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Abstract
Background Tamoxifen is one of the cornerstones of endocrine
therapy for breast cancer. Recently, the decreased activity
CYP3A4*22 allele and the loss of function CYP3A5*3 allele
have been described as potential factors that could help to explain
the inter-patient variability in tamoxifen metabolism. The aim of
this study is to investigate the effect ofCYP3A4*22, CYP3A5*3,
and CYP3A combined genotypes on tamoxifen metabolism.
Methods DNA from 667 women enrolled in the CYPTAM
study (NTR1509) was genotyped (CYP2D6, CYP3A4*22,
and CYP3A5*3). Tamoxifen and metabolite concentrations
weremeasured in serum, andmetabolic ratios were calculated.
The effect of the CYP3A4*22, CYP3A5*3, and CYP3A com-
bined genotypes in addition to the CYP2D6 genotypes was
examined by multiple linear regression analysis.
Results CYP3A4*22 carriers reached significant higher con-
centrations of tamoxifen, N-desmethyl-tamoxifen, and 4-
hydroxy-tamoxifen compared to non-carriers, whereas a ten-
dency toward increased endoxifen levels was observed
(p = 0.088). The metabolic ratio tamoxifen/N-desmethyl-ta-
moxifen was significantly higher in CYP3A4*22 individuals

(0.59 vs. 0.52, p < 0.001). At the same time, CYP3A4*22
genotype contributed to improving the inter-variability [R2

of the (log-transformed) metabolic ratio tamoxifen/N-
desmethyl-tamoxifen improved from 21.8 to 23.9%,
p < 0.001]. CYP3A5*3 marginally improved the explained
variability of the (log transformed) metabolic ratio 4-hy-
droxy-tamoxifen/endoxifen (from 44.9 to 46.2%, p < 0.038).
Conclusion Our data demonstrate that CYP3A genotype has a
minor effect to explaining the variability between patients in
tamoxifen metabolism and has no added value in addition to
CYP2D6 genotype.

Keywords Tamoxifen . Endoxifen .CYP3A4*22 and
CYP3A5*3

Introduction

Breast cancer is the most common diagnosed cancer in wom-
en, representing nearly 25% of all cancers [1]. Approximately
60–75% of breast cancer patients have estrogen receptor-
positive tumors [2], and in such cases, endocrine therapy
may be indicated.

Tamoxifen has been widely prescribed to treat breast cancer
patients with estrogen-receptor tumors for more than 40 years
[3, 4]. As a prodrug, tamoxifen is metabolized by different
cytochrome P-450 enzymes to its primary metabolites, 4-
hydroxy-tamoxifen and N-desmethyl-tamoxifen [5] (NDM-ta-
moxifen). A second biotransformation from NDM-tamoxifen
into endoxifen is principally regulated by CYP2D6 enzyme. At
the same time, 4-hydroxy-tamoxifen also is biotransformed into
endoxifen, mainly controlled by CYP3A4/5 and CYP2D6 en-
zymes, among others [6] (Fig. 1). Endoxifen is believed to be
the most relevant tamoxifen metabolite since it is found in
larger concentrations than 4-hydroxy-tamoxifen [7].
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Additionally, CYP2D6 is considered the rate-limiting enzyme
in tamoxifen metabolism [8] because it metabolizes the trans-
formation of NDM-tamoxifen into endoxifen, which accounts
for around 92% of tamoxifen metabolism [9]. However, it only
partially explains the inter-patient variability of the metabolic
ratio NDM-tamoxifen/endoxifen. According to Mürdter and
colleagues [10], 68.7% of the variance in metabolic ratio of
NDM-tamoxifen/endoxifen is explained by polymorphisms in
CYP2D6.

Polymorphisms in genes encoding for other enzymes, such as
CYP3A[11, 12], havebeen also related to tamoxifenmetabolism.
CYP3A4 is implicated in the metabolization of 30–50% of com-
mon therapeutic drugs [13], whereas CYP3A5 is also known to
have a relevant function in drug metabolism [14].

