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ABSTRACT: Proteochemometric modeling (PCM) is a computational
approach that can be considered an extension of quantitative structure−
activity relationship (QSAR) modeling, where a single model incorporates
information for a family of targets and all the associated ligands instead of
modeling activity versus one target. This is especially useful for situations
where bioactivity data exists for similar proteins but is scarce for the protein
of interest. Here we demonstrate the application of PCM to identify
allosteric modulators of metabotropic glutamate (mGlu) receptors. Given
our long-running interest in modulating mGlu receptor function we
compiled a matrix of compound-target bioactivity data. Some members of
the mGlu family are well explored both internally and in the public domain, while there are much fewer examples of ligands for
other targets such as the mGlu7 receptor. Using a PCM approach mGlu7 receptor hits were found. In comparison to conventional
single target modeling the identified hits were more diverse, had a better confirmation rate, and provide starting points for further
exploration. We conclude that the robust structure−activity relationship from well explored target family members translated to
better quality hits for PCM compared to virtual screening (VS) based on a single target.

■ INTRODUCTION

One difficult aspect of drug discovery is simultaneous multi-
parametric optimization (target affinity, selectivity, ADME,
toxicology, etc.). Properties like absorption, distribution,
metabolism, excretion, and toxicology have been studied for
some time; however, the systematic prediction and prevention of
off-target effects is relatively novel. The advent of chemogenomic
and proteochemometric approaches has provided computational
tools for exploration of drug activity space on not one but
multiple targets.1 The importance of compounds being active on
multiple targets (bioactivity spectra) rather than single target
activity is particularly relevant in the field of G Protein-Coupled
Receptors (GPCRs) and viral inhibitors.2−4 Additionally, recent
ligand based similarity metrics have confirmed the existence of
common ligands across protein families and even classes.5,6

Proteochemometric modeling (PCM) uses statistical ap-
proaches (machine learning) to predict the bioactivity of
molecules versus groups of targets.7,8 PCM is founded on the
same principles as quantitative structure−activity relationship
(QSAR) modeling but introduces an explicit protein (target)
descriptor based on its sequence. Hence PCM differs from
ligand-based approaches (such as chemogenomic methods)
where the similarity between proteins is inferred from the
similarity between their ligands or bioactivity data alone. Indeed,
the protein similarity information that is added to the model is

complementary to ligand information. The protein descriptor is
commonly obtained via the physicochemical description of
aligned protein sequences.9,10 The descriptors can be derived
from either the full sequence or just the binding pocket. As the
protein descriptor captures aspects of target similarity, PCM can
also predict the activity of known ligands versus new sequences
based on the similarity of these proteins.11 PCMhas been applied
to diverse targets (including Class A GPCRs, viral enzymes,
kinases, and transporter proteins) and ligands (small molecules
and peptides).12

The metabotropic glutamate (mGlu) receptor family consists
of 8 class C GPCRs subdivided into three groups according to
sequence similarity and signaling pharmacology: group I mGlu
1&5, group II mGlu 2&3, and group III mGlu 4, 6, 7, and 8.13,14

They are important drug discovery targets and despite many
reported synthetic orthosteric agonists and antagonists, allosteric
modulation is arguably the preferred means to modulate mGlu
receptor function.15 Allosteric modulators function in the
presence of orthosteric agonists and typically either increase
(positive allosteric modulators, PAMs) or decrease (negative
allosteric modulators, NAMs) receptor response. Also, silent
allosteric modulators (SAMs) are known to bind and have
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apparently little or no functional effect. While glutamate binds in
the large extracellular N-terminal domain, most allosteric
modulators of mGlu receptors are understood to bind in the 7-
transmembrane (7-TM) domain.16−18

Some mGlu receptors are more explored from a drug
discovery point of view than others (Figure 1A). Over the last
15 years many groups including our own laboratories have
explored allosteric modulators of mGlu5,

