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BACKGROUND Left atrial (LA) remodeling after an acute myocardial infarction (MI) is poorly characterized regarding

its determinants or its effect on ischemic mitral regurgitation (MR) development.

OBJECTIVES The purpose of this study was: 1) to compare LA structural remodeling in experimental MI swine models

recapitulating the effects of left ventricular (LV) dysfunction, ischemic MR, and left atrial infarction (LAI); and 2) to

analyze how LA remodeling influences ischemic MR development.

METHODS Three models of MI were generated: 1) proximal left circumflex (LCx) coronary artery occlusion involving

the LA branch (LAI group); 2) proximal LCx occlusion not involving the LA branch (LCx group); and 3) left anterior

descending (LAD) occlusion (LAD group). Serial cardiac magnetic resonance scans were performed to define LA and LV

remodeling and ischemic MR, and were correlated with histology.

RESULTS Occlusion of the LA branch (LAI group) induced a greater degree of LA dilation at 1 and 8 weeks

post-MI than the LCx and LAD groups, along with early and severe impairment of LA function. In the LCx and LAD

groups, LA dysfunction was less pronounced and not consistent. Development of ischemic MR was more pronounced in

the LAI group than in the LCx group. Histology confirmed atrial infarction with extensive fibrosis in the LAI group and

interstitial fibrosis in the LCx group. In the LAD group, LA remodeling was not observed by cardiac magnetic

resonance or histology.

CONCLUSIONS We provide the first experimental evidence of the deleterious effect of acute LAI on atrial

structural remodeling, characterized by early LA dilation, dysfunction, and fibrosis, and early occurrence

of ischemic MR. (J Am Coll Cardiol 2017;70:2878–89) © 2017 The Authors. Published by Elsevier on behalf of

the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license
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AB BR E V I A T I O N S

AND ACRONYM S

CMR = cardiac magnetic

resonance

HF = heart failure

LA = left atrial

LAD = left anterior descending

LAI = left atrial infarction

LCx = left circumflex artery

LVEF = left ventricular
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C hronic heart failure (HF) is a major cause of
death and hospitalization. Despite advances
in patient care, incident HF in myocardial

infarction (MI) survivors remains a major cost burden
to health care systems (1). In the aftermath of acute
MI, the classic predictor of future adverse events,
including sudden cardiac death and HF development,
is left ventricular ejection fraction (LVEF) (2). More
recently, left atrial (LA) dilation has been proposed
as a novel predictor of HF, providing independent
prognostic value in addition to LVEF (3–5).
SEE PAGE 2890

ejection fraction

MI = myocardial infarction

MR = mitral regurgitation
In the early post-MI period, excessive LA dilation
occurs in w15% to 45% of patients (3–5). The main
cause of LA dilation is thought to be increased atrial
pressures due to LV dysfunction (6). However, little
attention has been paid to 2 other potentially key
contributors to post-MI LA remodeling: ischemic
mitral regurgitation (MR) and atrial infarction.
Ischemic MR is caused by LV remodeling and a
geometric distortion of the mitral valve that alters
normal leaflet coaptation (7). Previous studies have
suggested a close association between ischemic MR
and post-MI LA remodeling (8); however, it remains
unclear whether LA remodeling is a cause or conse-
quence. Atrial infarction remains a clinical challenge
of unknown incidence and consequences, mainly due
to the lack of reliable diagnostic markers (9).
Recently, LA coronary branch occlusion has been
identified as a complication in up to 15% of patients
undergoing percutaneous coronary intervention,
leading to a higher prevalence of atrial arrhythmias,
periprocedural MI, and mortality (10), underscoring
its clinical importance. The effect of left atrial
infarction (LAI) on LA structure and function has not
been explored before, and most of our current
knowledge is derived from autopsy reports (11).

Atrial structural remodeling refers to the process of
LA enlargement and mechanical function impairment
that occurs in many cardiovascular conditions,
including ischemic heart disease (12). From a clinical
imaging perspective, atrial structural remodeling is
defined as an increase in LA dimensions and impair-
ment of the atrial phasic function components; from a
histological perspective, the complex cellular changes
in this remodeling process are poorly understood (12).
Clinical and experimental observations suggest that
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interstitial fibrosis is a key phenomenon un-
derlying atrial structural remodeling in con-
ditions such as chronic HF and MR (13). Upon
acute MI, the effects of overlapping factors
such as pressure and volume overload, in
addition to atrial ischemia, can lead to spe-
cific structural substrate remodeling that, to
the best of our knowledge, has not been
characterized.

