178 13 3

WDBC data 569 30 2
Libras 270 90 15
Sonar Voice 208 60 2

UMIST Image 575 644 20

A. Parameter setting

In both FC-MOFS and NF-MUFS, the maximum generation and population size are
set as same to 100 and 25 respectively; the crossover percentage is 0.9 and the
mutation percentage is 0.4, while the rate of mutation is adaptively selected
according to the non-dominated sorting performance and expected number of local
optima. The clustering algorithm in unsupervised learning of FC-MOFS is fuzzy c-
means, which is substituted by k-means in NF-MUFS.

B. Validation of FS approach

Following previous works, three widely used evaluation metrics, i.e., Accuracy [18]
(ACC), Normalized Mutual Information [19] (NMI) and Rand Index [20] (RI) are
computed in this chapter. To gain insight in the proposed method, we investigated
some aspects that influence clustering performance after feature selection schemes.
In the filter approach, the fuzzy entropy feature selection runs once to rank all
features for guiding the process in NSGA-II algorithm as initialization; then the
results of 20 independent runs of NSGA 11 to obtain global non-dominated features
(cf. Figure 3-3) set are tested on six different benchmarks (cf. Table 3-2 to Table 3-
4). Setting three different evaluation strategies, i.e., the application on full sample
population (f-s), random sampling (r-s) on the basis of bootstrapping, and uniform
distribution sampling (u-s), the accuracy and general capability of FC-MOFSA are
measured in overall 50 times.
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Figure 3-3. The Pareto fronts for all dataset ((a) to (f)), consisting of 20 independent
runs for each database, including 100 generations per run; the global non-dominated
sets are selected (red circle) from local non-dominated sets (blue cross). The vertical
axis is CMM error w.r.t the number of features on the horizontal axis.
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Table 3-2. Impact of fuzzy and non-fuzzy feature selection algorithms to the clustering
results in ACC index (best-row performance is marked as bold italic)

ACC = std (%)

Sampling
dataset
strategy ~ FC-MOFSA  nf ~ NF-MUFS  nf  Baseline
f-s 53.93+ 211 2 4472 £ 2.12 2 44,20 £ 4.15
Glass r-s 54.36 + 3.77 2 42.61 + 3.39 3 41.76 £ 4.43
u-s 55.50 + 4.09 2 43.36 + 2.47 1 41.85+4.81
f-s 80.34 + 3.15 2 75.28 £ 3.22 3 70.22 £2.28
Wine r-s 80.27 £5.15 2 75.20 £3.45 10 69.02x5.21
u-s 78.31£6.34 2 74.58 £ 4.97 3 68.00 £ 7.39
f-s 88.40 £ 2.38 2 83.83+£1.85 14  85.41x249
WDBC r-s 88.27 £ 2.15 2 84.38 £1.95 14 8451x211
u-s 88.37 £ 2.54 3 84.83+£234 6 84.53 £ 2.64
f-s 4779+444 16 44.44+429 20 44.81%221
Libras r-s 28.85 + 3.35 16  27.67+4.30 20 17.23+2.01
u-s 28.46 £ 4.22 16 2855+4.31 29 17.93 +2.28
f-s 57.44+299 15 5144+246 4  5529+385
Sonar r-s 59.67 + 2.89 5 54.35 + 2.30 14 5520+ 3.73
u-s 60.67 +3.34 4 54.46 + 2.70 16  56.37+£4.03
f-s 4791+4.11 167 4578+288 197 43.65+1.48
UMIST r-s 2578+239 199 2250x248 197 13.43+1.53
u-s 2556+£320 204 23.33x3.05 197 13.78+1.45
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Table 3-3. Impact of fuzzy and non-fuzzy feature selection algorithms to the clustering
results in NMI index (best-row performance is marked as bold italic).

i NMI = std (%)
dataset Sampling
strategy ~ FC-MOFSA  nf  NF-MUFS  nf Baseline
f-s 4125+435 2 33.12+263 2  39.37%542
Glass r-s 4514425 2 3514+293 2  38.60%5.08
u-s 4701+3.33 2 36.62+376 2  39.11%5.50
f-s 5237543 2 41.63+522 10 42.87%5.19
Wine r-s 53.36+064 2 4460+£486 10  44.95+6.40
u-s 5200+840 2 4409+561 7  44.95+7.90
f-s 4479+535 1 38.02+428 28 4220508
WDBC r-s 4117+501 1 3856+4.44 4 40.41+4.32
u-s 39.85+£545 2 39.90+524 6 4142525
f-s 6210+£283 16 56.36+3.33 29  60.84%3.44
Libras r-s 2598+3.00 16 2080324 16  19.93+3.39
u-s 28.85+259 16 22.67+3.39 29  22.01%352
f-s 091+081 14 091+183 4 0882087
Sonar r-s 2.53+0.71 5 182+0.79 14 1.21+0.73
u-s 284+111 4 195+147 16 1642081
fs 63.84+4.04 167 6474+483 167 63.82%1.83
UMIST r-s 2557+395 199 20.17+386 197 13.10%2.12
u-s 28.39+4.67 204 2243+498 197 14.86%1.63
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Table 3-4. Impact of fuzzy and non-fuzzy feature selection algorithms to the clustering
results in RI index (best-row performance is marked as bold italic).