19,20 mGlu2,
21−25 and

mGlu1.
26,27 Hence, the abundance of mGlu family bioactivity

data at Janssen is consistent with the trends in the public domain
(Figure 1A). The group III mGlu7 receptor is one of the least
explored of the family, although reports suggests it may be
relevant for cognition.28 Only very few reference compounds are
reported for this target; MMPIP is a known mGlu7 NAM, or
allosteric antagonist,29 and AMN-08230 is a PAM that also has
monoaminergic GPCR activity detrimental for its use as a tool
compound31 (Figure 1B). This target is a challenge for
computational VS. Crystal structures of the 7-TM are only
available for group I mGlu1 and mGlu5 receptors in the inactive
state, and a structure based VS approach could be high-risk,
meanwhile there are insufficient mGlu7 active compounds to
develop a pharmacophore. With our interest in mGlu receptor
allosteric modulators we created a platform of assays to measure
activation or inhibition of signaling for all 8 receptors. Multiple
mGlu active chemical series were tested versus this panel of
assays. This data set supports VS with PCM and using the mGlu
bioactivity data to find new hits for less explored receptors such
as mGlu7. Here we describe our hit generation strategy for the
mGlu7 target involving a gene-family screening approach for the
mGlu receptors and building and applying mGlu receptor PCMs
leading to the identification of new mGlu7 allosteric modulator
hits.

■ METHODS

Data Set. Input data came from two sources: Janssen internal
mGlu family screening and ChEMBL (release 19).33 The Janssen
biological data comprised approximately 2500 compounds tested
in the mGlu receptor functional assays described in Table 1
(experimental methods provided in the Supporting Informa-
tion). Activity of a molecule at a given mGlu receptor was
classified as true or false. A compound was defined as inactive in
an mGlu agonist, antagonist, or PAM assay if the pEC50 (or
pIC50) from a concentration response study was <5.0 (EC50 or
IC50 > 10 μM). In addition, molecules without concentration

response data but a single concentration screen (EMAX) < 20%
were also defined as inactive. A compound was defined as active
only if a pEC50 was >5.0. A high single point % EMAX but without
an attempted concentration response activity was not considered
sufficient to count as active, and these molecules were discarded
from further consideration. Details of the data set are provided in
Table 2. The matrix of 2455 compounds and 18 assays (agonism
and antagonism in all 8 mGlu’s and PAM for mGlu2 and mGlu5)
corresponded to 33445 compound and receptor bioactivity pairs
(that is a measurement of compound activity or inactivity in one
mGlu receptor assay). Meanwhile, the data from ChEMBL
consisted of 3211 unique compound and receptor bioactivity
pairs. For duplicate pairs the mean was used; in total 2716
compounds and 15 mGlu’s (multiple species) were covered.
pChEMBL values >6 were considered active, and pChEMBL
values <5 were considered inactive. Intermediate values were
removed to avoid confounding data of weakly active close
analogues compared with inactive molecules and to ensure that
true actives are above a stringent micromolar threshold. From the
total set of 5755 actives and 30901 inactives, 5 different balanced
sets were created through stratified random selection per
receptor (using 5 different seeds) each containing approximately
4500 active data points and 4500 inactive data points (see Table
S1 for a typical example). Molecules were prepared for modeling
in Pipeline Pilot using components to strip salts, standardize
molecules, and add hydrogens and were ionized at pH 7.4 as was
done previously.34−36

Figure 1. (A) Pie chart showing the reported ligands for mGlu receptors in the Thomson Reuters Integrity database.32 The most explored are mGlu5,
mGlu2, andmGlu1. Extracted onMarch 15th 2017. (B) KnownmGlu7 receptor reference compounds: allosteric antagonist/NAMMMPIP and agonist/
PAM AMN-082.

Table 1. Details of Janssen Bioactivity Assays Used in This
Studya

mGlu
receptor species assay details

1 H agonist and antagonist Ca2+ response
2 H PAM GTPγS, PAM Ca2+, Ag GTPγS, and antagonist

Ca2+

3 H agonist and antagonist Ca2+ response
4 H agonist and antagonist GTPγS response
5 H PAM and agonist Ca2+ response
6 R agonist and antagonist GTPγS response
7 H agonist and antagonist Ca2+ response
8 H agonist and antagonist Ca2+ response