CYP3A4 plays a role in the transformations of 4-hydroxy-
tamoxifen to endoxifen, tamoxifen to NDM-tamoxifen, and
tamoxifen to 4-hydroxy-tamoxifen (Fig. 1). Genetic polymor-
phisms of CYP3A4, with some effect on tamoxifen metabo-
lism, have been identified [15, 16]. Still, there is limited infor-
mation about the clinical relevance of most of these polymor-
phisms. However, CYP3A4*22 has been suggested to be an
actionable CYP3A allele [17]. With a frequency of 5–7% in
Caucasian population, CYP3A4*22 has been associated with
decreased CYP3A4 activity [18]. CYP3A4*22 has been sug-
gested to have a role in the metabolism of immunosuppressive
drugs [18, 19], whereas for tamoxifen, diverse evidence can
be found in the literature [20–22]. Teft et al. suggested that
CYP3A4*22 carriers were two times more likely to have
higher endoxifen levels [20]. Antunes et al. proposed that

CYP3A4*22 genotype is associated with increased concentra-
tions of 4-hydroxy-tamoxifen in the presence of impaired
CYP2D6 activity [21]. In a clinical setting, Baxter and col-
leagues described CYP3A4*22 carriers tend to have less hot-
flashes symptoms when compared with non-carriers [22].

CYP3A5 genetic polymorphisms are also involved in ta-
moxifen metabolism, but studies with tamoxifen have yielded
conflicting data. Initially, Jin et al. described that carriers of
non-functional CYP3A5 alleles, such as CYP3A5*3, were
more likely to have higher endoxifen concentrations than
individuals with a functional CYP3A5*1 allele [23]. Yet, no
significant association between CYP3A5 polymorphisms
with tamoxifen and its metabolites concentrations or clinical
outcome has been found by other researchers [10, 20].

Combined data about the effect of CYP3A4 and CYP3A5
has also been analyzed in renal [19] and heart transplantation
[24]. However, little is known about this combined effect on
tamoxifen metabolism. In an attempt to elucidate the factors
that are related to variability in tamoxifen metabolism, we
aimed to investigate the effect of CYP3A4*22, CYP3A5*3,
and CYP3A combined genotypes on tamoxifen metabolism.

Methods

Study population and study design

Blood and serum samples were used from individuals enrolled
in the CYPTAM study (NTR 1509) [25]. The aim of the

Fig. 1 Tamoxifen metabolism
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CYPTAM study was to correlate CYP2D6 predicted pheno-
types and endoxifen with relapse-free survival, disease-free
survival, and overall survival. In brief, from February 2008
till December 2010, patients with early breast cancer receiving
adjuvant tamoxifen were recruited in the multicenter prospec-
tive CYPTAM study in The Netherlands and Belgium.

All the enrolled patients signed an informed consent.
Women with a history of a previous malignancy within the
last 5 years, with the exception of patients appropriately treat-
ed for an in situ cervix carcinoma or basal cell carcinoma,
were excluded. Other exclusion criteria were pregnancy,
breastfeeding, or an unwillingness to sign the informed con-
sent. The CYPTAM study was approved by the Medical
Ethical Committee of the Leiden University Medical Center
in Leiden (The Netherlands). After inclusion in the CYPTAM
study, and having used tamoxifen for more than 2 months but
less than 1 year, both whole blood and serum samples were
collected for genotyping and measurement of tamoxifen and
metabolites concentrations, respectively. Trough levels were
obtained 12 h after the last intake of tamoxifen.

Metabolite measurements

Steady-state concentrations of tamoxifen and its metabolites
(NDM-tamoxifen, 4-hydroxy-tamoxifen, and endoxifen) were
measured in serum with high-performance liquid
chromatography-tandem mass spectrometry (HPLC/MS/
MS). This assay was developed and validated at the laboratory
of Clinical Pharmacy and Toxicology at the Leiden University
Medical Center and was described in detail earlier [26].

