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ABSTRACT

We present idealized models of razor–thin, axisymmetric, Keplerian stellar

discs around a massive black hole, and study non-axisymmetric secular insta-

bilities in the absence of either counter-rotation or loss cones. These discs are

prograde mono-energetic waterbags, whose phase space distribution functions

are constant for orbits within a range of eccentricities (e) and zero outside

this range. Waterbags which include circular orbits (polarcaps) have one sta-

ble linear edge-mode for each azimuthal wavenumber m. The m = 1 mode

always has positive pattern speed and, for polarcaps consisting of orbits with

e < 0.9428, only the m = 1 mode has positive pattern speed. Waterbags ex-

cluding circular orbits (bands) have two linear edge-modes for each m, which

can be stable or unstable. We derive analytical expressions for the instability

condition, pattern speeds, growth rates and normal mode structure. Narrow

bands are unstable to modes with a wide range in m. Numerical simula-

tions confirm linear theory and follow the non-linear evolution of instabilities.

Long-time integration suggests that instabilities of different m grow, interact

non-linearly and relax collisionlessly to a coarse-grained equilibrium with a

wide range of e.

Key words: galaxies: kinematics and dynamics — galaxies: nuclei — Galaxy:

center
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2 Kaur, Kazandjian, Sridhar and Touma

1 INTRODUCTION

Dense clusters of stars orbit massive black holes (MBH) in galactic nuclei. The best studied

cases are the nuclear star clusters of the Milky Way and M31, both of which possess low

mass (or Keplerian) stellar discs around the MBH. Since the black hole’s gravity dominates

the force on stars, Toomre Q � 1, so an axisymmetric Keplerian disc is expected to be

linearly stable to axisymmetric perturbations on Keplerian orbital time scales. Even when

a disc is stable to all modes on these short time scales, it may be unstable to modes that

grow over the much longer secular time scale of apse precession. Secular instabilities must

necessarily be non-axisymmetric with the azimuthal wavenumber m 6= 0 (Sridhar & Touma

2016a) — hereafter ST1. A good example is the m = 1 instability of counter-rotating discs,

which may be applicable to the nuclear disc of M31 (Touma 2002; Kazandjian & Touma

2013). Stellar discs with distribution functions (DFs) even in the angular momentum and

empty loss cones (i.e. DF is zero at zero angular momentum) may be unstable to m = 1

modes (Tremaine 2005). Mono-energetic discs dominated by nearly radial orbits, could be

prone to loss cone instabilities of all m, if there is some amount of counter-rotating stars

(Polyachenko, Polyachenko & Shukhman 2007).

A natural question is the following: can prograde, axisymmetric discs support secular

instabilities, even when counter-rotation and loss-cone are absent? The answers available

in the literature pertain to the stability of razor-thin discs: a Schwarzschild DF is stable

to modes of all m in the tight-winding limit (Tremaine 2001; Jalali & Tremaine 2012); a

DF which is a monotonic function of the angular momentum, at fixed semi–major axis

(i.e. at fixed Keplerian energy), is stable to modes of all m (ST1), which is a more general

result. However, these results are insufficient to address the general question, which could

be relevant to the history of the clockwise disc of young stars at the centre of the Milky

Way. If these stars formed in a fragmenting, circular gas disc around the MBH (Levin &

Beloborodov 2003), then the initial stellar orbits should have small eccentricities and the

same sense of rotation (i.e. no counter-rotation) about the MBH. But Yelda et al. (2014)

found that the mean eccentricity of the stellar orbits is ē ' 0.27. Is this largish value the

result of secular instabilities? The goal of this paper is to present the simplest models of

stellar discs orbiting MBHs, whose instabilities can be studied explicitly. This is done by

combining analytical methods from ST1 with numerical simulations derived from Touma,

Tremaine & Kazandjian (2009).
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Secular Instabilities of Keplerian Stellar Discs 3

In Section 2 the problem is stated within the framework of ST1. Using their stability

result as a guide we motivate the search for DFs that are non-monotonic in the angular

momentum. This leads in Section 3 to mono-energetic discs, which are composed of stars

with equal semi–major axes. The phase space of a mono-energetic disc is a sphere (see

Figure 1), and secular gravitational interactions between stars have an explicit logarithmic

form. Drawing on earlier work in plasma physics we introduce the simplest of prograde,

axisymmetric DFs, which correspond to ‘waterbags’. The phase space distribution function

of a waterbag is constant for orbits whose eccentricities (e) lie within a certain range, and

zero outside this range. These are of two types of waterbags: polarcaps, which include circular

orbits, and bands, which exclude circular orbits — see Figure 2. The linear stability problem

reduces to studying the ‘edge-modes’ of these systems. For each m 6= 0, a polarcap has one

stable edge-mode, whereas a band has two interacting edge-modes that may be stable or

unstable. In Section 4 we present numerical simulations of an unstable and a stable band;

these give an immediate graphical picture, both in real space and phase space, of linear

and non-linear evolution. The linear stability problem for a band is formulated and solved

in Section 5. Section 6 explores instabilities further, drawing detailed comparisons between

linear theory and numerical simulations, as well as following the long-time evolution of an

unstable band. We conclude in Section 7.

2 SECULAR DYNAMICS OF KEPLERIAN STELLAR DISCS

Our model system is a razor-thin flat stellar disc of total mass M , composed of very many

stars, orbiting a massive black hole (MBH) of mass M• � M . Since the mass ratio ε =

M/M• � 1 , the dominant gravitational force on the stars is the inverse-square Newtonian

force of the MBH. The limiting case of negligible stellar self-gravity, ε → 0 , reduces to

the problem of each star orbiting the MBH independently on a fixed Keplerian ellipse with

period, Tkep = 2π(a3/GM•)
1/2, where a = semi-major axis. When 0 < ε � 1 , self-gravity

is small but its effects build up over the long secular times, Tsec = ε−1Tkep � Tkep . ST1

describes the average behaviour of dynamical quantities over times Tsec , by systematically

averaging over the fast Keplerian orbital phase — a method that goes back to Gauss. The

secular orbit of each star in the disc is represented by a Gaussian ring, which is a Keplerian

ellipse with the MBH at one focus, of fixed semi-major axis, whose eccentricity and apsidal

longitude can evolve over times Tsec. Hence the natural measure of time in secular theory

c© 0000 RAS, MNRAS 000, 000–000



4 Kaur, Kazandjian, Sridhar and Touma

is τ = ε × time, the ‘slow’ time variable. The state of a Gaussian ring at any time τ can

be specified by giving its three-dimensional Delaunay coordinates, R = {I, L, g}, where

I =
√
GM•a = constant which is proportional to the Keplerian energy, L is the specific

angular momentum which is restricted to the range −I 6 L 6 I, and 0 6 g < 2π is

the longitude of the periapse. Ring space (or R-space) is topologically equivalent to R3,

with I the ‘radial coordinate’, arccos (L/I) the ‘colatitude’, and g the ‘azimuthal angle’.

A disc composed of N � 1 stars, each of mass m? = M/N , is a collection of N points

in R-space. The simplest description of a stellar disc uses the single-ring probability DF,

F (R, τ) = F (I, L, g, τ), which is normalized as,∫
dR F (R, τ) =

∫
dI dL dg F (I, L, g, τ) = 1 . (1)

Over times much shorter than the resonant relaxation times, Tres = NTsec, the graininess

of the ring-ring interactions has negligible effects and the stellar system can be thought of

as collisionless. Formally, the collisionless limit corresponds to assuming that the system

is composed of an infinite number of stars, each of infinitesimal mass, the whole having a

mass M equal to the total stellar mass: N →∞ , m? → 0 with M = Nm? held constant.