aAbbreviations: human (H), rat (R), positive allosteric modulator
(PAM), guanosine 5′-O-[gamma-thio]triphosphate (GTPγS), calcium
(Ca2+.)
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Binding Site Amino Acids. All Janssen in vitro biological
data was generated on the human mGlu receptors, except mGlu6
where the rat clone was used. Data from ChEMBL originated
from human and rat mGlu receptors in all cases except mGlu7,
which was only from rat, andmGlu1 andmGlu5 that also included
mouse data. Previously we demonstrated that human and rat
GPCR paralogs can be successfully combined in a single PCM
model.4 Sequence identity between 7-TM domains of mGlu
receptors in the same groups (I, II, and III) was typically 75−
85%, whereas between members of different groups it was
approximately 45−50%, Figure S1. The high identity permitted a
facile alignment (Figure S2). The recently solved crystal
structures of NAMs binding in the 7-TM domains of mGlu1
and mGlu5 receptors allowed us to identify the relevant allosteric
binding site amino acids (Table 3 and Figure 2). A manual
selection of 34 amino acids was made within a 5 Å radius around
the ligands in the mGlu1 and mGlu5 crystal structures. The
selection was extended to other mGlu receptors based on the
same positions in the sequence alignment (Table S2).
mGlu PCM Model Building.Models were built using the R

statistics randomForest (RF) component available in Pipeline
Pilot.36,38 We have used RF previously as the method of choice in
PCM modeling with good results. As this method is nonlinear,

no cross-term descriptors are required.35,39 Models used 500
trees, class sizes were equalized, and at each split a random 30%
of the descriptors was sampled to identify the best separation at
that point, and out-of-bag validation was used.

Compound and Target Descriptors. Various trial models
were built to test the RF model input parameters as well as the
model performance with different protein and molecule
descriptors. These trials consisted of tests on subsets of the
input data and different subsets of descriptors, for instance,
comparing model validation statistics such as sensitivity,
specificity for models built with 50% of the available data and
applying to the remaining data. From this work, the best target
descriptors were derived to be 3 Z-scales per amino acid, also
including an added average measure for the full binding pocket
sequence. The Z-scale descriptors capture the diversity of amino
acids as they are the first three uncorrelated components
originating from a principal component analysis of physico-
chemical properties (experimental and calculated) of amino
acids. This set of descriptors was shown to perform optimally in
previous GPCR PCM studies.10,39 Protein descriptors were
calculated for the binding site amino acid positions. A distance
matrix with calculated Euclidian distances between the different
receptors using the Z-scale based descriptors is given in Table S3.
In the case of the small molecule descriptors, chemical
fingerprints were combined with physicochemical properties.
Based on occurrence frequency 768 bits were selected using the
Pipeline Pilot component ‘Fingerprints to Properties’. The main
advantage of this approach is that model interpretation allows
linking back to the original substructure for which the bit
encodes. Target frequency presence for bits was present in 50%
of the compounds (avoiding a focus on features with low
information density due to omnipresence or rare presence).
Frequency based selection was preferred over Bayesian selection
as the latter performs poorly in the context of multitarget models.
It was found that functional-class fingerprints (FCFP6) out-
performed extended connectivity fingerprints (ECFP6).40

Physicochemical properties used can be found in Table S4. In
summary, each data point was described by 768 (FCFP6) + 105
(protein) + 34 (small molecule physicochemical) descriptors.
Subsequently these descriptors were used in the various external
validation and prospective applications.

Ligand Based Similarity Search. ECFP6 fingerprints were
used to identify close analogues of only mGlu7 actives from the
Janssen compound collection. In a classic ligand-centric
approach, the initial focus is on identifying the closest structural
analogues, and hence ECFP fingerprints were preferred because
they use actual atom and bond types and capture substructures.

Table 2. Details of the Full Data Set in This Studya

bioactivity pairs

mGlu
receptor species

total
compds

from
ChEMBL

from
Janssen

total “active”
bioactivity pairs

1 H 4552 375 4177 391
M 15 15 0 15
R 342 342 0 316

2 H 5946 305 5641 2234
R 244 244 0 240

3 H 3732 18 3714 269
R 32 32 0 29

4 H 4029 99 3930 99
R 32 32 0 32

5 H 5164 1027 4137 1422
M 2 2 0 2
R 690 690 0 644

6 H 5 5 0 1
R 4094 0 4094 5

7 H 3997 0 3997 23
R 20 20 0 20

8 H 3760 5 3755 13
total 17 36656 3211 33445 5755

aAbbreviations: human (H), rat (R), mouse (M).