: RI = std (%)
dataset Sampling
stratedy ~ FC-MOFSA  nf  NF-MUFS nf Baseline
f-s 65.49 + 2.15 2 5894+288 2  53.63+4.32
Glass r-s 65.97 + 2.17 2 58224262 2 48.89+3.60
u-s 65.59 + 2.03 2 5835+293 2  4435+158
f-s 77.86 + 3.02 1 7300+299 3  71.86+558
Wine r-s 78.03 + 3.90 1 7453+320 3  43.66+5.02
u-s 76.48 + 4.90 1 7401+410 3  4491+546
f-s 73.79 + 3.58 1 7308+299 5  75.04+2.19
WDBC r-s 74.34 + 3.02 1 7364+268 14 50.70+551
u-s 74.46 + 3.89 2 7427+326 6  50.46+5092
f-s 90.40+4.85 16 90.16+3.25 20 90.37+7.85
Libras r-s 90.68+4.76 16 91.30+4.66 29 83.87+7.87
u-s 9155+495 16 91.29+6.26 18 82.34+245
f-s 50.80 + 6.55 4 4970+6.88 4  50.32+4.19
Sonar r-s 51.11 +5.98 5 50.16 + 5.08 4 49.97 + 3.91
u-s 51.18 + 8.53 4 5014+878 4  49.99+6.42
f-s 9551+6.11 198 8851+437 197 92.80+1.48
UMIST r-s 94.69+524 199 86.95+458 167 88.01+1.04
u-s 94.40+6.65 199 89.11+512 167 85.72+1.24

53



Chapter 3

The results of bi-objective optimization are illustrated in Figure 3-3, in which each
subfigure stands for one data set. The blue crosses in the figure represent different
candidate feature subsets after the termination of NSGA-II optimizer. Because of the
stochasticity of the NSGA-II optimizer, 20 independent runs are conducted for each
data set, resulting in a ‘layering structure’ of the blue crosses. From all the
independent runs, we only selected the non-dominated ones using the non-
dominated sorting technigque. The Pareto fronts generated from 20 independent runs
are marked by red circles in Figure 3-3. Most of the Pareto fronts are convex, except
for Figure 3-3(a), in which only 3 features are present and which indicates the
existence of trade-off solutions. In addition, the points on the Pareto front are well-
spread. In Figure 3-3(c), the distribution of the points is not as good as the rest,
which suggests that using more evaluation budget in the multi-objective
optimization might improve the quality of the Pareto front on the WDBC dataset. On
the basis of our candidate solutions, the resulting Pareto fronts are reliable for using
later in the clustering algorithm.

The details of six datasets are shown in Table 3-1. The results of comparisons of
clustering performance are listed in Table 3-2, Table 3-3 and Table 3-4. The values
indicated in bold are the best results among the algorithms in the same situation and
nf denotes the number of features used in the clustering. These results suggest the
following evaluations: (1) compared with the baseline, it can be observed that the
feature selection procedure is necessary and efficient by removal of noise and
redundancy. (2) the best solutions of the proposed FC-MOFSA mostly have a higher
accuracy, mutual information and RI other than the non-fuzzified feature selection
algorithms (NF-MUFS and Baseline employment). In spite of the slightly less
performance on WDBC, Libras and UMIST dataset, the u-s and f-s value are still
competitive compared with the best results of other methods. (3) The average r-s
means that even though with less samples (information) obtained from entire
population, still, in most situations, the results of FC-MOFSA are better than those
of NF-MUFS and Baseline. (4) The proposed method, in most cases, has the least
numbers of features for prediction of the best results. In the second highest cases,
FC-MOFSA still obtains the lowest cardinality of feature sets. (5) By expressing the
descriptor of similarity in Rl and descriptor of redundancy in NMI, our method
achieves an accurate clustering performance. This is due to the exploitation of
discriminative and overlapping information in an unsupervised context. (6) The
accuracy and the similarity grouping capability of the experimental algorithms suffer
from a serious degradation when down-sampling is applied on the Libras and
UMIST dataset. The sparse distribution of these dataset complicates the
unsupervised categorization scheme. However, it is observed that FC-MOFSA is
superior to the rest approaches by uncovering the underlying patterns and possibly
skewed structure.
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3.4. Conclusion