Then each star is like a test-ring, whose motion is governed by the secular Hamiltonian,

Φ(I, L, g, τ), which is equal to the (scaled) self-gravitational disc potential:1

Φ(I, L, g, τ) =

∫
dI ′ dL′ dg′ Ψ(I, L, g, I ′, L′, g′)F (I ′, L′, g′, τ) , (2)

where

Ψ(I, L, g, I ′, L′, g′) = −GM•
∮ ∮

dw

2π

dw′

2π

1

|r − r′|
(3)

is the (scaled) interaction potential between two rings.2 Ring orbits are determined by the

Hamiltonian equations of motion:

I =
√
GM•a = constant ,

dL

dτ
= − ∂Φ

∂g
,

dg

dτ
=

∂Φ

∂L
. (4)

This is a Hamiltonian flow in R-space which is restricted to the I = constant two-sphere.

The flow carries with it the DF, whose evolution is governed by the secular collisionless

Boltzmann equation (CBE):

∂F

∂τ
+ [F , Φ]Lg = 0 , where [F , Φ]Lg =

∂F

∂g

∂Φ

∂L
− ∂F

∂L

∂Φ

∂g
(5)

1 ST1 include relativistic effects of the MBH and tidal forces due to external gravitational fields, but these are not considered

in this paper.
2 Here r = (x, y) and r′ = (x′, y′) are the position vectors of the two stars with respect to the MBH — see § 4.1 of ST1 for

details of the transformation from r and r′ to the corresponding Delaunay variables.
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Secular Instabilities of Keplerian Stellar Discs 5

is the two-dimensional Poisson Bracket in (L, g)-space. Φ itself depends on F through theR′-

space integral of equation (2). Therefore equation (5), together with the secular Hamiltonian

of equation (2), defines the self-consistent initial value problem of the secular time evolution

of the DF, given F (I, L, g, 0) = F0(I, L, g), where F0 is an arbitrarily specified initial DF. A

general property of this time evolution is the following: since the I of any ring is constant in

time, the probability for a ring to be in (I, I + dI) is a conserved quantity. In other words

the probability distribution function in one-dimensional I-space, defined by

P (I) =

∫
dL dg F (I, L, g, τ) , (6)

is independent of τ , as can be verified directly using the CBE of equation (5).

2.1 Axisymmetric equilibria and linear stability

Secular equilibria are DFs that are time-independent and self-consistent solutions of the

CBE. They can be constructed using the secular Jeans theorem of ST1, which states that

F must be function of the isolating integrals of motion of the secular Hamiltonian. An

axisymmetric equilibrium DF is independent of g and can be written as F = (2π)−1F0(I, L) ,

because I and L are two isolating integrals of motion of the axisymmetric Hamiltonian,

Φ0(I, L). Equation (2) gives Φ0 self-consistently in terms of F0 :3

Φ0(I, L) =

∫
dI ′ dL′ F0(I ′, L′)

∮
dg′

2π
Ψ(I, L, g, I ′, L′, g′) . (7)

The equations of motion (4) for a ring become very simple in an axisymmetric disc:

I = constant , L = constant ,
dg

dτ
≡ Ω0(I, L) =

∂Φ0

∂L
. (8)

The semi-major axis and eccentricity of a ring are constant, with the apsidal longitude

precessing at the constant angular frequency Ω0(I, L).

The time evolution of perturbations to an axisymmetric equilibrium DF can be studied

by considering the total DF to be F = (2π)−1F0(I, L)+F1(I, L, g, τ), where the perturbation

F1 contains no net mass: ∫
dI dL dg F1(I, L, g, τ) = 0 . (9)

If Φ1(I, L, g, τ) is the self-gravitational potential due to F1, then the total Hamiltonian

is Φ = Φ0(I, L) + Φ1(I, L, g, τ). By substituting for F and Φ in the CBE (5), and using

[F0 ,Φ0]Lg = 0, we can derive the equation governing the time evolution of F1. For small

3 Ψ(I, L, g, I′, L′, g′) depends on the apses only in the combination |g − g′|, so the integral over g′ is independent of g .
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perturbations |F1| � F0 this is the linearized collisionless Boltzmann equation (LCBE):

∂F1

∂τ
+ Ω0

∂F1

∂g
=

1

2π

∂F0

∂L

∂Φ1

∂g
, (10a)

Φ1(I, L, g, τ) =

∫
dI ′ dL′ dg′ Ψ(I, L, g, I ′, L′, g′)F1(I ′, L′, g′, τ) . (10b)

The LCBE is a linear (partial) integro-differential equation for F1, and determines the linear

stability of the axisymmetric DF, F0(I, L).

An axisymmetric perturbation F1(I, L, τ) gives rise to a Φ1(I, L, τ) that is also indepen-

dent of g. Then the LCBE (10a) implies ∂F1/∂τ = 0, whose physical solution is F1 = 0,

because an axisymmetric perturbation cannot change the angular momentum of a star.

Hence it is only non-axisymmetric, or g-dependent, perturbations that are of interest in sec-

ular theory. Since τ and g appear in the LCBE only as (∂/∂τ) and (∂/∂g) we can look for

linear modes of the form F1 ∝ exp [i(mg − ωτ ], where m 6= 0 is the azimuthal wavenumber.

Using only the general symmetric properties of Ψ(R,R′), the following result was proved in

ST1 for DFs that are monotonic functions of L:

• Stationary, axisymmetric discs with DFs F0(I, L) are neutrally stable (i.e. ω is real) to

secular perturbations of all m when ∂F0/∂L is of the same sign (either positive or negative)

everywhere in its domain of support, −I 6 L 6 I and Imin 6 I 6 Imax .

As noted in ST1 these secularly stable DFs can have both prograde and retrograde popu-

lations of stars because −I 6 L 6 I . The discs have net rotation and include physically

interesting cases, such as a secular analogue of the well-known Schwarzschild DF. We may

also restate the above result as: a necessary condition for F0(I, L) to be secularly unstable

is that ∂F0/∂L must vanish somewhere in its domain of support. Hence we must look at the

secular instabilities of axisymmetric discs, whose DFs, F0(I, L) that have either maxima or

minima in L (at fixed I).

