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1 Introduction
Let X be a smooth, projective and geometrically connected curve of genus g ≥ 2 over a
field k and let α be a divisor of degree one on X . The Gross–Schoen cycle �α associated
to α is a modified diagonal cycle in codimension two on the triple product X3, studied
in detail in [18] and [49]. The cycle �α is homologous to zero, and its class in CH2(X3)
depends only on the class of α in Pic1 X .
Assume that k is a number field or a function field of a curve. Gross and Schoen show

in [18] the existence of a Beilinson–Bloch height 〈�α ,�α〉 ∈ R of the cycle �α , under the
assumption that X has a “good” regular model over k . A good regular model exists after
a suitable finite extension of the base field k , and one can unambiguously define a height
〈�α ,�α〉 of the Gross–Schoen cycle for all X over k and all α ∈ Div1 X by passing to a
finite extension of k where X has a good regular model, computing the Beilinson–Bloch
height over that extension, and dividing by the degree of the extension.
Standard arithmetic conjectures ofHodge Index type [16] predict that one should always

have the inequality 〈�α ,�α〉 ≥ 0, and that equality should hold if and only if the class
of the cycle �α vanishes in CH2(X3)Q. Zhang [49] has proved formulae that connect the
height 〈�α ,�α〉 of a Gross–Schoen cycle with more traditional invariants of X , namely
the stable self-intersection of the relative dualizing sheaf, and the stable Faltings height.
Zhang’s formulae feature some new interesting local invariants ofX , called theϕ-invariant
and the λ-invariant.
For α ∈ Div1 X let xα be the class of the divisor α−KX/(2g−2) in Pic0(X)Q, whereKX is

a canonical divisor on X . Then a canonical Gross–Schoen cycle on X3 is a Gross–Schoen
cycle �α for which the class xα vanishes in Pic0(X)Q. A corollary of Zhang’s formulae in
[49] is that for givenX , the height 〈�α ,�α〉 isminimized for�α a canonicalGross–Schoen
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cycle. The question as to the non-negativity of 〈�α ,�α〉 is therefore reduced to the cases
where �α is canonical.
As an example, forX a hyperelliptic curve and α aWeierstrass point onX one has by [18,

Proposition 4.8] that�α is zero in CH2(X3)Q. It follows that the height 〈�α ,�α〉 vanishes,
and by Zhang’s formulae the height of any Gross–Schoen cycle on a hyperelliptic curve is
non-negative.
When k is a function field in characteristic zero the inequality 〈�α ,�α〉 ≥ 0 is known

to hold by an application of the Hodge Index Theorem [50]. It seems that only very
little is known though beyond the hyperelliptic case when k is a function field in positive
characteristic, or a number field. Yamaki shows in [46] that 〈�α ,�α〉 ≥ 0 if X is a non-
hyperelliptic curve of genus three with semistable reduction over a function field, under
the assumption that certain topological graph types do not occur as dual graph of a special
fiber of the semistable regular model.
The purpose of this paper is to prove the following theorem.

Theorem A There exists a sequence of genus three curves over Q in which the height of a
canonical Gross–Schoen cycle tends to infinity.

To the best of the author’s knowledge, TheoremA is the first result to prove uncondition-
ally the existence of a curve X over a number field such that a canonical Gross–Schoen
cycle on X3 has strictly positive height.
Our proof of Theorem A is, like Yamaki’s work, based on Zhang’s formulae. More

precisely we use the formula that relates the height of a canonical Gross–Schoen cycle
on X3 with the stable Faltings height of X . We then express the Faltings height of a non-
hyperelliptic curve of genus three in terms of the well-known modular form χ18 of level
one and weight 18, defined over Z. Combining both results we arrive at an expression for
the height of a canonical Gross–Schoen cycle on a non-hyperelliptic genus three curve X
with semistable reduction as a sum of local contributions ranging over all places of k , cf.
Theorem 8.2.
The local non-archimedean contributions can be bounded from below by some combi-

natorial data in terms of the dual graphs associated to the stable model of X over k . This
part of the argument is heavily inspired by Yamaki’s work [47] dealing with the function
field case. In fact, the differences with [47] at this point are only rather small: the part of
[47] thatworks only in a global setting, by an application of theHirzebruch-Riemann-Roch
theorem, is replaced here by a more local approach, where the application of Hirzebruch-
Riemann-Roch is replaced by an application ofMumford’s functorial Riemann-Roch [41].
The modular form χ18 is not mentioned explicitly in [47] but clearly plays a role in

the background. As an intermediate result, we obtain an expression for the local order
of vanishing of χ18 in terms of the Horikawa index [35,44] and the discriminant, cf.
Proposition 9.3. This result might be of independent interest.
We will then pass to a specific family of non-hyperelliptic genus three curvesCn defined

over Q, for n ∈ Z>0 and n → ∞, considered by Guàrdia in [19]. In the paper [19], the
stable reduction types of the curves Cn are determined explicitly. By going through the
various cases, we will see that the local non-archimedean contributions to the height of a
canonical Gross–Schoen cycle on Cn, as identified by Theorem 8.2, are all non-negative.
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To deal with the archimedean contribution, we observe that the curves Cn are all fibers
of the family of smooth curves

Dκ : y4 = x(x − 1)(x − κ) , κ ∈ P
1 \ {0, 1,∞} .

The family Dκ is rather special and has been studied in detail by various authors, see for
instance Forni [17], Herrlich and Schmithüsen [24], andMöller [38]. As is shown in these
references, the familyDκ gives rise to a Teichmüller curve inM3, and to a Shimura curve
inA3. LetEκ denote the elliptic curve y2 = x(x−1)(x−κ). Then for each κ ∈ P

1\{0, 1,∞},
the jacobian ofDκ is isogenous to the product Eκ ×E−1 ×E−1, by [19, Proposition 2.3] or
[24, Proposition 7].
We show that the archimedean contribution to the height of a canonical Gross–Schoen

cycle of Cn is bounded from below by a quantity that tends to infinity like log n. In order
to do this we recall the work [21] by Hain and Reed on the Ceresa cycle, which allows us
to study the archimedean contribution as a function of κ ∈ P

1 \ {0, 1,∞}. For n → ∞
we have κ → 0. The stable reduction of the family Dκ near κ = 0 is known, see for
instance [24, Proposition 8] and the asymptotic behavior of the archimedean contribution
near κ = 0 can then be determined by invoking an asymptotic result due to Brosnan and
Pearlstein [6].
The paper is organized as follows. In Sects. 2 and 3 we recall the non-archimedean

and archimedean ϕ- and λ-invariants from Zhang’s paper [49]. The main formulae from
[49] relating the height of the Gross–Schoen cycle to the self-intersection of the relative
dualizing sheaf and the Faltings height are then stated in Sect. 4. In Sect. 5 we display
Zhang’s λ-invariant for a couple of polarized metrized graphs that we will encounter in
our proof of Theorem A.
In Sect. 6 we recall a few general results on analytic and algebraic modular forms, and in

Sect. 7 we recall the work of Hain and Reed, and Brosnan and Pearlstein that we shall need
on the asymptotics of the archimedean contribution to the height. In Sect. 8 we discuss
the modular form χ18. The first new results are contained in Sect. 9, where we recall the
Horikawa index for stable curves in genus three and show how it can be expressed in
terms of the order of vanishing of χ18 and the discriminant. This leads to a useful lower
bound for the order of vanishing of χ18. Sections 10–12 contain the proof of Theorem A.

2 Non-archimedean invariants
We introducemetrized graphs and their polarizations, and explain how a stable curve over
a discrete valuation ring canonically gives rise to a polarized metrized graph (pm-graph).
References for this section are for example [11, Sects. 3 and 4], [46, Sect. 1], [48, Appendix]
and [49, Sect. 4]. In this paper, a metrized graph is a connected compact metric space �

such that � is either a point or for each p ∈ � there exist a positive integer n and ε ∈ R>0
such that p possesses an open neighborhood U together with an isometry U ∼−→ S(n, ε),
where S(n, ε) is the star-shaped set

S(n, ε) = {z ∈ C : there exist 0 ≤ t < ε and k ∈ Z such that z = te2π ik/n} ,
endowedwith the pathmetric. If� is ametrized graph, not a point, then for each p ∈ � the
integer n is uniquely determined, and is called the valence of p, notation v(p). We set the
valence of the unique point of the point-graph to be zero. Let V0 ⊂ � be the set of points
p ∈ � with v(p) �= 2. Then V0 is a finite subset of �, and we call any finite non-empty set
V ⊂ � containing V0 a vertex set of �.
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Let � be a metrized graph and let V be a vertex set of �. Then � \V has a finite number
of connected components, each isometric with an open interval. The closure in � of a
connected component of � \ V is called an edge associated to V . We denote by E the set
of edges of � resulting from the choice ofV . When e ∈ E is obtained by taking the closure
in � of the connected component e◦ of � \ V we call e◦ the interior of e. The assignment
e �→ e◦ is unambiguous, given the choice of V , as we have e◦ = e \ V . We call e \ e◦ the
set of endpoints of e. For example, assume � is a circle, and say V consists of n > 0 points
on �. Then � \ V has n connected components, and � has n edges. In general, an edge is
homeomorphic to either a circle or a closed interval, and thus has either one endpoint or
two endpoints.
Let e ∈ E, and assume that e◦ is isometric with the open interval (0, �(e)). Then the

positive real number �(e) is well-defined and called the weight of e. The total weight
δ(�) = ∑

e∈E �(e) is called the volume of �. We note that the volume δ(�) of a metrized
graph � is independent of the choice of a vertex set V .
A divisor on � is to be an element of ZV . A divisor on � has a natural degree in Z.