Genotyping

CYP2D6 genotyping

CYP2D6 genotyping was performed using the Amplichip
CYP450 test (Roche Diagnostics, Indianapolis, USA) to test
the major CYP2D6 alleles in DNA isolated from blood. All
CYP2D6 genotypes were translated to predicted phenotypes
according to Schroth and colleagues [27]. The considered
CYP2D6 predicted phenotypes are as follows: ultra-rapid
(UM, duplication of active alleles), extensive (EM, two fully
functional alleles), heterozygous extensive (hetEM, one nor-
mal active allele with a non-functional allele), intermediate
(IM, one non-functional allele with one decreased activity
allele or two alleles with decreased activity), and poor
metabolizers (PM, two non-functional alleles).

The CYP2D6 IM phenotype consisted of two alleles with
decreased CYP2D6 activity and one non-functional allele
combined with one allele with decreased CYP2D6 activity.
Alleles with decreased CYP2D6 activity were *9, *10, *17,
*29, *36, *41, *10xN, *17xN, and *41xN, whereas non-

functional alleles were *3 until *8 alleles, *11, *14A, *15,
*19, *20,*40, and *4xN″. As previously reported by
Gaedigk et al. [28], the combination of a fully functional allele
and a non-functional allele would most likely be translated as
an EM phenotype. Still, this combination can also be consid-
ered as hetEM [27, 29], as previously described, and we used
this term.

CYP3A4/5 genotyping

CYP3A4*22 was analyzed with TaqMan 7500 (Applied
Biosystems, Nieuwerkerk a.d. IJssel, The Netherlands) with
predesigned assays, according to manufacturers’ protocol.
CYP3A5*3 was determined with Pyrosequencer 96 MA
(Isogen, IJsselstein, The Netherlands).

CYP3A combined genotypes

In order to investigate the combined effect ofCYP3A4*22 and
CYP3A5*3, genotype clusters were formed as follows:

1. Slow metabolizers (C1): metabolizers with at least one de-
creased activity allele in CYP3A4 (CYP3A4*22/*22 or
CYP3A4*1/*22) and no CYP3A5 activity (CYP3A5*3/*3).

2. Intermediate metabolizers group 1 (C2): metabolizers with
no decreased activity allele in CYP3A4 (CYP3A4*1/*1)
and no CYP3A5 activity (CYP3A5*3/*3).

3. Intermediate metabolizers group 2 (C3): metabolizers with
at least one decreased activity allele in CYP3A4
(CYP3A4*22/*22 orCYP3A4*1/*22) and at least one func-
tional allele in CYP3A5 (CYP3A5*1/*1 orCYP3A5*1/*3).

4. Extensive metabolizers (C4): metabolizers with no de-
creased activity allele in CYP3A4 (CYP3A4*1/*1) and
at least one functional allele in CYP3A5 (CYP3A5*1/*1
or CYP3A5*1/*3).

Statistical analysis

Metabolic ratios were determined as concentration of sub-
strate divided by concentration of metabolite. To analyze dif-
ferences between metabolic ratios, a two-sided Student’s t test
was used. To compare the concentrations of tamoxifen and its
metabolites among CYP3A clusters, one-way ANOVA tests
were used. For comparisons between tamoxifen and metabo-
lite concentrations by CYP3A4 and CYP3A5 groups, a two-
sided Student’s t test was performed. A multiple linear regres-
sion analysis was carried out to analyze the contributions of
CYP3A4*22, CYP3A5*3, and the CYP3A combined geno-
types to explain the total variability of the (log-transformed)
metabolic ratios and concentrations of tamoxifen and its me-
tabolites among treated patients. Statistical analyses were car-
ried out with IBM SPSS for Windows, version 23.0. In
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analyses, test with p values <0.05 was considered to be statis-
tically significant.

Results

Patient characteristics

A total of 667 female patients were enrolled in the CYPTAM
study from February 2008 till December 2010 from 19 partic-
ipating hospitals in The Netherlands and 6 hospitals in
Belgium. The mean age of included patients was 56.4 years
and in 79.5% were progesterone receptor-positive tumors.
Table 1 lists the clinically and demographically relevant de-
tails of the CYPTAM patients.

