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ABSTRACT
The convolution of galaxy images by the point-spread function (PSF) is the domi-
nant source of bias for weak gravitational lensing studies, and an accurate estimate
of the PSF is required to obtain unbiased shape measurements. The PSF estimate for
a galaxy depends on its spectral energy distribution (SED), because the instrumen-
tal PSF is generally a function of the wavelength. In this paper we explore various
approaches to determine the resulting ‘effective’ PSF using broad-band data. Consid-
ering the Euclid mission as a reference, we find that standard SED template fitting
methods result in biases that depend on source redshift, although this may be reme-
died if the algorithms can be optimised for this purpose. Using a machine-learning
algorithm we show that, at least in principle, the required accuracy can be achieved
with the current survey parameters. It is also possible to account for the correlations
between photometric redshift and PSF estimates that arise from the use of the same
photometry. We explore the impact of errors in photometric calibration, errors in the
assumed wavelength dependence of the PSF model and limitations of the adopted
template libraries. Our results indicate that the required accuracy for Euclid can be
achieved using the data that are planned to determine photometric redshifts.

Key words: gravitational lensing: weak - methods: data analysis - space vehicles:
instruments - cosmological parameters - cosmology: observations.

1 INTRODUCTION

The measurement of the distance-redshift relation using dis-
tant type Ia supernovae led to the remarkable discovery that
the expansion of the Universe is accelerating (Riess et al.
1998; Perlmutter et al. 1999). Since then, this finding has
been confirmed by a wide range of observations, but there
is still no consensus on the underlying theory: options range
from a cosmological constant to a change of fundamental
physics. To restrict the range of explanations, significant
observational progress is required, and to this end a wide
variety of observational probes and facilities are being stud-
ied and employed (Weinberg et al. 2013).

Of particular interest is weak gravitational lensing
(Hoekstra & Jain 2008; Kilbinger 2015): the statistics of
the coherent distortions of the images of distant galaxies
by intervening structures can be related to the underlying
cosmological model. Measuring this lensing signal as a func-
tion of source redshift can in principle lead to some of the
tightest constraints on cosmological parameters. The typical
change in galaxy shape is tiny compared to its intrinsic el-
lipticity, and a precise measurement involves averaging over

large samples of galaxies. Moreover, gravitational lensing is
not the only phenomenon that can lead to observed corre-
lations in the galaxy shapes: tidal effects during structure
formation may lead to intrinsic alignments, which compli-
cate the interpretation of the measurements (e.g. Joachimi
et al. 2015; Kirk et al. 2015).

Perhaps the biggest challenge is that a range of instru-
mental effects can overwhelm the lensing signal, unless care-
fully corrected for. Of these, the convolution of the galaxy
images by the point spread function (PSF) is typically dom-
inant, but other effects may contribute as well (Massey
et al. 2013; Cropper et al. 2013). Hence, much effort has
focussed on an accurate correction for the PSF, which cir-
cularises the images, but can also introduce alignments if it
is anisotropic. Despite these technical difficulties, the lens-
ing signal by large-scale structure, commonly referred to as
‘cosmic shear’, has now been robustly measured (see e.g.
Heymans et al. 2012; Becker et al. 2016; Hildebrandt et al.
2017, for recent results).

The next generation of lensing surveys will cover much
larger areas of sky and aim to measure shapes of billions
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of galaxies. The Large Synoptic Survey Telescope1 (LSST;
LSST Science Collaboration et al. 2009) will survey the
sky repeatedly from the ground, whereas Euclid2 (Laureijs
et al. 2011), and the Wide-Field Infrared Survey Telescope3

(WFIRST; Spergel et al. 2015) will observe from space to
avoid the blurring of the images by the atmosphere. The dra-
matic reduction in statistical uncertainties afforded by these
new surveys needs to be matched by a reduction in the level
of residual systematics. Consequently, even in diffraction-
limited space-based observations, the PSF cannot be ignored
(Cropper et al. 2013).

The PSF varies spatially due to misalignments of op-
tical elements, which also typically vary with time due to
changes in thermal conditions and, in the case of ground-
based telescopes, due to changing gravitational loads. This
can be modelled using the observations of stars in the field-
of-view. A complication is that the PSF generally depends
on wavelength; this effect is stronger for diffraction-limited
optics, but atmospheric differential chromatic refraction and
the turbulence in the atmosphere also depend on wavelength
(Meyers & Burchat 2015). Hence, the observed PSFs depend
on the spectral energy distribution (SED) of the stars. For-
tunately the SEDs of stars are well-studied and relatively
smooth, such that with limited broad-band colour informa-
tion the wavelength dependence can also be included in the
PSF model.

Each galaxy, however, is convolved by a PSF that de-
pends on its SED in the observed frame, the ‘effective’ PSF.
An incorrect estimate of this PSF will lead to biases in the
galaxy shape estimates and consequently in the cosmolog-
ical parameters. Hence it is not only important that the
wavelength dependent model for the PSF is accurate, but
also that the galaxy SED can be inferred sufficiently well.
In this paper we focus on the spatially averaged, or global,
SED of the galaxy, but we note that spatial variations lead
to additional complications (Voigt et al. 2012; Semboloni
et al. 2013), which we do not consider here. Examining the
impact of the wavelength dependence is particularly rele-
vant for Euclid, because the PSF is not only diffraction lim-
ited, but the shape measurements are based on optical data
obtained using an especially broad passband (5500-9200Å;
Laureijs et al. 2011) to maximise the number of galaxies for
which shapes can be measured.

To study the expansion history and growth of structure,
lensing surveys measure the cosmic shear signal as a function
of source redshift. Measuring spectroscopic redshifts for such
large numbers of faint galaxies is too costly, but fortunately
photometric redshifts are adequate. These are obtained by
complementing the shape measurements with photometry
in multiple filters, which can also provide information on
the observed SEDs. Whether such data are adequate for
the determination of the effective PSF for galaxies was first
studied by Cypriano et al. (2010) in the context of Euclid.

Cypriano et al. (2010) examined two approaches to ac-
count for the wavelength dependent PSF. First, they ex-
plored whether stars with similar colours as the galaxies
could be used. In general one does not expect the SEDs of

1 http://www.lsst.org/
2 http://www.euclid-ec.org/
3 http://wfirst.gsfc.nasa.gov/

stars to match those of galaxies well over the broad red-
shift range covered by Euclid. Nonetheless, this approach
performed reasonably well, albeit with significant biases for
high redshift galaxies. Cypriano et al. (2010) obtained better
results by training a neural network on simulated SEDs and
combining this with a model for the wavelength dependence
of the PSF. This allowed them to to predict the PSF size as
a function of the observed galaxy colours. Similarly, Meyers
& Burchat (2015) explored how machine learning techniques
can be used to account for atmospheric chromatic effects in
ground-based data.

In this paper we revisit the problem studied by Cypri-
ano et al. (2010) and Meyers & Burchat (2015), with a par-
ticular focus on what data are required to meet the require-
ments for Euclid. This paper examines the performance of
the various approaches to estimate the effective PSF size,
using a more up-to-date formulation of requirements, as pre-
sented in Massey et al. (2013). The detailed break down of
various sources of bias presented in Cropper et al. (2013)
indicates that the actual requirements are more stringent
than those assumed by Cypriano et al. (2010). We also use
a more realistic model for the wavelength dependence of
the PSF. Importantly, we examine how well the supporting
broad band imaging data need to be calibrated, as zero-point
variations will lead to coherent biases in the inferred PSF
sizes. The photometric data are also used to determine pho-
tometric redshifts, and as a result we expect covariance be-
tween photometric redshift errors and the inferred PSF size.
The break down presented in Cropper et al. (2013) ignores
such interdependencies, and here we examine the validity of
this assumption.

The outline of this paper is as follows. In §2 we present
the problem and describe the simulations we use to study the
impact of the wavelength dependence of the PSF. In §3 we
explore how well we can determine the PSF size using a con-
ventional photometric redshift method, whereas we investi-
gate machine learning techniques in §4. In §5 we quantify
the impact of calibration errors and limited SED templates.
Appendix C investigates the implication of omitting z -band
observations.