Assume we have fixed a map q : V → Z. The associated canonical divisor K = Kq is by
definition the elementK ∈ Z

V such that for all p ∈ V the equalityK (p) = v(p)−2+2q(p)
holds. We call the pair � = (�,q) a polarized metrized graph, abbreviated pm-graph, if q
is non-negative, and the canonical divisor Kq is effective. Let � = (�,q) be a pm-graph
with vertex set V . We call the integer

g = g(�) = 1
2
(degK + 2) = b1(�) +

∑

p∈V
q(p)

the genus of �. Here b1(�) ∈ Z≥0 is the first Betti number of �. We see that g(�) ∈ Z≥1.
We occasionally call q(p) the genus of the vertex p ∈ V .
An edge e ∈ E is called of type 0 if removal of its interior results into a connected graph.

Let h ∈ [1, g/2] be an integer. An edge e ∈ E is called of type h if removal of its interior
yields the disjoint union of a pm-graph of genus h and a pm-graph of genus g − h. The
total weight of edges of type 0 is denoted by δ0(�), and the total weight of edges of type h
is denoted δh(�). We have δ(�) = ∑[g/2]

h=0 δh(�).
We refer to [48] for the definition of the admissible measure μ on � associated to the

divisorK = Kq , and the admissibleGreen’s function gμ : �×� → R.Wewill be interested
in the following invariants, all introduced by Zhang [48,49]. First of all, we consider the
ϕ-invariant,

ϕ(�) = −1
4
δ(�) + 1

4

∫

�

gμ(x, x)
(
(10g + 2)μ(x) − δK (x)

)
. (2.1)

Next we consider the ε-invariant,

ε(�) =
∫

�

gμ(x, x)
(
(2g − 2)μ(x) + δK (x)

)
. (2.2)

Finally we consider the λ-invariant,

λ(�) = g − 1
6(2g + 1)

ϕ(�) + 1
12

(
δ(�) + ε(�)

)
. (2.3)

Let S = {e1, . . . , en} be a subset of E.We define�{e1} to be the topological space obtained
from � by contracting the subspace e1 to a point. Then �{e1} has a natural structure of
metrized graph, and the natural projection � → �{e1} endows �{e1} with a designated
vertex set, and maps each edge ei for i = 2, . . . , n onto an edge of �{e1}. Continuing by
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induction we obtain after n steps a metrized graph �S with natural projection π : � → �S
and designated vertex set VS . The result is independent of the ordering of the edges in S
and is called the metrized graph obtained by contracting the edges in S.
Consider the pushforward divisor π∗Kq on �S . It is then clear that π∗Kq is effective

and has the same degree as Kq . The associated map qS : VS → Z is non-negative, and
thus we obtain a pm-graph �S = (�S,qS) canonically determined by S. Clearly we have
g(�S) = g(�). The pm-graph obtained by contracting all edges in E \ S is denoted by
�
S = (�S,qS).
Assume � is not a point. When �1,�2 are subgraphs of � such that � = �1 ∪ �2

and �1 ∩ �2 consists of one point, we say that � is the wedge sum of �1,�2, notation
� = �1 ∨ �2. By induction one has a well-defined notion of wedge sum �1 ∨ . . . ∨ �n
of subgraphs �1, . . . ,�n of �. We say that � is irreducible if the following holds: write
� = �1 ∨ �2 as a wedge sum. Then one of �1,�2 is a one-point graph. The graph � has a
unique decomposition� = �1∨ . . .∨�n as a wedge sum of irreducible subgraphs.We call
the �i the irreducible components of �. Each �i can be canonically seen as the contraction
of some edges of �, and hence has a natural induced structure of pm-graph �i of genus g ,
where g = g(�) is the genus of �.
We call an invariant κ = κ(�) of pm-graphs of genus g additive if the invariant κ is

compatible with decomposition into irreducible components. More precisely, let � be a
pm-graph of genus g and let � = �1 ∨ . . . ∨ �n be its decomposition into irreducible
components, where each �i has its canonical induced structure of pm-graph of genus
g . Then we should have κ(�) = κ(�1) + · · · + κ(�n). It is readily seen that each of the
invariants δh(�) where h = 0, . . . , [g/2] is additive on pm-graphs of genus g . By [49,
Theorem 4.3.2] the ϕ-invariant, the ε-invariant and the λ-invariant are all additive on
pm-graphs of genus g .
Let G = (V, E) be a connected graph (multiple edges and loops are allowed) and let

� : E → R>0 be a function on the edge set E of G. We then call the pair (G, �) a weighted
graph. Let (G, �) be aweighted graph.Then to (G, �) onehas naturally associated ametrized
graph � by glueing together finitely many closed intervals I(e) = [0, �(e)], where e runs
through E, according to the vertex assignment map ofG. Note that the resulting metrized
graph � comes equipped with a distinguished vertex set V ⊂ �.
Let R be a discrete valuation ring and write S = SpecR. Let f : X → S be a generically

smooth stable curve of genus g ≥ 2 over S. We can canonically attach a weighted graph
(G, �) to f in the followingmanner. LetC denote the geometric special fiber of f . Then the
graph G is to be the dual graph of C . Thus the vertex set V of G is the set of irreducible
components of C , and the edge set E is the set of nodes of C . The incidence relation of
G is determined by sending a node e of C to the set of irreducible components of C that
e lies on. Each e ∈ E determines a closed point on X . We let �(e) ∈ Z>0 be its so-called
thickness on X .
Let � denote the metrized graph associated to (G, �) with designated vertex set V . We

have a canonical map q : V → Z given by associating to v ∈ V the geometric genus of the
irreducible component v. Themap q is non-negative, and the associated canonical divisor
Kq is effective. We therefore obtain a canonical pm-graph � = (�,q) from f . The genus
g(�) is equal to the genus of the generic fiber of f .
Let J : S → Mg denote the classifying map to the moduli stack of stable curves of genus

g determined by f . For h = 0, . . . , [g/2] we have canonical boundary divisors �h on Mg
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whose generic points correspond to irreducible stable curves of genus g with one node (in
the case h = 0), or to reducible stable curves consisting of two irreducible components of
genus h and g − h, joined at one point (in the case h > 0). Let v denote the closed point
of S. Then for each h = 0, . . . , [g/2] we have the equality

δh(�) = multv J∗�h (2.4)

in Z, connecting the combinatorial structure of � with the geometry ofMg .

3 Archimedean invariants
In [49] Zhang introduces archimedean analogues of the ϕ-invariant and λ-invariant from
(2.1) and (2.3). Let C be a compact and connected Riemann surface of genus g ≥ 2.
Let H0(C,ωC ) denote the space of holomorphic differentials on C , equipped with the
hermitian inner product

(α,β) �→ i
2

∫

C
α ∧ β . (3.1)

We denote the resulting norm on det H0(C,ωC ) by ‖ · ‖Hdg. Choose an orthonormal basis
(η1, . . . , ηg ) of H0(C,ωC ), and put

μC = i
2g

g∑

k=1
ηk ∧ ηk ,

following Arakelov in [2]. Then μC is a volume form on C . Let �Ar be the Laplacian
operator on L2(C,μC ), i.e. the endomorphism of L2(C,μC ) determined by setting

∂∂

π i
f = �Ar(f ) · μC

for f ∈ L2(C,μC ). The differential operator�Ar is positive elliptic and hence has a discrete
spectrum 0 = λ0 < λ1 ≤ λ2 ≤ . . . of real eigenvalues, where each eigenvalue occurs with
finite multiplicity. Moreover, one has an orthonormal basis (φk )∞k=0 of L2(C,μC ) where
φk is an eigenfunction of �Ar with eigenvalue λk for each k = 0, 1, 2, . . .. The ϕ-invariant
ϕ(C) of C is then defined to be the real number

ϕ(C) =
∑

k>0

2
λk

g∑

m,n=1

∣
∣
∣
∣

∫

C
φk · ηm ∧ ηn

∣
∣
∣
∣

2
. (3.2)

Wenote that this invariantwas also introduced and studied independently byKawazumi in
[32]. One has ϕ(C) > 0, see [32, Corollary 1.2] or [49, Remark following Proposition 2.5.3].
Let δF (C) be the delta-invariant of C as defined by Faltings in [14, p. 401], and put

δ(C) = δF (C) − 4g log(2π ). Then the λ-invariant λ(C) of C is defined to be the real
number

λ(C) = g − 1
6(2g + 1)

ϕ(C) + 1
12

δ(C) . (3.3)

Note the similaritywith (2.3). For fixed g ≥ 2, bothϕ andλ areC∞ functions on themoduli
space of curves Mg (C). Some of their properties (for instance Levi form and asymptotic
behavior near generic points of the boundary) are found in the references [28–32].