CYP2D6 genotypes

Whole blood samples from 656 patients were available for
genotyping. Of these, no genotype was obtained for 29 sam-
ples (4.4%), while for 637 patients (95.5%), CYP2D6
genotyping was successful, leading to a CYP2D6 predicted
phenotype classification of 5 UMs (0.8%), 317 EMs (47.5%),
211 hetEMs (31.6%), 58 IMs (8.7%), and 47 PMs (7.0%).

CYP3A4 genotypes

The cohort consisted of 563 (84.4%) CYP3A4*1/*1 carriers,
73 (10.9%) CYP3A4*1/*22 carriers, and 1 (0.1%)
CYP3A4*22/*22 carrier. Unfortunately, genotyping failed in
30 samples (4.5%). CYP3A4 frequency and genotyping in the
study population are shown in Table 2. Genotype distributions
were in Hardy-Weinberg equilibrium and no linkage disequi-
librium was observed between the CYP3A4*22 single nucle-
otide polymorphism (SNP) and the CYP3A5*3 allele
(LD < 0.1).

CYP3A5 genotypes

Frequencies and distribution in the study population are listed
in Table 2. The most frequent genotype was CYP3A5*3/*3,
followed by CYP3A5*1/*3 and CYP3A5*1/*1, consisting of
554 (83.1%), 94 (14.1%), and 4 patients (0.6%), respectively.
In 15 cases (2.2%), no genotype was obtained. Genotype dis-
tributions were in Hardy-Weinberg equilibrium and no link-
age disequilibrium was observed between the CYP3A4*22
SNP and the CYP3A5*3 allele (LD < 0.1).

CYP3A4/CYP3A5 genotype clusters

C1, C2, C3, and C4 clusters were formed as described to
analyze the additional combined effect of the CYP3A4 and
CYP3A5 genotype on the CYP2D6 genotype. C1 consisted of

63 individuals (9.4%), 471 individuals for C2 (70.6%), 10
cases for C3 (1.5%), and 88 cases for C4 (13.2%). In 35 cases,
no combined cluster could be made due to previous missing
data.

Table 1 Baseline characteristics of the CYPTAM patients

Total
(N = 667
patients)

Age Mean (years) 56.4

Standard deviation (years) 11.1

Surgery Mastectomy 310

Breast conserving 352

Not specified 5

Surgery axilla Sentinel node procedure only 333

Axillary lymph node dissection 329

Not specified 5

Tumor stage T1 356

T2 274

T3/T4 28

Not specified 9

Nodal stage N0 317

N1 266

N2 57

N3 24

Not specified 3

Histologic
classification

Ductal adenocarcinoma 508

Lobular adenocarcinoma 94

Other 62

Not specified 3

Histologic grade G1 94

G2 378

G3 188

Not specified 7

Progesterone
receptor status

Positive 530

Negative 127

Not specified 10

HER2 receptor
status

0 405

1+ 169

2+ 36

3+ 54

Not specified 3

Adjuvant
radiotherapy

Yes 462

No 202

Not specified 3

Adjuvant
chemotherapy

Yes 407

No 257

Not specified 3

1592 Eur J Clin Pharmacol (2017) 73:1589–1598



Association of tamoxifen and its metabolites to CYP3A4
genotype, CYP3A5 genotype, and CYP3A4/5 combined
genotypes

A substantial variation in the metabolic ratios of tamoxifen
and its metabolites between individuals was observed. An

overview of the mean and standard deviations (SD) of
tamoxifen and its metabolite metabolic ratios by CYP3A4,
CYP3A5 genotypes and CYP3A clusters is presented in
Table 3.