2 DESCRIPTION OF THE PROBLEM

2.1 Effective PSF size

To infer cosmological parameters from the lensing data we
need to measure the correlations in the shapes of galaxies
before they were modified by instrumental and atmospheric
effects. In the following we ignore detector effects, such as
charge transfer inefficiency, which have been studied sepa-
rately (e.g. Massey et al. 2014; Israel et al. 2015). Instead we
examine how well we can estimate the size of the effective
PSF given available broad-band observations.

We start by defining the nomenclature and notation.
Throughout the paper we implicitly assume that measure-
ments are done on images produced by a photon counting
device, such as a charge-coupled device (CCD). In this case
the observed (photon) surface brightness or image at a wave-
length λ, I(x;λ), is related to the intensity S(x;λ) through
I(x;λ) = λS(x;λ)T (λ), where T (λ) is the normalised trans-
mission. For the results presented here we assume that the
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Euclid VIS filter has a uniform transmission between 5500-
9200Å, and that all the light is blocked at other wavelengths.
The image of an object is then given by

Iobs(x) =

∫
I0(x;λ)⊗ P (x;λ)dλ, (1)

where P (x;λ) is the wavelength-dependent PSF, and I0 is
the image of the object before convolution. Following Massey
et al. (2013), we use unweighted quadrupole moments Qij ,
which are defined as

Qij =
1

F

∫
dλ

∫
xixjI(x;λ)d2x, (2)

where F is the total observed photon flux of an image I(x).
The moments can be used to estimate the shape and size

of an object. A complication is that the observed moments
are measured from the noisy PSF-convolved images, and the
challenge for weak lensing algorithms is to relate these to the
unweighted quadrupole moments of the true galaxy surface
brightness distribution. Throughout the paper we assume
that this is possible, and thus that we can use the fact that
the unweighted quadrupole moments (Q0

ij) are related to the
observed quantities (Qobs

ij ) through (Semboloni et al. 2013):

Q0
ij = Qobs

ij −
1

F

∫
F (λ)Pij(λ)dλ, (3)

where F (λ) ≡ λS(λ)T (λ) explicitly indicates the wavelength
dependence of the observed photon flux in terms of the
transmission T (λ) and S(λ), the spectral energy distribu-
tion (SED) of the object. Pij(λ) are the quadrupole mo-
ments of the PSF as a function of wavelength. The second
term defines the quadrupole moments of the effective PSF
and the main focus of this paper is to quantify the bias in
the measurements of galaxy shapes that arise from the lim-
ited knowledge of the galaxy SEDs. Clearly errors in the PSF
model itself contribute as well, but we assume that these are
determined sufficiently well (see e.g. Cropper et al. 2013), al-
though we briefly return to this in §5.

The main complication for weak lensing measurements
is that the estimate for the effective PSF depends on the
rest-frame SED of the galaxy and its redshift, whilst neither
are known a priori. Importantly, given the large number of
sources that need to be observed to reduce the statistical un-
certainties due to shape noise, only broad-band photometry
is available to estimate the SEDs and photometric redshifts.
The aim of this paper is to quantify whether this limited
information is sufficient for the accuracy we require in the
case of Euclid.

The biases in shape measurement algorithms are com-
monly quantified by relating the inferred shear γ (or ellip-
ticity) to the true value (Heymans et al. 2006)

γobs = (1 +m)γtrue + c, (4)

where m is the multiplicative bias and c the additive bias.
Massey et al. (2013) examined the various terms that con-
tribute, including errors in the PSF model. PSF errors will
lead to both additive and multiplicative biases, although the
former can be studied from the data themselves (e.g. Hey-
mans et al. 2012). Relevant here is the bias in the estimate
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Figure 1. The change in R2
PSF as a function of redshift for differ-

ent galaxy types, normalised to an early type (Ell 01) spectrum at
z = 0. The six lines corresponds to the templates Irr 01, Irr 14,

Ell 01, Scd 01, Sbc 01 and I99 05Gy from the CWW template
library. The two vertical lines at z=0.4,1.3 indicate where the

λ = 4000Å break is entering and leaving the VIS filter.

of the effective PSF size. We define the size of the PSF in
terms of the quadrupole moments as:

R2
PSF(λ) = P11(λ) + P22(λ), (5)

where R2
PSF(λ) is the size4 of the wavelength dependent

PSF, which we assume to be described by a power law

R2
PSF(λ) ∝ λ0.55, (6)

where the value of the slope is found to be a good fit to
results from simulated Euclid PSF models. In principle the
wavelength dependence can be predicted from a physical
model of the optical system, or it can be determined from
careful modelling of calibration observations of star fields.
The PSF modelling greatly benefits from the fact that stel-
lar SEDs are well-known and well-behaved. The observed
effective PSF size R2

PSF is then given by

R2
PSF =

1

F

∫
dλF (λ)R2

PSF(λ). (7)

Cropper et al. (2013) presented a detailed breakdown
of the various systematic effects based on the expected per-
formance of Euclid. It includes an allocation with the de-
scription ‘wavelength variation of PSF contribution’ in their
Table 1, for which a contribution to the relative bias in ef-
fective PSF size of |δR2

PSF/R
2
PSF| = 3.5× 10−4 is listed. To

include margin for additional uncertainties, we adopt here a
slightly more stringent requirement of

∣∣∣∣δR2
PSF

R2
PSF

∣∣∣∣ ≡ ∣∣∣∣〈R2
Pred −R2

PSF

R2
PSF

〉∣∣∣∣ < 3× 10−4, (8)

4 Throughout the paper we refer to this definition as size, but

note here that it really corresponds to an area.
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where we explicitly average over an ensemble of galaxies
(〈.〉). The predicted value of the effective PSF size, R2

Pred,
is the one we will attempt to estimate using supporting
broad-band observations in multiple passbands, whereas the
correct value is given by R2

PSF. Note that this requirement
is considerably tighter than what was studied in Cypriano
et al. (2010).

This requirement is to be contrasted with the expected
variation in effective PSF size for different galaxy types and
redshifts. Figure 1 shows the relative change in R2

PSF for
five different galaxy SEDs as a function of redshift. Both the
variation between galaxy types at a given redshift, and the
variation with redshift for a given SED template are about
two orders of magnitude larger than the requirement given
by Eqn. 8. This figure highlights that incorrect estimates
of the spectral type or photometric redshift can result in
considerable biases in the adopted effective PSF. To explore
this problem in detail we create simulated multi-wavelength
catalogs, which we discuss next.

2.2 Simulated data

To quantify how well the effective PSF size can be deter-
mined from broad-band imaging data, we create simulated
catalogs. In this paper we explore several approaches, which
use observations of galaxies and stars. In our forecasts we
consider the combination of Euclid observations in the VIS
and NIR filters, with ground-based DES data. This is the
baseline discussed in Laureijs et al. (2011) and also used in
Cypriano et al. (2010). We use the extended CWW library
(Coleman, Wu & Weedman 1980) from LePHARE (Ilbert et al.
2006) which contains 66 SEDs. We split these into elliptical
(Ell), spiral (Sp) and irregular (Irr) galaxies as described in
Mart́ı et al. (2014); they also describes how the SEDs are as-
signed. These galaxy realisations with absolute magnitudes,
redshifts and SEDs are then converted into apparent photon
fluxes (fi):

fi =

∫
dλλTi(λ)S(λ(1 + z)) (9)

where S(λ) is the rest-frame galaxy SED, Ti(λ) is the re-
sponse function in filter i and the integration is over the ob-
served frame wavelength. Figure 2 shows the adopted filter
response functions (Ti) for the Euclid VIS and NIR filters,
as well as the optical DES filters5.

The simulated catalogs include realistic statistical un-
certainties for the magnitudes. We assume that the mea-
surements are limited by the noise from the sky back-
ground, which is independent between filters. Table 1 lists
the adopted limiting magnitudes for DES and Euclid for
point sources with a signal-to-noise ratio S/N=10. For galax-
ies, which are extended, we take a limit 0.7 magnitude
brighter. We generate mock catalogs of galaxies that include
galaxies that are fainter than VIS < 24.5, but restrict the
analysis to this limiting magnitude when estimating the rel-
ative bias in R2

PSF.
We explore various scenarios to estimate the effective

5 The DES filter curves are obtained from

http://www.ctio.noao.edu/, while the Euclid filters are ap-

proximated from the values presented in Laureijs et al. (2011).
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Figure 2. The Euclid (VIS, and near infrared Y,J,H bands) and

DES (ground based g,r,i,z ) effective filter response curves used to
create simulate data. The effective filter response curves combine

the atmospheric (for DES), telescope, filter and CCD transmis-
sion.