4 Zhang’s formulae for the height of the Gross–Schoen cycle
The non-archimedean and archimedean ϕ- and λ-invariants as introduced in the previous
two sections occur in [49] in formulae relating the height of a Gross–Schoen cycle on a
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curve over a global field with more traditional invariants, namely the self-intersection
of the relative dualizing sheaf, and the Faltings height, respectively. The purpose of this
section is to recall these formulae. In view of our applications, we will be solely concerned
here with the number field case.
Let k be a number field and let X be a smooth projective geometrically connected curve

of genus g ≥ 2 defined over k . Let α ∈ Div1 X be a divisor of degree one on X . Following
[49, Sect. 1.1] we have an associated Gross–Schoen cycle �α in the rational Chow group
CH2(X3)Q. The cycle�α is homologous to zero, and has by [18] a well-defined Beilinson–
Bloch height 〈�α ,�α〉 ∈ R. The height 〈�α ,�α〉 vanishes if �α is rationally equivalent to
zero.
Assumenow thatX has semistable reduction over k . Let ω̂ denote the admissible relative

dualizing sheaf of X from [48], viewed as an adelic line bundle on X . Let 〈ω̂, ω̂〉 ∈ R be
its self-intersection as in [48]. Let Ok be the ring of integers of k . Denote by M(k)0 the
set of finite places of k , and by M(k)∞ the set of complex embeddings of k . We set
M(k) = M(k)0 � M(k)∞. For v ∈ M(k)0 we set Nv to be the norm of the residue field of
Ok at v, and for v ∈ M(k)∞ we set Nv = 1.
Let S = SpecOk and let f : X → S denote the stable model of X over S. For v ∈ M(k)0

we denote by ϕ(Xv) the ϕ-invariant of the pm-graph of genus g canonically associated to
the base change of f : X → S along the inclusion Ok → Ok,v . For v ∈ M(k)∞ we denote
by ϕ(Xv) the ϕ-invariant of the compact and connected Riemann surface Xv = X ⊗v C of
genus g .
Let xα be the class of the divisor α − KX/(2g − 2) in Pic0(X)Q, where KX is a canonical

divisor on X . Let ĥ denote the canonical Néron-Tate height on Pic0(X)Q. With these
notations Zhang has proved the following identity [49, Theorem 1.3.1].

Theorem 4.1 (Zhang [49]) Let X be a smooth projective geometrically connected curve of
genus g ≥ 2 defined over the number field k. Let α ∈ Div1 X be a divisor of degree one on
X, and assume that X has semistable reduction over k. Then the equality

〈�α ,�α〉 = 2g + 1
2g − 2

〈ω̂, ω̂〉 −
∑

v∈M(k)
ϕ(Xv) logNv + 12(g − 1) [k : Q] ĥ(xα)

holds in R.

We see from Theorem 4.1 that for fixed X , the height 〈�α ,�α〉 attains its minimum
precisely when xα is zero in Pic0(X)Q. We refer to �α where xα is zero as a canonical
Gross–Schoen cycle. Also, by Theorem 4.1, the non-negativity of the height of a canonical
Gross–Schoen cycle (as predicted by standard arithmetic conjectures of Hodge Index type
[16]) is equivalent to the lower bound

(?) 〈ω̂, ω̂〉 ≥ 2g − 2
2g + 1

∑

v∈M(k)
ϕ(Xv) logNv (4.1)

for the self-intersection of the admissible relative dualizing sheaf.
We recall that the strict inequality 〈ω̂, ω̂〉 > 0 is equivalent to the Bogomolov conjecture

forX , canonically embedded in its jacobian. A conjecture by Zhang [49, Conjecture 4.1.1],
proved by Cinkir [11, Theorem 2.9], implies that for v ∈ M(k)0 one has ϕ(Xv) ≥ 0. As
ϕ(Xv) > 0 for v ∈ M(k)∞ we find that the right hand side of (4.1) is strictly positive.
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Hence, the non-negativity of the height of a canonical Gross–Schoen cycle implies the
Bogomolov conjecture for X .
We mention that in [27, Corollary 1.4] it is shown unconditionally that the inequality

〈ω̂, ω̂〉 ≥ 2
3g − 1

∑

v∈M(k)
ϕ(Xv) logNv

holds. This inequality is weaker than (4.1) if g ≥ 3 but still implies the Bogomolov con-
jecture for X .
We next discuss the connection with the Faltings height. Let (L, (‖ · ‖v)v∈M(k)∞ ) be a

metrized line bundle on S. Its arithmetic degree is given by choosing a non-zero rational
section s of L and by setting

deg
(L, (‖ · ‖v)v∈M(k)∞

) =
∑

v∈M(k)0

ordv(s) logNv −
∑

v∈M(k)∞

log ‖s‖v . (4.2)

The arithmetic degree is independent of the choice of section s, by the product formula.
As before let f : X → S denote the stable model of X over S. Let ωX/S denote the relative
dualizing sheaf onX .We endow the line bundle det f∗ωX/S on S with themetrics ‖·‖Hdg,v
at the infinite places determined by the inner product in (3.1). The resulting metrized line
bundle is denoted det f∗ω̄X/S . Its arithmetic degree deg det f∗ω̄X/S is the (non-normalized)
stable Faltings height of X .
Let 〈ω̄, ω̄〉 denote the Arakelov self-intersection of the relative dualizing sheaf onX . The

Noether formula [14, Theorem 6] [40, Théorème 2.5] then states that

12 deg det f∗ω̄X/S = 〈ω̄, ω̄〉 +
∑

v∈M(k)
δ(Xv) logNv . (4.3)

Here, for v ∈ M(k)0 we denote by δ(Xv) the volume of the pm-graph associated to the
base change of f : X → S along the inclusion Ok → Ok,v , and for v ∈ M(k)∞ we denote
by δ(Xv) = δF (Xv) − 4g log(2π ) the (renormalized) delta-invariant of the compact and
connected Riemann surface Xv = X ⊗v C of genus g .
Similarly to ϕ(Xv) and δ(Xv) one also defines ε(Xv) (for v ∈ M(k)0) and λ(Xv). The

Arakelov self-intersection of the relative dualizing sheaf onX and the self-intersection of
the admissible relative dualizing sheaf of X are related by the identity

〈ω̄, ω̄〉 = 〈ω̂, ω̂〉 +
∑

v∈M(k)0

ε(Xv) logNv , (4.4)

cf. [48, Theorem 4.4]. Combining Theorem 4.1 with (2.3), (3.3), (4.3) and (4.4) we find the
following alternative formula for the height of a canonical Gross–Schoen cycle (cf. [49,
Equation 1.4.2]).

Corollary 4.2 Let X be a smooth projective geometrically connected curve of genus g ≥ 2
defined over the number field k. Assume that X has semistable reduction over k. Let � ∈
CH2(X3)Q be a canonical Gross–Schoen cycle on X3. Then the equality

〈�,�〉 = 6(2g + 1)
g − 1

⎛

⎝deg det f∗ω̄X/S −
∑

v∈M(k)
λ(Xv) logNv

⎞

⎠

holds in R.
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5 The λ-invariants for some pm-graphs
The purpose of this section is to display the λ-invariants of a few pm-graphs that we
will encounter in the sequel. We refer to the papers [9–11] by Cinkir for an extensive
study of the ϕ- and λ-invariants of pm-graphs. The reference [9] focuses in particular on
pm-graphs of genus three.
Let � be a metrized graph. Let r(p, q) denote the effective resistance between points

p, q ∈ �. Fix a point p ∈ �. We then put

τ (�) = 1
4

∫

�

(
∂

∂x
r(p, x)

)2
dx , (5.1)

where dx denotes the (piecewise) Lebesgue measure on �.
By [8, Lemma 2.16] the number τ (�) is independent of the choice of p ∈ �. It is readily

verified that for a circle � of length δ(�) we have τ (�) = 1
12δ(�), and for a line segment of

length δ(�) we have τ (�) = 1
4 δ(�). The τ -invariant is an additive invariant.

Now let � = (�,q) be a pm-graph of genus g , with vertex set V , and canonical divisor
K . We set

θ (�) =
∑

p,q∈V
(v(p) − 2 + 2q(p))(v(q) − 2 + 2q(q)) r(p, q) .

The next proposition, due to Cinkir, expresses λ(�) in terms of τ (�), θ (�) and the volume
δ(�).

Proposition 5.1 Let � be a pm-graph of genus g. Then the equality

(8g + 4)λ(�) = 6(g − 1)τ (�) + θ (�)
2

+ g + 1
2

δ(�)

holds in R.

Proof See [11, Corollary 4.4]. ��

We will need the following particular cases.

Example 5.2 Let � be a pm-graph of genus g consisting of one vertex of genus g − 1
and with one loop attached of length δ(�). Then τ (�) = 1

12δ(�), θ (�) = 0 and hence
(8g + 4)λ(�) = g δ(�).