In this chapter, we present a new multi-objective feature selection algorithm
utilizing the fuzzy hybrid filter-wrapper approach. We introduce a fuzzy criterion-
based manner in multi-objective optimization problems and thereby increase the
clustering accuracy in unsupervised feature selection schemas. The proposed method
outperforms the commonly used multi-objective feature selection method with non-
fuzzified parameters, in terms of accuracy and general capability. In addition to the
fuzzy entropy in pre-selection, we also present a new fuzzy index called Correlation
Membership Measurement (CMM), which produces superior results, particularly on
sparse and skewed datasets. This methodology engages a way that attributes can be
promisingly selected from high dimensional yet sparse and skewness dataset. The
chosen of the sets of feature candidates provides according means for decision
maker to efficiently and precisely draw prediction.
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Unsupervised Information Classification and Analysis

This chapter is based on the following publication:

Cai, F., and F. J. Verbeek. "Rough fuzzy c-means and particle swarm optimization hybridized method
for information clustering problem." J. Commun 11 (2016): 1106-1113.
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Chapter summary

This chapter presents a hybrid unsupervised clustering algorithm for biological data
analysis, referred to as the rough fuzzy c-means (RFCM) algorithm and particle
swarm optimization (PSO). The PSO algorithm features high quality of searching in
the near-optimum. At the same time, in RFCM, the concept of lower and upper
approximation can deal with uncertainty, vagueness and indiscernibility in cluster
relations while the membership function in a fuzzy set can handle overlapping
partitions. To illustrate the competence of this method, a number of state-of-the-art
hybrid methods (FPSO, Fuzzy-FPSO, RCM-PSO, K-means PSO) are compared
through application on datasets obtained from the UC Irvine Machine Learning
Repository. The reported results and extensive numerical analysis indicate an
excellent performance on the proposed method.
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4.1. Introduction

Among pattern finding methods, i.e., summarization, association and prediction etc.
[17], information clustering is of the great importance and popularity both in
research and implementation. Clustering analysis is a technique aiming at grouping a
set of objects, based on the similarities and dissimilarities between the data objects.
Clustering can be processed in a supervised, semi-supervised and unsupervised
manner and consequently it has received considerable amount of attentions from
researchers.

However, the exact number of natural groups in the data is sensitive to outliers and
local maxima or minima, algorithmic complexity, and degeneracy [11], etc., are the
sorts of issues that cause bottlenecks in the performance of a particular clustering
technique [3]. To tackle these problems, nowadays, an amount of approaches and
diverse cross-discipline theories are being proposed. Specifically, optimization
algorithms are increasingly hybridized with information clustering algorithms.

Particle swarm optimization (PSO) was first introduced in [10]. Particle optimization
evolved from swarm intelligence (SI). PSO is one the optimization techniques which
has been successfully applied as an approach to a range of clustering quests. It is a
population-based metaheuristic algorithm that is inspired by the movement of
individuals in a bird flock. PSO consists of a collection of particles, as well as rules
to update the status of those particles. The process of updating is based on the
history information of the individual and the behavior of its neighbor. Based on
these intrinsic properties of PSO, recently hybridized clustering using PSO
approaches have been widely and successfully applied in a range of different
disciplines [25], i.e., image clustering [18], network clustering [1], clustering
analysis [7], and clustering in bioinformatics [23].

Research shows that natural behavior of group animals can be successfully used as
an inspiration to solve clustering problems in natural systems [21]. Due to its robust
ability to perform a global search, approaches such as K-means, K-Harmonic mean,
Fuzzy c-means, etc., can be significantly improved with the help of PSO.
Ahmadyfar proposed [2] a new method combining PSO with the K-means clustering
algorithm, i.e. PSO-KM. An initial process is set up by randomly choosing k
centroids, and PSO operates by searching all dimensions for a global optimization.
In [6], a hybrid PSO and K-means algorithm method on document clustering is
presented. The initial centroids are constructed via PSO and subsequently, the K-
means algorithm continues until the termination conditions are no longer satisfied.
Alternatively, a faster convergent result can be produced [24] with a low
computational cost, which is based on a K-Harmonic means with a PSO-based data
clustering algorithm (KHM-PSO). The hybridization approaches in fuzzy clustering
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problems also produce acceptable results. It is stated that [22] the clustering quality
is highly correlated with the initialization of centroids in a typical fuzzy c-means
(FCM) approach. Such approach is referred to as FPSO and it results in a better
performance if centroids are initialized by PSO; traditional FCM can deal well with
the fuzzy clustering problem. Additionally, a fuzzier, hybridized FPSO method
named FCM-FPSO [12], is proposed to further reduce the minima in the objective
function. Based on FPSO, this algorithm initiates an extra FCM approach to re-
search the centroid space in order to reduce the possibilities of being trapped into
local minima. In this manner it provides a better convergence. In addition to such an
approach, fuzzy c-means algorithm based on Picard iteration hybridized with PSO
(PPSO-FCM) is proposed [14] in order to overcome the drawbacks of the typical
FCM.