VIS g r i z Y J H

Galaxies 24.5 24.4 24.1 24.1 23.7 23.2 23.2 23.2

Stars 25.2 25.1 24.8 24.8 24.4 23.9 23.9 23.9

Table 1. The adopted limiting magnitudes for detections with a

signal-to-noise ratio S/N = 10. The limiting magnitudes for ex-
tended objects are assumed to be 0.7 magnitudes shallower than

for point sources. The ground based observations (g,r,i,z ) cor-

respond to DES data, whereas the VIS, and Y,J,H correspond
to the Euclid optical and NIR limits taken from Laureijs et al.

(2011).

PSF size, such as different combinations of broad-band imag-
ing data. Of particular interest is the question whether it is
possible to use the observed sizes and colours of stars to
estimate the effective PSF sizes of galaxies: if a star and
a galaxy would have the same SED, they would also have
the same effective PSF. Figure 3 shows R2

PSF as a func-
tion of colour for simulated galaxies and stars. The galaxies
(yellow points) are a random subset of the simulated (noise-
less) catalog, while the stars (black points) are generated by
uniformly sampling all SEDs in the Pickles library (Pickles
1998). For the filters that overlap in wavelength with the
VIS band (panels with blue background) the relation be-
tween R2

PSF and colour is indeed quite similar for galaxies
and stars. The performance of this approach, extending the
single colour estimate explored by Cypriano et al. (2010) to
include the more extensive colour information, is explored
in §4 using machine learning algorithms.

c© 0000 RAS, MNRAS 000, 000–000
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Figure 3. Relation between colour and the effective PSF size (R2
PSF) for different filter combinations (indicated in the title of each

subplot). The black points show the results for stars with SEDs from the Pickles library (Pickles 1998). The yellow points correspond

to a random subset of galaxies covering a range of SEDs and redshifts. Subplots with a blue background indicate filters overlapping the
VIS band.

3 PERFORMANCE OF TEMPLATE FITTING
METHODS

3.1 Photo-z estimation

Cosmic shear studies rely on photometric redshifts (photo-
zs) derived from deep broad-band imaging to relate the lens-
ing signal to the underlying cosmological model. In this sec-
tion we explore whether the algorithms used to determine
photo-zs can also be used to estimate the size of the effective
PSF.

These algorithms can broadly be divided into two
classes. Machine learning methods train on a set of galaxies
where the redshift is known from spectroscopy to predict
the redshift for a larger ensemble of galaxies only observed
using broad-band photometry. Examples of learning meth-
ods include the neural network algorithms ANNz (Collister
& Lahav 2004) and Skynet (Bonnett 2015). Template based
photo-z methods (e.g. BPZ; Beńıtez 2000; Coe et al. 2006)
use libraries of the restframe galaxy SEDs. For each redshift

and galaxy type, one can model the observed galaxy colours,
and the best fit model is found by minimizing

χ2(z, τ) =
∑
i


(
f̃i − fi(z, τ)

)2
σ2
f̃i

+ χ2
Priors(z,τ), (10)

after marginalizing (summing) over the galaxy types (τ).
Here f̃i and fi(z, τ) are the observed and predicted fluxes in
the ith filter, with z and τ being the galaxy redshift and tem-
plate, respectively. The uncertainty in the flux is assumed to
be Gaussian with a standard deviation σf̃i . An optional prior

term χ2
Priors(z, τ) adjusts the probabilities based on galaxy

redshift and type, to reflect additional constraints, for in-
stance the fact that bright galaxies are more likely to be
at low redshift. This term reduces the number of degenerate
solutions and catastrophic photo-z outliers. In this paper we
use the default BPZ priors specified in Beńıtez (2000). The
template library is based on the same set of templates used
to create the simulations.

Unlike learning methods, template based photo-z meth-

c© 0000 RAS, MNRAS 000, 000–000



D
RA
FT

6 Martin Eriksen & Henk Hoekstra

ods also provide an estimate of the galaxy SED. From the
best fit galaxy restframe SED (Sbest(λ)) and photometric
redshift (zbest), one can estimate the effective PSF size

R2
τ,best =

∫
dλλT (λ)Sbest(λ(1 + zbest))R

2
PSF(λ)∫

dλλT (λ)Sbest (λ(1 + zbest))
, (11)

where the integration is over the observed-frame wavelength.
However, because of measurement uncertainties in the pho-
tometry, the template based codes not only provide the best
fit redshift for each galaxy, but also a redshift probability
distribution

p(z) ∝ exp

(
−1

2

∑
τ

χ2(z, τ)

)
, (12)

where χ2 is given by Eq.10. Instead of using the best fit red-
shift (Eq. 11), one can instead estimate a PSF size, weighted
by the redshift probability distribution:

R2
τ,p(z) =

∫
dzp(z)

∫
dλλT (λ)Sbest (λ(1 + z))R2

PSF(λ)∫
dzp(z)

∫
dλλT (λ)Sbest (λ(1 + z))

. (13)

This can be extended further by also including the proba-
bilities of the galaxy types. We compare the performance of
these choices for the effective PSF size estimates in §3.3.

The template library uses the following six templates:
Ell 01, Sbc 01, Scd 01, Irr 01, Irr 14, I99 05Gy, which repre-
sent a subset of the SEDs in the galaxy mocks. This limited
set of SEDs reflects the conventional use of photo-z algo-
rithms and the fact that the real SEDs are not perfectly
known. We explore this in more detail in §3.4, but note that
the photo-z code does include two linear interpolation steps
between consecutive templates to mimic a smooth transition
between templates. When determining photometric redshifts
from the mock galaxy catalogs we exclude the VIS band,
since it only yields a minor improvement in the photo-z pre-
cision, while it would increase the covariance between the
photometric redshift and the shape measurements.

3.2 Simple scenario

The photo-z algorithm provides an estimate of the restframe
SED, while the calculation of the effective PSF size is done
using the galaxy SED in the observed frame. The conversion
between the two frames requires the redshift, which causes
the redshift biases and uncertainties to directly affect the
estimate of R2

PSF from a template based photo-z code. The
photo-z probability density distribution that is provided by
a template fitting algorithm can be a complex function of
redshift, as degenerate solutions may be found with different
best-fit SEDs. Before examining this complex, but more re-
alistic situation, we consider a number of simpler cases that
allow us to disentangle the different effects.

The top panel in Fig. 4 shows the absolute value of the
relative bias in effective PSF size if we assume that the SED
is known a priori, but where the best-fit photo-z is biased
by |∆zp|. While the size of the bias varies with redshift, we
limit the discussion here to z = 0.5 for simplicity, and use the
full redshift range for the realistic simulations (see §3.3). The
amplitude of the bias increases with increasing redshift bias,
with the different templates yielding rather similar results.
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10 2

|
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/R
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Scd_01
Irr_01
Irr_14

Figure 4. Effect of Gaussian photo-z uncertainties on the es-
timate of R2

PSF for a known rest-frame SED. The lines show

the relative bias δR2
PSF/R

2
PSF for different galaxy templates at

z = 0.5. In the top panel the photo-z bias varies (no photo-z

scatter), while the bottom panel varies the photo-z scatter (no

photo-z bias). The solid (gray) shaded region shows the required
accuracy. In the top panel the hatched (blue) region indicates a

photo-z bias < 0.002(1 + z) within a redshift bin, while it marks

a photo-z scatter < 0.05(1 + z) in the bottom panel.

We find that if |∆zp| < 0.005 the resulting bias in PSF size
is within the adopted allocation for Euclid (indicated by
the grey shaded region). This may appear challenging, but
a correct interpretation of the cosmic shear signal requires
that the bias in the mean redshift for a given tomographic
bin is known to better than |∆z| < 0.002(1 + z) (Laureijs
et al. 2011) and thus for an ensemble of galaxies the resulting
bias in the PSF size may be sufficiently small. However, the
redshift sampling of photometric redshift codes is typically
∆z ∼ 0.01, which may introduce biases. We examine this in
detail in Appendix A and find this is not a concern.