Example 5.3 Let� be apm-graphof genus g consistingof twovertices of generah and g−h
joined by one edge of length δ(�). Then τ (�) = 1

4 δ(�), θ (�) = 2(2h− 1)(2g − 2h− 1)δ(�)
and hence (8g + 4)λ(�) = 4h(g − h)δ(�).

Example 5.4 Let � be a polarized metrized tree of genus g . Then we have

(8g + 4)λ(�) =
[g/2]∑

h=1
4h(g − h)δh(�) .

This follows from the additivity of the λ-invariant and Example 5.3.

Example 5.5 Let � be a pm-graph of genus g consisting of two vertices of genera h and
g − h − 1 and joined by two edges of weightsm1, m2. We have

τ (�) = 1
12

δ(�) = 1
12

(m1 + m2) , θ (�) = 8m1m2
m1 + m2

(g − h − 1)h ,
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and hence

(8g + 4)λ(�) = 4m1m2
m1 + m2

(g − h − 1)h + g(m1 + m2) .

6 Algebraic and analytic modular forms
References for this section are [12], [13, Chapter V], [15] and [36]. Let g ≥ 1 be an integer.
Let Ag be the moduli stack of principally polarized abelian varieties of dimension g , and
denote byp : Ug → Ag theuniversal abelian variety. Let�Ug /Ag denote the sheaf of relative
1-forms of p. Then we have the Hodge bundle E = p∗�Ug/Ag and its determinant L =
det p∗�Ug/Ag onAg . Kodaira-Spencer deformation theory gives a canonical isomorphism

Sym2 E ∼−→ �Ag/Z (6.1)

of locally free sheaves onAg , see e.g. [13, Sect. III.9].
For all commutative rings R and all h ∈ Z≥0 we let

Sg,h(R) = �
(Ag ⊗ R,L⊗h)

denote the R-module of algebraic Siegel modular forms of degree g and weight h.
Let Hg denote Siegel’s upper half space of degree g . We have a natural uniformiza-

tion map u : Hg → Ag (C) and hence a universal abelian variety p̃ : Ug → Hg over
Hg . The Hodge bundle Ẽ = p̃∗�Ug/Hg over Hg has a standard trivialization by the
frame (dζ1/ζ1, . . . , dζg/ζg ) = (2π i dz1, . . . , 2π i dzg ), where ζi = exp(2π izi). In par-
ticular, the determinant of the Hodge bundle L̃ = det Ẽ is trivialized by the frame
ω = dζ1

ζ1
∧ . . . ∧ dζg

ζg
= (2π i)g (dz1 ∧ . . . ∧ dzg ). Let Rg,h denote the usual C-vector

space of analytic Siegel modular forms of degree g and weight h. Then the map

Sg,h(C) → Rg,h , s �→ s̃ = s · ω⊗−h = (2π i)−gh · s · (dz1 ∧ . . . ∧ dzg )⊗−h

is a linear isomorphism.
The Hodge metric ‖ · ‖Hdg on the Hodge bundle Ẽ is the metric induced by the standard

symplectic form on the natural variation of Hodge structures underlying the local system
R1p̃∗ZUg on Hg . The natural induced metric on L̃ is given by

‖dz1 ∧ . . . ∧ dzg‖Hdg(�) = √
det Im� (6.2)

for all � ∈ Hg . The Hodge metrics ‖ · ‖Hdg on Ẽ resp. L̃ descend to give metrics, that we
also denote by ‖ ·‖Hdg, on the bundles E resp.L onAg (C). Explicitly, let (A, a) ∈ Ag (C) be
a complex principally polarized abelian variety of dimension g , then we have the identity

‖s‖Hdg(A, a) = (2π )gh · |s̃|(�) · (det Im�)h/2 (6.3)

for s ∈ Sg,h(C) corresponding to s̃ ∈ Rg,h. Here � is any element of Hg satisfying u(�) =
(A, a).
Assume now that g ≥ 2, and denote by Mg the moduli stack of smooth proper curves

of genus g . The Torelli map t : Mg → Ag gives rise to the bundles t∗E and t∗L on Mg .
Let π : Cg → Mg denote the universal curve of genus g , and denote by�Cg/Mg its sheaf of
relative 1-forms. Then we have locally free sheaves Eπ = π∗�Cg/Mg and Lπ = det Eπ on
Mg , and natural identifications Eπ

∼−→ t∗E andLπ
∼−→ t∗L. Kodaira-Spencer deformation

theory gives a canonical isomorphism

π∗�⊗2
Cg/Mg

∼−→ �Mg/Z (6.4)



de Jong Res. Number Theory (2018) 4:38 Page 11 of 25 38

of locally free sheaves onMg .
Over C, the pullback of the Hodge metric ‖ · ‖Hdg to Lπ coincides with the metric

derived from the inner product (3.1) introduced before.
Let Mg ⊃ Mg denote the moduli stack of stable curves of genus g , and consider the

universal stable curve π̄ : Cg → Mg . Let ωCg/Mg be the relative dualizing sheaf of π̄ , and
put Eπ̄ = π̄∗ωCg/Mg and Lπ̄ = det Eπ̄ . Then Eπ̄ resp. Lπ̄ are natural extensions of Eπ

resp.Lπ overMg . When S is a scheme or analytic space and f : X → S is a stable curve of
genus g , we usually denote by Ef = f∗ωX/S andLf = det f∗ωX/S the sheaves on S induced
from Eπ̄ and Lπ̄ by the classifying map J : S → Mg associated to f .

Lemma 6.1 Let f : X → D be a stable curve of genus g ≥ 2 over the open unit disk D.
Assume that f is smooth over D

∗. Let s be a Siegel modular form over D
∗ of degree g

and weight h. Let � ⊂ Sp(2g,Z) denote the image of the monodromy representation
ρ : π1(D∗) → Sp(2g,Z) induced by f , and let � : D∗ → Hg/� denote the induced period
map. Then the frame �∗(dz1 ∧ . . . ∧ dzg ) of Lf |D∗ extends as a frame of Lf over D. Fur-
thermore, we have the asymptotics

− log ‖s‖Hdg ∼ − ord0(s,Lf ) log |t| − h
2
log det Im�(t)

as t → 0 in D
∗. The notation ∼ means that the difference between left and right hand side

remains bounded. The term log det Im�(t) is of order O(log(− log |t|)) and is in fact of
order O(1) if the special fiber X0 is a stable curve of compact type.

Proof By (6.2) we have log ‖�∗(dz1 ∧ . . . ∧ dzg )‖Hdg(t) = 1
2 log det Im�(t) for all t ∈ D

∗.
By the Nilpotent Orbit Theorem there exists an element c ∈ Z≥0 such that det Im�(t) ∼
−c log |t| as t → 0.We conclude that�∗(dz1∧ . . .∧dzg ) extends as a frame ofMumford’s
canonical extension [42] of Lf |D∗ over D. By [13, p. 225] this canonical extension is equal
toLf .We thus obtain the first assertion. Also we obtain the equality ord0(s,Lf ) = ord0(s̃),
which then leads to the asymptotic − log |s̃| ∼ − ord0(s,Lf ) log |t| as t → 0. Combining
with (6.3) we find the stated asymptotics for − log ‖s‖Hdg. The element c ∈ Z≥0 vanishes
if the special fiber X0 is a stable curve of compact type. This proves the last assertion. ��

7 Asymptotics of the biextensionmetric
In this section we continue the spirit of the asymptotic analysis from Lemma 6.1 by
replacing the Hodge metric ‖ · ‖Hdg with the biextension metric ‖ · ‖B . We recall the
necessary ingredients, and finish with a specific asymptotic result due to Brosnan and
Pearlstein [6]. General references for this section are [20,21] and [22]. We continue to
work in the analytic category.
Let g ≥ 2 be an integer. Let H denote the standard local system of rank 2g over Mg .