The rough c-means approach has shown successful utilization in feature selection, in
addition, in clustering analysis it can also provide good results. Rough set theory is
pioneered and introduced by Pawlak [20]. Moreover, a method is proposed to
combine Rough c-means with PSO [7], i.e. Rough-PSO. In this method, each cluster
is modelled as rough set and PSO is employed to tune the threshold and the relative
importance of upper and lower approximation of the rough set.

In this chapter, we propose an efficient approach hybridized with evolutional PSO
and RFCM clustering method. We intend to contribute to the further development of
hybrid methodology, in which a sensible integration of rough and fuzzy ¢ means
approach with particle swarm optimization algorithm is realized. In clustering
problems, the principle of the membership in a fuzzy set enables efficient handling
of overlapping partitions, the lower and upper sets of rough theory deal with
uncertainty, vagueness and incompleteness in the class definition. At the same time,
PSO has the characteristic to be reasonably accurate and able to avoid being trapped
into local optima.

The remaining of this chapter is organized in the following manner: Section 4.2
gives a primary overview of RFCM and PSO, respectively. The proposed rough
fuzzy c-means hybridized with PSO method is illustrated in Section 4.3. Section 4.4
elaborates experimental results, and we conclude the chapter in Section 4.5.

4.2. Primary Theory Bound
A. Rough Fuzzy C-means Algorithm

The idea of dealing with uncertainty information in a dataset has led to a
combination of employing both fuzzy set and rough set theory. These hybridized
algorithms referred as rough fuzzy c-means (RFCM), [15], [16] and [13], have been
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widely and frequently used in real life data clustering problems. In this manner,
RFCM algorithm is elaborated as follows.

First, fuzzy c-means is used as an partition-based algorithm that clusters a set of n
objects {x,... , xj, ... , xp} into ¢ fuzzy centroids with {v4,... ,v;, ... ,v.}. The
membership index assigned “fuzziness” characteristic of a set depicted as level of
belonging, can be expressed as u;;.

2

dji \mf- _ N
uj = ( Y=t (d_,:]) I )t Equation 4-1

where mf € (1, o] is a scalar referred to as the fuzzifier for FCM algorithm and d;;
is the distance from object x; to the cluster centroid v;.

Taking the advantage of FCM, the boundary domain of a cluster is roughened
through incorporation with the approximation sets. The sets are characterized by the
lower and upper approximations R(X) and R(X), respectively, with the following
properties: (i) an object x can be part of at most one lower approximation; (ii) if x is
not a part of any lower approximation, then it belongs to two or more upper
approximations; and (iii) if x € R(X) of class X, then simultaneously x € R(X).
Based on the defined approximations, the R-positive and R-boundary are defined:

{PositiveR(in short P;) = R(X)

. — Equation 4-2
Boundaryg(in short By) = R(X) — R(X)

Consequently, the objective function of RFCM needs to be minimized and
subsequently broken into three conditional equations [15]:

wx(i Z dfj>+ax<i Z ug-lfdizj>,ifPS(Ui):#@,BS(Ui)#-'@

i=1 XjEPé‘(‘Ui) i=1 X;j€ Bs(;)
c
J=4> > d Jif Ps(w) # 8, By(v) = 0
i=1 x]'EP(s(l?i)
[

uZ.lfdizj Jif Ps(v;)) =@, Bs(v) = @
i=1 Xj€ Bs(vp)

Equation 4-3

where the parameters w and @ = (1 — w) are the weighting factors that are tuned to
balance the relative importance between the crisp region and fuzzy boundary. Since
objects lying in a lower set denote definite belongings, and will be assigned with a
higher weight w compared with @ of objects lying in a boundary set. In RFCM
algorithm, each cluster is characterized by its own boundary set and lower
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approximation, which influences the fuzziness of the final partition. Therefore, the
values of the weighting factors are given by [0, 1]. In one cluster, all data are
grouped into either lower approximation set or boundary set via a selected
attribute 8, which is practically defined as:

1 -
6= ZZ?=1(uvh|j — Ushy;) Equation 4-4

here n is the total number of objects, u,y; and ugp|; are the highest and second
highest membership indexes of object x;. The meaning of § is to determine in a
degree if one object is “close” enough to the center it belongs to. Therefore, a good
clustering procedure should have a value of § as high as possible. According to the
definitions of lower approximation and boundary set, and based on the predefined
attribute &, one object x; can be characterized as:

€ PS(vvh)
| EPS(Vsh), 6<uvh|j—ush|j
X & Bs(vyn) Equation 4-5
€ Bs(v,p)
{ 5\ "vh , SZuvhU—ushu
€ B(S(Ush)

When § < uyp j — uspj, and x; € Ps(vyy), then the impacts of the objects in lower
approximation of one cluster should be independent of in-between clusters and
centroids, and should have similar influence on with-in cluster and centroid.
Otherwisex; € Bs(vyy), the objects belonging to the boundary set in one cluster can
also have a different influence on the other clusters and centroids. Therefore, in the
RFCM algorithm, the membership index of an object belonging to the lower
approximation has to be reset as u;; = 1; while the object belonging to its
corresponding boundary set will remain w;; (according to Equation 4-1) as in FCM.
The new i™ centroid is modified using equation 4-6, which also considers the effect
of the lower and upper bounds, as well as the fuzzy membership index. In this
manner, the extended RFCM algorithm is obtained via:

~ ije Bs(vy) uﬁij )
©x (IP ()l Z X))+ & X | = |.if Ps(v) # @, Bs(v;) # @
s\Vi xj€P5(v;) ije Bs(vy) Ui
1
L= % ri Ps(U')?ﬁ@, B&(‘U):Q)
VT P J f Ps(v; ;

XjEPS(‘Ui)

N u™ x;
Xj€ Bs(wp) Yij 4j

Jif Ps(v) = @, Bs(vy) # @

mf
ijE Bs(vy) Uj

Equation 4-6
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where | - | represents cardinality operator, and the cluster centroid v; is calculated by
the RFCM procedure.

B. Particle Swarm Optimization Prototype

Particle swarm optimization is a population and generation based algorithm
modelled after the movements in a “bird flock” and/or a school of fish. Sharing of
experience and information of each individual that takes place during stochastic
optimization in PSO procedure. Every individual (particle) in the population (swarm)
of one generation is assumed to “fly”, in order to gain its own best fitness according
to its neighboring individuals and prior knowledge of its former history. In this
manner, the PSO algorithm maintains a swarm of candidate solutions of the
optimization problem, while, each candidate solution is regarded as a particle.

When particles are flying through search space, their positions adjusted that
governed by the distance from their own personal best position, as well as the global
best position of the swarm. For a swarm of n particles with D-dimension vectors, i
particle (part;) contains the following information (notations):

e pos; = (posj;, POSiy, ... ,POs;p), the current position of the i™ particle;

o vel; = (velyy, vely,, ...,vel;p), the current velocity (change of position)
of the i" particle;

e p; =i, Piz» - »Pip), the best previous position of the i" particle;
* pg, the best position of a swarm, and t = (1,2, ..., G), the current generation.
Every particle in a swarm is manipulated via the following updating equation:
velig(t + 1) = a - veliy (t) + B171[pia(t) — posia ()] + Bor [Pgd () — posia ()]
Equation 4-7

Xig(t +1) = x;4(t) + velyy(t + 1) Equation 4-8

wherei=1,2,..,nand d =1,2,..,D. In Equation 4-7, a is the positive inertia
weight, 5, and 3, are the acceleration constants, meaning the correlation between
social and individual behavior, and r;, r, are the displacement deviators in the range
[0, 1]. pia(t) — pos;4(t) is the personal influence, and pyq(t) — posy(t)is the
social influence on the global experience. At present, research on this simple PSO
concept is still being performed. Its success is given by the few parameters that are
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required for the specification of the problem, i.e. dimensionality of the data space
and few weighted factors for control of the convergence.

4.3. Rough Fuzzy C-Means and Particle Swarm Optimization Hybridized
Method (RFM-PSO)

Taking both RFCM clustering and the intrinsic properties of PSO into account, we
propose an efficient model-combined algorithm, namely RFCM-PSO. In RFCM
algorithm, each centroid is considered a vector that updates according to an iterative
operation. A representation of the centroid vectors therefore, can refer as elements in
particles. In other words, the i" particle (part;) can be defined as part; =
(v1, Vg, o, Vo, V), Where vy, i = 1,2, ..., c is the cluster center. Consequently, a
swarm in PSO represents an amount of candidate solutions of centroids in RFCM
algorithm. Thus a fuzzy membership function and roughness definitions are assigned
on every single object for its clustering decision making. For each iteration in the
RFCM-PSO procedure, the centroids in clusters change and their positions are
updated based on the particles. Several extra notations (cf. Section 4-2.B) for
RFCM-PSO need to be considered before employing this algorithm:

e n, number of objects;

e ¢, number of pre-defined centroids;

e v;, vectors of centroids containing pos;(t);

e pos;(t), the current position of the i"" particle at generation t; and

o uy;,(t), the RFCM membership index of the i" object with respect to the j"
cluster of the k™ particle at generation t it belongs to.