The situation is more problematic when we consider the
uncertainty in the photometric redshift estimate, which we
assume to be a Gaussian with a dispersion σz around the
correct redshift (i.e. no bias). The bottom panel in Fig. 4
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Sample All Ell Sp Irr
Peak 7.2 14 2.4 -1.6

Pdf(z) -0.3 12 -8.9 -18

Pdf(z,sed) 4.1 13 -2.1 -11

Table 2. The mean relative bias in effective PSF size times 10−4

when using a photo-z template fitting method. Columns show
the results by galaxy type: Elliptical (Ell), Spiral (Sp) or Irregu-

lar (Irr) galaxies. The rows list the relative bias when using the

best fit photo-z (Peak) and when weighting using the redshift pdf
(PDF).
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Figure 5. The distribution of relative biases δR2
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PSF for dif-

ferent galaxy types using a photometric redshift template fitting

code. The galaxies are split into Elliptical, Spiral and Irregular

types based on the definition in the input mock catalogue. The
vertical band marks the Euclid requirement for the mean relative

bias.

shows the relative bias in the effective PSF size as a func-
tion of σz/(1+z) for galaxies at z = 0.5, demonstrating that
a small photo-z scatter can cause a substantial bias in the
estimate of the effective PSF size. The bias increases with
increasing uncertainty, with the largest bias occurring for
the Irr 01 template. The requirements for the cosmic shear
tomography for Euclid are that σz/(1 + z) < 0.05 (Laureijs
et al. 2011), and hence the resulting biases in PSF size are
somewhat larger than can be tolerated. However, in reality
one averages over a sample of galaxies within a tomographic
bin, and thus these numbers should not be considered ap-
propriate requirements. Nonetheless they indicate that the
statistical uncertainties in the photometric redshifts are im-
portant.

3.3 Conventional template fitting method

After considering the simplistic case of galaxies with a
known SED and Gaussian photo-z errors, we now exam-
ine the performance of a template fitting method using the
more realistic galaxy simulations described in §2.2. As a
consequence, the results include redshift outliers and mis-
estimates of the galaxy rest-frame SED.

As mentioned earlier, the template fitting algorithm
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Figure 6. Redshift dependence of the relative bias in the effective

PSF size when a photo-z template fitting method is used. The plot
shows results split by input galaxy type and for two approaches

to determine R2
PSF, i.e. using the best fit photometric redshift,

or using the full p(z). In both cases we do not marginalize over

the uncertainty in the SED. The horizonal band marks the Euclid

requirement.

provides an estimate for the best fit redshift and rest-frame
SED, but also a probability density distribution for the red-
shift (which may be combined with a distribution of tem-
plates τ). The different outputs can be used to estimate the
average bias in the effective PSF size. Table 2 lists the re-
sulting average values for δR2

PSF/R
2
PSF when splitting by the

true galaxy types. If we consider the best fit redshift esti-
mate, the biases are small for both the spiral and irregular
galaxies, whereas the biases are large for early type galaxies,
irrespective of the weighting scheme.

It is also instructive to examine the distribution of bi-
ases for the different galaxy types. Figure 5 shows that the
distribution of effective PSF sizes is much broader than
the requirement. For all three galaxy types the distribution
peaks close to zero, and the bias for all three types is caused
by the skewness towards larger R2

PSF values, because the
redshift errors and SED misestimates do not fully cancel.

The results in Table 2 are averages over the full redshift
range, but the broad distributions in Fig. 5 for the three
galaxy types suggest that other parameters play a role. Fig-
ure 6 shows the relative bias in R2

PSF for different estimators
as a function of redshift. Note that the number of irregular
galaxies in our simulations is negligible at z > 1.5, because
they are fainter than our magnitude cut, and the measure-
ments therefore only extend to this redshift. The variation
as a function of redshift is the main cause of the broad distri-
butions in Fig. 5, and is much larger than can be tolerated.
This demonstrates that a simple average over the full galaxy
sample is not adequate. In general using the best-fit redshift
and the redshift weighting yields very similar results, al-
though the averages differ somewhat. We therefore focus on
the results using the best-fit redshift below.
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3.4 Restricted template fitting

It is interesting to investigate which parameters of the ex-
perimental setup affect the bias in effective PSF size the
most, as they may provide clues how to improve the perfor-
mance. We therefore examine a range of scenarios where we
modify the set of filters used, examine the SED coverage of
the algorithm, as well as the role of the photo-z priors.

The observed frame SED in the VIS filter is the most
important quantity when estimating the effective PSF size
because the shapes are measured using these images. In §3.2
we already saw that the errors in the photometric redshifts
can introduce bias. As we kept the SED fixed in this case,
we effectively modified the observed SED. One might naively
assume that the algorithm will adjust the best fit SED ac-
cordingly, thus reducing the bias. To quantify this, we show
the relative bias in effective PSF size as a function of the
difference between the best-fit photo-z zp and the true red-
shift zs in Fig. 7. In this case the algorithm is free to adjust
the SED. For the late type SEDs the results look qualitively
similar to what was found in §3.2, but for the early type
galaxies the effective PSF size is overestimated consistently.
Hence it is incorrect to assume that errors in the photo-z
estimate are compensated by selecting a different SED. We
find that only using r,i,z data does not reduce the bias.

In template based photo-z methods the flux measure-
ments in the various filters are compared to the model, and
additional priors are used to restrict the range of solutions.
The former can be split further into the contributions that
arise from the r,i,z filters that overlap with the VIS band,
and the out-of-band filters (g,Y, J,H in our case). Minimis-
ing χ2 using the contributions from the out-of-band filters
and the photo-z priors only provides indirect information
on the SED in the VIS band and may thus lead to biases in
the estimate for the PSF size. It is therefore of interest to
examine whether the performance improves by restricting
the filters used. Reducing the statistical uncertainties in the

flux measurements may provide another way to improve the
performance.

Figure 8 shows the relative bias for the full sample as
a function of exposure time (relative to the nominal case),
where we assumed that the increase in exposure time is the
same for all filters, including the Euclid VIS and NIR filters.
We do so for different setups. In the left panel we create
simulated catalogs using only six distinct SEDs, whereas in
the right panel the full range of SEDs is used. We do keep the
luminosity functions for the various galaxy types unchanged,
but rather assign slightly different SEDs to each type.

For the simulations with six SEDs (left panel) there are
several combinations of filters that meet the requirement on
the average relative bias (as indicated by the grey region).
If the filter set is restricted to r,i,z, the priors are needed
to reduce the average bias for the fiducial exposure time,
but otherwise applying the photo-z code with only six tem-
plates performs well. As expected, in the noiseless limit the
bias vanishes for all setups with six templates. While the
galaxy priors and the g,Y,J,H only contribute indirectly to
constrain the SED within the VIS band, including these does
reduce the bias in the PSF size.

Of particular interest are the two cases where the photo-
z algorithm uses all 66 templates in the analysis: the biases
are larger, although they do vanish in the noiseless case (with
the r,i,z scenario converging outside the plot). The larger
bias can be understood, because the noise causes the algo-
rithm to select SEDs not in the simulations. While adding
more templates in the fitting code may be tempting, this
result cautions us that it can also lead to biases.

The right panel in Fig. 8 shows the results when the full
range of SEDs is used to create the simulated catalogs. In
this case we find that using only six templates in the photo-
z algorithm leads to biases, even in the noiseless case. The
r,i,z setup without photo-z priors accidentally meets the
requirements for the nominal exposure time. Using the full
range of SEDs in the analysis improves the performance, as
expected, with the best results for the case where all filters
are used. These results highlight the need for the photo-z
templates to span the full set of SEDs in the observations,
which may be challenging in practice.

4 MACHINE LEARNING TECHNIQUES

The results presented in the previous section suggest that
modifications to the template fitting codes are needed if
these are to be used to determine the effective PSF. Mo-
tivated by the fact that Fig. 3 shows that the PSF sizes
for galaxies correlate strongly with the observed colour, we
explore the use of machine learning methods as a possible
alternative to map between the observed colours and the
effective PSF.

Although machine learning techniques are fast, flex-
ible and easy to implement, the spatial variation of the
PSF introduces additional complications which may be less
straightforward to implement; in contrast the effective PSF
is readily computed given a model for the PSF and the SED
from a template fitting code. Regardless of which approach
may be best suited for the analysis of Euclid data, quantify-
ing the performance of the machine-learning methods allows
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us to assess whether the supporting ground-based observa-
tions for Euclid are adequate to infer the effective PSF.