The aim of this study was to provide new
insight into the causes, mechanisms, and
consequences of LA structural remodeling as a
complication of acute MI. Three pig models of
MI were created: 1) occlusion of the proximal

left circumflex coronary artery (LCx) with concomitant
occlusion of the LA branch (LAI group); 2) occlusion of
the proximal LCx coronary artery without involve-
ment of the LA branch (LCx group); and 3) occlusion of
the left anterior descending artery (LAD) (LAD group).

The specific aims were: 1) to evaluate the incidence
and progression of post-MI LA structural remodeling
(in relation to the culprit coronary artery); and
2) to analyze the interplay of LA dilation (and scar
formation) and post-MI LA function with LV remod-
eling (and scar formation) and the development of
ischemic MR. These processes were assessed by
noninvasive cardiac magnetic resonance (CMR)
imaging at 1 and 8 weeks post-MI and histology after
sacrifice at 8 weeks post-MI.

METHODS

The study was approved by the institutional animal
research committee and conducted in accordance
with the recommendations of the Guide for the Care
and Use of Laboratory Animals. An expanded
description of experimental procedures is provided in
the Online Appendix.

STUDY DESIGN. Closed-chest MI was induced in male
large-white pigs (30 to 35 kg) by instrumentation of
the LAD or LCx coronary arteries. LCx infarctions
were divided into those with or without associated
atrial coronary occlusion (see detailed description in
the following text) and were used as model of
ischemic MR. Anterior infarctions were generated by
LAD ischemia-reperfusion to provide a post-MI model
of LV dysfunction. Three experimental groups were
created (Figure 1): 1) LCx occlusion (LCx group, n ¼ 7
gado has received speaker fees from Abbott Vascular.
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FIGURE 1 Study Design and Experimental Procedures

Left Circumflex chronic occlusion (coil deployment)
2 groups:

LCx Group:
occlusion distal to the atrial

coronary branch

LAI Group:
occlusion proximal to the atrial

coronary branch

scar distribution

scar distribution

Left Anterior Descending artery: LAD Group

STUDY TIMELINE

BASAL 1 week 8 weeks

Study Groups:

- Control
- LCx
- LAI
- LAD

Serial imaging: CMR

Left Atrial histology

A

B
D

C

(A) Two models of ischemic mitral regurgitation were created by left circumflex (LCx) chronic occlusion according to: 1) the absence of additional occlusion of the

left atrial main branch (LCx group); or 2) its presence (left atrial infarction [LAI] group). A model of infarction with no ischemic mitral regurgitation was created by left

anterior descending artery (LAD) ischemia (LAD group 3). (B and C) Typical scar segmental distributions. (D) The timeline of imaging and histology evaluation.

CMR ¼ cardiac magnetic resonance.
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animals); 2) LCx occlusion involving the LA branch
and therefore inducing LAI (LAI group, n ¼ 8
animals); and 3) LAD occlusion to induce anterior MI
(LAD group, n ¼ 21 animals). A group of 4 healthy pigs
was used as a control in the serial imaging studies.
CMR imaging scans were obtained at baseline
(before MI) and at 1 and 8 weeks post-MI to evaluate
LA and LV structural remodeling and development
of MR. Animals were sacrificed at 8 weeks post-MI
and the hearts were excised for histological analysis
of LA scarring and fibrosis.

MODELING CHRONIC POST-INFARCTION ISCHEMIC

MR AND LAI. We established a technique for inducing
ischemic MR in pigs that involves placing a coronary
coil in the proximal segment of moderate-to-large
LCx arteries (Online Appendix, Online Figure 1).

To evaluate the effect of acute LA injury during MI,
animals undergoing LCx coiling were subclassified
according to whether there was angiographic
occlusion of the LA branch, which emerges from
the proximal LCx segments or less frequently from the
mid-LCx segment. Because the exact occlusion site
was determined by the coil position after deployment
at the proximal LCx artery, animals were assigned to
the LCx or LAI groups upon examination of the final
angiogram at the end of the catheterization procedure.