A general way to proceed would be to develop stability theory, using only the symmetry

properties of Ψ(R,R′), as ST1 did. But the goal of this paper is more specific: We wish to

construct the simplest class of disc models that permits quantitative study of the onset and

growth of linear non-axisymmetric instabilities. In order to do this we must be able to calcu-

late physical quantities such as the apse precession frequency Ω0(I, L), using equations (7)

and (8). Hence we need to use explicit forms for Ψ, for a physically motivated model of a

stellar disc.

c© 0000 RAS, MNRAS 000, 000–000
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3 MONO-ENERGETIC DISCS

3.1 Collisionless Boltzmann equation

Ψ(I, L, g, I ′, L′, g′) depends on the apses only in the combination |g − g′|, and can be de-

veloped in a Fourier series in (g − g′). When the spread in the semi–major axes of the disc

stars is comparable to the mean disc radius, the Fourier coefficients are, in general, compli-

cated functions of (I, L, I ′, L′) — although for numerical calculations it is straightforward

to calculate them on any grid in this four dimensional space. Analytical forms are readily

available if restrictions are placed on L and L′, such as both the rings being near-circular

and well-separated (the ‘Laplace–Lagrange’ limit of planetary dynamics) or both rings be-

ing very eccentric (the ‘spoke’ limit). But secular dynamics and statistical mechanics are

really about the exchange of angular momentum of stars at fixed semi–major axes, so it

seems preferable if we do not place such severe restrictions on L or L′. Let us consider discs

with a small spread in semi–major axes; since this is equivalent to a small spread in Keple-

rian orbital energies, the disc may be called quasi-mono-energetic. Having nearly the same

semi–major axes, any two rings either cross each other or come very close to each other, so

Ψ(R,R′) can be large, even infinite, in magnitude. For nearly-circular rings the dominant

contribution, which is a logarithmic singularity, was worked out by Borderies, Goldreich &

Tremaine (1983).

In a disc that is quasi-mono-energetic most pairs of rings intersect each other. It is

useful to consider the strictly mono-energetic limit, I = I0 =
√
GM•a0, when every ring

intersects every other ring. Since all rings have the same semi-major axis a0, they also have

the same Keplerian orbital period, Tkep = 2π(a3
0/GM•)

1/2 . Hence it is convenient to use a

dimensionless slow time variable, t = τ/Tkep = time/Tsec , to study the dynamics of mono-

energetic discs. The state of a ring at time t can be specified by giving its periapse, g, and

the dimensionless specific angular momentum ` = L/I0 . Since −1 6 ` 6 1, the motion

of any ring is restricted to the unit sphere (Figure 1) on which ` = cos (colatitude) and

g = azimuthal angle are canonical coordinates. For a mono-energetic disc F takes the form:

F (I, L, g, τ) =
δ(I − I0)

I0

f(`, g, t) . (11)

Then equation (1) implies the following normalization for f :∫
d` dg f(`, g, t) = 1 . (12)

Hence f(`, g, t) is the (dimensionless) DF for mono-energetic discs on the (`, g) phase space

c© 0000 RAS, MNRAS 000, 000–000



8 Kaur, Kazandjian, Sridhar and Touma

Figure 1. Phase space of a mono-energetic disc. Each star in the disc is represented by point on the unit sphere (shown in red),

with canonical coordinates (`, g). The latitudes are lines of constant `, and longitudes are lines of constant g. The projection

of (`, g) onto the equatorial plane gives the eccentricity vector e = (ex, ey).

of Figure 1. The eccentricity of a ring, e =
√

1− `2, is equal to the length of the projection of

the corresponding position vector on the sphere’s equatorial plane. The eccentricity vector

(or Lenz vector) is defined as e = (ex, ey) with ex = e cos g and ey = e sin g. We can think of

(ex, ey, `) as a right-handed Cartesian coordinate system, with the ring phase space realized

as the unit sphere, e2
x + e2

y + `2 = 1 .

The formula of Borderies, Goldreich & Tremaine (1983) for the ring-ring interaction

potential, ψ(`, `′, g − g′) = Ψ(I0, I0`, g, I0, I0`
′, g′), takes the following attractive form given

in Touma & Tremaine (2014):

ψ(`, `′, g − g′) =
GM•
a0

{
− 4

π
log 2 +

1

2π
log |e− e′|2

}
. (13)

This expression for ψ is, strictly speaking, valid only when e, e′ � 1 . But Touma & Tremaine

(2014) have shown that this formula for ψ serves as a good approximation for all values of

e and e′, and used this fact to study axisymmetric and non-axisymmetric secular thermo-

dynamic equilibria; they also provide an improved fitting formula but we do not use this.

Henceforth we take equation (13) as the basic ‘law of interaction’, between any two rings in a

c© 0000 RAS, MNRAS 000, 000–000
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mono–energetic disc. Using equation (11) in (2) we see that the mean-field self-gravitational

potential, ϕ(`, g, t) = Φ(I0, I0`, g, τ) is given in explicit form as:

ϕ(`, g, t) =

∫
d`′ dg′ ψ(`, `′, g − g′)f(`′, g′, t)

= −4GM•
πa0

log 2 +
GM•
2πa0

∫
d`′ dg′ log |e− e′|2 f(`′, g′, t) . (14)

We have already cast the independent variables (`, g, t) in dimensionless form. Equa-

tions (4), governing the dynamics of a ring, can now be written in the following dimensionless

form:

d`

dt
= − ∂H

∂g
,

dg

dt
=

∂H

∂`
, (15)

where

H(`, g, t) =
Tkep

I0

ϕ(`, g, t) =

∫
d`′ dg′ log |e− e′|2 f(`′, g′, t) + constant (16)

is the dimensionless secular Hamiltonian. These equations of motion imply the natural Pois-

son Bracket on the (`, g) unit sphere:

[ f , H ] =
∂f

∂g

∂H

∂`
− ∂f

∂`

∂H

∂g
. (17)

Substituting equation (11) in (5) we obtain the following CBE governing the self-consistent

evolution of the DF:

∂f

∂t
+ [ f , H ] = 0 . (18)

Equations (16)—(18) provide a complete, dimensionless description of the collisionless dy-

namics of mono-energetic Keplerian discs.

3.2 Linear stability of axisymmetric equilibria

In the study of axisymmetric equilibria and their linear, non-axisymmetric perturbations

it is useful to have at hand the Fourier expansion of the ring–ring interaction potential,

log |e− e′|2, that appears in the definition of the Hamiltonian in equation (16). From equa-

tion (C.2) of Touma & Tremaine (2014) we have,

log |e− e′|2 = log
[
e2 − 2ee′ cos(g − g′) + e′2

]
= log

(
e2
>

)
− 2

∞∑
m=1

1

m

(
e<
e>

)m
cos [m(g − g′)] , (19)

where e< = min (e, e′) and e> = max (e, e′).

Any DF of the form f = (2π)−1f0(`) , which is normalised as
∫ 1

−1
d` f0(`) = 1 , repre-

sents an axisymmetric equilibrium. Using equation (19) in (16), we have the corresponding

c© 0000 RAS, MNRAS 000, 000–000



10 Kaur, Kazandjian, Sridhar and Touma

axisymmetric Hamiltonian:

H0(`) =

∫ 1

−1

d`′ log
(
e2
>

)
f0(`′)

=

∫ |`|
0

d`′ log
(
1− `′2

)
{f0(`′) + f0(−`′)} + log

(
1− `2

) ∫ 1

|`|
d`′ {f0(`′) + f0(−`′)} ,

(20)

where we have dropped a constant term. The apse precession frequency is given:

Ω0(`) =
dH0

d`
= − 2 `

1− `2

∫ 1

|`|
d`′ {f0(`′) + f0(−`′)} . (21)

Some general properties of Ω0 are: (i) Since the product `.Ω0(`) 6 0, the apse precession

of a ring is always opposite to the faster Keplerian orbital motion; (ii) As ` → 0 we have

Ω0(`)→ −2`, so highly eccentric rings precess very slowly; (iii) In the limit of circular rings

`→ ±1, and Ω0(`)→ ∓{f0(1) + f0(−1)} goes to a finite limit.