Following Hain and Reed in [21] we have a canonical normal function section ν : Mg → J
of the intermediate jacobian J = J (

∧3H/H ) overMg , given by the Abel-Jacobi image of
a Ceresa cycle on the usual jacobian J (H ).
Let B denote the natural biextension line bundle on J , equipped with its natural biex-

tensionmetric [22]. By pulling back along the section ν : Mg → J we obtain a natural line
bundleN = ν∗B overMg , equipped with the pullbackmetric fromB. By functoriality we
obtain a canonical smooth hermitian line bundle N on the base of any family ρ : C → B
of smooth complex curves of genus g .
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As it turns out, the underlying line bundle of N on Mg is isomorphic with L⊗8g+4
π ,

where Lπ = det Eπ is the determinant of the Hodge bundle as before. An isomorphism
N ∼−→ L⊗8g+4

π is determinedup to a constant depending on g , and by transport of structure
we obtain a smooth hermitian metric ‖ · ‖B on Lπ , well-defined up to a constant, that we
will ignore from now on.
Following [21] we define the real-valued function

β = log
( ‖ · ‖B

‖ · ‖Hdg

)

onMg . By [31, Theorem 1.4] the equality β = (8g + 4)λ holds onMg . Let a ∈ Z>0 and
let s be a non-zero rational section of L⊗(8g+4)a

π overMg . Consider then the quantity

− 1
a
log ‖s‖Hdg − (8g + 4)λ = −1

a
log ‖s‖Hdg − β = −1

a
log ‖s‖B (7.1)

on Mg . We would like to be able to control its asymptotic behavior in smooth families
over a punctured disk D∗ degenerating into a stable curve.
Here we discuss a set-up to study this question. Consider a base complexmanifoldB and

a stable curve ρ : C → B of genus g ≥ 2 smooth over an open subsetU ⊂ B. We then have
the canonical Hain–Reed line bundleN on U , equipped with its natural metric. Assume
that the boundary D = B \ U of U in B is a normal crossings divisor. D. Lear’s extension
result [37], see also [20, Corollary 6.4] and [43, Theorem 5.19], implies that there exists
a Q-line bundle [N , B] over B extending the line bundle N on U in such a way that the
metric on N extends continuously over [N , B] away from the singular locus of D. This
property uniquely determines the Q-line bundle [N , B].
For example, assume B = D is the open unit disk, let D be the origin of D and let

f : X → D be a stable curve smooth over D∗ = B \D. Let t be the standard coordinate on
D. The existence of the Lear extension [N ,D] implies that there exists a rational number
b such that the asymptotics

− log ‖s‖B ∼ −b log |t|
holds as t → 0. Here as before the notation ∼ means that the difference between left and
right hand side remains bounded.With Lemma 6.1 and (7.1) we then find that there exists
a rational number c such that

β = (8g + 4)λ ∼ −c log |t| − (4g + 2) log det Im�(t)

as t → 0. One would like to compute c.
Hain and Reed have shown the following result [21, Theorem 1]. If X0 has one node and

the total space X is smooth one has that

β = (8g + 4)λ ∼ −g log |t| − (4g + 2) log det Im�(t) (7.2)

if the node is “non-separating”, and

β = (8g + 4)λ ∼ −4h(g − h) log |t| (7.3)

if the normalization of X0 consists of two connected components of genera h > 0 and
g − h. Referring back to Examples 5.2 and 5.3 we observe that the leading terms in the
asymptotics in these cases are controlled by the λ-invariant of the polarized dual graph
of the special fiber. We expect this behavior to extend to arbitrary stable curves X → D

smooth over D∗.
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More precisely, we should have the following. Let f : X → D be a stable curve of genus
g ≥ 2 smooth over D∗. Let � denote the dual graph of X0 endowed with its canonical
polarization. Recall that if X0 has r nodes the graph � has r designated edges with weights
equal to the thicknesses (m1, . . . , mr) of the nodes on the total space X . Let λ(�) be the
λ-invariant of �. In general one expects that the asymptotic

(?) λ(Xt ) ∼ −λ(�) log |t| − 1
2
log det Im�(t) (7.4)

holds as t → 0. However this seems not to be known in general.
We can characterize though when this asymptotics holds in terms of the classifying

map I : D → B to the universal deformation space of X0, see Proposition 7.4 below. We
hope that the criterion in Proposition 7.4 will be useful to prove the asymptotic in (7.4) in
general. In the present paper, we are able to verify the criterion in a special case.
The proof of the following lemma is left to the reader.

Lemma 7.1 Denote by [N ,D] the Lear extension of the Hain-Reed line bundle N over
D. Suppose e ∈ Z>0 is such that [N ,D]⊗e is a line bundle on D. Denote this line bundle
by N. Let s be a generating section of N over D∗ and let k ∈ Z. The following assertions
are equivalent: (a) the asymptotic −e log ‖s‖B ∼ −k log |t| holds as t → 0. (b) the section
t−k · s⊗e extends as a generating section of the line bundle N over D. (c) the divisor of s⊗e,
when viewed as a rational section of N , is equal to k · [0].

Let ρ : C → B be a stable curve with B = D
d a polydisk, and say ρ is smooth over

U = (D∗)r × D
d−r . Consider a holomorphic arc

φ̄ : D → B , t �→ (
u1tm1 , . . . , urtmr , φ̄r+1, . . . , φ̄d

)

withm1, . . . , mr positive integers,u1, . . . , ur holomorphic units, and φ̄r+1, . . . , φ̄d arbitrary
holomorphic functions. Let φ be the restriction of φ̄ to D

∗. Note that φ maps D∗ into U .
Let s be a rational section of the line bundle L⊗(8g+4)a

ρ such that φ∗s has no zeroes or
poles on D

∗. Let q(m1, . . . , mr) ∈ Q for allm = (m1, . . . , mr) ∈ Z
r
>0 be determined by the

asymptotic

− 1
a
log ‖s‖B(φ(t)) ∼ −q(m1, . . . , mr ) log |t| (7.5)

as t → 0 (cf. Lear’s extension result). Pearlstein proves in [43, Theorem 5.37] that q is
a rational homogeneous weight one function of m1, . . . , mr which extends continuously
over Rr≥0. Write qi = q(ei) where ei is the i-th coordinate vector in R

r . Let Di for i =
1, . . . , r denote the divisor on B given by the equation zi = 0. Then for a holomorphic arc
ψ̄ : D → B intersecting Di transversally and intersecting none of the Dj where j �= i we
have the asymptotic

− 1
a
log ‖s‖B(ψ(t)) ∼ −qi log |t| (7.6)

as t → 0. Denote by [N , B] the Lear extension of the Hain–Reed line bundle N over B.
Applying part (c) of Lemma 7.1 we find the following.

Lemma 7.2 TheQ-divisor of s, when seen as a rational section of [N , B]⊗a, is given by the
Q-divisor a

∑r
i=1 qiDi.
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Following [20, Sect. 14], the height jump for the map φ̄ is defined to be the rational
homogeneous weight one function

j(m1, . . . , mr) = −q(m1, . . . , mr) +
r∑

i=1
qimi . (7.7)

Note that the height jump is independent of the choice of s. It was conjectured byHain [20,
Conjecture 14.6] and proved by Brosnan and Pearlstein in [6] (combine [6, Corollary 11]
and [6, Theorem 20]) and independently by J. I. Burgos Gil, D. Holmes and the author in
[7, Theorem 4.1] that j ≥ 0. Note that if for some φ̄ : D → B as above the height jump is
strictly positive, no positive tensor power of the Hain–Reed line bundleN on U extends
as a continuously metrized line bundle over B.
Now assume that ρ : C → B is the universal deformation of the special fiber X0 of our

stable curve f : X → D. Recall [1, Sect. XI.6] that the base space B is a complex manifold,
carrying an action ofAut(X0), and endowedwith a canonical point b0 with fiberX0. Locally
around the point b0 ∈ B the divisor of singular curves in B is a normal crossings divisor.
Hence, locally around b0 the family C → B can be identified with a stable curve over Dd

smooth over (D∗)r ×D
d−r , for some integers d, r. Then for the classifying map I : D → B

one has for i = 1, . . . , r that mult0 I∗zi = mi, wherem1, . . . , mr are the thicknesses of the
nodes of X0 on X . We find in particular a height jump j(m1, . . . , mr) ∈ Q associated to I .
Define for a pm-graph � of genus g ≥ 1 its slope to be the invariant

μ(�) = (8g + 4)λ(�) − gδ0(�) − 4
[g/2]∑

h=1
h(g − h)δh(�) . (7.8)

It was conjectured by Zhang in [49, Conjecture 1.4.5] and proved by Cinkir in [11, Theo-
rem 2.10] that for all pm-graphs � we have μ(�) ≥ 0.

Lemma 7.3 Let f : X → D be a stable curve of genus g ≥ 2, smooth over D∗. Let � denote
the pm-graph associated to f and let j be the height jump (7.7) for the classifying map
I : D → B to the universal deformation space B of the special fiber X0. Let a ∈ Z>0 and
let s be a rational section of L⊗(8g+4)a

f such that s has no zeroes or poles on D
∗. Then the

asymptotics

−1
a
log‖s‖Hdg(Xt ) − (8g + 4)λ(Xt )

∼ −
(
1
a
ord0(s,L⊗(8g+4)a

f ) − j − (8g + 4)λ(�) + μ(�)
)

log |t|

holds as t → 0, where μ(�) is the slope of � as in (7.8).