MODELING ANTERIOR ACUTE INFARCTION. To evaluate
post-MI LA structural remodeling due to LV dilation
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TABLE 1 Left Atrial Remodeling CMR Parameters: Time Course by Group

Control (n ¼ 4) LCx (n ¼ 7) LAI (n ¼ 8) LAD (n ¼ 21)

Baseline 8 Weeks 1 Week 8 Weeks 1 Week 8 Weeks 1 Week 8 Weeks

Maximal area, cm2 13.1 (12.7–13.3) 18.8 (18.2–19.6) 19.5 (18.6–20.9)*† 25.8 (22–27)*† 22.6 (20.3–23.8)*† 32.6 (27.2–38.9)*†‡ 13.8 (12.5–14.7) 15.6 (14.4–18.0)

Maximal indexed
area, cm2/m2

15.7 (15.2–16.3) 15.3 (14.8–15.9) 19.9 (19.0–22.3)*† 17.0 (16.6–19.1)† 22.5 (21.4–23.2)*† 25.1 (19.3–30.0)*†‡ 15.1 (13.4–16.0) 13.8 (12.2–14.6)

Minimum
area, cm2

8.0 (7.7–8.4) 11.4 (11.1–11.9) 15.0 (14.3–15.9)*† 17.0 (16.2–20.4)*† 18.9 (17.5–20.7)*†‡ 27.3 (22.2–32.8)*†‡ 9.7 (8.7–10.8) 11.2 (9.7–13.1)*

Minimum indexed
area, cm2/m2

9.6 (9.1–10.2) 9.2 (9.0–9.7) 15.5 (14.5–17.2)*† 13.4 (10.9–14.4)*† 19.2 (17.8–20.6)*†‡ 19.8 (15.2–27.7)*†‡ 10.8 (10.3–11.6) 9.3 (8.0–10.7)

Reservoir
function, %

64.0 (60.2–65.7) 63.4 (60.9–64.6) 32.5 (25.1–40.5)* 36.0 (27.9–45.2)* 16.2 (12.6–22.0)*†‡ 20.8 (10.9–29.4)*† 37.2 (29.6–45.5)* 43.5 (34.0–58.0)

Conduit
function, %

15.0 (14.9–15.2) 19.8 (17.7–22.8) 10.2 (7.1–14.4) 11.7 (8.1–14.9) 7.7 (6.2–9.7)* 8.7 (6.5–10.7)* 6.7 (2.1–12.4)* 10.7 (6.9–14.4)*

Booster
function, %

27.2 (25.2–28.6) 22.7 (20.3–24.1) 15.9 (13.9–18.6)* 18.5 (15.8–19.6) 4.4 (2.4–9.9)*† 8.1 (5.6–15.4)*† 21.7 (17.1–24.8) 21.2 (19.3–24.9)

Values are median (interquartile range). For simplicity, baseline data for the LCx, LAI, and LAD experimental groups are not included. Pairwise comparisons at each time point. *p < 0.05 vs. control. †p< 0.05
vs. LAD. ‡p < 0.05 vs. LCx.

CMR ¼ cardiac magnetic resonance imaging; LAD ¼ left anterior descending; LAI ¼ left atrial infarction; LCx ¼ left circumflex artery.
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and necrosis in the absence of other contributors,
we induced anterior infarction by 45-min mid-LAD
occlusion distal to first diagonal branch followed
by reperfusion (LAD group) (14,15). This procedure
produces consistent transmural infarction with LV
dilation and systolic dysfunction (15).

CMR ACQUISITION PROTOCOL AND DATA ANALYSIS.

CMR was performed at baseline (before MI) and
at 1 and 8weeks post-infarction, as previously reported
(14) (see Online Appendix for detailed description).

LA volumes and function were defined as follows.
Because no volumetric estimation methods have been
validated in pigs, we quantified LA dimensions based
on the mean area from the 4- and 2-chamber views.
From these views, 3 phasic parameters were derived
as follows.

1. Reservoir function or expansion index (%): 100 $

(maximal LA area � minimum LA area)/minimum
LA area

2. Conduit function (%): 100 $ (maximal LA area �
pre-atrial contraction area)/maximal LA area

3. Booster function (%): 100 $ (pre-atrial contraction
area � minimum LA area)/pre-atrial contraction
area

Quantification of post-MI MR severity was
performed in the LCx and LAI groups and in a subset
of the LAD group (n ¼ 4). The LV forward stroke
volume (SV) was obtained from a phase-contrast
sequence in the ascending aorta, and mitral regur-
gitant volume (RegVol) and regurgitant fraction (RF)
were calculated as follows.