4.1 Training on simulated galaxy photometry

To explore the performance of machine learning we create a
training sample of galaxy simulations using the same proce-
dure as the test catalog (as described in §2.2). We start with
a best case scenario where the training set does not contain
noise. The NuSVR algorithm from scikit-learn (Pedregosa
et al. 2012) is used to train on a sample of 4000 galaxies
with multi-wavelength measurements. The galaxy training
and test catalogs are generated with the same algorithm,
but they are separate realisations.

The results are used to estimate the effective PSF sizes
of the test catalog (which does contain noise). A histogram of
the residuals when we train on 4000 galaxies with r,i,z pho-
tometry is presented in Fig. 9 (solid histogram). The distri-
bution of residuals is fairly symmetric and centred around
zero bias: we observe an average value of δR2

PSF/R
2
PSF =

3.5 × 104 (also see Table 3). For comparison we also show
(dashed histogram) the residuals from the template fitting
method (all filters, priors, photo-z peak). The residuals from
the SED fitting method also peak around zero, but the dis-
tribution is noticeably skewed, which leads to a significant
bias when averaged over the full sample.

We also consider a number of scenarios where different
filter combinations are used to train. The resulting average
biases are listed in Table 3. The results in the second column
are for noiseless photometry, whereas noisy data were used
in the training for the results listed in the third column. We
find that all configurations perform well, with the exception
of the case where only i, z data are used to train. This can
be understood from Fig. 3, which shows that for all colours
the colour-R2

PSF relation is tightest for colours that include
the r -band. Interestingly, we find that the combination of
r, i performs better than the r,i,z setup. This is because the
VIS filter covers only the blue half of the z-band. Hence
the information contained in the z-band measurements is of
limited value as some of the flux falls outside the VIS filter.
We verified this with a test where the z-band was restricted
to the blue half: the bias was reduced, whereas the bias
increased when we used the redder half.

Although perhaps somewhat counterintuitive, we advo-
cate to exclude the z-band when a restricted set of filters
is used to estimate the effective PSF when training using
galaxy templates. We explore this setup in more detail in
Appendix C. Including more filters does reduce the bias, but
it is not clear whether this would work in practice because
of variations in photometric calibration. Especially including
the NIR data would lead to additional requirements on the
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Filters Gal Gal-noisy Star Star-noisy

r,i,z 1.2 3.0 2.1 2.8

r,i 0.4 1.0 9.7 12
i,z 11 13 40 38

vis,r,i,z 1.4 1.8 1.2 2.0

vis,r,i 2.0 0.2 7.4 8.5
vis,i,z 1.3 7.7 27 26

All 0.1 1.7 9.9 8.3
All - vis 0.1 1.8 1.7 2.5

All - r 0.4 4.7 1.8 1.8

All - z 0.1 1.0 6.1 4.7
All - vis,z 0.1 1.8 4.4 3.7

Table 3. The absolute value times 104 of the relative bias

|δR2
PSF|/R

2
PSF when using a machine learning method for dif-

ferent instrumental setups and training approaches. The first
two columns (Gal) list results when the algorithm is trained

on galaxy simulations, while the last two columns (Star) cor-

respond to the biases when the algorithm is trained on stars.
The columns marked ‘-noisy’ include noise and the others are

noiseless. The first column lists the filters used. Here ’All’ means

g,r,i,z,VIS,Y,J,H. and ‘All - filter’ means that the filter was omit-
ted.

relative calibration between the ground-based optical data
and the Euclid NIR data.

4.2 Training on observed photometry of stars

So far, our attempts to predict the effective PSF size have
focused on galaxy templates. The predicted SED is then
used with a model of the wavelength dependence of the PSF
to compute the value for R2

PSF. On the other hand, the PSF
properties, including higher order moments of the surface
brightness distribution, can be measured directly for stars
in the data. Moreover, Fig. 3 shows that galaxies and stars
with the same colour have very similar effective PSF sizes.
It is therefore interesting to examine whether it is possible
to train on a sample of stars instead.

The main benefit of such an approach is the potential
of constructing a self-calibrating method: when training on,
and applying the results to the same pointing, this imple-
mentation would be rather insensitive to calibration errors in
the photometric zero-points. The effective PSF can be com-
puted using the wavelength-dependent model of the PSF
and the SEDs of the stars. The resulting mapping between
effective PSF parameters and observed star colours could
then also be applied using the observed colours of galaxies.
As before, we focus on the effective PSF size for simplicity.

We start with noise-free measurements of the colours
of stars. For the star catalogs we use 400 stars, uniformly
sampled from stellar SEDs in the Pickles (Pickles 1998) li-
brary. A typical Euclid pointing is expected to contain more
stars, and thus these results give a conservative indication
whether self-calibration is feasible. On the other hand, the
distribution of stellar SEDs is wider than in actual data. We
explore this further in §4.3 where we use a realistic distri-
bution of spectral types from the second data release of the
KiloDegree Survey (KiDS; Kuijken et al. 2015).

To mimic a self-calibration procedure, we create 100 in-
dependent pointings, and train the NuSVR algorithm on the
star simulations. The last two columns in Table 3 list the re-
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Figure 10. Effective PSF size R2
PSF, relative to the value for

the Ell 01 SED at z = 0, versus colour for filters that overlap
with VIS. Stars are marked as dots, while galaxies are binned in

redshift ranges and shown as lines. The hex-bins shows the density
for the full galaxy population. No magnitude noise is included.

sults when we train using the star catalogs. The biases are
generally small, and in some (noise-free) cases this approach
outperforms the training on galaxy templates. This the con-
sequence of the fact that the stars show a remarkably simple
relation between the colour and R2

PSF (see Fig. 3). An im-
portant difference is the increase in bias when excluding the
z -band, which did not occur when training with galaxies.
Including the VIS band reduces the bias, albeit with lim-
ited effect. As was the case for the galaxies, including VIS
and NIR data can help, provided the relative calibrations
between the various data sets can be ensured.

4.3 Tomography and calibration sample

The constraints on cosmological parameters from cosmic
shear surveys are improved significantly if the source sample
is split in a number of narrow redshift bins, such that they
are sensitive to the matter distribution at different redshifts.
Such ‘tomographic’ analyses are now standard for cosmic
shear studies (e.g. Heymans et al. 2013; Becker et al. 2016;
Jee et al. 2016; Hildebrandt et al. 2017), and therefore it
is not sufficient to consider the bias for the full sample, es-
pecially because the effective PSF size varies strongly with
redshift. Hence, even though training on stars results in an
overall small bias in the effective PSF size, we need to ensure
that the bias does not vary significantly with redshift. We
already saw that this was problematic for template fitting
methods (see Fig. 6).

Figure 10 shows the relative change in R2
PSF for galax-

ies and stars as a function of the colours that overlap the
VIS-band. Similar to what we saw in Fig. 3, the stars (or-
ange points) trace the overall galaxy population well (grey
hexagons), but when we split the galaxy sample into red-
shift bins (indicated by the lines), we find that this good
correspondance does not hold for all redshifts: especially for
the highest redshifts the relation is very different, which is
problematic for a machine learning method. This result is
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Figure 11. The relative bias in effective PSF size for different

calibration methods, when 400 stars that are uniformly sampled
from the Pickles SED library (Pickles 1998) are used for the train-

ing step. The dashed-dotted blue line shows the results without
further calibration, showing a strong redshift dependence. The

dotted red line indicates the results when the bias is adjusted

based on the r -i colour. The dashed green line shows that the
bias can be reduced significantly when an redshift-dependent off-

set in the r magnitude is applied. The solid black line uses a stellar

SED distribution from fitting to KiDS data (see text). The errors
are estimated from 100 pointings and the horizontal band marks

the required accuracy.

similar to the conclusion reached by Cypriano et al. (2010)
who considered only a single colour.

To examine this in more detail, we train on a star cata-
log using the r,i,z bands (see §4.2) and compute the residual
bias in the effective PSF size as a function of redshift. The
results are presented in Fig. 11 by the blue dashed line,
and show a clear redshift dependence. The bias is higher
at both low and high redshifts, but these redshift ranges
contain fewer galaxies. When averaging over redshift the bi-
ases largely cancel, leading to a low average value for the
full sample. Such a redshift dependent bias is problematic
as it may mimic an interesting cosmological signal, and our
results demonstrate that it is not sufficient to specify a re-
quirement for the full sample.