Table 3. mGlu Receptor Allosteric Modulator Binding Site Amino Acids Used for PCMa

TM2 TM3 TM4 ECL2b TM5 TM6 TM7

2.46a.42c 3.28a.32c 4.53a43c 45.5 5.40a.40c 6.44a.46c 7.35a.29c
2.49a.45c 3.29a.33c 45.52 5.43a.43c 6.47a.49c 7.38a.32c
2.50a.46c 3.32a.36c 5.44a.44c 6.48a.50c 7.41a.35c
2.53a.49c 3.33a.37c 5.47a.47c 6.51a.53c 7.42a.36c
2.56a.52c 3.35a.39c 5.51a.51c 6.55a.57c 7.45a.39c
2.60a.56c 3.36a.40c 7.46a40c

3.39a.43c 7.49a.43c
3.40a.44c

aAmino acids are identified by their adapted Ballesteros-Weinstein numbering according to recent recommendations.37 bBased on loop naming
nomenclature from http://gpcrdb.org/.
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Further comparison of the value of protein descriptors within the
PCM was performed within the descriptor set validation section.
Structure Based Docking. As mentioned in the Introduc-

tion, the situation does not favor a structure-based approach
given the lack of bioactive molecules for docking validation and
no available receptor structure. We have previously reported
modeling of mGlu receptors but usually in tandem with
experiment.41 Here a model of the mGlu7 7-TM domain was
built based on the mGlu family sequence alignments and the
mGlu1 and mGlu5 receptor structures. Ligands were maintained
during model building to maintain an open 7-TM binding cavity.
Known active and inactive molecules were then docked into the

7-TM binding cavity using Glide SP.42 Small molecules and
protein were prepared using the appropriate lig-prep and protein
preparation tools. Default settings were used for docking.

■ RESULTS AND DISCUSSION
Learning Curve External Validation. A learning curve was

created sampling model performance in duplicate using 30%,
50%, and 70% of the data as training and using the remainder as
test set (Table 4). This was done in duplicate with differing seeds.
Performance of the full model, along with best and worst
performing receptors at a 70% training and 30% testing split, is
shown in Figure 3A. At 70% split the models had an average

Figure 2. (A) Nonsequential alignment of chosen binding site amino acids, coloring is based on Clustal X similarity. (B) mGlu1 and mGlu5 7-TM crystal
structures showing NAMs and binding site amino acids. (C) An example of mGlu7 7-TM model receptor generated based on the sequence alignment
and showing the same corresponding allosteric binding site amino acids.

Table 4. Statistics of the Models Used in the Various External Validation Applicationsa

learning curve external validation model ensemble external validation

30% model 1 50% model 1 70% model 1 model 1 model 3 consensus

active data points (training) 1336 2310 3222 4549 4531 4843
inactive data points (training) 1271 2207 3103 4502 4580 10588
active data points (validation) 3210 2239 1327 1206 1224 912
inactive data points (validation) 3205 2295 1337 26399 26321 20313
OoB sensitivity 0.89 0.90 0.92 0.92 0.92 n/a
OoB specificity 0.88 0.89 0.90 0.91 0.91 n/a
OoB ROC AUC 0.94 0.96 0.96 0.97 0.97 n/a
ExtVal sensitivity 0.89 0.91 0.90 0.88 0.90 0.91
ExtVal specificity 0.88 0.90 0.91 0.94 0.95 0.94
ExtVal MCC 0.77 0.81 0.81 0.57 0.62 0.58
ExtVal ROC AUC 0.94 0.96 0.96 0.97 0.97 0.97

