
ar
X

iv
:1

80
4.

09
72

7v
1 

 [
gr

-q
c]

  2
5 

A
pr

 2
01

8

Berwald spacetimes and very special relativity

Andrea Fuster∗

Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands

Cornelia Pabst†

Leiden Observatory, Faculty of Science,
Leiden University, Leiden, The Netherlands

Christian Pfeifer‡

Laboratory of Theoretical Physics, Institute of Physics,
University of Tartu, Tartu, Estonia

In this work we study Berwald spacetimes and their vacuum dynamics, where the latter are based
on a Finsler generalization of the Einstein’s equations derived from an action on the unit tangent
bundle. In particular, we consider a specific class of spacetimes which are non-flat generalizations of
the very special relativity (VSR) line element, to which we refer as very general relativity (VGR). We
derive necessary and sufficient conditions for the VGR line element to be of Berwald type. We present
two novel examples with the corresponding vacuum field equations: a Finslerian generalization of
gyratonic gravitational waves in Einstein’s gravity as well as the most general homogeneous and
isotropic VGR spacetime.

I. INTRODUCTION

Already in 1977 Bogoslovsky studied the most general transformations which leave the massless wave equation
invariant. These turn out to form the subgroup DISIMb(2) of the Lorentz group [1], the symmetry group on which
special relativity is based. The corresponding relativistic kinematics were first studied by Bogoslovsky and Goenner [2–
4]. Later Cohen and Glashow constructed field theories whose symmetry group is DISIMb(2) in a framework called
very special relativity (VSR) [5]. These two different approaches to study deformations of Lorentz invariant physics
were afterwards connected by the insight of Gibbons, Gomis and Pope [6], namely that the symmetries of VSR
preserve the line element found by Bogoslovsky

ds = (ηcddx
cdxd)

1−b

2 (nadx
a)b , (1)

where η is the Minkowski metric, n = nadx
a is a 1-form with constant components and b is a dimensionless parameter.

This line element is a flat Finslerian line element which generalizes the metric line element of special relativity. The
deviation from metric geometry is parametrized by the parameter b, with the Minkowski spacetime line element
recovered in the limit b = 0.

To be able to compare DISIMb(2) invariant physics with the usual local Lorentz invariant formulation a rigorous
discussion of the influence of the Finslerian line element (1) on observables on curved spacetimes is necessary, in-
cluding dynamical equations which determine the line element. This can be interpreted as the step from very special
relativity to a precise notion of very general relativity or general very special relativity [6, 7]. In what follows we use
the abbreviation VGR for both terms. Carrying out this transition from a flat to a curved spacetime geometry one
obtains a theory of gravity which is locally DISIMb(2) invariant. There exist several approaches to this transition
in the literature. In [8], for example, the Minkowski metric was replaced by a non-flat Lorentzian metric satisfying
Einstein’s equations and the constant 1-form n was generalized to a 1-form na(x)dx

a satisfying a Klein-Gordon-like
equation. This procedure constructs the curved version of the VSR line element from different dynamical fields on
spacetime. Another approach is to consider Finslerian generalizations of Einstein’s equations and solve these for
curved versions of the line element (1). This was done for example in [7, 9], in the context of cosmology and exact
gravitational waves, respectively. In this work we explore this approach in more detail and lift the line element (1)
to a Finsler Lagrangian L constructed from a general Lorentzian metric g and a 1-form B. We refer to manifolds
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equipped with such a Lagrangian as VGR spacetimes. The mathematical tools to do so in a precise way are provided
by the Finsler spacetime framework proposed in [10, 11].

The Finsler Lagrangian describing VGR geometries turns out to be a special instance of so-called (A,B)-Finsler
spacetimes. Their Finsler Lagrangian is a function of two arguments: A = g(y, y) being the metric length of a vector
y and B = B(y) being a 1-form acting on a vector. For this class of Finsler spacetimes we compute the geodesic spray
explicitly in terms of the Christoffel symbols of metric g and the Levi-Civita covariant derivatives of the 1-form B.
This enables us to identify a special class of VGR spacetimes, namely those whose underlying canonical non-linear
connection is affine, even though the corresponding length element is of non-trivial Finslerian nature. Finsler space-
times with this property are called Berwald spacetimes [12, 13].