The metabolic ratio tamoxifen/NDM-tamoxifen was sta-
tistically different (p < 0.001) between CYP3A4*22/*22
and CYP3A4*1/*22 or CYP3A4*1/*1 individuals, whereas
other metabolic ratios (tamoxifen/4-hydroxy-tamoxifen, 4-
hydroxy-tamoxifen/endoxifen, and NDM-tamoxifen) did
not show any difference. The metabolic ratios of tamoxifen
did not show any difference between CYP3A5*1/*3 or
CYP3A5*1/*1 and CYP3A5*3/*3 individuals (p > 0.05).
Figure 2 shows the comparisons of tamoxifen and its me-
tabolite metabolic ratios stratified by the CYP3A4 and
CYP3A5 genotypes.

At the same time, only the metabolic ratio of tamoxifen/
NDM-tamoxifen was significantly different among CYP3A4/
5 combined genotypes (C1, C2, C3, and C4) (p < 0.001). The
other metabolic ratios (tamoxifen/4-hydroxy-tamoxifen, 4-hy-
droxy-tamoxifen/endoxifen, and NDM-tamoxifen/endoxifen)
did not significantly differ between the different CYP3A4/5
clusters. Figure 3 presents a comparison between the different
CYP3A4/5 clusters by the diverse metabolic ratios.

The mean concentrations of tamoxifen, 4-hydroxy-tamoxi-
fen, and NDM-tamoxifen of CYP3A4*22 carriers were statis-
tically higher (p < 0.05). Endoxifen mean concentrations were
not statistically higher (p = 0.088), but a trend toward higher
endoxifen concentrations was observed among CYP3A4*22
individuals. An overview of mean concentrations of tamoxifen

Table 2 Genotype distribution and frequency in the study population

Genotypes Total individuals
(n)

Frequency
(%)

CYP3A4 *1/*1 563 84.4

*1/*22 73 10.9

*22/*22 1 0.1

Unknown 30 4.5

CYP3A5 *3/*3 554 83.1

*1/*3 94 14.1

*1/*1 4 0.6

Unknown 15 2.2

CYP3A4/CYP3A5
cluster

C1 63 9.4

C2 471 70.6

C3 10 1.5

C4 88 13.2

Unknown 35 5.2

C1, CYP3A4*22 carriers and CYP3A5*1 non-carriers; C2, CYP3A4*22
non-carriers and CYP3A5*1 non-carriers; C3, CYP3A4*22 carriers and
CYP3A5*1 carriers; C4, CYP3A4*22 non-carriers and CYP3A5*1 car-
riers; Unknown, not genotyped or missing data

Table 3 Summary of CYP3A4
and CYP3A5 covariate analysis R2 p value

Ln (MR tamoxifen/NDM-tamoxifen) CYP2D6 0.218 <0.001

CYP2D6 and CYP3A4*22 0.239 <0.001

CYP2D6 and CYP3A5*3 0.221 0.35

CYP2D6 and CYP3A cluster 0.224 0.013

Ln MR tamoxifen/4-hydroxy-tamoxifen CYP2D6 0.219 <0.001

CYP2D6 and CYP3A4*22 0.214 0.715

CYP2D6 and CYP3A5*3 0.223 0.947

CYP2D6 and CYP3A cluster 0.217 0.908

Ln MR 4-hydroxy-tamoxifen/endoxifen CYP2D6 0.449 <0.001

CYP2D6 and CYP3A4*22 0.456 0.116

CYP2D6 and CYP3A5*3 0.462 0.038

CYP2D6 and CYP3A cluster 0.465 0.016

Ln MR NDM-tamoxifen/endoxifen CYP2D6 0.570 <0.001

CYP2D6 and CYP3A4*22 0.574 0.375

CYP2D6 and CYP3A5*3 0.581 0.477

CYP2D6 and CYP3A cluster 0.579 0.779

MR = metabolic ratio. Ln(MR tamoxifen/NDM-tamoxifen) = natural log of MR tamoxifen/NDM-tamoxifen;
Ln(MR tamoxifen/4-hydroxy-tamoxifen) = natural log of MR tamoxifen/4-hydroxy-tamoxifen; Ln(MR 4-hy-
droxy-tamoxifen/endoxifen) = natural log of MR 4-hydroxy-tamoxifen/endoxifen; Ln(MR NDM-tamoxifen/
endoxifen) = natural log of MR NDM-tamoxifen/endoxifen
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and its metabolites in the different groups is presented in
Supplementary Table 1 and Supplementary Figs 1 and 2.