aOverview of representative models created in the external validation. Shown are one of each created learning curve models (30%, 50%, 70%), 2 out
of 5 models created for ensemble model screening (model 1 and model 3), and finally the performance of the consensus model used for prospective
application. The abbreviations are as follows: External Validation (ExtVal), Out-of-Bag (OoB), Matthews Correlation Coefficient (MCC, see main
text for details), Receiver Operator Characteristic (ROC), Area Under the Curve (AUC), Sensitivity is defined as True Positives divided by the sum
of True Positives and False Negatives, Specificity is defined as True Negatives divided by the sum of True Negatives and False Positives. Note that
no OoB parameters are present for the consensus application as this method consists of 5 separate OoB validated models for which data for 2 is
shown.
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sensitivity (sens) of 0.90 ± 0.00 (mean and standard deviation)
(sens = TP/(TP + FN), where TP and FN refer to the number of
true positives and false negatives). The specificity (spec) was 0.91
± 0.00 (spec = TN/(TN + FP)), where TN and FP refer to the
number of true negatives and false positives). The Matthews
Correlation Coefficient (MCC) was 0.81 (±0.00).43 ROC scores
(area under the curve for receiver operator characteristic curves,
plotting the FP rate on the x-axis and the TP rate on the y-axis)
for the mean performance and best and worst performing
receptors are given in Figure 3A. The performance for the rat
mGlu5 receptor is the worst. This is likely caused by a discrepancy
in chemical and sequence similarity (where a high sequence
similarity is not coupled to a high chemical similarity of the
compounds tested). For the rat mGlu5 the distance to the rest of
the training set (1 minus the Tanimoto similarity) based on the
compound structures is the highest (0.45 where the average is
0.19) of the receptors with enough data for the learning curve.
Conversely, the distance to the training set is rather low when the
distance is calculated based on the protein descriptors (0.81
where the average is 0.87). See Figure S3. We speculate that this
mismatch is the cause of the poor performance. This would mean
that the chemical space modeled for rat mGlu5 is partially outside
of the applicability domain. However, it should also be noted that

for rat mGlu5 few actives were present, and hence by balancing
the data much information is discarded, making the modeling
more difficult given the differences in chemical space.
Specifically, for the mGlu7 human receptor sens was 0.71

(±0.06), spec was 0.88 (±0.18), and MCC was 0.61 (±0.28).
ROC curves for 30% (0.79), 50% (0.83), and 70% (0.88) splits
are given in Figure 3B. We conclude that the mGlu7 human
receptor performed slightly below average but well above the
worst receptor performance of rat mGlu5.

Model Ensemble External Validation. For screening
purposes an ensemble of 5 models was used due to the highly
imbalanced training set. The 5 models were generated on
balanced partitions of the training set capturing all information
on the active and inactive compounds (Table S1). The partitions
contained approximately 80% of the actives in the training set
(∼4500) and about 20% (∼1200) in the test set (Table 4), with a
similar number of inactive compounds in the training set and the
remainder in the test set. For this application the average out-of-
bag validated sens was 0.92 and spec was 0.91, with an ROC of
0.97 (Table 4 and Figure S4). External validation was a slightly
worse average with sens at 0.91, spec at 0.94, and MCC at 0.58,
and the associated ROC score was 0.96 (Table 4 and Figure S4).
Consensus model performance was also tested and shown to be

Figure 3. PCM model random learning curve external validation. (A) External validation ROC plot for overall performance (0.96 yellow), the best
performing receptor (human mGlu4, 0.99 in blue), and the worst performing receptor (rat mGlu5, 0.81 in orange). (B) Performance of learning curves
with increasing training sets specifically on human mGlu7. As the training set size increases the ROC is seen to increase from 0.79 for 30% (blue),
through 0.83 for 50% (yellow), to 0.88 for 70% (orange) training set size, respectively.

Figure 4. Enrichment curves showing the retrieval of known actives versus % of database searched for Janssen internal mGlu1 (A) and mGlu2 (B) data
sets.
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slightly better via external validation. In this application, sens was
0.91, spec was 0.94, and MCC was 0.58, with an ROC of 0.97
(Table 4). The worse performance compared to the learning
curve on the test set is likely due to the large imbalance in the
external validation (Table S1), where only about 4% of the data
points are active, compared to an approximately 50:50 split used
for model training.
Descriptor Set Contribution Validation. We also