Berwald spacetimes can be regarded as the mildest deviation of a Finslerian geometry from metric geometry. They
have recently received attention in the context of modified dispersion relations inspired by quantum gravity [14, 15],
and in relation to the equivalence principle [16, 17]. Another important feature of Berwald spacetimes is that any
kind of Finslerian generalization of the Einstein equations should simplify severely for this class due to the relatively
simple form of the underlying connection. Among the different suggestions of Finsler generalizations of Einstein’s
vacuum equations [7, 11, 18–24] we focus here on the vanishing of the canonical Finsler curvature scalar, derived
from the Finslerian geodesic deviation equation [23], and on the more involved Finsler spacetime dynamics derived
from an action principle on the unit tangent bundle [11]. The latter two field equations are distinguished because
they consider the Finsler function or Lagrangian, i.e. a scalar on the tangent bundle of spacetime, as the fundamental
dynamical field which determines the geometry of spacetime. Their equivalence has actually been conjectured [25, 26]
but a precise mathematical investigation is missing. We compare the two approaches for Berwald spacetimes and
prove that they are not equivalent in general. A special class of Finsler spacetimes on which they are equivalent turns
out to be VGR Berwald spacetimes built from a non-trivial 1-form B of vanishing norm with respect to the metric g.
Finally we discuss two example classes of VGR Berwald spacetimes including their vacuum dynamics. One class is
a generalization of the Finsler pp-wave spacetimes discussed in [9] while the other class is given by the most general
homogeneous and isotropic VGR Berwald spacetimes.

The paper is organized as follows. In section II we recall the notions of Finsler spaces and their generalization to
Finsler spacetimes. In section III we show how the general action-based Finsler gravity field equations simplify for
Berwald spacetimes. Afterwards in section IV we define VGR spacetimes in general and derive the conditions for
these to be of Berwald type, summarized in Theorem 1. In section IVD we demonstrate our findings with the analysis
of generalized pp-wave and homogeneous and isotropic VGR Berwald spacetimes.

II. FINSLER SPACES AND FINSLER SPACETIMES

Finsler geometry is a well-defined natural extension of Riemannian geometry based on the most general length
measure for curves on a manifold [22, 27, 28]. In the context of relativity, Finsler geometry needs to be adapted such
that it extends Lorentzian geometry. However, the generalization of pseudo-Riemannian to pseudo-Finsler geometry
is hindered by several issues, which we briefly review in this section.

The Finslerian geometry of a manifold M is formulated in terms of tensors on its tangent bundle TM . In this
work we use the following notation. An element Y of the tangent bundle TM is a vector in some tangent space TpM
at a point p ∈ M . In local coordinates around the point p = {xa}, the vector Y ∈ TpM can be expressed in the
corresponding coordinate basis:

Y = ya
∂

∂xa
≡ (x, y) . (2)

We identify the element Y ∈ TM with (x, y), which defines the manifold-induced coordinates on the tangent bundle.
The canonical coordinate basis of the tangent T(x,y)TM and cotangent T ∗

(x,y)TM spaces of the tangent bundle will

be denoted by:

T(x,y)TM = span

{

∂

∂xa
= ∂a,

∂

∂ya
= ∂̄a

}

, T ∗
(x,y)TM = span

{

dxa, dya
}

. (3)
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A. Finsler spaces

A Finsler space is a smooth manifold M equipped with a smooth real function F

F : TM \ (x, 0) → R (4)

(x, y) 7→ F (x, y) (5)

called the Finsler function, such that:

• F is homogeneous of degree one with respect to y:

F (x, λy) = λF (x, y) , ∀λ > 0 ; (6)

• F possesses a non-degenerate and positive definite Finsler metric gF with components:

gFab =
1

2
∂̄a∂̄bF

2 ; (7)

• F defines the length of curves γ on M via the parametrization-invariant length functional:

S[γ] =

∫

dτ F (γ, γ̇) , γ̇ =
dγ

dτ
. (8)

The geometry of M can be derived from F in a similar way as one usually derives the geometry of a metric manifold
from the metric tensor. A fundamental ingredient in the construction of the geometry of a Finsler space is the so-called
Cartan non-linear connection, defined in terms of its connection coefficients:

Na
b(x, y) =

1

4
∂̄b

(

gFac
(

yd∂d∂̄cF
2 − ∂cF

2
)

)

. (9)

The geodesic equation for curves γ on a Finsler space can be written as

γ̈a +Na
b(γ, γ̇)γ̇

b = 0 (10)

where γ̈ = d2γ/dτ2 and τ is an affine parameter. We also define the geodesic spray, which can be used to characterize
Berwald spaces, in terms of its coefficients:

Ga(x, y) = Na
b(x, y)y

b =
1

2
gFac

(

yd∂d∂̄cF
2 − ∂cF

2
)

. (11)

Finsler spaces reduce to Riemannian manifolds when F =
√

gab(x)yayb =
√

g(y, y), with g being a Riemannian
metric. The Finslerian geodesic equation becomes the geodesic equation on a Riemannian manifold and the non-
linear connection coefficients become the Christoffel symbols of the Levi-Civita connection. Finsler geometry is thus
a natural generalization of Riemannian geometry.

However, the following problem arises when employing Finsler geometry as a generalization of pseudo-Riemannian
geometry. As soon as metric g is indefinite, the corresponding Finsler function F is neither smooth nor real on all
of TM \ (x, 0) due to the existence of both non-trivial null vectors and vectors with negative metric length. In the
context of relativity this is a severe problem since null spacetime directions are interpreted as those along which light
propagates. In order to employ Finsler geometry as a generalization of Lorentzian geometry, i.e. of pseudo-Riemannian
geometry with a metric of signature (−,+,+,+), we recall the construction of Finsler spacetimes.

B. Finsler spacetimes

Finsler spacetimes are generalizations of Finsler spaces to manifolds equipped with a Finsler metric of indefinite
signature, i.e. a pseudo-Finsler metric. Physically they provide the geometric structures needed to describe observers,
their measurement of proper time as well as the motion of massive and massless point particles in a most general
way. While several approaches to the construction of Finsler spacetimes have been proposed [29, 30], we consider the
framework developed by one of us as most suitable for our purposes. We briefly summarize it here, further details
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can be found in [10, 11].

A Finsler spacetime (M,L) is a four-dimensional, connected, Hausdorff, paracompact, smooth manifold M equipped
with a Finsler Lagrangian. The latter is a continuous function L : TM → R defined on the tangent bundle with the
following properties:

• L is smooth on the tangent bundle without the zero section, TM \ (x, 0);
• L is positively homogeneous of real degree r ≥ 2 with respect to the fibre coordinates of TM :

L(x, λy) = λrL(x, y), ∀λ > 0 ; (12)

• L is reversible in the sense:

|L(x,−y)| = |L(x, y)| ; (13)

• the Hessian gLab of L with respect to the fibre coordinates

gLab(x, y) =
1

2
∂̄a∂̄bL (14)

is non-degenerate on TM\A, where A has measure zero and does not contain the null set {(x, y) ∈ TM |L(x, y) =
0};

• the unit-timelike condition holds, i.e., for all x ∈ M the set

Ωx =

{

y ∈ TxM
∣

∣

∣
|L(x, y)| = 1 , gLab(x, y) has signature (ǫ,−ǫ,−ǫ,−ǫ) , ǫ =

|L(x, y)|
L(x, y)

}

(15)

contains a non-empty closed connected component Sx ⊂ Ωx ⊂ TxM .

The Finsler function associated to L is then F (x, y) = |L(x, y)|1/r and the corresponding Finsler metric is as usual
gFab =

1
2 ∂̄a∂̄bF

2. This definition of Finsler spacetimes is constructed so as to cover interesting examples from physics,
such as light propagation in area metric geometry and local and linear pre-metric electrodynamics [31–33], which
include the bi-metric light-cone structure of birefringent crystals. The most important ingredient in our definition
is the use of a r-homogeneous function L instead of the 1-homogeneous function F . This circumvents the problems
discussed in the previous section, in particular it avoids the issue about the Finsler function possibly becoming
imaginary. Moreover the approach we employ here extends earlier ones, as one sees when the homogeneity degree of
L is fixed to r = 2, since then our definition reduces to the one given by Beem [29].