Due to the fast convergence and tenable setup of membership index, we suggest an
improvement of the performance of PSO searching algorithm, is to initialize the
swarm with FCM. The fit, or in other words the objective function, is then measured
and minimized by Equation 4-3.

The approximation optimization of RFCM is based on Picard iteration through
Equation 4-1 and Equation 4-6. The process calls the training of the RFCM
parameters which starts by randomly choosing centroids and initiating membership
in FCM. Subsequently, it progresses in approximation evaluation for modifying w;;
parameter. With a pre-set number of particles, the resulting centroids from RFCM
are represented by particles that are given as inputs to optimization procedure of
PSO. The best solution, i.e., global optimum, is looked for by a stochastic search
from solution space of candidates.
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In the proposed method, PSO performs as a standard optimizer in FES/per iteration,
where FES represents the maximum amount of function evaluations allowed. Thus,
time complexity cost of RFCM-PSO tends to be determined by the cost function in
RFCM, which is O(n?). Furthermore, the implementation of the RFCM — PSO
method is described in the pseudo-code as:

Schema 1 Rough fuzzy c-means and PSO hybrid algorithm:
Input: fuzzifer mf, weighting factor w, cluster number c, a, B, B,

Given: integral generation t € (1, oo].

Initializing: stochastic centroid v;, membership matrixu;;x, vel velocity, pos position
of particles at generation t=1.

for each t generation do
training RFCM parameter:
Compute the norm distance d;; for each n objects and c clusters.
if & check then
Reset u;; . (t) .

end if
Update new centroid as v; (t+1) per equation 4-6.
Update u;; , to (t+1) via equation 4-1.

Optimization procedure:
Training the personal best and global best position, p;andp,.
Update pos; (t+1) and vel; (t+1) for each particle using equation 4-7 and 4-8.

Convergence check; break

end for

4.4. Experimental Results

The main objective of this section is to assess relative performance of clustering
technique hybridized with particle swarm optimization algorithm. The algorithms
that are compared with proposed method are: k-means PSO (K-PSO) [2], fuzzy c-
means PSO (FPSO) [22], fuzzy c-means and fuzzy PSO (FCM-FPSO) [12] and
rough c-means PSO (RPSO) [7]. All the methods are coded and implemented in the
Matlab 2014a environment running on an Intel (R) Core (TM) i7-3770 (CPU
3.4GHz, 16GB RAM) machine. In practice, our input parameters produce with
higher performance compared to other settings. We kept the input parameters
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constant across all runs (cf. Table 4-1). To analyze the clustering performance of our
method, two indices are introduced in the next subsection.

Table 4-1: RFCM-PSO parameter settings

Parameter settings
Clustering mf =2 ®=0.95

Optimizing  a € [0.1,0.9] B, =P, =V2 Population=10 Generation=50

A. Quantitative Measurement

The problem of validation in a clustering algorithm is an important consideration
since all of its applications have their own sets of partially successful validation
scheme. None of any separate index can comprehensively depict the performance of
these clustering algorithms [4] of unlabelled data. After conducting a study in
several indexes that are used for performance validation, we propose:

Davies-Bouldin Index: Introduced in [8] is:

_ 1 S(vj)+5(vk) .
DB = 225=1 maxj,]-;k{m} Equation 4-9
Dunn’s Index: Given by [9] is:
Dunn = min; {min . o) Equation 4-10
] k, k#J (max{a(w)}

Validation standard build: the higher the similarities in within-cluster and
dissimilarities in between-cluster, the lower the DB value will have; the well-
separated the clusters are, the larger the Dunn index will obtain.

B. Validation of Clustering Algorithm

The PSO-combined algorithms have been applied on several bench mark datasets
obtained from UCI repository, which cover a range of different type of problems in
information science.

Five algorithms are implemented and applied on these datasets (i.e. Table 2), and the
quality of each algorithm is investigated. The particular test dataset is Iris, with
different pre-set cluster numbers, namely cluster = 2 and cluster = 3. The Iris dataset
represents a four-dimensional structure that contains 50 samples in each of the three
flower categories. One of the three clusters, Iris setosa, is well separated with the
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other two, while there are some overlaps within the Iris sirginica cluster and the Iris
sersicolor cluster. We have setup a separate test of the different partition strategies.