� CineSV¼LV end-diastolic volume�LV end-systolic
volume
� RegVol ¼ forward SV � CineSV
� RF ¼ RegVol/CineSV

HISTOLOGY. After excision of the heart (at 1 week
post-infarction in 2 pigs and at 8 weeks post-
infarction in the remaining), tissue from the LA
anterior wall was fixed in 10% neutral buffered
formalin, embedded in paraffin wax, and cut into
4-mm sections. Picrosirius red–, hematoxylin-eosin–,
and Masson’s trichrome–stained sections were digi-
talized with a scanner (Nanozoomer-RS C110730,
Hamamatsu, Photonics K.K.K., Hamamatsu City,
Japan). Collagen organization was qualitatively eval-
uated using polarized light microscopy (Nikon
ECLIPSE 90i, Nikon Corporation, Tokyo, Japan) on
Picrosirius red–stained sections. Immunohistochem-
istry was performed to detect inflammatory cells in
atrial tissue.

STATISTICAL ANALYSIS. Continuous variables are
expressed as median (interquartile range). Between-
group comparisons at each time point were per-
formed using the nonparametric Kruskal-Wallis test
followed by post hoc analysis corrected for multiple
comparisons (Holm method). Associations between
different parameters were evaluated using the Spear-
man’s correlation coefficient. Statistical analyses were
performed using R software version 3.1.1 (R Founda-
tion for Statistical Computing, Vienna, Austria).
Statistical significance was assigned at p < 0.05.

RESULTS

Data regarding the generation of MI models are pro-
vided in the Online Appendix. Final analyses were
performed in data from animals that completed the
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FIGURE 2 LA Remodeling After Infarction
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(A) Time course of maximum LA size for each group (presented as boxplots and lines for individual animals). (B to G) Representative images

depicting end-systolic frames of the 3-chamber view in the group and time point indicated in each image. LA ¼ left atrial; other abbreviations

as in Figure 1.
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study protocol (control group, n ¼ 4; LCx group, n ¼ 7;
LAI group, n ¼ 8; and LAD group, n ¼ 21). Experi-
mental procedures, study timeline, and groups are
summarized in Figure 1.
TIME COURSE OF LA DILATION AFTER INFARCTION.

LA dilation (at 1 week) was present in both groups of
pigs undergoing LCx coil occlusion (LCx and LAI
groups); however, dilation was larger in LAI pigs
(Table 1, Figure 2). Moreover, LA dilation progressed
faster in the LAI group from weeks 1 to 8. Interest-
ingly, overall LA dilation was observed in the LAD
group (compared with control pigs).

All 3 groups showed impaired LA reservoir
function (reflecting LA compliance) at 1 week post-MI



FIGURE 3 LA Reservoir Function Changes After Infarction
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(Table 1, Figure 3). LA reservoir function was most
prominently impaired in the LAI group (16.2% vs.
64.0% in controls, contrasting with 32.5% in the LCx
group and 37.2% in the LAD group). At 8 weeks
post-MI, the LCx and LAD groups showed a modest
recovery in LA reservoir function (36.0% and 43.5%,
respectively), whereas reservoir function in the LAI
group remained weak (20.8%) (Table 1, Figure 3).
Atrial contractility, measured as the booster pump
function, followed a similar pattern, with the most
prominent changes occurring in the LAI group
(Table 1). Booster function in the LAI group was
sharply reduced at 1 week post-MI (to 4.4%) and
remained severely depressed at 8 weeks (8.1%). The
LCx group showed more moderate reductions (15.9%
at 1 week and 18.5% at 8 weeks), and the LAD group
revealed the least reductions (21.4% at 1 week and
21.2% at 8 weeks). Within individual animals, a strong
correlation was observed between reservoir and
contractile properties (rho ¼ 0.84; p < 0.001).

Atrial conduit function after acute MI was impaired
to a similar extent in all groups, and no significant
changes were observed between early and late follow-
up (Table 1). This suggests that extrinsic factors other
than LAI may influence impairment of this function,
because LA conduit function is merely the transit of
blood from the pulmonary veins to the LV. Interest-
ingly, conduit function was the most prominently
decreased component in the LAD group (Table 1).
TIME COURSE OF POST-INFARCTION LV DILATION

AND FUNCTION. Table 2 summarizes the time
course of CMR-determined LV structural remodeling
and ischemic MR parameters in the experimental
models. In all groups, post-MI LV remodeling was
characterized by an enlarged LV and decreased LVEF.
LV infarcts (quantified with a late gadolinium
enhancement CMR sequence at 1 week) were signifi-
cantly larger in the LCx and LAI occlusion groups
(median infarct size 37.8% and 37.2%) than in the
LAD group (28.1%). LV volume showed a similar
pattern (Table 2).