We explored various approaches to model the redshift-
dependent bias, but were unable to do so directly. Instead
we opted for a hybrid approach using a simulated galaxy
catalog as a ‘calibration’ sample. We train on the stars as
before, but use the simulated galaxy catalog to adjust the
method to create an unbiased estimate of the effective PSF
size. Although such an implementation is no longer fully self-
calibrating, training on the observed stars may still valuable,
if it can reduce the sensitivity to errors in the photomet-
ric calibration and the wavelength dependence of the PSF
model, as well as the adopted library of galaxy templates
(see §5 for more details). On the other hand, the perfor-
mance may still be limited by the fidelity of the calibration
sample that is used.

One possibility is to adjust the bias in effective PSF
size by accounting for the difference in size as a function of
r − i colour between stars and galaxies, as is indicated in

Fig. 10. The dotted red line in Fig. 11 demonstrates, how-
ever, that this does not alleviate the strong redshift depen-
dence. Instead, as is explained in more detail in Appendix B,
we found that it is possible to reduce the bias effectively by
introducing an r -band offset that depends on redshift, with-
out increasing the scatter significantly. However, in practice
photometric redshifts are used, and we examine the conse-
quences of this in the next subsection.

The adopted redshift-resolution for this correction al-
lows us to adjust the importance of the galaxy templates on
the results: if we assume no redshift dependence the method
reverts back to training on stars, whereas a very fine red-
shift sampling is identical to training on galaxy templates.
As discussed in Appendix B we adopted a redshift sampling
of ∆z = 0.18, which appeared to be a reasonable compro-
mise between the two extremes. In §5.1 we compare the per-
formance of the hybrid approach to the training on galaxy
templates in the presence of calibration errors in the photo-
metric data.

The distribution of stellar SEDs is expected to vary, in
particular as a function of Galactic coordinates. To explore
the impact of such variations we determine the SED dis-
tribution by fitting the Pickles library to the g, r, i, z for
stars (iAB < 21, CLASS GAL > 0.8) in KiDS DR2. For
each Euclid pointing we simulate 400 stars generated using
the stellar distribution in a KiDS pointing limited to the 15
most frequent templates. We find that the bias is essentially
unchanged compared to the case of training on a uniform
distribution of templates.

4.4 Correlations between photometric redshift
and effective PSF size

The results presented in Fig. 11 show that the biases as a
function of true redshift can be reduced to the required level.
However, in practice, tomographic bins are based on the
photometric redshifts. The large uncertainties and potential
outliers may affect the performance of the approach outlined
above. Moreover, as the photometric redshift estimate and
the determination of the effective PSF make use of the same
data (at least in part), correlations may be introduced. We
explore these more practical complications here.

To quantify the correlation between the relative error in
the inferred effective PSF size δR2

PSF/R
2
PSF and the error in

the best fit photometric redshift δz ≡ (zb−ztrue)/(1+ztrue)
we define the Pearson correlation coefficient

r(δR2
PSF, δz) ≡

〈
δR2

PSF, δz
〉√

Var(δR2
PSF)Var(δz)

(14)

where Var(.) is the variance. The solid lines in Fig. 12 show
the correlation coefficient between the error in the effective
PSF size and δz as a function of true redshift when training
on galaxies or stars, respectively. In both cases we find a
significant positive correlation between the errors between
0.4 < z < 1 and an anti-correlation at high redshifts. In
contrast, the dashed lines show the results when the effec-
tive PSF size and photometric redshift determinations are
obtained using independent data sets, i.e. independent noise
realisations. In this case the correlation coefficient is close
to zero for both training cases.
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residual bias in the effective PSF size, δR2
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error, δz, as a function of true redshift. The effective PSF size
was estimated using the r,i,z bands only, whereas the photomet-

ric redshifts use measurements from all available filters. The blue

lines show the results when galaxy mocks are used for the train-
ing, whereas the red lines show the results when stars are used

(but no additional calibration applied). The solid lines indicate

the results for the realistic case when the same r,i,z data are
used to measure both PSF size and photometric redshift (i.e., the

noise is in common), whereas the dashed lines are for indepen-

dent realisations of the data. The error bars are estimated from
simulating 100 pointings. Bottom: Histogram of δR2
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PSF for

the redshift range [0.4, 0.5] when selecting either on spec-z (solid

black) or photo-z (dashed blue). The training uses stars in the
r,i,z bands and the histograms comprise 100 independent point-

ings.

These results demonstrate that the (re-)use of photo-
metric data for different measurements may lead to red-
shift dependent correlations between residuals. To examine
this in more detail we consider a single redshift bin with
0.4 < z < 0.5, where the selection can be done either
based on spectroscopic or photometric redshift. The result-
ing distributions of the relative bias in effective PSF size are
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Figure 13. δR2
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2
PSF as a function of photometric redshift,

using either the photometric redshift or the true redshift in the
calibration catalog. The training uses observations of stars in the

r,i,z bands and the uncertainties are estimated from 100 point-
ings.

presented in the bottom panel of Fig. 12. When the galax-
ies are selected by spectroscopic redshift the distribution is
symmetric, and the mean bias meets our requirement. How-
ever, selecting galaxies based on their photometric redshift
leads to a skewed distribution with a significant bias in the
mean. This is the result of the correlation between δz and
δR2

PSF/R
2
PSF: a selection in photometric redshift leads to a

selection in effective PSF size. Hence an unbiased estimate
for tomographic bins needs to account for this correlation.

This is achieved naturally when correcting the bias in
effective PSF size using the simulated galaxy catalog: the
redshift dependence of the applied offset in r magnitude
can be determined by splitting the galaxies as a function
of photometric redshift. As shown by the solid black line in
Fig. 13, this removes the impact of the correlation between
the δz and δR2

PSF/R
2
PSF, since this is also included in the

calibration sample. In contrast, when the calibration sam-
ple is instead split based on the true redshift, zs, the bias
exceeds requirements (blue dashed line). These results indi-
cate that the calibration step can reduce the bias when using
photometric redshifts, provided that the simulations are suf-
ficiently accurate. We note, however, that the training needs
be done after the tomographic bins have been defined.

5 CALIBRATION

5.1 Impact of calibration errors.

So far we have assumed that the flux measurements in the
various bands used to infer the effective PSF size are per-
fectly calibrated and that the wavelength dependence of the
PSF is known. In practice the zeropoints in the r,i,z bands
will vary across the survey, although we note that (some)
modern surveys can achieve impressive homogeneity (e.g.
Finkbeiner et al. 2016). Moreover, the wavelength depen-
dence of the PSF is expected to be well-known, but it will
vary with time due to variations in the optical system.
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Figure 14. The allowed range in offset in the power law slope

of the PSF size as a function of wavelength, γ, such that the
bias in effective PSF size does not exceed the Euclid requirement.

The black bars indicate the results for the hybrid approach, and
the blue bars when we train using galaxy SEDs. To obtain these

results we applied the offset to the simulated galaxy and star data,

while the galaxy training and calibration sample use the nominal
value of γ = 0.55. This corresponds to an unknown γ shift in the

data. On the y-axis we show the requirement for the full sample

(all) and when splitting in redshift bins. The five redshift bins
are: [0.10, 0.44), [0.44, 0.78), [0.78, 1.12), [1.12, 1.46) and [1.46,

1.80), in increasing order.

A machine-learning algorithm trained on the observed
stars establishes the mapping between the observed colours
and PSF size, rendering it insensitive to zero-point offsets
and errors in the PSF model. Interestingly, problems with
the photometry and PSF model could be identified by exam-
ining the observed sizes to the ones expected based on their
SED. For instance, the colour-R2

PSF relation is shifted by a
magnitude offset and can thus be used to detect biases in
the ground based photometry. Deviations from the expected
wavelength dependence of the PSF can be directly tested by
comparing the observed PSF to the wavelength dependent
PSF model, R2

PSF(λ), convolved with stellar spectra.
Unfortunately we found in the previous section that it

was not possible to estimate the effective PSF using the
stars alone, because it resulted in strong redshift depen-
dent biases. We therefore need to quantify the impact of
calibration errors on the estimate of the effective PSF size.
We compare the sensitivity of the two machine-learning im-
plementations discussed in the previous section. Although
both approaches ultimately rely on simulated galaxies, the
hybrid method may retain some of the advantages of self-
calibration, and thus the sensitivity to calibration errors may
still be reduced. In this subsection we use the r,i,z observa-
tions of stars to train the algorithm, although we note that
the results are qualitatively the same when only r, i data
are used, albeit with a somewhat larger scatter in the latter
case.