Proof Left and right hand side of the stated asymptotics change in the same manner
upon changing the rational section s, and hence we may assume without loss of generality
that s is the pullback along I of a rational section of L⊗(8g+4)a

ρ , where ρ : C → B is the
universal deformation of X0. Let m1, . . . , mr be the multiplicities at 0 ∈ D of the analytic
branches through b0 ∈ B determined by the locus of singular curves in B. Then one has
the asymptotics



de Jong Res. Number Theory (2018) 4:38 Page 15 of 25 38

−1
a
log‖s‖Hdg(Xt ) − (8g + 4)λ(Xt ) = −1

a
log ‖s‖B(Xt )

∼ −q(m1, . . . , mr) log |t|

= −
(

−j +
r∑

i=1
qimi

)

log |t|

= −
(

−j +
( r∑

i=1
qimi − 1

a
ord0(s)

))

log |t| − 1
a
ord0(s) log |t|

as t → 0. From Lemma 7.2 we obtain that the Q-divisor of s when seen as a rational
section of [N , B]⊗a is equal to a

∑r
i=1 qiDi where Di for i = 1, . . . , r denotes the divisor

on B given by zi = 0. Since mult0 I∗zi = mi for i = 1, . . . , r it follows that

a
r∑

i=1
qimi = ord0(s, I∗[N , B]⊗a) . (7.9)

By [21, Theorem 3] we have that

[N ,Mg ] = (8g + 4)λ̄1 − gδ0 − 4
[g/2]∑

h=1
h(g − h)δh (7.10)

holds in the Picard group ofMg . Here λ̄1 denotes the class ofLπ̄ , and δi for i = 0, . . . , [g/2]
are the classes determined by the boundary divisors �i onMg . From (7.9) and (7.10) we
conclude that

r∑

i=1
qimi − 1

a
ord0

(

s,L⊗(8g+4)a
f

)

= −gδ0(�) − 4
[g/2]∑

h=1
h(g − h)δh(�)

= −(8g + 4)λ(�) + μ(�) .

The required asymptotics follows. ��

We deduce the following criterion to verify whether (7.4) holds.

Proposition 7.4 The following assertions are equivalent: (a) one has the asymptotics

λ(Xt ) ∼ −λ(�) log |t| − 1
2
log det Im�(t)

as t → 0, (b) one has the asymptotics

−1
a
log ‖s‖Hdg(Xt ) − (8g + 4)λ(Xt ) ∼ −

(
1
a
ord0(s,L⊗(8g+4)a

f ) − (8g + 4)λ(�)
)

log |t|

as t → 0, (c) the height jump for the classifyingmap I : D → B to the universal deformation
space of X0 and the slope of the pm-graph associated to X are equal.

Proof The equivalence of (a) and (b) follows from Lemma 6.1. The equivalence of (b) and
(c) follows from Lemma 7.3. ��

Now we have the following two results, that allow us to verify condition (c) in a special
case.

Theorem 7.5 (Brosnan and Pearlstein [6]) Assume that the stable curve X0 consists of two
smooth irreducible components, one of genus h, one of genus g −h−1, joined at two points.
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Then the height jump j for the classifyingmap I : D → B to the universal deformation space
of X0 is equal to

j = 4m1m2
m1 + m2

(g − h − 1)h .

Here m1, m2 are the multiplicities at 0 ∈ D of the pullbacks of the two analytic branches
through b0 ∈ B determined by the locus of singular curves in B.

Proof This follows from the calculation done in the proof of [6, Theorem 241]. We
note that [6, Theorem 241] is about a stable curve C in Mg consisting of two smooth
irreducible components joined in two points, and with trivial automorphism group, so
that the statement of [6, Theorem 241] does not apply immediately to our setting if X0
has non-trivial automorphisms. However the calculation in the proof of [6, Theorem 241]
is carried out effectively on the universal deformation space of C . Under the assumption
that Aut(C) is trivial, this deformation space maps locally isomorphically toMg . Now the
calculation in the proof of [6, Theorem 241] on the universal deformation space of C puts
no particular restrictions on Aut(C), and we conclude that the expression for the height
jump in [6, Theorem 241] is valid in our setting. ��

Proposition 7.6 Let �̄ be a pm-graph of genus g consisting of two vertices of genera h and
g − h − 1 and joined by two edges of weights m1, m2. Then the slope of � is equal to

μ(�) = 4m1m2
m1 + m2

(g − h − 1)h .

Proof This follows directly from the definition (7.8), and Example 5.5. ��

We observe that the height jump in Theorem 7.5 and the slope in Proposition 7.6 are
equal. With Proposition 7.4 we thus obtain the following result.

Corollary 7.7 Assume that the stable curve X0 consists of two smooth irreducible com-
ponents, one of genus h, one of genus g − h − 1, joined at two points. Then one has the
asymptotics

− 1
a
log ‖s‖Hdg(Xt ) − (8g + 4)λ(Xt ) ∼ −

(
1
a
ord0(s) − (8g + 4)λ(�)

)

log |t| (7.11)

and

λ(Xt ) ∼ −λ(�) log |t| − 1
2
log det Im�(t) (7.12)

as t → 0.

We will use (7.11) with g = 3 and h = 1 for the proof of our main result.

8 Themodular form χ18

From now on we specialize to the case that g = 3. We introduce the modular form χ18,
following [26]. For more details and properties we refer to [36] and the references therein.
On Siegel’s upper half space H3 in degree 3 we have the holomorphic function

χ̃18(�) =
∏

ε even
θε(0,�) ,
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where θε(0,�) denotes the Thetanullwert with characteristic ε, and where the product
runs over all 36 even theta characteristics in genus three. We have χ̃18 ∈ R3,18, see [26,
pp. 850–851] and [36, Sect. 1]. We define the corresponding element

χ18 = χ̃18(�)
(
dζ1
ζ1

∧ dζ2
ζ2

∧ dζ3
ζ3

)⊗18

= (2π i)54 · χ̃18(�) · (dz1 ∧ dz2 ∧ dz3)⊗18

in S3,18(C). The analytic modular form χ̃18 has a Fourier expansion as a power series in
the variables qij = exp(2π i�ij), with coefficients in Z, and by the q-expansion principle,
cf. [13, p. 140], the modular form χ18 is defined over Z, that is, we have a unique element
in S3,18(Z) whose base change to C is equal to χ18. By a slight abuse of notation we also
denote this element by χ18. By [25, Proposition 3.4] the modular form χ ′

18 = 2−28χ18 is
primitive, i.e. not zero modulo p for all primes p.
We recall that one has a natural structure of reduced effective Cartier divisor on the

locus H of hyperelliptic curves inM3. The following result seems to be well known.

Proposition 8.1 The divisor of χ ′
18 onM3 equals 2H.

Proof Over C this follows from (the proof of) [45, Theorem 1]. Recall thatM3 is smooth
over Spec(Z) with geometrically connected fibers. The primitivity of χ ′

18 then gives the
statement over Z. ��
Let S be a scheme. When f : X → S is a stable curve of genus three we can view χ ′

18 as a
rational section of the line bundle L⊗18

f on S. In particular, let k be a number field with
ring of integers Ok , and let X be a non-hyperelliptic genus three curve with semistable
reduction over k . Let f : X → S = SpecOk denote the stable model of X over k . From
Proposition 8.1 we obtain that χ ′

18 is generically non-vanishing on S, and from (4.2) we
obtain the formula

18 deg det f∗ω̄X/S =
∑

v∈M(k)0

ordv(χ ′
18) logNv −

∑

v∈M(k)∞

log ‖χ ′
18‖Hdg,v

for the (non-normalized) stable Faltings height of X .
Combining with Corollary 4.2 we deduce the following result.

Theorem 8.2 Let X be a non-hyperelliptic genus three curve with semistable reduction
over the number field k. Let f : X → SpecOk denote the stable model of X over k and
view χ ′

18 as a rational section of the line bundle L⊗18
f . Then the height of a canonical

Gross–Schoen cycle � on X3 satisfies

〈�,�〉 = 21

⎛

⎝
∑

v∈M(k)0

(
1
18

ordv(χ ′
18) − λ(Xv)

)

logNv

+
∑

v∈M(k)∞

(

− 1
18

log ‖χ ′
18‖Hdg,v − λ(Xv)

)
⎞

⎠ .

We will take Theorem 8.2 as a starting point in our proof of Theorem A.

9 The Horikawa index
Let S = SpecR be the spectrum of a discrete valuation ring R. Let f : X → S be a stable
curve with generic fiber smooth and non-hyperelliptic of genus three. Denote by v the
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closed point of S. As above we view χ ′
18 as a rational section of the line bundle L⊗18

f on S.
Then χ ′

18 is generically non-vanishing by Proposition 8.1. The aim of this section is to give
a lower bound on the multiplicity ordv(χ ′

18) in terms of the reduction graph of the special
fiber. The result is displayed in Corollary 9.5. We start by writing down an expression for
the divisor div(χ ′

18) of χ
′
18 on the moduli stackM3.

Let S be a scheme and let f : X → S be a stable curve of genus three. Then on S we have
the locally free sheaves Ef = f∗ωX/S and Gf = f∗ω⊗2

X/S as well as a natural map

νf : Sym2 Ef → Gf , η1 · η2 �→ η1 ⊗ η2 ,

functorially in f . The map νf is surjective if f is smooth and nowhere hyperelliptic. Both
Sym2 Ef and Gf have rank six and we thus we have a natural map of invertible sheaves

det νf : det Sym2 Ef → det Gf ,

functorially in f . We may and do view det νf as a global section sf of the invertible sheaf
(det Sym2 Ef )⊗−1 ⊗ det Gf on S. It has support on the locus of hyperelliptic fibers on S.
Standard multilinear algebra yields a canonical isomorphism

det Sym2 Ef ∼−→ L⊗4
f

of invertible sheaves on S, where Lf = det Ef as before, and this shows that we may as
well view sf as a global section of the invertible sheaf L⊗−4

f ⊗ det Gf on S.