Association between metabolic ratios of tamoxifen and its
metabolites to CYP2D6, CYP3A4/5, and combined
genotypes

The explained variability (R2) of (log-transformed) metabolic
ratios of tamoxifen/NDM-tamoxifen, tamoxifen/4-hydroxy-

tamoxifen, 4-hydroxy-tamoxifen/endoxifen, and NDM-ta-
moxifen/endoxifen due to genetic variations in CYP2D6 was
21.8%, 21.9%, 44.9%, and 57.0%, respectively.

A multiple linear regression indicated a combined analyses
accounting for CYP2D6 and CYP3A4 (CYP3A4*22 and
CYP3A4*1) genotypes significantly improved the prediction
of the metabolic ratio tamoxifen/NDM-tamoxifen from 21.8
to 23.9%, whereas the explained variability for other metabol-
ic ratios only showed marginal improvements.
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a bFig. 2 Association of CYP3A4
and CYP3A5 genotypes with
tamoxifen and its metabolite
metabolic ratios. (a) Association
between CYP3A4*22/*22 and
CYP3A4*22/*1 or CYP3A4*1/*1
carriers with tamoxifen and its
metabolite metabolic ratios. (b)
Association between CYP3A5*3/
*3 and CYP3A5*3/*1 or
CYP3A5*1/*1 carriers with
tamoxifen and its metabolite
metabolic ratios
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Another multiple linear regression was used to test the ef-
fect of CYP2D6 and CYP3A5 (CYP3A5*3 and CYP3A5*1)
genotypes together. However, no statistically significant dif-
ference of the explained variability was found (p > 0.05) com-
pared to CYP2D6 alone.

In a third linear regression, the combined role of CYP2D6
and CYP3A clusters (C1, C2, C3, and C4) together was
tested. Still, no significant improvements in the explained
variability (R2) were observed. A summary of CYP3A4,

CYP3A5, and CYP3A covariate analysis is presented in
Table 4.

The explained variability (R2) of (log-transformed) concentra-
tions of tamoxifen, endoxifen, 4-hydroxy-tamoxifen, and NDM-
tamoxifen due to genetic variations in CYP2D6, CYP3A4, and
CYP3A5 genotype, and CYP3A combined genotypes is present-
ed in Supplementary Table 2. The explained variability of (log-
transformed) concentrations of endoxifen due to CYP3A4*22
genotype marginally increased from 42.3 to 42.8% (p < 0.001).
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Fig. 3 Association of CYP3A4
and CYP3A5 genotypes with
tamoxifen and its metabolite
metabolic ratios. C1, CYP3A4*22
carriers and CYP3A5*1 non-
carriers; C2, CYP3A4*22 non-
carriers and CYP3A5*1 non-
carriers; C3, CYP3A4*22 carriers
and CYP3A5*1 carriers; C4,
CYP3A4*22 non-carriers and
CYP3A5*1 carriers

Table 4 Overview of the means and standard deviations of tamoxifen, and its metabolite concentrations and metabolic ratios according to CYP3A4,
CYP3A5 genotypes and CYP3A cluster

Tamoxifen and its metabolite metabolic ratios according to CYP3A4, CYP3A5 genotypes and CYP3A cluster

MR tamoxifen/NDM-
tamoxifenMean (SD)

MR0 tamoxifen/4-hydroxy-
tamoxifenMean (SD)

MR 4-hydroxy-tamoxifen/
endoxifenMean (SD)

MR NDM-tamoxifen/
endoxifenMean (SD)