We first examine the sensitivity to the wavelength of the
PSF, which we assume to be a power law R2

PSF ∝ λγ , where
γ = 0.55 is the nominal value used so far. We assume that an
error in the PSF model is captured by a change in the value

0.02
0.01
0.00
0.01
0.02 Band: r

Star Gal
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0.00
0.01
0.02

m

Band: i

all bin 1 bin 2 bin 3 bin 4 bin 5
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0.01
0.00
0.01
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Figure 15. The allowed range in magnitude offsets that can be

tolerated for Euclid. The black bars indicate the results for the
hybrid method, and the blue bars when training on galaxies only.

In both cases only r,i,z data were used to train on. In the top,
middle and bottom panels, the offsets are applied to the r,i and

z -band independently. On the y-axis we show the requirement for

the full sample (all) and when splitting in redshift bins. The five
redshift bins are: [0.10, 0.44), [0.44, 0.78), [0.78, 1.12), [1.12, 1.46)

and [1.46, 1.80), in increasing order.

of γ. For the full sample and different redshift bins, we find
that the relative bias in effective PSF is a linear function of
δγ, the change in the power law slope. We use these relations
to determine the maximum change δγ that can be tolerated
such that the bias in effective PSF size is smaller than the
Euclid requirement. The results are shown in Fig. 14 for
both training approaches. Note that this shift is applied to
the simulated observations, but that the calibration sample
is not changed.

We find that the lowest redshift bin is remarkably in-
sensitive to changes in the PSF model, and that the require-
ments are rather similar for the two training approaches. We
do note that the galaxy-only case for the fourth redshift bin
represents a challenge: as the sign of δγ is in principle un-
known, we obtain |δγ/0.55| < 2.4×10−3. When we consider
the hybrid method that trains on stars first, we find that
|δγ/0.55| < 5 × 10−3 is needed to meet the requirement on
the relative bias in effective PSF size. Although this may
appear challenging, such a deviation represents noticeable
deviation in the optical model of the PSF. Moreover, the
Euclid PSF is expected to be very stable in time, and thus
changes in γ can be easily monitored.

We now proceed to examine the sensitivity to errors in
the calibration of the ground-based observations, which may
occur because of varying observing conditions. Repeated ob-
servations of the same field allow for exquisite homogeneity
(Finkbeiner et al. 2016). In the near future, however, Gaia
(Perryman et al. 2001) spectrophotometric measurements
should provide an excellent reference across the full sky in
this wavelength range. Nonetheless it is important to evalu-
ate what errors in photometric zeropoint can be tolerated.

To examine this we apply an offset to the simulated
observations in each of the optical bands used and calcu-
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late the relative changes in the effective PSF size. To do
so, we change the zeropoint in one filter while keeping the
other measurements unchanged, and determine the maxi-
mum shifts in zeropoint that are still within requirements
and show the results in Figure 15 for the full sample of galax-
ies and the five tomographic bins in true redshift. The results
show that the effective PSF is most sensitive to photometric
calibration errors in the r band: for the hybrid method we
find that |δm| < 0.005 in the r-band, whereas |δm| < 0.01
appears adequate for the other filters. Such a level of pho-
tometric homogeneity seems quite achievable. Training on
galaxy simulations alone would increase the sensitivity to
magnitude offsets in the r -band such that |δm| < 0.003.
Hence the hybrid method of training on stars, followed by a
redshift dependent adjustment determined using simulated
galaxies retains some of the self-calibration properties.

5.2 Sensitivity to template library

Given that both machine-learning approaches rely on a li-
brary of simulated galaxy SEDs, a key remaining question
is whether the results are sensitive to limitations of the tem-
plate library. In §3.4 we already saw that the performance
of the template fitting code depends on the number of tem-
plates used, especially if the number was too low. We there-
fore return to this issue here and examine the impact of an
incomplete SED library on the machine-learning approaches.

The top panel in Fig. 16 shows δR2
PSF /R

2
PSF when we

limit the SED coverage in the galaxy training sample and
the calibration sample used to adjust the predictions when
training on stars first. The legend shows the fraction of SEDs
which remain after uniformly removing templates from the
simulations. For a complete sample (100%), the bias in ef-
fective PSF size is small for both approaches. When omit-
ting galaxy templates, the hybrid method performs better
at high redshift. Overall, both methods appear fairly robust
to an incomplete template library, although this may need
to explored further; especially the impact of emission-line
galaxies and dusty galaxies has not been explored.

As the hybrid method requires the same template li-
brary, one may be tempted to omit this approach. Regard-
less, we need to somehow ensure that the template library is
adequate. This can be done by comparing the results from
the two methods, as their dependencies on the template
library is different. This is evident from the top panel in
Fig. 16. The bottom panel of Fig. 16 shows the difference
in the estimate of the effective PSF size, relative to that of
an early type galaxy, as a function of redshift. If the tem-
plate library is highly incomplete, the two PSF estimates
differ significantly, especially for high redshift galaxies. This
can thus be used as a way to validate the machine-learning
approach.

6 CONCLUSION

The convolution of galaxy images by the PSF is the dom-
inant source of bias for weak gravitational lensing studies,
and an accurate estimate of the PSF is thus essential for a
successful measurement. In this paper we studied the bias
caused by the combination of a wavelength dependent PSF
and limited information about the SED of a galaxy of which
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Figure 16. Top: The relative R2
PSF bias when limiting the

SEDs in the galaxy training and the calibration sample. Solid

and dashed lines show δR2
PSF /R

2
PSF when training on stars and

galaxies, respectively. The template removal is done uniformly
over the 66 SEDs and legend shows the fraction remaining. On
the x-axis it the spectroscopic redshift. Bottom: The mean dif-
ference between the R2

PSF predicted when training on simulated
observed stars and simulated galaxies. The errorbars for both

panels are estimated from 100 Euclid pointings.

we wish to measure the shape. We quantified the impact
on the performance of Euclid, for which the impact is exac-
erbated because of the combination of a (near-)diffraction
limited PSF and the broad VIS pass-band. We note, how-
ever, that the wavelength dependence of the PSF cannot
be ignored for other stage IV ground-based surveys such as
LSST.

Based on the analysis of biases by Massey et al. (2013),
we restricted the study to the determination of the effec-
tive (or SED-weighted) PSF size, which is different for each
galaxy. Under the assumption that an accurate model of the
PSF as a function of wavelength can be derived, we explored
several approaches to estimate the effective PSF size from a
number of broad-band images. Given the exquisite precision
with which Euclid can measure the cosmic shear signal, the
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corresponding accuracy with which the PSF properties need
to be determined makes this challenging. Following Crop-
per et al. (2013) we consider a maximum relative error of
3 × 10−4, whereas the variation in effective PSF size with
source redshift is two orders of magnitude larger (see Fig-
ure 1).

We simulated catalogs of stars and galaxies based on
the expected depth and wavelength coverage of DES and
Euclid. We used these to examine how well a standard tem-
plate fitting photo-z code can predict the effective PSF for a
galaxy. We found that the resulting distribution of predicted
PSF sizes is skewed, leading on biases in the estimate of the
effective PSF that exceed the requirements. Hence, modi-
fications to the template fitting codes are needed if these
are to be used for this purpose. We note that this may be
worthwhile, because the effective PSF can be computed us-
ing a multi-wavelength model of the spatially varying PSF
and the SED from a template fitting code.

To quantify the expected performance for different sce-
narios of multi-wavelength data, we used machine-learning
methods instead. We used a NuSVR algorithm to train on
simulated galaxy catalogs and found that it is possible to re-
duce the skewness in the predicted effective PSF sizes, and
thus also the bias in the mean value. We considered vari-
ous filter configurations and found that good results can be
obtained when using the r−i colour only. A potential compli-
cation is the fact that part of the photometric data are used
to estimate both the effective PSF size and the photometric
redshift of a source. This leads to a correlation between the
error in PSF size and photometric redshift: galaxies with a
large error in PSF size are also more likely to migrate red-
shift bins when binned in photometric redshift, causing a
selection bias. Fortunately, we found that when the training
is also done using photometric redshifts, the correlation is
naturally accounted for.