investigated the added value of the different descriptors by
randomizing the FCFP6 bits, the physicochemical compound
descriptors, the protein descriptors, and the response variable or
by leaving out compound or protein descriptors completely. In
addition, a random model (where the modeled class was
obtained by a random number generator and active labels were
assigned when this number was >0.5) and an inactive biased
random model (where active labels were assigned when the
number was >0.7 due to the large activity imbalance) were
included (Figure S5). Note that in these cases the training set was
scrambled, but the validation set was kept true. The extra testing
demonstrated that model sensitivity, specificity, and MCC
improved with the presence of each of the included descriptors. It
should be noted that the MCC ranges from −1 (anticorrelation)
through 0 (random model) to 1 (perfect model). Compared to
sens and spec, the MCC shows the biggest deterioration due to
this larger range. From these results we conclude that the
improved performance of the PCM is due not only solely to the
addition of more molecules and their associated bioactivity but
also attributable to the binding site similarity linking the data.
External Validation of the PCM Model. The PCM model

was further validated by testing the performance on Janssen in-
house mGlu1 and mGlu2 data sets. With inactives representing
diverse chemical structures from previous high throughput
screens (HTS) and actives taken from a mixture of both diverse
HTS hits and lead-optimization programs, this represented a
realistic and challenging test for the model. First, application to
the mGlu1 receptor data set (comprising 588 actives and 207857
inactives) revealed a good early enrichment for the model over
the first 2−5% of the database (Figure 4A), with 35 of the known
actives being found in the top 2000 ranked molecules, and 25.5%
of actives identified after searching 10% of the database. This
corresponded to a sens and spec after searching 2% of the
database of 0.12 and 0.98, respectively, and after searching 5% of
the database 0.19 and 0.95. Meanwhile, for the mGlu2 data set
(comprising 3412 actives and 206090 inactives) performance
was worse (Figure 4B), and only 12.4% of actives were retrieved
after searching 10% of the database. This corresponded to a sens
and spec after searching 2% of the database of 0.04 and 0.99,
respectively, and 0.08 and 0.98 after searching 5% of the database.
This is due to the diversity in the mGlu2 actives, arising from
multiple HTS and many structurally different lead series. In
contrast, the Janssen mGlu1 actives are predominantly from the

same reported chemical class, offering a better chance for the
model to identify them.
The PCM was further tested by applying to new mGlu7 PAM

screening data performed subsequent to model building. The set
contained 1088 unique molecules, 110 actives, and 978 inactives.
The resulting sens and spec were 0.25 and 0.72, respectively, a
reasonable true positive rate for prospective VS. The data set
contained many close analogues from an internal mGlu7 PAM
medicinal chemistry program, some active and others inactive;
this was a challenge for the model and increased the number of
false positives. The classification of such small structural changes
from lead optimization is beyond the scope of the model. To
further contextualize model performance, we compared with
docking into an mGlu7 7-TM receptor model. The same 110
actives and a larger set of 7855 HTS inactives were used for
docking with Glide SP. A VS of this type would usually be
performed on hundreds of thousands of molecules and the top
2−5% recommended for in vitro screening. Hence, comparing
sens and spec after searching 2% of the database showed values of
0.05 and 0.98, respectively, or after searching 5% of the database
they were 0.08 and 0.95. This is in a similar performance range to
the worst-case PCM validation on the mGlu2 HTS data set.
For the true prospective application final PCM models were

trained on all data and applied for the selection of compounds to
target the mGlu7 receptor.

Prospective VS with PCM To Identify mGlu7 PAMs.Our
focus was hit finding for a difficult target, allosteric modulators of
mGlu7 receptor, based on gene family mGlu receptor screening
followed by PCM for VS. The PCM was used for VS of the
Janssen R&D corporate compound collection. First, Janssen
compounds were filtered for stock availability. Restrictive
physicochemical property filters were applied to identify only
CNS-lead-like hits. Compounds with MW >400, number of H-
bond donors >2, molecular polar surface area >70 Å2, AlogP >6,
nitrogen plus oxygen count >7, and number of rotatable bonds
>10 were removed. Undesirable substructures and compounds
previously tested versus mGlu7 were also removed. Approx-
imately 200,000 compounds remained. Molecular and protein
fingerprints corresponding to the mGlu7 7-TM binding site were
calculated for each molecule, and the likelihood of activity was
predicted using the model. In total 2130 molecules were
predicted as having mGlu7 activity. The top ranked 394 were
selected for screening (Table 5).
In addition, a comparison was performed versus a typical single