At 1 week, significant modest linear associations
were noted between LA dilation (maximal area) and
LV infarct size (rho ¼ 0.36; p ¼ 0.02) and LV



TABLE 2 Time Course of LV Remodeling and Mitral Regurgitation Parameters by Study Groups

Control (n ¼ 4) LCx (n ¼ 7) LAI (n ¼ 8) LAD (n ¼ 21)

Baseline 8 Weeks 1 Week 8 Weeks 1 Week 8 Weeks 1 Week 8 Weeks

Body weight, kg 29
(29.0 to 29.4)

55.3
(53.5 to 57.1)

37
(35.0 to 40.0)*

70
(67.3 to 73.5)†

39
(34.8 to 43.0)*

62
(59.8 to 71.0)

35.0
(31.5 to 38.5)

53.5
(48.0 to 55.8)

LV

Infarct size, % of
LV mass

0 0 37.8
(27.2 to 39.9)*

18.0
(14.1 to 18.9)*†

37.2
(33.2 to 40.5)*

23.0
(16.7 to 27.9)*

31.6
(24.0 to 39.0)*

23.8
(21.7 to 31.1)*

EDV, ml 92.7
(86.9 to 98.8)

118.1
(112.5 to 125.5)

132.1
(121.9 to 142.1)*

242.5
(180.6 to 246.0)*

135.2
(121.1 to 141.8)*

202.9
(190.5 to 220.4)*

121.8
(112.0 to 133.9)*

183.2
(153.9 to 247.1)*

Indexed EDV,
ml/m2

111.7
(103.8 to 120.9)

96.6
(94.0 to 100.0)

137.3
(130.1 to 147.8)

161.5
(138.3 to 172.5)*

139.9
(129.8 to 143.2)

149.5
(145.4 to 154.4)*

134.6
(130.6 to 142.1)*

152.4
(135.3 to 179.7)*

ESV, ml 47.2
(43.3 to 50.4)

40.9
(38.3 to 43.5)

84.5
(69.3 to 91.5)*

121.4
(101.2 to 147.5)*

87.1
(75.4 to 90.6)*

128.0
(116.1 to 144.1)*

77.1
(66.3 to 85.4)*

131.1
(101.7 to 170.1)*

Indexed ESV,
ml/m2

56.9
(51.7 to 61.6)

33.1
(32.0 to 34.5)

90.1
(78.1 to 95.2)*

86.2
(76.7 to 101.7)*

88.2
(80.2 to 93.1)*

92.6
(87.9 to 101.3)*

86.1
(78.7 to 94.2)*

106.1
(89.6 to 124.8)*

LVEF, % 50.1
(49.4 to 50.8)

66.4
(64.0 to 68.1)

35.0
(34.6 to 38.1)*

47.3
(36.0 to 49.0)*†

36.7
(35.7 to 37.3)*

36.6
(33.0 to 40.1)*

36.4
(35.1 to 39.1)*

31.1
(29.0 to 33.8)*

Mitral regurgitation

Regurgitant
volume, ml

0.74
(�1.4 to 2.6)

1.2
(�0.4 to 2.1)

2.1
(1.9 to 4.0)

13.2
(8.7 to 16.6)

7.4
(5.8 to 11.1)

17.8
(15.5 to 27.2)

6
(4.0 to 8.0)

0
(0.0 to 3.0)

Indexed regurgitant
volume, ml/m2

0.9
(�1.7 to 3.4)

0.9
(�0.3 to 1.6)

2.2
(2.0 to 3.9)

9.6
(6.4 to 11.3)

7.5
(5.8 to 10.7)

13.8
(12.0 to 18.9)

6
(4.0 to 8.0)

0
(0.0 to 3.0)

Regurgitant
fraction, %

1.4
(�3.3 to 5.5)

1.4
(�0.8 to 2.4)

4.3
(3.5 to 7.9)

15.6
(11.5 to 16.8)

17.2
(11.4 to 21.1)

25.1
(23.0 to 36.3)

10.7
(7.0 to 14.0)

0
(0.0 to 3.0)

Values are median (interquartile range). For simplicity, baseline data for the LCx, LAI and LAD experimental groups are not included. Pairwise comparisons at each time point *p < 0.05 vs. control. †p < 0.05
vs. LAD.

EDV ¼ end-diastolic volume; ESV ¼ end-systolic volume; LV ¼ left ventricle; LVEF ¼ left ventricular ejection fraction; other abbreviations as in Table 1.