Proposition 9.1 Let π : C3 → M3 be the universal smooth curve of genus three. The
section sπ is not identically equal to zero, and the divisor of sπ on M3 is equal to the
reduced hyperelliptic divisor H.

Proof The map νπ is generically an isomorphism and this shows that sπ is not identically
equal to zero. Let � = div sπ . Let t : M3 → A3 be the Torelli map. By [39, Sect. 1.3]
the map t is finite. Let R denote the ramification divisor of t. By (6.1) and (6.4) we have
canonical isomorphisms

t∗�A3/Z
∼−→ Sym2 Eπ , Gπ

∼−→ �M3/Z ,

and the map t∗�A3/Z → �M3/Z obtained by concatenating these isomorphisms with
νπ : Sym2 Eπ → Gπ coincides with the canonical structure map. The cokernel of the
latter map is �M3/A3

∼= OR and the cokernel of νπ is O� . We find that � = R. By [39,
Remark 1.1] the map t is ramified precisely along the hyperelliptic locus. As t has generic
degree two we find R = H . Combining we obtain � = H . ��

Let π̄ : C3 → M3 be the universal stable curve of genus three. Let K denote the divisor
of s onM3 and let � denote the divisor of singular curves onM3.

Proposition 9.2 View χ ′
18 as a rational section of the line bundle L⊗18

π̄ on M3. We then
have the equality of effective Cartier divisors

div(χ ′
18) = 2K + 2�

onM3.

Proof By Proposition 9.1 we have div s = H onM3. From Proposition 8.1 we recall that
over M3, the modular form χ ′

18 is a global section of L⊗18
π with divisor 2H . We deduce
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that χ ′
18 ⊗ s⊗−2 is a trivializing section of the invertible sheaf L⊗26

π ⊗ (det Gπ )⊗−2 over
M3. Mumford’s functorial Riemann-Roch, see [40, Théorème 2.1 and equation (2.1.2)],
restricted toM3 gives a canonical isomorphism

μ : det Gπ
∼−→ L⊗13

π

of invertible sheaves on M3. Hence, the square μ⊗2 of μ is another trivializing section
of the invertible sheaf L⊗26

π ⊗ (det Gπ )⊗−2 over M3. Now we recall, cf. for example [40,
Lemme 2.2.3], that the only invertible regular functions on M3 are ±1. This allows us
to conclude that χ ′

18 ⊗ s⊗−2 and μ⊗2 are equal up to a sign. By Mumford’s functorial
Riemann-Roch onM3 the isomorphism μ extends into an isomorphism

det Gπ̄ ⊗ O(�) ∼−→ L⊗13
π̄

of invertible sheaves overM3. This gives that χ ′
18 ⊗ s⊗−2 extends as a trivializing section

of the trivial line bundle L⊗26
π̄ ⊗ (det Gπ̄ )⊗−2 ⊗O(−2�) onM3. The required equality of

effective Cartier divisors follows. ��
Let again S = SpecR be the spectrum of a discrete valuation ring R. Let f : X → S

be a stable curve with generic fiber smooth and non-hyperelliptic of genus three. The
morphism ν : Sym2 Ef → Gf is surjective at the generic point, hence is globally injective.
Let Qf denote the cokernel of ν. Then Qf is a finite length OS-module, and we have an
exact sequence of coherent sheaves on S with canonical maps,

0 → Sym2 Ef → Gf → Qf → 0 . (9.1)

Let v denote the closed point of S. Following Reid [44], Konno [35] and Yamaki [46,47] we
call the integer lengthOS Qf theHorikawa index of f at v, notation Indv(f ). Let �v denote
the metrized graph associated to the stable curve f .

Proposition 9.3 View χ ′
18 as a rational section of the line bundle L⊗18

f on S. Then the
equality

ordv
(
χ ′
18

) = 2 Indv(f ) + 2 δ(�v)

holds. In particular, χ ′
18 is a global section of L⊗18

f .

Proof The Knudsen–Mumford determinant construction [34] associates to each coher-
ent sheaf F on S a functorial invertible sheaf detF on S, by using locally free resolu-
tions. From the locally free resolution (9.1) of Qf we obtain a canonical isomorphism
(det Sym2 Ef )⊗−1 ⊗ det Gf

∼−→ detQf of invertible sheaves, and we find that s = det ν
can be viewed as a canonical non-zero global section of detQf . By Proposition 9.2 its
divisor K satisfies the relation div(χ ′

18) = 2K + 2� in Div(S). This gives the identity
ordv(χ ′

18) = 2 ordv(s) + 2 δ(�v). We are thus left to prove that Indv(f ) = ordv(s). By the
structure theorem for finitely generated R-modules we can find effective Cartier divisors
Ki on S uniquely determined byQf together with a decompositionQf = ⊕

i O/O(−Ki)
ofQf as a direct sum of cyclic modules. The exact sequences

0 → O(−Ki) → O → O/O(−Ki) → 0

show that we have canonical identifications det(O/O(−Ki)) = O(Ki) and by iteration we
find a string of canonical identifications

detQf =
⊗

i
det(O/O(−Ki)) =

⊗

i
O(Ki) = O

(
∑

i
Ki

)

.
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Uponnoting that detQf = O(K ) canonicallyweobtain the equalityK = ∑
i Ki of effective

Cartier divisors on S. This implies

Indv(f ) =
∑

i
length(O/O(−Ki)) =

∑

i
multv Ki = multv K = ordv s ,

which is what we needed to show. ��

Let � = (�,q) be a pm-graph of genus three. From [46,47] we recall the notion of a pair
of edges of h-type on �, and the definition of an invariant h(�). We call a vertex v ∈ V (�)
eliminable if v has valence two and satisfies q(v) = 0.We assume that � has no eliminable
vertices. Then for e, e′ two distinct edges of � we denote by �

{e,e′} the contraction of
all edges except e, e′ on �. The pair {e, e′} is called a pair of h-type on � if �

{e,e′} is an
irreducible graph with precisely two vertices, and the induced polarization q{e,e′} takes
value 1 on both vertices. It can be shown [46, Lemma 2.1] that � has at most one pair of
edges of h-type.
Now, if � has a pair {e, e′} of edges of h-type, then we set h(�) = min{m1, m2}, where

m1, m2 are the weights of the edges e, e′. If � has no pair of edges of h-type, then we set
h(�) = 0.
We continue to work with the spectrum S = SpecR of a discrete valuation ring R

and a stable curve f : X → S of genus three, whose generic fiber is smooth and non-
hyperelliptic. Let �v denote the pm-graph associated to f . Note that �v has no eliminable
vertices. Let h(�v) be its h-invariant as above. Let e, e′ be nodes of Xv . It is easy to see that
the corresponding pair {e, e′} of edges in �v is a pair of edges of h-type if and only if both
e, e′ are of type 0, and the partial normalization of Xv at {e, e′} has exactly two connected
components, both of genus one.

Proposition 9.4 The inequality

Indv(f ) ≥ h(�v) + 2 δ1(�v)

holds.

Proof This is [47, Proposition 3.7]. ��

Combining Propositions 9.3 and 9.4 we find

Corollary 9.5 The inequality

ordv(χ ′
18) ≥ 2 h(�v) + 2 δ0(�v) + 6 δ1(�v)

holds.

We saw in Sect. 8 that one has a natural structure of reduced effective Cartier divisor
on the hyperelliptic locus H in M3. Let H be the closure of H in M3. Then as M3
is smooth over SpecZ (see [33, Theorem 2.7]), one has a natural structure of reduced
effective Cartier divisor on H . Not surprisingly, the Horikawa index at v can be directly
expressed in terms of the multiplicity of H at v. We do not need the next result, but we
would like to mention it for completeness.

Proposition 9.6 Let H denote the closure of the hyperelliptic locus inM3 as above. Then
the identity
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Indv(f ) = multv H + 2 δ1(�v)

holds.

Proof We only give a sketch of the proof. In view of Proposition 9.3 it suffices to prove
the following statement. View χ ′

18 as a rational section of the line bundle L⊗18
π̄ on M3.

Then the divisor div(χ ′
18) of χ

′
18 satisfies the relation

div(χ ′
18) = 2H + 2�0 + 6�1 . (9.2)

By [33, Theorem 2.7] we have that M3 is proper and smooth over SpecZ with geomet-
rically connected fibers. The primitivity of χ ′

18 then ensures that the support of div(χ ′
18)

contains no vertical fibers. We are left with verifying identity (9.2) over C. From Proposi-
tion 8.1 we obtain that the divisor of χ ′

18 onM3 equals 2H . To obtain the multiplicities of
χ ′
18 along �0, �1 it suffices to compute the multiplicities of χ̃18 along these two divisors,

as dz1∧dz2∧dz3 is trivializing inLπ̄ by Lemma 6.1. Themultiplicities of χ̃18 along�0,�1
can be computed by writing down explicitly the Fourier expansion of χ̃18, see for example
[26, p. 852] for the multiplicity along �1. ��

Remark 9.7 Let λ̄1 denote the class of Lπ̄ in Pic(M3), and let δ0, δ1 denote the classes in
Pic(M3) associated to the boundary divisors �0, �1. Relation (9.2) yields, as Pic(M3) is
torsion-free [3], the relation

[H ] = 9 λ̄1 − δ0 − 3 δ1

in Pic(M3). This relation is well known, cf. [23] for instance.