Table 4-2: Attribute of selected datasets

DB - Index

Dataset Feature Instance category
Iris 4 150 3
Glass 9 214 7
CMC 9 1473 3
Wine 13 178 3
WBCD 30 569 2
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Figure 4-1. Box — plot of investigated algorithm on Iris dataset (left: DB Index and,
right: Dunn Index, Cluster = 3.

Performances of different algorithms are depicted in Figure 4-1. This shows that
RFCM-PSO has better results by having the lowest DB index and the highest Dunn
index in case of Cluster = 2 and Cluster = 3. An evident difference of the Dunn
value occurred in case Cluster = 3. This which is a result of the fact that our method
outperforms the others while dealing with overlapped clustering problem. The likely
range of variation is coherent and acceptable compared to the four clustering
methods in our evaluation. Additionally, the interquartile ranges (IQR) of FPSO and
FCM-FPSO are smaller in the relative sense compared with RFCM-PSO. This is
because in fuzzy c-means, the membership of an individual is inversely related to
the relative distance from every centroid, thus tenable results of FCM-/FPSO can be
obtained in a dataset of low dimensions. Nonetheless, it is very sensitive to noise
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and outliers and it will easily fall into local optima when confronted with dataset of
higher dimension.

In the Iris dataset, there are two overlapping clusters of the three clusters in a total.
This may sometimes result in a clustering of just two clusters. An efficient classifier
(the clustering algorithm in unsupervised learning), however, should be able to
identify the boundless and vague features classes. As an example, in Figure 4-2, it is
shown as scatterplots depicting the different views of feature. It is observed that the
three different Iris species, through inspection of the flowers can be well categorized
using sepal width, sepal length, petal width and petal length.

4 Iris versicolor

p . TR Iris virginca
Petal length 7. .-~ e bl TR T % ris setosa
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5.
il
3.
2.
1J.-
Sepal width 5
2 4 Sepal Length
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Figure 4-2. Scatter plot result of RFCM — PSO on Iris (Cluster = 3, feature
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After 20th Iteration - RFCM - PSO
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Figure 4-3. The clustering performance in terms of Distance Error (DE). When
convergent condition met, the DE value for RFCM — PSO (a) and FPSO (b) is 59.07 and
60.51 respectively.
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Figure 4-3 shows an example of the performance on RFCM — PSO and FPSO in the
Iris dataset by minimizing the distance error of all the contained objects, considering
cluster = 3. For all algorithms 100 independent runs per generation have been
performed. Recorded in every generation steps, the distance error shows the
convergence of particles in a single swarm. The distance error (DE) is calculated by
the mean distance deviation of every single object to the centroid it belongs to after
clustering. Depicted in Figure 4-3, the proposed RFCM — PSO outperforms the
prevalent FPSO in terms of the smaller mean DE error in every generation, lower
IQR, faster convergence speed and less outliers.

A well performed clustering algorithm does not only support on its property of anti-
noise or the resultants of less outlier in clusters, but also on its capability of
sampling scale-invariance. Applications of most clustering algorithms provide
plausible results only on low dimensionality and small population dataset. The
handling with sparse and skewed distributions of the samples in a certain clustering
space remains a challenge. When sampling scale in a research population, is
relatively small then, the higher the dimension of the attributes, the less accuracy
and efficiency of the clustering algorithm will perform. Given the definition of DB
Index and Dunn Index, the value of both DB and Dunn should be invariant in spite
of a change in the of sampling scale since they have the same overall population. In
other words, when different selection of a subset of individuals from within one
same research population takes place, as the estimation of the performance of the
clustering algorithm, DB and Dunn Index should produce stable results.

The CMC dataset (cf. Table 4-2) is employed to test the capacity of scale-invariance
of each algorithm. We utilize five different scales in the sampling population, i.e. of
300, 600, 900, 1200 and the full population of 1473 instances. To assess a valid
estimation of median and to derive acceptable standard errors from a complex and
high-dimensional population, the bootstrapped sampling approach is being used. For
each different scale, 100 bootstrap runs have been independently applied. The results
for each run are summarized and calculated in terms of their max- and minimum,
average value and standard deviation. From Table 4-3, one can be seen that the
smallest standard deviation of DB and Dunn values are observed on the proposed
RFCM — PSO. This result draws a conclusion that the proposed method has
acceptable and steady clustering results when sampling scale are differentiated,
although skewed and sparse distribution of sample instances are encountered.

In Table 4-4, the performance of the different PSO hybridized clustering algorithms
on the selected benchmark datasets are compared in terms of DB and Dunn index.
For all five benchmark sets, every separate algorithm is applied and the value of DB
and Dunn are computed respectively. Since the KPSO algorithm produces non-
convergent results in the DB and Dunn value of the Glass and Wine datasets, thus
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these have not been included in Table 4-4. The results reported here, however
convincingly confirm that the proposed method conducts more promising compared
to the recognized methods.