Aguero et al. J A C C V O L . 7 0 , N O . 2 3 , 2 0 1 7

Left Atrial Infarction and Remodeling D E C E M B E R 1 2 , 2 0 1 7 : 2 8 7 8 – 8 9

2884
end-systolic volume (rho ¼ 0.38; p ¼ 0.01). These
findings suggest that LV infarct size and LV end-
systolic volume are not the only factors influ-
encing post-MI LA dilation. Direct damage to the LA
during LA branch occlusion may lead to larger LA
volumes and more pronounced acute impairment of
LA function. Subsequently, LV dilation and
dysfunction together with MR would result in faster
progression of LA remodeling and dysfunction in
the LAI group than in the LCx and LAD groups.

DEVELOPMENT OF ISCHEMIC MR. Ischemic MR was
measured from CMR-derived regurgitant volume
and regurgitant fraction (RF) obtained at 1 and
8 weeks post-MI (Table 1). Ischemic MR was mild in
the LCx group at 1 week (RF ¼ 4.3%) but was more
severe by 8 weeks (RF ¼ 15.6%). In the LAI group,
ischemic MR was even more pronounced at 1 week
(RF ¼ 17.2%) with further progression by 8 weeks
(RF ¼ 25.1%), showing a clear association with the
early severe LA remodeling in this group. In the LAD
subgroup of 4 assessed animals, ischemic MR
observed at 1 week post-MI was mild and improved
by the 8-week follow-up.

HISTOLOGICAL ANALYSIS OF POST-INFARCTION LA

STRUCTURAL REMODELING. The effect of perma-
nent LA branch occlusion on LA structure was
evaluated in 2 additional animals undergoing the LAI
procedure and sacrificed at 1 week. Compared with
healthy atrial tissue from control animals, atrial tis-
sue from LAI animals showed extensive myocardial
injury, with cardiomyocyte loss and areas of fibrosis
(Figures 4C to 4H), providing histological confirma-
tion of the atrial infarction in this model. Qualitative
assessment by polarized light microscopy revealed an
immature collagen fiber organization in these areas,
suggesting an early process of post-infarction repair
in the LA myocardium.

Histological changes were assessed at 8 weeks
post-MI in animals that completed the protocol. Atria
were harvested immediately after the 8-week CMR.
Extensive LA enlargement was observed in the LAI
group (Online Figure 2). Atrial enlargement was
associated with severe interstitial collagen deposition
(Figure 4, Online Figure 3). Conversely, LA tissue
from the LCx group was characterized by mild inter-
stitial fibrosis. No pathological changes were
observed in the LAD group, consistent with the
absence of atrial dilation in this group in the CMR
studies. Inflammatory cells were detected in the
infarcted region at high number in the LAI group at
1 week, with progressive decline or even normaliza-
tion at 8 weeks, compared with control tissue (Online
Figures 4 and 5).

https://doi.org/10.1016/j.jacc.2017.10.013
https://doi.org/10.1016/j.jacc.2017.10.013
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FIGURE 4 Histology of LA Remodeling
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as in Figure 1.
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DISCUSSION

The present study provides insight into the
determinants and consequences of LA remodeling
in translational large animal models of acute MI
(Central Illustration). The findings are as follows.

1. LAI complicating LCx-dependent infarction (LAI
group) results in significant LA remodeling, with
extensive scarring or fibrosis formation during the
first week post-MI. These anatomical LA changes
are associated with acutely and markedly altered
reservoir and booster pump function and ischemic
MR progression.

2. Ischemic MR without concomitant LAI (LCx group)
is associated with early and progressive LA
structural remodeling, although to a lesser extent
than when associated with LAI (LAI group).

3. Post-MI LV dysfunction without ischemic MR or
LAI is associated with mild, transient LA
remodeling.
ATRIAL INFARCTION COMPLICATING ACUTE

INFARCTION INDUCES SEVERE REMODELING AND

PERSISTENT LA DYSFUNCTION. The most prominent
finding of this study is the significant effect of LAI
(secondary to LA proximal branch occlusion) on LA
dilation and its persistent impairment of LA reservoir
and booster pump functions. These functional
abnormalities are related to extensive scar and
fibrotic replacement of the atrial myocardium. The



CENTRAL ILLUSTRATION Mechanisms of LA Remodeling After Acute MI
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LA mechanical and electrical remodeling occurs in some cases after acute MI. This remodeling is associated with increased risk of HF and susceptibility to atrial

fibrillation. Cases in which the posterior LV wall is infarcted (e.g., left circumflex coronary artery occlusion), ischemic MR occurs because of leaflet retraction secondary

to papillary muscle dysfunction. This increases LA pressure. In addition to this mechanism, when left circumflex coronary artery occlusion occurs at its very proximal

segment, the LA branch can be occluded, resulting in LA necrosis. This mechanism plays a significant role in further contributing to atrial remodeling. Even in cases of