CYP3A4 genotypes (n = 632)
CYP3A4*22/*22 and CYP3A4*1/*22 (n = 560) 0.59 (0.19) 68.6 (35.00) 0.21 (0.08) 29.3 (29.50)
CYP3A4*1/*1 (n = 72) 0.52 (0.13) 65.0 (25.40) 0.20 (0.09) 29.1 (25.50)
p value <0.001 0.286 0.535 0.965
CYP3A5 genotypes (n = 647)
CYP3A5*1/*3 or CYP3A5*1/*1 (n = 97) 0.52 (0.12) 64.16 (24.53) 0.19 (0.08) 26.49 (24.10)
CYP3A5*3/*3 (n = 550) 0.53 (0.14) 65.38 (26.93) 0.21 (0.09) 29.64 (26.55)
p value 0.560 0.677 0.052 0.274
CYP3A cluster genotypes (n = 626)
Slow (C1; n = 61) 0.59 (0.18) 68.45 (36.66) 0.21 (0.08) 30.57 (31.46)
IM1 (C2; n = 469) 0.52 (0.13) 65.36 (25.55) 0.20 (0.09) 29.48 (25.57)
IM2 (C3; n = 10) 0.56 (0.19) 68.20 (25.85) 0.17 (0.03) 22.82 (12.91)
Extensive (C4; n = 87) 0.52 (0.11) 63.70 (24.48) 0.19 (0.08) 26.91 (25.09)
p value <0.001 0.740 0.164 0.683

MR, metabolic ratio; SD, standard deviation; slow group (C1), CYP3A4*22 carriers and CYP3A5*1 non-carriers; intermediate 1 group (C2),
CYP3A4*22 non-carriers and CYP3A5*1 non-carriers; intermediate 2 group (C3), CYP3A4*22 carriers and CYP3A5*1 carriers; extensive group
(C4), CYP3A4*22 non-carriers and CYP3A5*1 carriers
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Discussion

In the present study, the contribution of CYP3A4*22,
CYP3A5*3, and combined genotypes to the metabolism of ta-
moxifen and the formation of the active metabolite endoxifen
was investigated. Our data show that CYP3A4*22 genotype
slightly contributes to explaining the pharmacokinetic variabil-
ity between patients receiving tamoxifen, but the effect is small.
CYP3A5*3 genotype and CYP3A4/5 combined genotypes do
not significantly help to improve the explained variability in
tamoxifen metabolism.

The explained variability (R2) of (log-transformed)
endoxifen concentrations due to CYP2D6 predicted pheno-
types was 42.3%, while 57.0% of the variability in metabolic
ratio NDM-tamoxifen/endoxifen was explained by CYP2D6.
Previously, Mürdter and colleagues reported a high, 68.7%
variance in metabolic ratio of NDM-tamoxifen/endoxifen due
to genetic variations in CYP2D6 genotype [10]. In our study,
we observed a lower variance of metabolic ratio of NDM-ta-
moxifen/endoxifen (57.0%); however, the data demonstrate
that CYP2D6 genotype alone only partially explains the vari-
ability between patients using tamoxifen.

In this study, when the CYP3A4*22 genotype was taken
into account, in addition to the CYP2D6 genotype, the ex-
plained variability (R2) of (log-transformed) endoxifen con-
centrations slightly improved from 42.3 to 42.8%
(p < 0.001), whereas the explained variability of the metabolic
ratio NDM-tamoxifen/endoxifen did not significantly increase
(from 57.0 to 57.4%, p = 0.375). Interestingly, the explained
variability of (log-transformed) metabolic ratio tamoxifen/
NDM-tamoxifen was found to be slightly increased if the
CYP3A4*22 genotype was added to the analysis (improve-
ment from 21.8 to 23.9%, p < 0.001). A higher metabolic ratio
tamoxifen/NDM-tamoxifen was also noted in CYP3A4*22
carriers (0.59 vs. 0.52, p < 0.001). At the same time, our data
showed that CYP3A4*22 carriers have a statistically signifi-
cant higher mean concentration of tamoxifen, 4-hydroxy-ta-
moxifen, and NDM-tamoxifen (p < 0.05), while a trend to-
ward higher endoxifen concentrations was observed
(p = 0.088).