The geometry of Finsler spacetimes is derived from the Lagrangian L and the L-metric gL. Similar to Finsler
spaces the fundamental ingredient defining the geometry of M is the Cartan non-linear connection, whose connection
coefficients are now derived from L:

Na
b(x, y) =

1

4
∂̄b

(

gLac
(

yd∂d∂̄cL− ∂cL
)

)

. (16)

The geodesic equation for curves γ on M reads again

γ̈a +Na
b(γ, γ̇)γ̇

b = 0 (17)

as for Finsler spaces. The geodesic spray coefficients can be expressed as:

Ga(x, y) = Na
b(x, y)y

b =
1

2
gLac

(

yd∂d∂̄cL− ∂cL
)

. (18)

Interestingly (16) is identical to the formulation in terms of the Finsler function F = |L(x, y)|1/r wherever F is
differentiable (see [10] for a proof):

Na
b(x, y) =

1

4
∂̄b

(

gLac
(

yd∂d∂̄cL− ∂cL
)

)

=
1

4
∂̄b

(

gFac
(

yd∂d∂̄cF
2 − ∂cF

2
)

)

. (19)
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As an aside we note that the connection coefficients can identically be derived from any power m of L, i.e., Na
b[L] =

Na
b[L

m]. The non-linear connection defines so-called horizontal derivative operators, the horizontal basis of tangent
spaces of the tangent bundle

δa = ∂a −N b
a(x, y)∂b , (20)

whose special property is that it transforms as a tensor under a manifold-induced coordinate change of the base
manifold, i.e., (x, y) 7→ (x̃(x), ỹ(x, y)) with ỹa = yb∂bx̃

a implies δ̃a = ∂̃ax
bδb.

Dynamics of Finsler spacetimes can be obtained in terms of the curvature derived from the Cartan non-linear
connection which drives the gravitational tidal forces, or in mathematical terms, the geodesic deviation:

Ra
bc(x, y) = [δb, δc]

a = δcN
a
b(x, y)− δbN

a
c(x, y). (21)

From here we can construct the canonical Finsler curvature scalar

R(x, y) = Ra
ac(x, y)y

c ≡ Rab(x, y)y
ayb , (22)

where Rab(x, y) is the Finsler Ricci tensor proposed by Akbar-Zadeh [34]. This scalar is the building block for the
dynamical field equations of the Finsler Lagrangian, which we derive for Berwald spacetimes in the next section.

III. FINSLER GRAVITY VACUUM DYNAMICS FOR BERWALD SPACETIMES

Berwald spacetimes are minimal Finslerian extensions of pseudo-Riemannian spacetimes. They are equipped with
a non-metric Finsler Lagragian but their non-linear connection is still an affine connection [13]. An equivalent
characterization is that their geodesic spray is quadratic in the velocities y. The precise mathematical condition for
a Finsler spacetime to be of Berwald type is:

∂̄d∂̄c∂̄bG
a(x, y) = 0 . (23)

This condition implies the following:

Ga(x, y) = Ga
ij(x)y

iyj and Na
b = Ga

(bj)(x)y
j , (24)

where Ga
ij(x) are coefficients of an affine connection. In other words the geometric structure of Berwald spacetimes

is minimally more general than that of metric spacetimes. In fact there exist Berwald spacetimes whose geometry
is identical to metric spacetime geometry. For these the only difference to their metric counterparts is the length
measure employed for curves (an example is given in section IVD). Berwald spacetimes are the most conservative
Finslerian extension of metric spacetime geometry and thus plausible spacetime candidates for extended theories of
gravity based on generalized geometries.

Our goal now is to obtain the vacuum dynamics for Berwald spacetimes, generalizing Einstein’s equations. In what
follows we employ the action-based vacuum field equation for general Finsler spacetimes developed in [11]

r

2
LgLab∂̄a∂̄bR− 2(2r − 1)

(r − 1)
R+ rLgLab

(

∇B
a Sb + ∂̄a(y

q∇B
q Sb)

)

= 0 . (25)

where ∇B is the Berwald covariant derivative and S is the Landsberg tensor (see appendix A). Note that this is a
scalar equation on the tangent bundle, determined by the Finsler Lagragian L and its derived objects. In the case
of a metric Finsler Lagrangian, L = gab(x)y

ayb, the Finsler spacetime vacuum equation is equivalent to Einstein’s
vacuum equations. The Landsberg Tensor S vanishes identically for Berwald spacetimes, which simplifies the field
equation considerably:

r

2
LgLab∂̄a∂̄bR− 2(2r − 1)

(r − 1)
R = 0 . (26)

Moreover, the curvature scalar (22) can be derived from the geodesic spray (24) as

R(x, y) = ycδaN
a
c − ycδcN

a
a = yjyc

(

∂aGa
(cj) − ∂cGa

(aj) + Ga
(ar)Gr

(cj) − Ga
(cr)Gr

(aj)

)

≡ yjycRjc(x) (27)
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where we define the Berwald Ricci tensor Rjc(x), which is just the Finsler Ricci tensor for Berwald spacetimes. Note
that, in contrast to the general case, it does not depend on the velocities y. Employing this result we can reformulate
the Finsler spacetime dynamics on Berwald spacetimes (26) to

(

LgLab − (2r − 1)

(r − 1)
yayb

)

Rab = 0 , (28)

which we call Berwald gravity equation from now on. This equation is the generalization of Einstein’s vacuum equa-
tions to Berwald spacetimes and it is derived here for the first time.