MI not affecting mitral valve function primarily, the increase in LV pressures can result in “retrograde” increases in LA pressures, resulting in some degree of atrial

remodeling. If the infarction does not affect the mitral valve function and is not large enough, no LA remodeling occurs. HF ¼ heart failure; LA ¼ left atrial; LAD ¼ left

anterior descending; LAI ¼ left atrial infarction; LCx ¼ left circumflex artery; LV ¼ left ventricular; MI ¼ myocardial infarction; MR ¼ mitral regurgitation.
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progression of LA chamber dilation and functional
impairment from the subacute (1 week) to the chronic
(8 weeks) phase identifies a specific time course of
atrial myopathy. To the best of our knowledge, this is
the first experimental evidence for the structural and
functional effect of LAI, both in the early and late post-
MI periods. In this regard, although atrial infarction
diagnosis remains an unsolved challenge (10), autopsy
reports suggest that the incidence is significant (11).
The atrial coronary circulation system is complex (16),
and the response of the atrial chamber to ischemia is
poorly characterized. Prior studies showed that LA
ischemia blunts the compensatory booster pump
function during acute occlusion of the LA branch (17).

LAI secondary to permanent occlusion of the LA
branch (LAI associated with proximal LCx occlusion)
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resulted in severe atrial scarring and fibrosis due to
replacement of extensive areas of cardiomyocyte
loss. Collagen staining at 7 days post-MI revealed an
immature structure. Conversely, at 8 weeks post-MI,
a well-organized network with extensive interstitial
distribution was observed. At this chronic stage,
LA extracellular matrix remodeling was character-
ized by excessive collagen deposition. The net
increase in collagen content likely contributes to the
persistent, abnormal LA physiology, with marked
blunting of reservoir and booster functions. This
histological pattern in response to ischemic injury
and the associated atrial structural remodeling
(dilation and dysfunction) differs from previous
reports, which showed varying degrees of atrial
interstitial fibrosis in experimental models,
including chronic atrial pacing, HF, and volume
overload (18,19).

INTERPLAY BETWEEN LA STRUCTURAL REMODELING

AND DEVELOPMENT OF ISCHEMIC MR. Our time course
data indicate that LAI is a major determinant of early
ischemic MR severity, with a much higher RF in
the LAI group at 1 week post-MI (15% vs. 4% in the
LCx group). Interestingly, at this time point, the LCx
group had a similar extent of LV structural injury
assessed by infarct size, LV volume, and LVEF,
suggesting that the mitral subvalvular apparatus was
similarly affected in the LAI and LCx groups. This
conclusion is supported by the similar progression of
ischemic MR from early (1 week) to late (8 weeks)
follow-up in these groups (RF increasing from 7.9% to
11.3%) (Table 1), suggesting that progressive LV
remodeling is the driving mechanism. Ischemic MR is
defined as a consequence of chronic LV remodeling
and changes to the mitral subvalvular apparatus,
typically occurring 2 weeks after acute MI (20).
Based on our observations, we propose that in the LAI
group, scarring after direct damage to the LA would
lead to early LA dilation and dysfunction. This LA
remodeling may alter the mitral valve geometry by
inducing mitral annulus dilation (Online Results,
Online Table 1), resulting in leaflet malcoaptation and
MR. Subsequent LV remodeling may lead to faster
progression of LA dilation and dysfunction, with
larger mitral regurgitant volumes than in the other
groups.

CONTRIBUTION OF LV INJURY TO LA REMODELING

AFTER ACUTE INFARCTION. At 1 week post-MI,
there was only a moderate correlation (correlation
coefficient w0.4) between CMR-assessed LV remod-
eling (estimated from ESV or infarct size) and LA
remodeling. In our experimental setting, this weak
correlation was due to the absence of overall LA
dilation in most animals in the LAD group and the
intrinsic LA injury effect in the LAI group. Interest-
ingly, clinical studies show that the LV dimensions
are larger in patients with early LA dilation (3–5), but
the linear correlation between LV and LA parameters
is poor (21), indicating a significant role for other
factors, such as clinical history.