target ligand based VS to identify close analogues. Molecules
were selected from the Janssen compound collection based on
their similarity to in-house mGlu7 actives. Previous in-house in
vitro mGlu7 screens had delivered hits with pEC50 up to 6.5 in
mGlu7 agonist/PAM assays. In total 92 diverse active
compounds were identified from our existing internal data that
either had a measurable mGlu7 receptor pEC50 or EMAX > 40%;
for further details see Figure S6. Each compound was used as a

Table 5. Summary of mGlu7 PAM VS and Resulting Hits

method

PSa

compds
tested

PS
activeb

PS hit
rate

conf
compds
testedc

pEC50 > 4.52
ag or PAMd

active in
autofluorescence

no. of
confirmed
actives

final
confirmed
hit rate

single target approach: fingerprint analogues of only
mGlu7 actives

202 27 13% 25 17 12 5 2.5%

multitarget approach: select molecules based on
likelihood to be mGlu7 active from PCM

394 42 11% 41 18 1 17 4.3%

aPS compds tested refers to compounds tested in the primary screen. b>50% effect at 3 or 10 μM in either agonist or PAM assay. cconf compds
tested refers to number of compounds tested in confirmation assays. dAg refers to agonist.
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query for ECFP6 fingerprint searches, and analogues from the
Janssen collection with Tanimoto similarity >0.5 were retained.
The molecules were subjected to the same filters as described
above for the PCM VS. Physicochemical property filters were
applied, and undesirable substructures were removed. This
represents a typical approach with a single target ligand-based
modeling paradigm given the scarcity of data for the target and
low activity of the reference compounds. In total 202 compounds
were identified and recommended for biological screening.
First, all compounds were tested in primary mGlu7 assays to

assess their likelihood of activity. At the time, the mechanism of
action of AMN-082 was not fully understood, and it possibly acts
as a dual agonist/PAM. Hence, we did not want to discard the
chance of finding CNS-drug-like (nonamino acid like) allosteric
agonists as well as PAMs. Therefore, the initial primary screen
(PS) was performed with two assays in a low throughput manner,
testing for >50% effect at 3 or 10 μM concentrations in either
agonist or PAM assay. This resulted in 41 weak hits from PCM
and 25 from the single target fingerprint approach (Table 5 and
Figure 5). These compounds were then assessed in concen-
tration response. The initial diversity of the primary screening
hits from the PCM model was greater than that from the
fingerprint approach, Figure 5. Subsequently, 18 hits from PCM
and 17 from fingerprints showed confirmed activity better than
30 μM (pEC50 > 4.52).
The fingerprint search resulted in a larger proportion of false

positives due to autofluorescence, 12 out of 17 compounds
(Table 5). Table 2 showed there were very few and only weakly
active mGlu7 ligands at the start of the project, with relatively
high logP (details Figure S6). The queries themselves were not
characterized as autofluorescent, but their low activities make
them suboptimal for similarity searches. In contrast, only one of
the PCM hits was discarded based on autofluorescence. The
PCM was built from more data and more robust data avoiding
promiscuous molecules that fail in confirmation assays.44 For

example, much originated from long running discovery programs
for targets such as mGlu2 and mGlu5 that contributed many of
the active compounds in the PCM data set. This is not a
weakness of the fingerprint method, but a result of performing
ligand based VS on a novel target without robust queries. The
results highlight that the PCM model delivered hit compounds
with greater structural diversity and a lower proportion of false
positives.
Regarding the final confirmed hits, the fingerprint hits were all