When the axisymmetric equilibrium is perturbed the total DF is f(`, g, t) = (2π)−1f0(`)+

f1(`, g, t), and the corresponding self-consistent Hamiltonian is H0(`) + H1(`, g, t). Substi-

tuting these in the mono-energetic CBE (18) and linearizing, we obtain the LCBE governing

the evolution of f1 :

∂f1

∂t
+ Ω0(`)

∂f1

∂g
=

1

2π

df0

d`

∂H1

∂g
, (22)

where H1(`, g, t) =

∫
d`′ dg′ log |e− e′|2 f1(`′, g′, t) . (23)

We seek solutions of the form f1(`, g, t;m) = Re {f1m(`) exp [i(mg − ωmt)]} and H1(`, g, t) =

Re {H1m(`) exp [i(mg − ωmt)]} where, without loss of generality, we take m to be a positive

integer. Equation (23) gives H1m = −2π/m
∫ 1

−1
d`′(e</e>)mf1m(`′). Then the LCBE reduces

to the following equation,

[ωm −mΩ0(`) ] f1m(`) =
df0

d`

∫ 1

−1

d`′
(
e<
e>

)m
f1m(`′) , (24)

which is an integral eigenvalue problem, for the eigenvalues ωm and corresponding eigen-

functions f1m(`). This equation is a special case of equation (75) of ST1, which is valid for

a general disc. Proceeding in a manner similar to ST1, it is straightforward to prove the

stability result: all DFs f0(`) that are strictly monotonic functions of ` are linearly stable.

This raises again the question of the stability of DFs that are not monotonic in `. Since

this question is now posed in the context of equation (24) — which is given in explicit form

— we can proceed to explore it quantitatively. Among all the DFs that are non-monotonic

functions of `, the simplest are probably the ‘waterbag’ DFs which are discussed below.

c© 0000 RAS, MNRAS 000, 000–000
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3.3 Waterbags and the linear stability problem

A mono-energetic waterbag is a region of the unit sphere phase space of Figure 1 within

which the DF takes a constant positive value and is zero outside this region.4 Time evolution

that is governed by the CBE of equations (16)—(18) conserves both the area of the region as

well as the value of the DF. Hence the dynamical problem reduces to following the evolution

of the contour(s) bounding the region. Analogous to the contour dynamics of fluid vortices

on a sphere (Dritschel 1988), the deformation of the contour(s) defining a waterbag stellar

disc can be very complicated.

3.3.1 Axisymmetric equilibria

An axisymmetric mono-energetic waterbag has a DF, f0(`), that takes a constant positive

value for ` ∈ [`1, `2], and is zero outside this interval. Since our primary interest in this paper

concerns the stability of discs in which stars orbit the MBH in the same sense, we assume

that 0 6 `1 < `2 6 1. The normalized DF for such a ‘prograde waterbag’ is:

f0(`) =


1

`2 − `1

for `1 6 ` 6 `2 ,

0 otherwise.

(25)

There are two different cases, corresponding to `2 = 1 (Polarcap) and `2 < 1 (Band) — see

Figure 2.

The waterbag DF describes a circular annular disc composed of stars with eccentricities

e =
√

1− `2 ∈ [e2, e1], where ei =
√

1− `2
i for i = 1, 2 . The inner and outer radii of the

disc are rmin = a0(1− e1) and rmax = a0(1 + e1) are determined by the most eccentric rings

in the disc. The normalized surface density profile, Σ0(r), is obtained by integrating f0(`)

over the velocities, as is done in appendix A. This gives

Σ0(r) =



sin−1 [`2/`0(r)] − sin−1 [`1/`0(r)]

2π2a2
0(`2 − `1)

, |r − a0| 6 a0e2

cos−1 [`1/`0(r)]

2π2a2
0(`2 − `1)

, a0e2 < |r − a0| 6 a0e1

0 , a0e1 < |r − a0|

(26)

where `0(r) =
√

2r/a0 − r2/a2
0 . Surface density profiles are plotted in Figure 3a for the

4 The “waterbag” model was originally developed for the Vlasov equation by Berk & Roberts (1970).
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(a) Polarcap with `1 = 0.8 and `2 = 1 (b) Band with `1 = 0.7 and `2 = 0.9

Figure 2. Two types of prograde waterbags

(a) Surface probability density (b) Apse precession rate

Figure 3. Physical features of waterbags: Solid and dashed lines are for the polarcap and band of Figure 2, respectively. The

broken dashed line is for a broad band, to be studied later.

polarcap and band of Figure 2, and also a broad band (`1 = 0.1 , `2 = 0.9 ), whose stability is

studied later. We note that the Σ0(r) profiles of a polarcap and a band are very different: the

former has a single maximum at the centre of the disc, whereas the latter has a characteristic

double-horned shape.

The apse precession frequency Ω0(`) can be determined by using equation (25) in (21).
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For a polarcap,

Ω0(`) =


− 2 `

(1− `2)
, 0 6 |`| 6 `1

− 2 `

(1 + |`|)(1− `1)
, `1 < |`| 6 1 ,

(27)

and for a band,

Ω0(`) =



− 2 `

(1− `2)
, 0 6 |`| 6 `1

− 2 `

(1− `2)

(
`2 − |`|
`2 − `1

)
, `1 < |`| 6 `2

0 , `2 < |`| 6 1 .

(28)

Even though the waterbag itself occupies only the interval [`1, `2] we calculate Ω0(`) for

all ` ∈ [−1, 1], because it gives the apse precession frequency of any test-ring that may be

introduced into the system. Ω0 is an antisymmetric function of `, as can be seen in Figure 3b.

For a polarcap Ω0 is non zero when ` = ±1, whereas for a band Ω0(`) vanishes for all |`| > `2.

3.3.2 Stability to non-axisymmetric modes

An arbitrary collisionless perturbation of a waterbag can be described as a deformation of its

boundaries. From Figure 2 we see that a polarcap has just one boundary at ` = `1 whereas

a band has two boundaries, at ` = `1 and ` = `2. Non-axisymmetric perturbations of the

boundaries can be resolved as a Fourier series in the apsidal longitude g. For each azimuthal

wavenumber m, a polarcap has just one edge-mode whereas a band has two edge-modes:

Figure 4 shows a m = 3 deformation of the polarcap and band of Figure 2.

Polarcaps are linearly stable to all non-axisymmetric modes. In order to prove this we

note that, for a polarcap, df0/d` = (1 − `1)−1δ(` − `1). Substituting this in the integral

equation (24) we obtain:

[ωm −mΩ0(`) ] f1m(`) =
δ(`− `1)

1− `1

∫ 1

−1

d`′
(
e<
e>

)m
f1m(`′) , (29)

where Ω0(`) is given by equation 27. The physical solution is the edge-mode, f1m(`) =

Am δ(` − `1), where Am is a complex amplitude. Using this in equation (29) we obtain the

eigenvalue,

ωm = mΩ0(`1) +
1

1− `1

. (30)

Since ωm is real for all m = 1, 2, . . . and 0 6 `1 < 1, all edge-modes are stable and purely
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14 Kaur, Kazandjian, Sridhar and Touma

Figure 4. m=3 edge-mode for Polarcap and Band. The panels on the left show the deformed polarcap (Upper panel) and

band (Lower panel) DFs. The panels on the right are for the corresponding probability densities, n(ex, ey) = `−1 ×DF , in the
(ex, ey) plane. Since the DF is constant within the deformed boundaries, n ∝ 1/

√
1− e2 .

oscillatory. For each m there is a normal mode with

f1(`, g, t;m) = Re {Amδ(`− `1) exp [im(g − λPt)]} , (31)

where

λP(m, `1) =
ωm
m

= − 2 `1

(1− `2
1)

+
1

m(1− `1)
(32)

is the precession frequency of the m-lobed, sinusoidal deformation of the polarcap bound-

ary. The first term on the right side is just the apse precession frequency in the unperturbed

polarcap, and is negative. The second term comes from the self-gravity of the deforma-
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Figure 5. Precession frequency of edge-modes of Polarcaps. The intersections of the vertical dashed line with the λP curves

gives the spectrum of the edge-modes of the polarcap of Figure 2: only the m = 1 edge mode has positive precession for all

values of `1.

tion, which is positive. The competition between these two terms results in the following

interesting features of λP(m, `1) , as can be seen in Figure 5:

• For a polarcap with given `1, λP is a decreasing function of m . This is because the

self-gravity of the deformed edge is smaller for bigger m, due to mutual cancellation from

its lobes and dips. In the limit m→∞ this vanishes altogether and λP → Ω0(`1).