Our results are in line with the previous conclusions by Teft
et al. [20] and Antunes and colleagues [21]. In both studies,
higher mean concentrations of tamoxifen and its metabolites
were unexpectedly measured in CYP3A4*22 carriers. At first
glance, a decreased CYP3A4 activity may lead to a dimin-
ished transformation of tamoxifen into its active metabolites,
and consequently, lower concentrations could be expected. On
the contrary, higher concentrations of tamoxifen and its me-
tabolites were found.

A potential explanation for these findings could be due to
decreased CYP3A4 activity and a larger intestinal and hepatic
bioavailability of tamoxifen in the CYP3A4*22 individuals
[20]. According to Teft and colleagues [20], CYP3A4*22

carriers would have a reduced intestinal CYP3A4 activity
and higher tamoxifen bioavailability, which would result in
higher levels of unmetabolized tamoxifen. At the same time,
a diminished CYP3A4 action at hepatic level would mean a
diminished hepatic first-pass metabolism of tamoxifen, which
would be translated in higher remaining concentrations of
tamoxifen available for further transformations into 4-
hydroxy-tamoxifen and NDM-tamoxifen. Moreover,
Antunes et al. suggested that the reduced tamoxifen metabo-
lism resulting from CYP3A4*22 is probably compensated by
other enzymes, whereas the transformation from tamoxifen
into 4-hydroxy-tamoxifen would be more relevant in
CYP3A4*22 carriers when CYP2D6 activity is decreased
[21]. Although this hypothesis appears plausible, we did not
observe any significant difference in metabolic ratios tamox-
ifen/4-hydroxy-tamoxifen and 4-hydroxy-tamoxifen/
endoxifen between CYP3A4*22 and CYP3A4*1 carriers after
adjustment for CYP2D6 activity.

In the present study, the CYP3A5*3 genotype does not
significantly contribute to explaining the inter-variability
among patients treated with tamoxifen. Only CYP3A5*3mar-
ginally improved the explained variance of the (log-
transformed) metabolic ratio 4-hydroxy-tamoxifen/endoxifen
(from 44.9 to 46.2%, p < 0.038). However, we did not find any
statistically significant differences in mean concentrations of
tamoxifen and its metabolites, nor in the mean metabolic ra-
tios between CYP3A5*3 and CYP3A5*1 individuals. Jin and
colleagues found that CYP3A5*3 carriers treated with tamox-
ifen reached higher endoxifen concentrations than CYP3A5*1
individuals [23]. Our results, however, are in line with the
results of Tucker et al., who did not see significant variations
in tamoxifen and its metabolite concentrations among
CYP3A5*3 and CYP3A5*1 carriers [30]. In a clinical context,
several conflicting results have been published, showing dis-
parate findings. According to Wegman and colleagues,
CYP3A5*3 homozygous carriers tend to have an increased
risk of recurrence, albeit not statistically significant [31].

In the same way, our findings suggested that CYP3A
combined genotypes do not significantly contribute to
explaining the variability between individuals treated with
tamoxifen, with the exception of the (log-transformed) met-
abolic ratio tamoxifen/NDM-tamoxifen (p < 0.001). The
slow metabolizer C1 group, consisting of CYP3A4*22 car-
riers and the non-functional CYP3A5*3 allele, showed
higher metabolic ratios of tamoxifen/NDM-tamoxifen com-
pared to the other groups (C2, C3, and C4). These results
might be clarified by the previously described difference in
metabolic ratio in the CYP3A4*22 individuals and therefore
in the CYP3A combined genotypes.

A potential limitation of our analysis might be due to
the use of CYP3A4/5 inhibitors during the study, as
CYP3A4/5 activity can be influenced. Unfortunately, infor-
mation about concomitant medicines was not systematically
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evaluated and consequently available data were too sparse
for analysis.

In conclusion, our data demonstrated that CYP3A geno-
type slightly contributes to explaining the variability between
patients in tamoxifen metabolism; however, the effect is small,
and therefore, it is unlikely to have any significant clinical
relevance for the efficacy of tamoxifen.
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