We also examined whether it is possible to predict the
effective PSF size using observations of stars in the data.
Such an approach would be immune to photometric calibra-
tion errors. To test this, we trained and applied a NuSVR
algorithm on simulated data. Interestingly, training on r,i,z
observations of stars resulted in sufficiently small residuals
for the full sample, but the bias varied with redshift signifi-
cantly. To account for this, we introduced a correction based
on a calibration sample of simulated galaxies. The adopted
redshift-resolution for this correction allows us to adjust the
importance of the galaxy templates on the results: if we as-
sume no redshift dependence the method reverts back to
training on stars, whereas a very fine redshift sampling is
identical to training on galaxy templates.

In the case of perfectly calibrated data the two machine-
learning implementations are similar, but in the presence of
calibration errors the performances may differ. We examined
the sensitivity to errors in the PSF model and the photomet-
ric calibration, and found a slightly better performance for
the hybrid method. In this case the power-law slope of the
wavelength dependence of the PSF size needs to be known
to better than |δγ| < 5 × 10−3 which is quite achievable.
Moreover, the estimated effective PSF size is most sensitive
to the zeropoint errors in the r-band, which needs to be ac-
curate to |δm| < 0.005, whereas |δm| < 0.01 is sufficient for
the i and z bands. Such levels of photometric homogeneity
have already been achieved, and we expect the situation to
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Figure A1. The relative error in the effective PSF size R2
PSF as

a function of the redshift resolution used in the SED template
fitting method. R2

PSF is estimated using the r,i,z bands with no

magnitude noise and without photo-z priors. The three lines show
the 1−σ, 2−σ and 3−σ limits of the δR2

PSF distribution.

improve further thanks to spectrophotometric observations
with Gaia.

As both implementations rely on a simulated template
library, we explored whether limitations of the template li-
brary may pose a problem. The hybrid method is less sensi-
tive to an incomplete set of SEDs, but given our knowledge
of galaxy SEDs this does not seem to result in a major bias.
However, further work may be needed to examine the im-
pact of emission line galaxies, which we did not consider
here. Although we note this caveat, we conclude that it is
possible to estimate the effective PSF to the required level of
accuracy for Euclid with the anticipated photometric data.
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APPENDIX A: REDSHIFT RESOLUTION

Template fitting algorithms (e.g. BPZ; Beńıtez 2000) com-
pare observations with a model on a two-dimensional grid of
redshift and galaxy SED. The number of SEDs depends on
the number of templates used and the number of interpola-
tions between consecutive templates (we use 2). Given the
rather poor precision in redshift (σz ∼ 0.03− 0.05) that can
be achieved using broad-band data, the redshift sampling is
typically ∆z ≈ 0.01 in order to minimize runtime. Increasing
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Figure B1. Top: δR2
PSF/R

2
PSF in the calibration sample as a

function of the applied r -band offset. The training uses the r -i

and i-z colours from stars and the offset is included in the r -i
colour. One line shows the full sample (All), while the rest split

in photometric redshift bins. A shaded horizontal band marks

the Euclid requirement. Bottom: The optimal r -band offset as a
function of redshift. The circles is the r-band offset in the bins

(∆z = 0.18) marked with vertical lines, while the crosses use a

resoltion of ∆z = 0.02.

the redshift resolution is straightforward as it only requires
modifying a configuration parameter, but the runtime in-
creases roughly linearly with the number of evaluations in
redshift. Given the sensitivity to photometric redshift errors
(see §3.2) we check here if the default setting is sufficient to
estimate the effective PSF size.

To do so, we determine δR2
PSF/R

2
PSF as a function of

the redshift resolution ∆z. To isolate the effect of the red-
shift resolution we consider an idealised situation with no
measurement errors and fit the simulated r,i,z data without
photo-z priors. For ∆z = 0.01 the resulting average relative
bias is below 10−6 (not shown), which is two orders of mag-
nitude below requirements. Instead we show in Fig. A1 the
1−σ, 2−σ, 3−σ limits of the δR2

PSF distribution, which also
captures the tails of the distribution of δR2

PSF values. Fit-
ting with a resolution ∆z = 0.01 is thus sufficient to avoid
introducing an additional bias, which we also verified with
noisy simulations.

APPENDIX B: R2 BIAS CALIBRATION
TECHNIQUE

The scikit-learn library includes many algorithms for re-
gression. Several other algorithms (tree based and nearest
neighbours) performed well for the full sample of galaxies
when applied to r,i,z observations of stars. Unfortunately,
all resulted in a strong variation of the bias in effective PSF
size with redshift, resulting in the need for an additional cor-
rection. There are multiple avenues to reduce these residual
biases using a calibration sample of simulated galaxies. For
instance, one could determine the offsets as a function of
color or redshift. However, reliably predicting a small bias
based on noisy input is difficult. We explored various ap-
proaches, but were unable to achieve the required perfor-
mance.

Interestingly, we found that introducing a small r -band
magnitude offset in the algorithm to correct the predicted
value of R2

PSF yielded satisfactory results. Figure B1 shows a
linear dependence of δR2

PSF/R
2
PSF to an r -band shift for dif-

ferent redshifts when training on stars with the r,i,z bands.
We found good performance when we consider nine redshift
bins; as shown in the bottom panel of Fig B1 the resulting
r -band offset varies fairly smoothly with redshift. A finer
binning in redshift (as indicated by the crosses) shows that
the actual variation with redshift is more erratic. This is
naturally captured when training on galaxy templates alone.
Hence the redshift sample ∆z can be considered a parame-
ter that regulates the importance of the galaxy templates:
no binning corresponds to training on stars, whereas ∆z = 0
is equivalent to training on the galaxy templates. We found
that our choice of ∆z = 0.18 provided a good compromise
that performs well for the prediction of the effective PSF
size of a galaxy.

APPENDIX C: PERFORMANCE WITHOUT
Z -BAND OBSERVATIONS

When training on galaxies, the best performance was ob-
tained when we used r and i photometry only, which can
be understood because the VIS passband overlaps only with
the blue half of the full z-band. It is therefore interesting
to examine whether z-band data can be omitted, especially
given the relatively large amount of observing time needed
to obtain these data from the ground.

To compare the performances of the various filter
combinations, we show in Fig. C1 the distributions of
δR2

PSF/R
2
PSF. The main impact of omitting the z-band is

an increase in the scatter, but this has a negligible impact
on the overall precision of the weak lensing analysis. We note
that the approach discussed in Appendix B also works well
using only r and i data (see Fig. C2).

The depth of the supporting multi-band photometry for
Euclid is determined by the need for sufficiently precise pho-
tometric redshifts, but also affects our ability to determine
the effective PSF size. It is therefore important to examine
the impact of changes in depth (and filter coverage) on both
of these key aspects of the lensing measurements.

This is captured in Fig. C2 which shows σ68 and
δR2

PSF/R
2
PSF as a function of exposure time, where σ68 is

the (average two-sided) 68 per cent limit of (zp− zs), which
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corresponds to 1− σ for a Gaussian distribution, but is less
sensitive to the outliers than the rms. The magnitude er-
rors enter in the estimates of the photometric redshift and
the effective PSF size. In the figure ‘r’ indicates the rela-
tive change in exposure time in the r,i,z bands, relative to
the nominal values used throughout the paper. The photo-

z estimate does not include the Euclid VIS-band. Not sur-
prisingly, longer exposures significantly decrease the photo-z
scatter and vice versa. We also show results without z-band
observations and find only small differences in the precision
of the photometric redshifts and the bias in effective PSF
size.

The most noticeable result is how insensitive
δR2

PSF/R
2
PSF is to the change in depth. For the fidu-

cial exposures all lines are well within the requirement.
This can be attributed to the calibration sample, which
also simulates the measurement noise: when changing
the exposure time we also change the noise level in the
calibration sample and the calibration therefore helps to
remove the noise bias. We note, however, that this does
increase the noise in the PSF estimate. Nonetheless it is
clear that the required precision in the determination of
photometric redshifts is the main driver for the depth of
the photometric data.
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