• The m = 1 mode always has prograde precession, with λP = 1/(1 + `1) .

• Modes with m = 2, 3, . . . precess in a prograde sense for 0 6 `1 < 1/(2m − 1) , and

in a retrograde sense for 1/(2m − 1) < `1 6 1 . λP vanishes when a polarcap is such that

`1 = 1/(2m− 1) for some m; then it has a stationary time-independent deformation with m

lobes.

• For `1 > 1/3, only the m = 1 mode has positive pattern speed.

Bands have richer stability properties because, for each m, there are two interacting edge-

modes — see the lower panels of Figure 4 for a representation of an m = 3 mode — whose

mutual interaction can cause instabilities. For bands df0/d` = {δ(` − `1) − δ(` − `2)}/∆` ,

where ∆` = (`2 − `1) . Substituting this in equation (24) we obtain the following integral

c© 0000 RAS, MNRAS 000, 000–000



16 Kaur, Kazandjian, Sridhar and Touma

equation:

[ωm −mΩ0(`) ] f1m(`) =
δ(`− `1)− δ(`− `2)

∆`

∫ 1

−1

d`′
(
e<
e>

)m
f1m(`′) , (33)

where Ω0(`) is given by equation (28). Hence the eigenfunctions are of the form:

f1m(`) = Am1 δ(`− `1) + Am2 δ(`− `2). (34)

where Am1 and Am2 are complex amplitudes. When equation (34) for f1m(`) is substituted

in equation (33) the integral equation reduces to a 2 × 2 matrix eigenvalue problem. This

is the simplest linear stability problem in secular dynamics that can be studied analytically

in detail — see Section 5. Before doing this we present numerical simulations of an unstable

band and a stable band, so the reader may have an immediate picture of the time evolution

going beyond the linear evolution of small disturbances.

4 NUMERICAL EXPLORATION OF WATERBAG STABILITY

We performed N -ring numerical simulations of waterbag bands, for a range of system pa-

rameters (`1, `2). The full list is given in Table 1 of Section 6. The last entry has `2 = 1,

so is a polarcap and not a band. It is included in the table as a limiting case of a class of

broad bands. Here we discuss the stability of the two bands whose Σ0(r) and Ω0(`) profiles

feature in Figure 3: one is the band waterbag 1 s0 with (`1 = 0.7, `2 = 0.9), and the other

is the broad band waterbag 2 s0 with (`1 = 0.1, `2 = 0.9).

We simulate a planar system of N rings, each of which has the same semi-major axis a0

and mass m? , orbiting a MBH of mass M• . The total disc mass M = Nm? is chosen to be

much smaller than M• , so ε = M/M• � 1 and the secular time scale, Tsec = ε−1Tkep , is much

longer than the Kepler orbital period. Each ring can be thought of as a point on the unit

sphere phase space of Figure 1, with coordinates (`i, gi) for i = 1, 2, . . . , N . The projection of

the points onto the equatorial plane gives N eccentricity vectors, ei = ei(cos gi x̂+ sin gi ŷ),

where ei =
√

1− (`i)2 is the eccentricity. Then the secular energy of the whole system is:

H =
1

N

∑
i,j
j>i

log
∣∣ei − ej

∣∣2 , (35)

This serves as the N -ring Hamiltonian for secular dynamics on the sphere:

dgi

dt
=

∂H
∂`i

,
d`i

dt
= −∂H

∂gi
(for i = 1, 2, . . . , N) , (36)

where t = time/Tsec is, as earlier, the dimensionless time variable. The Hamiltonian equa-
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Figure 6. Evolution of the unstable band waterbag 1 s0. Upper two rows show the surface density in real space, and the lower
two rows show the distribution in the eccentricity plane. The m = 3 mode is clealy visible as three overdensity lumps in the
surface density plots and as a triangular feature in the eccentricity plane.

tions can be rewritten compactly as:

dei

dt
=

2

N

N∑
j=1
j 6=i

(ei − ej)× `i

|ei − ej|2
(37)

where `i = `i ẑ. These vectorial equations are similar to those presented in Touma, Tremaine
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18 Kaur, Kazandjian, Sridhar and Touma

Figure 7. Evolution of the stable broad band waterbag 2 s0. Upper two rows show the surface density in real space, and the
lower two rows show the distribution in the eccentricity plane.

& Kazandjian (2009), with the difference that our interaction Hamiltonian is unsoftened and

logarithmic. The equations have been solved using a Bulirsch-Stoer integrator, with relative

and absolute tolerances equal to 10−8. Our fiducial system has the following parameters:

• The disc is composed of N = 1000 rings.
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(a) waterbag 1 s0
(b) waterbag 2 s0

Figure 8. Evolution of mode amplitudes am(t).

• Semi-major axis of each ring is a0 = 1 pc.

• Black hole mass M• = 107 M�, giving a Kepler orbital period Tkep = 0.03 Myr.

• Disc mass M = 103 M�, so ε = 10−4 and the secular time scale Tsec = 0.3 Gyr.

The typical relative energy and angular momentum errors for the simulations listed in Table 1

of Section 6 are ∼ 10−6.

The evolution of the two bands, waterbag 1 s0 and waterbag 2 s0, is shown in Figure 6

and Figure 7, respectively. The upper two panels are for the surface mass density in the the

x − y plane, and the lower two panels show the rings represented as 1000 points on the

(ex, ey) plane.5 We begin with initial conditions corresponding to the two bands of Figure 3.

The following overall features can be noticed:

• For waterbag 1 s0 a non-axisymmetric m = 3 instability grows; it is seen very clearly

around 0.3 Gyr and, by ∼ 0.6 Gyr, there are distinct signs of nonlinear evolution.

• In contrast the broad band waterbag 2 s0 is seen to be stable over a time scale of

5 Gyr.

Dynamical behaviour can be characterized in more detail by looking at mode ampli-

tudes, am(t) , which were evaluated by computing Fast Fourier Transforms over annuli of

the projected mass density. These are plotted in Figure 8a for waterbag 1 s0 and Figure 8b

for waterbag 2 s0. The main features are:

5 Since we are dealing with prograde discs, all the points have positive `i .
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• For waterbag 1 s0 the initially unstable mode has m = 3, and this remains dominant

until about 0.6 Gyr. Later there is growth of other modes, especially, m = 1 and m = 2.