analogues from the same chemical series. In contrast, PCM hits
contained diverse chemical scaffolds andmore promise for future
work, Figure 5. The hit rate from the prospective VS was lower
than the validation studies. We attribute this to the low activity of
the known actives used for model building and the restrictive
physicochemical property filters used to select compounds
making this a very challenging validation. This resulted in various
high-ranking PCMmolecules that were lower MW substructures
of known actives but insufficient to be active mGlu7 allosteric
modulators, see examples in Figure S7. This is a byproduct of
performing VS with few potent reference compounds, in this case
pIC50’s from 6 to 6.6. Typically, VS hits are less active because
they are unoptimized “off-the-shelf”molecules. Hence, with a 10
μM concentration screening cutoff, there is only a small window
in which to find new actives. A further explanation of the varying
performance was seen with the distance to training set for the
compounds recommended for screening. With an average
FCFP_6 Tanimoto distance of 0.57 (±0.20), this distance was
higher compared to the mean distance between compounds in
the set in general (0.19) and tested on mGlu7 (0.01). These
observations suggest that the applicability domain of the model
cannot extend too far from the structural similarity space of the
active ligands. Hence, overall the model was trying to predict
activity at the limits of its applicability domain. It should also be
noted that allosteric modulators have previously been found to
be part of a slightly different chemical space as compared to

Figure 5. Stochastic proximity embedding (SPE) diversity map capturing the substructural diversity of the primary screening hits. Primary screen hits
from PCM are shown in red, and hits from only fingerprint analogues of mGlu7 actives are shown in blue. The plot highlights the diversity of the PCM
hits (red) compared to the initial fingerprint queries (green) and the resulting fingerprint hits (blue). ECFP4 fingerprints were used as descriptors. SPE
generates low-dimensional Euclidean embeddings that preserve the similarities between the chemical structures.46 Confirmed hits from fingerprints are
molecules numbered 1 and 2 whose structures are shown in the top left, and their location in the diversity map is within the blue circle. Meanwhile, hits
from PCM are numbered 3 to 6, their structures are shown in the bottom of the figure, and their locations in the diversity map are circled in red. The hits
from PCM extend into a diversity space beyond those of the fingerprint queries and hits.
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orthosteric compounds (in general found to be more lipophilic,
more rigid, and to bind with a lower absolute affinity).45

Active hits from the VS were sourced from the Janssen
corporate compound collection, no new synthesis was performed
at this time, and batch purity information is provided in the
Supporting Information (Table S5). The selectivity of the hits 1
to 4was assessed by in vitro screening in the same panel of mGlu1
to mGlu8 receptor activation or inactivation assays. No activity
was seen up to concentration cutoffs of 10 μM for compounds 1,
2, and 4, while molecule 3 showed micromolar activity with
pEC50 of 6.2 in mGlu3 and mGlu4 agonism assays. Thus,
compound 4 was revealed to be similarly active not only for
mGlu7 but also for other mGlu receptors. Hit 3 showed visual
similarity with reference compound AMN-082 (Figure 1),
containing a distal benzhydryl motif but with more attractive
alternative substructures and breaking the symmetry of AMN-
082. Further substructure and analogue searches did not lead to
more active hits compared to 3; however, chemistry around this
hit based on synergies with AMN-082 led to rapid improvement
of potency to a 10 nMmGlu7 PAM, which will be disclosed in an
upcoming report.

■ CONCLUSION

In conclusion, we have described a hit generation approach for
the mGlu7 receptor. Using mGlu receptor family screening
followed by PCM identified new allosteric modulators of the less
explored mGlu7 receptor within the mGlu family. Given that no
receptor structure was available and very few reported ligands,
classical target oriented approaches were challenging. A docking
approach showed a low true positive retrieval rate. Hence, this
was an ideal scenario to benefit from abundant data for similar
targets in the same family. We performed multiple rounds of
PCM model validation. Performance varied from a high true
positive retrieval rate seen in internal cross-validation to
intermediate or low values applied to external data sets (HTS
and newly screened compounds) or the prospective study.
Cross-validation showed that the PCMmodel benefited from the
protein descriptors, hence there was value in using the
multitarget and intertarget descriptors. From the prospective
study, the diversity of the initial screening hits was higher for the
multitarget PCM compared to a single target fingerprint
similarity. Also, and particularly interesting, was the better
confirmation rate of the hits from PCM that were selected with
information from robust SAR of similar targets compared with
the weakly active singletons selected with the single target. Our
results illustrate the value of PCM-based VS in cases where
limited chemical information is available for the target of interest
but where target family members have been explored more
extensively. Future work will describe the follow-up of these hits
and additional mGlu7 PAM chemical series.
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