Remark 9.8 Combining Propositions 9.4 and 9.6 we obtain the inequality

multv H ≥ h(�v) .

In particular, if the special fiber Xv has a pair of nodes of h-type, then Xv is hyperelliptic.

10 Proof of Theorem A
We can now combine all previous results in order to prove Theorem A.
Following J. Guàrdia in [19] we consider the non-hyperelliptic genus three curves over

Q given by the affine equation

Cn : y4 = x4 − (4n − 2)x2 + 1 ,

where n ∈ Z, n �= 0, 1. Our aim is to prove the following result, which directly implies
Theorem A.

Theorem 10.1 Consider the sequence of curves Cn with n ∈ Z>0, n ≡ 2 (mod3) and
n �≡ 0, 1 (mod25). Then the height of a canonical Gross–Schoen cycle on C3

n tends to
infinity as n → ∞.

Let

a = √
n + √

n − 1 , μ = i 4
√
4n(n − 1) , ζ = (1 + i)/

√
2 , k0 = Q(a, ζμ) .

Let α = 3
√
18 − 6

√
3, and let αn be a root of the equation

t3(t3 − 24)3 − 28
(n2 − n + 1)3

n2(n − 1)2
(t3 − 27) = 0.
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Put kn = k0(α,αn). By [19, Sect. 3], for n as in Theorem 10.1 the curve Cn acquires
semistable reduction over kn.
Let f : Xn → SpecOn denote the stable model of Cn over the ring of integers On of kn.

View χ ′
18 as a rational section of the invertible sheafL⊗18

f on SpecOn. By Theorem 8.2 we
obtain for the height 〈�n,�n〉 of a canonical Gross–Schoen cycle �n on C3

n that

〈�n,�n〉 = 21
[kn : Q]

⎛

⎝
∑

v∈M(kn)0

(
1
18

ordv(χ ′
18) − λ(Cn,v)

)

logNv

⎞

⎠

− 1
18

log ‖χ ′
18‖Hdg(Cn) − λ(Cn) .

In Sect. 11 we will show the following result.

Theorem 10.2 For n as in Theorem 10.1 and for v ∈ M(kn)0 we have that the local
non-archimedean contribution ( 1

18 ordv(χ
′
18) − λ(Cn,v)) logNv is non-negative.

Corollary 10.3 For n as in Theorem 10.1 the inequality

〈�n,�n〉 ≥ − 1
18

log ‖χ ′
18‖Hdg(Cn) − λ(Cn)

holds.

In Sect. 12 we will show

Theorem 10.4 There exists a positive rational number c such that for n → ∞ the asymp-
totics

− 1
18

log ‖χ ′
18‖Hdg(Cn) − λ(Cn) ∼ c log n

holds.

Combining Corollary 10.3 and Theorem 10.4 one finds Theorem 10.1.

11 Proof of Theorem 10.2
Assume that n is as in Theorem 10.1. The reduction types of Cn at all v ∈ M(kn)0 are
given in [19]. At a prime of On not dividing n(n − 1) the curve Cn has good reduction,
by [19, Proposition 3.1]. At a prime of On dividing 2 we have by [19, Theorem 7.4] that
the special fiber consists of a smooth genus zero component, with three disjoint elliptic
curves attached to it. The dual graph of the special fiber is thus a polarized tree in this
case. Finally, at an odd prime of On dividing n(n − 1) the special fiber is the union of two
elliptic curves meeting in two distinct points, by [19, Theorem 5.3]. Hence in this case the
polarized dual graph of the special fiber consists of two vertices of genus one, joined by
two edges.
We now analyze each of these various cases. Let S = SpecR be the spectrum of a

discrete valuation ring R. Let f : X → S be a stable curve with generic fiber smooth and
non-hyperelliptic of genus three. Let � denote the polarized dual graph associated to f .
Theorem 10.2 is proved by the following three lemmas.

Lemma 11.1 Assume that f : X → S is smooth. Then 1
18 ordv(χ

′
18) − λ(�) ≥ 0.

Proof We have ordv(χ ′
18) = 2multv H ≥ 0 by Proposition 8.1, and λ(�) = 0. ��
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Lemma 11.2 Assume that � is a tree. Then 1
18 ordv(χ

′
18) − λ(�) ≥ 1

21δ(�).

Proof ByExample 5.4wehaveλ(�) = 2
7δ(�) and sinceh(�) = δ0(�) = 0 and δ1(�) = δ(�)

in this case we obtain by Corollary 9.5
1
18

ordv(χ ′
18) − λ(�) = 1

18
ordv(χ ′

18) − 2
7
δ(�) ≥

(
1
3

− 2
7

)

δ(�) = 1
21

δ(�) .

This proves the lemma. ��
Lemma 11.3 Assume that the special fiber of f is the union of two elliptic curves meeting
in two distinct points. Let m1, m2 ∈ Z>0 be the thicknesses on X of the two singular points
of the special fiber. Then we have

1
18

ordv(χ ′
18) − λ(�) ≥ 1

9 · 28(m1 + m2) + 1
9
min{m1, m2} − 1

7
m1m2

m1 + m2
.

The expression on the right hand side is strictly positive.

Proof We have δ1(�) = 0, δ0(�) = m1 + m2 and h(�) = min{m1, m2}. By Corollary 9.5
we have

ordv(χ ′
18) ≥ 2min{m1, m2} + 2(m1 + m2) .

Example 5.5 gives

λ(�) = 3
28

(m1 + m2) + 1
7

m1m2
m1 + m2

.

Combining we find the required inequality. Assume that m2 ≥ m1 and write m1 = m,
m2 = m + n, with m > 0, n ≥ 0. The positivity of the right hand is then readily seen to
be equivalent to the positivity of the quadratic form 24m2 − 4mn+ n2. The latter form is
positive definite, and its positivity for allm > 0, n ≥ 0 follows. ��
Remark 11.4 In general, by Corollary 9.5 one would like to be able to check for a given
pm-graph � of genus three whether the inequality

(?)
1
9
h(�) + 1

9
δ0(�) + 1

3
δ1(�) − λ(�) ≥ 0

is satisfied. Z. Cinkir gives in [9] a list of all types of pm-graphs in genus three and displays
λ(�) for each of them. Thus inequality (?) can be checked using [9] for any given �. In [46]
an invariant �(�) is introduced, and it turns out that

1
9
h(�) + 1

9
δ0(�) + 1

3
δ1(�) − λ(�) = 1

12
�(�0) + 1

21
δ1(�) ,

where �0 is the pm-graph obtained from � by contracting all edges of type 1. In [46,
Theorem 2.7] sufficient conditions are given for non-negativity of �(�) for � with no
edges of type 1. As is noted in [46, Remark 2.9], there exist � of genus three with no edges
of type 1 for which �(�) is negative!

12 Proof of Theorem 10.4
Specializing (7.11) fromCorollary 7.7 to the case g = 3, h = 1 and working with a suitable
power of χ ′

18 we obtain the following.

Theorem 12.1 Let f : X → D be a stable curve of genus three, smooth over D∗, whose
generic fiber is non-hyperelliptic and whose special fiber X0 consists of the union of two
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elliptic curves, joined at two points. Let � be the pm-graph associated to f . View χ ′
18 as a

rational section of the line bundle L⊗18
f on D. Then one has the asymptotics

− 1
18

log ‖χ ′
18‖Hdg(Xt ) − λ(Xt ) ∼ −

(
1
18

ord0(χ ′
18) − λ(�)

)

log |t|

as t → 0.

We deduce Theorem 10.4 from the latter result. Take n ∈ C \ {0, 1}. It is readily checked
that the curve Cn : y4 = x4 − (4n − 2)x2 + 1 is isomorphic over C with the curve

Dκ : y4 = x(x − 1)(x − κ) ,

where κ = 1/n. Indeed, the four roots of x4 − (4n − 2)x2 + 1 are given by
±

√
2n − 1 ± 2

√
n2 − n, and for a suitable ordering of these four roots, the associated

cross ratio is 1/n.
As κ → 0 the curves Dκ degenerate into the tacnodal curve y4 = x2(x − 1). By [24,

Proposition 8] the stable reduction X → D of the family Dκ at κ = 0 has as special fiber
the union of two copies of the elliptic curve E−1 given by the equation y2 = x3 − x, joined
at two points. By Lemma 11.3 the rational number b = 1

18 ord0(χ
′
18) − λ(�) associated to

the stable family X → D is strictly positive. Take d a positive integer such that the family
Dκ

∼= Cn has semistable reduction near κ = 0 after a ramified base change of degree d
(we can take d = 2 but this is not important). Putting t = d√κ = d√1/n we deduce from
Corollary 12.1 that

− 1
18

log ‖χ ′
18‖Hdg(Cn) − λ(Cn) ∼ −b log |t| = b

d
log n

as n → ∞. Theorem 10.4 follows.
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