• Modes of all m maintain a low amplitude for waterbag 2 s0. We note that sampling

noise, which is unavoidable in the initial conditions, was such that an m = 2 mode had a

greater initial amplitude that the other modes (see Figures 8b). The m = 2 mode is seen to

be stable and precessing in Figure 7. Interactions of some stars with the m = 2 mode has,

presumably, scattered them in phase space. Whereas a study of this mode-particle scattering

is beyond the scope of this paper, simulations with a larger number of particles will help

clarify the nature of this process.

In the next section we present a detailed account of the linear stability of bands. We will also

discuss how linear theory accounts for the behaviour of waterbag 1 s0 and waterbag 2 s0.

5 LINEAR STABILITY OF BANDS

A waterbag band has two edge-modes for each m = 1, 2, . . .. A normal mode has the form

f1(`, g, t;m) = Re {f1m(`) exp [i(mg − ωmt)]}, where ωm is a complex eigenfrequency. Since

a normal mode can be thought of as a superposition of the two edge-modes, the correspond-

ing eigenfunction is of the form, f1m(`) = Am1 δ(` − `1) + Am2 δ(` − `2), where Am1 and

Am2 are complex amplitudes — see equation (34). When this is substituted in the integral

equation (33), it reduces to the following 2× 2 matrix eigenvalue problem:
1

∆`
+mΩ0(`1)

1

∆`

(
e2

e1

)m

− 1

∆`

(
e2

e1

)m
− 1

∆`
+mΩ0(`2)




Am1

Am2

 = ωm


Am1

Am2

 . (38)

Here ∆` = (`2 − `1) , and equation (28) gives Ω0(`1) ≡ Ω1 = −2`1/(1− `2
1) and Ω0(`2) = 0.

The solutions for the eigenfrequency and the ratio of edge-mode amplitudes are,

ω±m =
mΩ1

2
± 1

∆`

√ [
1 +

m∆`Ω1

2

]2

−
(
e2

e1

)2m

, (39a)

(
Am2

Am1

)±
= −

[
1 +

m∆`Ω1

2

](
e1

e2

)m
±

√ [
1 +

m∆`Ω1

2

]2(
e1

e2

)2m

− 1 . (39b)

A number of properties of linear modes follow:

• For each m = 1, 2, . . . there are two normal modes denoted by ‘±’. Each normal mode
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can be thought of as a linear superposition of the two edge-modes. Conversely each edge-

mode is a linear superposition of the two normal modes.

• The eigenfrequencies, ω±m , are either real or complex conjugates of each other. If they

are both real then both the normal modes are stable with pattern speed λ±P = ω±m/m. When

the eigenfrequencies are complex conjugates, then one normal mode grows exponentially (an

instability) and the other decays exponentially, with both modes having the same pattern

precession frequency.

• From equation (39a) we see that the condition for instability is:(
1 − `2

2

1 − `2
1

)m/2
>

∣∣∣∣ 1− m (`2 − `1) `1

1− `2
1

∣∣∣∣ . (40)

• It can be verified that the above inequality cannot be satisfied for any 0 6 `1 < `2 < 1 ,

when m = 1, 2 . So all bands have stable m = 1 and m = 2 modes, and only modes with

m = 3, 4, . . . can be unstable.

• The unstable band waterbag 1 s0 has `1 = 0.7 and `2 = 0.9. The stable broad band

waterbag 2 s0 has `1 = 0.1 and `2 = 0.9. Using these values of (`1, `2) in equation (40)

it can be verified that (i) waterbag 1 s0 has precisely two unstable modes, for m = 3 and

m = 4 ; (ii) For waterbag 2 s0 modes of all m are stable. This is in agreement with the

numerical simulations discussed in Section 4.

• The inequality condition (40) defines a region of instability in the (`1, `2) parameter

plane, for each value of m. These are displayed in Figure 9 for m = 3, 4, 5, 6 . As m increases

the cresecent-like region of instability expands.

5.1 Structure of normal modes

Stable modes: When inequality (40) is not satisfied the two normal mode eigenfrequencies

ω±m , given by equation (39a), are both real with corresponding pattern speeds λ±P = ω±m/m .

The DF of the normal modes is:

f±1 (`, g, t;m) = Re
{
A±m1 exp [im(g − λ±P t)] δ(`− `1) + A±m2 exp [im(g − λ±P t)] δ(`− `2)

}
.

(41)

The four complex amplitudes, A±m1 and A±m2 , are not entirely free: equation (39b) implies

that (Am2/Am1)± are real whenever ω±m are real. When the ratio is positive/negative, the

normal mode is an in-phase/out-of-phase superposition of the two edge-modes. Moreover

the product (Am2/Am1)+ (Am2/Am1)− = 1 , which implies (i) If the + mode is an in-phase

(or out-of-phase) combination of the two edge-modes so is the − mode, and vice versa; (ii)
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(a) m=3 (b) m=4

(c) m=5 (d) m=6

Figure 9. Instability region in (`1, `2) plane for m = 3, 4, 5, 6 .

If one of the edge modes makes a dominant contribution to the + mode, then the other

edge-mode makes a dominant contribution to the − mode. To summarize, a stable ± mode

is either an in-phase or out-of-phase superposition of the edge modes, with generally unequal

amplitudes. The pattern speeds, λ±P , of the ± modes are generally unequal.

Unstable modes: When inequality (40) is satisfied the two normal mode eigenfrequencies

ω±m given by equation (39a), are complex conjugates of each other. We write ω±m = mλP±iωI,

where λP is the pattern speed and ωI > 0 can be thought as the growth rate of the ‘+’ mode,

or as the damping rate of the ‘−’ mode; we will refer to ωI as the growth rate. Equation (39a)
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gives:

λP =
Ω1

2
= − `1

1− `2
1

(42a)

ωI =

√
1

∆`2

(
1− `2

2

1− `2
1

)m
−
(

1

∆`
− m`1

1− `2
1

)2

. (42b)

The pattern speed is negative and depends only on `1 . On the other hand the growth rate

depends on all of (`1, `2,m).

Equations (39a) and (39b) imply that whenever ω±m are complex conjugates, (Am2/Am1)±

are also complex conjugates. Moreover magnitude of the amplitude ratio, |(Am2/Am1)±| = 1 ,

so we can write (Am2/Am1)± = exp [±imθm], where

θm =
1

m
cos−1

[(
1− `2

1

1− `2
2

)m/2(
m`1 ∆`

1− `2
1

− 1

)]
, (43)

where θm is the relative phase shift between the two edge-modes composing a normal mode.

Then the DF of the growing and damping normal modes of a given m is given by the

following superposition of the two edge-modes:

f±1 (`, g, t;m) = exp [±ωI t] Re
{
A±m exp [im(g − λPt)] δ(`− `1)

+ A±m exp [im(g ± θm − λPt)] δ(`− `2)
}
, (44)

where A±m is a complex amplitude that is common to both edge modes. In contrast to a

stable mode, an unstable ± mode is a superposition of the edge modes with a relative phase

shift but equal amplitudes, and a pattern speed λP = Ω1/2 which is the same for both ±

modes.

In order to get an idea of the dependence of the growth rate as a function of the pa-

rameters, (`1, `2,m) we plot in Figure 10 the growth rate as a function of m for different

values of ∆` and `2 . For fixed `2 = 0.9 and three different values of ∆`, we see that bands

with smaller ∆` are unstable over a larger range of m, with higher maximum growth rates

occurring at larger m. For fixed ∆` = 0.1 and three different values of `2, the maximum

growth rates are similar but occur at smaller m for larger `2 .