The lack of LA dilation in most animals in the LAD
group was an unexpected study finding. Our study
design could not answer whether larger LAD infarcts
(seen in individual cases) (Figure 2) or longer follow-
up periods would have eased the detection of LA
remodeling; however, this is suggested by prior
experimental reports (22). In general, infarct size was
smaller in the LAD group versus the LCx and LAI
groups (37.8% vs. 37.2% and 31.6%, respectively)
(Table 2), probably due to differences in the site and
duration of coronary occlusion (mid-LAD ischemia-
reperfusion vs. chronic proximal LCx occlusion).
The absence of structural LA remodeling was sup-
ported by the absence of fibrosis in the histological
analysis. LA remodeling was not comprehensively
characterized in previous experimental models.
Chamber dilation has been described in very large,
proximal LAD infarctions after 3 months of follow-up
(22) and in the rat model of post-MI HF (23), whereas
most ischemic MR models focused on valve geometry
rather than LA remodeling (7,24–26). Finally, atrial
function changes in the LAD group (decreased
conduit and reservoir function) may be explained by
impaired LV function by mechanisms previously
described (27), because no histological abnormalities
were found.

In the present study, time course assessment of LA
structural remodeling (dilation, dysfunction, and
histology) provided novel insights into the role of
fibrosis. Although intrinsic atrial injury due to
infarction (LAI group) produced early dilation and
persistent functional impairment, there was some
degree of improvement in reservoir function (LAI
group vs. LCx group) (Figure 3). This suggests that
factors other than fibrosis may affect LA function
in this setting, such as atrial stunning. Large clinical
series suggest that the late progression of LA
remodeling parameters (LA dimensions or reservoir
function) is only weakly predicted by baseline LV or
LA imaging parameters obtained during early post-MI
assessment (4,28–29).

Clinical studies indicate that both LA
remodeling and ischemic MR predict long-term

https://doi.org/10.1016/j.jacc.2017.10.013
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: After

acute MI, remodeling of the LA carries an unfavorable

prognosis. Occlusion of the circumflex coronary artery

proximal to the origin of the LA branch causes atrial

infarction, followed by early LA remodeling, enlarge-

ment, and extensive atrial fibrosis, and then by pro-

gressive ischemic MR.

TRANSLATIONAL OUTLOOK: Further studies are

needed to relate post-infarction LA remodeling and

resulting mitral valve function to left heart hemody-

namics and findings obtained by multimodality

imaging.
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outcome independently of LV remodeling parameters
(3–5,8,21,28,30,31). A plausible explanation is the
development of pulmonary hypertension as a conse-
quence of increased LA pressures. Supporting this
explanation, in our preliminary observations, LA
remodeling parameters and ischemic MR severity
both correlated with pulmonary hemodynamics in the
LAI and LCx groups (Online Appendix, Online Table 2,
Online Figures 6 and 7).

The present study provides evidence of the effects
of atrial infarction during acute MI on the LA
remodeling process. In this regard, recent data
suggest that atrial coronary occlusion is a relatively
frequent (w15%) complication of percutaneous coro-
nary intervention and entails a markedly higher
risk of atrial arrhythmias (10), confirming previous
experimental observations that linked acute LA
ischemia to greater arrhythmia vulnerability (32–34).

STUDY LIMITATIONS. The LCx occlusion induced to
model atrial ischemia entailed severe LV remodeling
and ischemic MR, limiting our ability to isolate the
contribution of each component. We did not specif-
ically investigate the contribution of distal LCx
branches (that may have induced posterior LA wall
ischemia) or proximal right coronary artery branches
to left atrial perfusion (35).

The lack of hemodynamic measurements at the
early stage, including LV end-diastolic or LA pres-
sures limits our understanding regarding the absence
of atrial remodeling in the LAD group. However, in
previous studies (17,36), both LV end-diastolic and LA
pressures increased acutely to a similar extent in both
LAD and LCx coronary occlusions, but LA function
was only impaired in the LCx group. Although these
studies support the notion that proximal LCx occlu-
sion impairs LA function due to LA ischemia, they
lacked follow up surveillance of atrial remodeling and
histology changes.

We did not investigate ECG changes nor quantify
the atrial infarction size by CMR, and future
translational studies are warranted to evaluate such
atrial involvement by noninvasive diagnostic
strategies.
CONCLUSIONS

The current study provides the first experimental
evidence of the structural effect of LAI after acute MI.
In addition to acute LA dilation, major features of this
entity are severe and persistent atrial function
impairment and extensive fibrosis. Acute atrial
dilation and dysfunction contribute to the early
occurrence of ischemic MR, whereas ischemic
MR progression further affects atrial structural
remodeling through a complex interplay.
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