Table 4-3: Scale invariant evaluation results on IRIS dataset

Algorithm DBax  DBaye DBgq Dunng, Dunng,, Dunng,
KPSO 0.1457  0.1027 0.2835 13.4826 14.3864 0.9336
FPSO 0.0594 0.0958 0.0820 20.4155 20.6475 0.1453

FCM - FPSO 0.0595 0.0592 0.0817 20.3119 20.5035 0.1409
RPSO 0.0590 0.0586 0.0789 19.4677 19.9972 0.3349
RFCM - PSO 0.0547 0.0542 0.0757 21.3450 21.4935 0.0867

Table 4-4: Performance evaluation with different dataset (average)

Dataset KPSO FPSO FCM - FPSO RPSO RFCM - PSO
DB Dunn DB Dunn DB Dunn DB Dunn DB Dunn

Iris  0.241 3.130 0.248 3567 0.245 3568 0.249 3556 0.216 4.382
Glass - - 0.648 0.125 0.644 0.128 0.458 0.197 0.441 0.238
CMC 0.0732 15.405 0.0594 20.615 0.0592 20.616 0.058 20.007 0.0544 21.494
Wine - - 0.00129 4724 0.00129 474.4 0.00140 411.8 0.00124 483.9
WBCD 0.0127 18.8 0.00476 297.6 0.00476 297.9 0.00479 267.3 0.00475 301.2

45. Conclusion

In this chapter, we have briefly discussed the evolution of clustering techniques
based on Particle Swarm Optimization. A literature survey revealed that there is an
enormous increase in the popularity of PSO based clustering techniques. In a short
review the rough and fuzzy clustering technique is introduced. Thereafter we present
a novel and efficient hybrid method, namely the Rough Fuzzy C-means and PSO
(RFCM - PSO) clustering approach. The performance of proposed method is
compared with the K- means PSO (KPSO), Fuzzy PSO (FPSO), Fuzzy C- means
FPSO (FCM - FPSO) and Rough PSO (RPSO) algorithm. The reported results show
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that our approach outperforms the rest of the methods in terms of its efficiency,
reliability and solution quality based on geometrical DB and Dunn Index.

The contribution of this chapter is in the development of a hybridized methodology,
which carefully integrates rough and fuzzy c-means approach and the particle swarm
optimization algorithm. In a clustering problem, the membership of fuzzy set
enables efficient handling of overlapping partitions, the lower and upper sets of
rough theory deal with uncertainty, vagueness and incompleteness in class definition;
while PSO has a tenable quality to be more accurate in searching a best solution
from candidate sets as well as avoiding being trapped into local optima.
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Chapter 5

A Systematic Study on One Dimensional Gel Electrophoresis Image Analysis

This chapter is based on the following publication:

Cai, F., S. Liu, P. ten. Dijke, and F. J. Verbeek. "Image Analysis and Pattern Extraction of Proteins
Classes from One-Dimensional Gels Electrophoresis." J. Bioscience, Biochemistry and
Bioinformatics11: 1106-1113. vol. 7, no. 4, pp. 201-212, 2017.
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Chapter summary

In this chapter, we focus on estimating the practical performance of fuzzy systems
on the data analysis within the scope of protein/DNA phenotypic study. In detail, we
are going to address the following research questions.

1. Can the 1-dimension gel electrophoresis data be quantitatively and accurately
assessed using newly developed fuzzy-logical based algorithm and fuzzy systems?

2. Can we identify the essentials of protein/DNA, and validate the results of gel
electrophoresis from published reports?

Following the workflow of data analysis (cf. Figure 1-2), this chapter is divided into
two major sections. First, the design of the fuzzy systems and its solutions are
demonstrated. Each fuzzy-logic and unsupervised computing processing step is
illustrated and their motivations behind this design are explained. In the context of
the applied fuzzy systems and, heterogeneous methodologies are integrated into a
global picture thereof. Second, the data from electrophoresis experiments are
gualitatively and quantitatively evaluated. The variations in the bands/lanes are
derived from numerical measurements. These results are then compared and
discussed with other experiments as described in literature.
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5.1. Introduction

Mixtures of proteins can be separated and visualized by Sodium-dodecyl sulphate
(SDS)-polyacrylamide gel electrophoresis (PAGE); this is a classical tool for protein
analysis [23]. Combining this analysis with Western blotting and probing, the filter
with specific antibodies, or the extraction of protein from gel and mass spectrometric
(MS) analysis, make it a very powerful tool to determine relative quantities and
identification of proteins. In addition, prior to SDS-PAGE, proteins can be
fluorescently labeled and the resulting images can be captured by a flatbed scanner
equipped for fluo