We note that waterbag 1 s0 has unstable modes for m = 3, 4 with the m = 3 mode

having the higher growth rate, ωI ∼ 0.72Tsec
−1 ' 2.4 Gyr−1; this is consistent with the

initial growth of the m = 3 mode in Figure 6 and 8a. In the next section we present a more

detailed comparison of numerical experiments with linear theory.
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(a) `2 = 0.9 (b) ∆` = 0.1

Figure 10. Growth rate ωI variation with m: a). Left panel corresponds to waterbags with fixed `2 = 0.9 b). Right panel for
waterbags of fixed thickness ∆` = 0.1

System Name `1 `2 Tend Stable ?

waterbag 1 s0 0.7 0.9 2.5 no
waterbag 2 s0 0.1 0.9 9.4 yes
waterbag 3 s0 0.8 0.9 10.0 no

waterbag 4 s0 0.85 0.9 6.17 no
waterbag 5 s0 0.7 0.97 8.79 yes

waterbag `1 0.8 `2 0.81 0.8 0.81 1.8 no
waterbag `1 0.8 `2 0.82 0.8 0.82 10.0 no
waterbag `1 0.8 `2 0.83 0.8 0.83 12.5 no

waterbag `1 0.8 `2 0.84 0.8 0.84 13.3 no
waterbag `1 0.8 `2 0.85 0.8 0.85 1.65 no
waterbag `1 0.8 `2 0.86 0.8 0.86 34.2 no

waterbag `1 0.8 `2 0.87 0.8 0.87 0.28 no
waterbag `1 0.8 `2 0.88 0.8 0.88 5.9 no
waterbag `1 0.8 `2 0.89 0.8 0.89 5.9 no

waterbag `1 0.8 `2 0.90 0.8 0.90 41.2 no
waterbag `1 0.8 `2 0.91 0.8 0.91 20.0 no
waterbag `1 0.8 `2 0.92 0.8 0.92 10.8 no

waterbag `1 0.8 `2 0.93 0.8 0.93 6.4 no
waterbag `1 0.8 `2 0.94 0.8 0.94 44.0 no

waterbag `1 0.8 `2 0.95 0.8 0.95 38.7 no

waterbag `1 0.8 `2 0.96 0.8 0.96 18.4 no
waterbag `1 0.8 `2 0.97 0.8 0.97 5.1 no

waterbag `1 0.8 `2 0.98 0.8 0.98 211 yes

waterbag `1 0.8 `2 0.99 0.8 0.99 16.3 yes
waterbag `1 0.8 `2 1.00 0.8 1.00 19.0 yes

Table 1. List of all numerical simulations. The upper five cases correspond to Set I and the lower ones to Set II. The total
duration of each simulation, Tend, is given in units of Gyr; it is of order a few secular times and differs from case to case.

6 EVOLUTION OF INSTABILITIES

We ran a suite of numerical simulations of waterbag bands, with parameters listed in the

Table 1. The primary goal is to put the linear theory of the previous section to stringent

tests, and is explored through the upper (Set I) and lower (Set II) groups shown in Table 1:

• Set I consists of five cases, of which two — the unstable band waterbag 1 s0 and the

stable band waterbag 2 s0 — have already been discussed.

c© 0000 RAS, MNRAS 000, 000–000



Secular Instabilities of Keplerian Stellar Discs 25

Fastest growing mode

System name Unstable m m0 ωI,max(Gyr−1) λP0(rad Gyr−1)

waterbag 1 s0 3,4 3 2.4 -4.57

waterbag 3 s0 3,4,5 4 8.5 -7.41
waterbag 4 s0 3 - 7 6 20.6 -10.21

Table 2. Theoretical predictions for the unstable bands of Set I.

Fastest growing mode

System name m0 (Theory) m0 (Simulations) Agreement

waterbag 1 s0 3 3 yes

waterbag 3 s0 4 4 yes∗

waterbag 4 s0 6 6 yes∗

Table 3. Comparison between linear theory and simulations for the unstable bands of Set I. ∗ There is good agreement for

waterbag 3 s0 for t < 0.2 Gyr, and for waterbag 4 s0 for 0.05 < t < 0.15 Gyr.

• Set II is a detailed test of the linear theory prediction of the transition from instability

to stability of a band with fixed `1 = 0.8, as `2 is varied over a range of values.

Then we give a taste of the long-term evolution of an unstable band, that goes well

beyond the applicability of linear theory. Here the point of interest is in the collisionless

relaxation to a state with a wide spread in eccentricities.

6.1 Set I

Of the five cases in Set I, waterbag 1 s0 and waterbag 2 s0 have been discussed earlier.

waterbag 5 s0 is stable according to linear theory, and the simulation results confirmed

this, showing stable evolution similar to waterbag 2 s0. We now consider two new unstable

bands, waterbag 3 s0 and waterbag 4 s0. In Table 2 we list the predictions of linear theory

for these two bands, including also waterbag 1 s0 whose instability was discussed earlier.

For each band all its unstable modes are identified, and the growth rate and pattern speed

of the most unstable mode (m0) are computed using equations (42b) and (42a).

Simulations of waterbag 3 s0: From Figure 11 we see that an m = 4 pattern emerges

by ∼ 0.06 Gyr, which is in agreement with linear theory. Non-linear interactions, mainly

with the unstable m = 5 mode, lead to distortions of the pattern. This can be seen clearly

in Figure 13a which plots the mode amplitudes am versus time: the m = 4 mode has the

maximum amplitude until ∼ 0.2 Gyr, after which the m = 5 mode begins to dominate.

Simulations of waterbag 4 s0: From Figure 12 we see that an m = 6 pattern emerges

by ∼ 0.03 Gyr, which is in agreement with linear theory. Non-linear interactions with other

unstable modes lead to distortions of the pattern. This can be seen clearly in Figure 13b
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Figure 11. Similar to Fig. 6, but for waterbag 3 s0. A m = 4 pattern emerges by ∼ 0.06 Gyr.

which plots the mode amplitudes am versus time: the m = 6 mode dominates until∼ 0.2 Gyr,

after which there seems to be non-linear interactions among many modes.

Table 3 shows the general agreement between linear theory and simulations.
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Figure 12. Similar to Fig. 6, but for waterbag 4 s0. A m = 6 pattern emerges by ∼ 0.03 Gyr.

6.2 Set II

The narrowest band in Table 1 is waterbag `1 0.8 `2 0.81, with ∆` = 0.01 . According to

linear theory this band is unstable to a wide range of modes with m = 3− 57, with m = 36

having the fastest growth rate. Figure 14 shows the evolution of this narrow band, whose
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(a) waterbag 3 s0 (b) waterbag 4 s0

Figure 13. Evolution of mode amplitudes am. (a) waterbag 3 s0, (b) waterbag 4 s0.

initial evolution shows an instability dominated by m ∼ 36 mode, in agreement with linear

theory.

Linear theory also predicts a transition from instability to stability when the lower bound-

ary is held fixed at `1 = 0.8 and the band is made broader by increasing `2. This transition

occurs at `2 = `crit ' 0.963 : bands with `2 < `crit are unstable to various modes whereas

broader bands with `crit < `2 < 1 are stable for all m. In order to test this precise prediction,

we ran a total of 20 simulations increasing `2 in steps of 0.01, from 0.81 to 1, and looked for

signs of instabilities. From the last column of Table 1 we see that the simulations confirm

linear theory, with the small difference that the transition seems to happen when `2 crosses

0.97, instead of the predicted value of 0.963.

6.3 Collisionless relaxation

As instabilities unfold and non-linear interactions between modes dominate, what can we

expect of evolution over long times? We have earlier in this section followed the short-time

evolution of the unstable band waterbag 3 s0, with its initial growth of a dominant m = 4

mode over ∼ 0.06 Gyr, followed by the rise of an m = 5 mode around ∼ 0.2 Gyr lasting until

at least ∼ 0.34 Gyr. What happens after this? Here we follow the evolution for ∼ 4 Gyr.

Figure 15 shows both the initial and final states of waterbag 3 s0. When compared with

the intermediate states of Figure 11, the final state appears more axisymmetric. The final

state also has a wider range of eccentricities than the initial state. It consists of a nearly

circular high density ring, surrounded by a lower-density halo of particles with a wide range

of eccentricites. The strong non-axisymmetric instabilities that plagued the initial state
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Figure 14. Similar to Fig. 6, but for waterbag `1 0.8 `2 0.81. An high m pattern emerges by ∼ 0.02 Gyr.

seem to have saturated, leaving behind a relaxed, coarse-grained state that is approximately

axisymmetric and steady in time. The secular precessional timescale for the initial state is

Tsec ∼ 0.8 Gyr, so the total duration of the run, 4 Gyr is about 5Tsec. This is too short a

duration for a collisional process like resonant relaxation to be effective. Hence what we have
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(a) Initial state (b) Relaxed state at 4.05 Gyr

Figure 15. Collisionless relaxation of waterbag 3 s0.

witnessed must be collisionless relaxation, where non-axisymmetric instabilities provide the

pathway for transition from one axisymmetric state to another.

7 CONCLUSIONS

Mono-energetic waterbags are the simplest models of low mass stellar discs around a MBH.

We studied, analytically and numerically, the stability of initial states that are prograde and

axisymmetric. These waterbags have a DF, f0(`), which is constant when 0 6 `1 6 ` 6 `2 6

1, and zero when ` is outside this range. There are two types of waterbags, polarcaps with

`2 = 1 and bands with `2 < 1. The linear stability problem can be solved simply: for each

m the growth rates of instabilities, pattern speeds of stable and unstable modes and the

complete normal mode structure have been determined explicitly as functions of (`1, `2), the

waterbag parameters.
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• Polarcaps have one stable edge-mode for each m, with the noteworthy feature that the

m = 1 mode always has positive pattern speed. For a polarcap consisting of orbits with

eccentricities e < 0.94, only the m = 1 mode has a positive pattern speed.

• Bands have two interacting edge-modes for each m, and can be either stable or unstable.

Very narrow bands (with `1 ' `2) are unstable to modes with a wide range in m, whereas

broad bands approaching a polarcap (with `2 ' 1) are stable.

The evolution of instabilities was also explored through numerical simulations, which can

explore both linear and non-linear regimes. A variety of numerical experiments were per-

formed by which we demonstrated good agreement with linear theory. Long-time integration

showed the growth of instabilities of different m, that interacted with each other non-linearly,

then saturated and later relaxed collisionlessly into a quasi-steady state, which has a wider

range of eccentric orbits than the initial state. This suggests secular non-axisymmetric in-

stabilities could provide pathways for stars to exchange angular momentum via the mean

self-gravitational field, and spread out in eccentricities.

It is straightforward to extend our study to include external gravitational sources (such

as nuclear density cusps or distant perturbers) and general relativity, as described in ST1.

But one clearly needs to go well beyond our simple models in order to study real systems,

like the disc of young stars at the Galactic centre. We need to consider more general DFs

and include orbits with a range of semi-major axes and inclinations. But self-gravitational

dynamics poses difficult problems and secular dynamics is still in its infancy, so we need to

build the tools step by step; describing the collisionless relaxation of even an unstable band

remains a challenge for dynamists.
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APPENDIX A: SURFACE PROBABILITY DENSITY

The surface probability density function is obtained by integrating the disc DF over velocity

space:

Σ(r) =

∫
du f̂(r,u) (A1)

where the DF f̂(r,u) is written a function of r and u, which are the position vector and

velocity of a star, respectively, in the MBH’s rest frame. For a razor-thin disc, the four

dimensional phase volume, dr du = Idw dI dg d`. Hence the DF of an axisymmetric mo-

noenergetic disc (not necessarily a waterbag) is related to the DF, f0(`), of Section 3.2, as

follows:

f̂(r,u) =
f0(`)

4π2I0

δ(I − I0) . (A2)

Then

Σ0(r) =
1

4π2I0

∫
du dφu f0(`) δ(I − I0) , (A3)

where u is the speed, φ is the angle between u and r, and I0 =
√
GM•a0 . Since the discs

we consider have only prograde orbits, ` > 0 which implies that 0 6 φ 6 π. We now express

the (scaled) Delaunay variables, {`, I}, in terms of {u, φ}:

I =

(
2

GM•r
− u2

(GM•)2

)−1/2

, (A4a)

` = L/I = I−1ru sinφ . (A4b)

c© 0000 RAS, MNRAS 000, 000–000



Secular Instabilities of Keplerian Stellar Discs 33

Hence

δ(I − I0) =
δ(u− u0)

|dI/du|u0
=

(
GM•
a3

0

)1/2
δ(u− u0)

u0

, (A5)

where

u0(r) =


√
GM•

(
2

r
− 1

a0

)
, for r 6 2a0

0 , for r > 2a0.

(A6)

is the speed at radius r, of an orbit with semi-major axis a0. Substituting equation (A5) in

(A3) and using equations (A4b) and (A6), the surface density for a general monoenergetic

DF:

Σ0(r) =
1

4π2a2
0

∫
dφ f0(`0(r) sinφ) , (A7)

where `0(r) =
ru0(r)

I0

=


√

2r

a0

− r2

a2
0

, for r 6 2a0

0 , for r > 2a0.

(A8)

For the waterbag DF of equation (25), f0(`) = 1/∆` = 1/(`2 − `1) = constant for

0 6 `1 < `2 6 1 and is zero outside this range. This implies that Σ0(r) is non zero only

when |r − a0| 6 a0e1. Within this range of radii,

Σ0(r) =
1

4π2a2
0∆`

∆φ(r) , (A9)

where ∆φ(r) is the range in φ for which

`1

`0(r)
6 sinφ 6

`2

`0(r)
. (A10)

All we need to do now is to determine ∆φ(r). There are two cases to consider:

1. `2 6 `0(r) : Using equation (A8), this condition is equivalent to |r − a0| 6 a0e2. Then

∆φ(r) = 2 (φ2 − φ1), where φ1(r) = sin−1 [`1/`0(r)] and φ2(r) = sin−1 [`2/`0(r)].

2. `1 6 `0(r) 6 `2 : Using equation (A8), this condition is equivalent to a0e2 6 |r − a0| 6

a0e1. Then ∆φ(r) = 2 (π/2− φ1).

Substituting these expressions for ∆φ(r) in equation (A9), we obtain equation (26) for the

surface probability density of an axisymmetric mono-energetic waterbag.
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