We finish the section by commenting on the relation to earlier work on Finsler gravity vacuum dynamics. In [25] it
was suggested that the field equation (25) is equivalent to the one suggested by Rutz, Rab(x, y)y

ayb = 0 [23]. Berwald
spacetimes demonstrate that this is only the case for very special Finsler spacetimes. On Berwald spacetimes Rutz’s
equation reduces to Rab(x)y

ayb = 0, which implies Rab(x) = 0. Hence Rutz’s equation implies that (28) (which is
(25) for Berwald spacetimes) holds. The converse is however not true. Assume that (28) holds; this does not imply
Rab(x)y

ayb = 0, unless gLabRab(x) = 0 is also satisfied. Thus Berwald spacetimes show that field equation (25) is in
general not equivalent to Rab(x, y)y

ayb = 0, although there may exist very special Finsler spacetimes for which this
is the case.

IV. VERY GENERAL RELATIVITY

We now turn to the study of VGR spacetimes which are of Berwald type. In order to do so we compute the VGR
geodesic spray and derive a necessary and sufficient condition for the spacetime to be Berwald (Theorem 1). Last we
show that for null-VGR Berwald spacetimes the vanishing of the Berwald Ricci tensor is equivalent to the action-based
Finsler dynamics (Theorem 2).

A. VGR spacetimes

We recall the length element of very special relativity introduced in Eq. (1):

ds = (ηcddx
cdxd)

1−b

2 (nadx
a)b (29)

In order to lift (29) to a length element of a curved spacetime we replace the Minkowski metric η with a general
Lorentzian metric g, and the constant components 1-form n with a general 1-form B. We then obtain the (Finsler
function representation of the) length element:

F̃ = (gcd(x)y
cyd)

1−b

2 (Ba(x)y
a)b = g(y, y)

1−b

2 B(y)b . (30)

As explained in section II A such Finsler functions are problematic for indefinite metrics g, since they are not
differentiable on the null structure of the theory and may also become imaginary. In order to obtain a differentiable,
real Finsler Lagragian which properly defines VGR spacetimes we take an appropriate power of the Finsler function
as Lagrangian

L = g(y, y)B(y)n (31)

where n = 2b
1−b . Wherever both F̃ and L are differentiable they define the same geometry of spacetime as explained

around Eq. (19), since L is the 2
1−b power of F̃ . We call manifolds M equipped with a Finsler Lagragian L of

the type (31) VGR spacetimes. The VGR Finsler Lagragian remains problematic where B(y) vanishes, since the
corresponding L-metric (14) is not invertible1. The influence of this set depends on the causal character of the 1-form
B with respect to the metric g, and may lead to further constraints on the form of the Lagragian. We do not tackle
this issue here and thus all derivations below hold everywhere except on this set.

1 The L-metric and its inverse are given in section IV C.
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The Finsler function which defines the length of curves on VGR spacetimes is F = |L| 1
n+2 . The length measure on

VGR spacetimes is thus given by, recall Eq. (8):

S[γ] =

∫

dτ |g(γ̇, γ̇)B(γ̇)n| 1
n+2 . (32)

In order to study VGR spacetimes we need to derive the Finsler geometric objects of L, with the geodesic spray being
the fundamental ingredient. First, we observe that the VGR Lagragian (31) is a particular function of the variables
A = g(y, y) and B = B(y):

L = A Bn . (33)

We derive next the geodesic spray of VGR spacetimes using Eq. (B8), where we derive the geodesic spray for general
Finsler Lagrangians of the type L = L(A,B). For VGR spacetimes we have

∂AL = Bn, ∂BL = nA Bn−1, (34)

∂A∂AL = 0, ∂A∂BL = nBn−1, ∂B∂BL = n(n− 1)A Bn−2 (35)

and the desired geodesic spray is thus

2Ga = 2Γa
bcy

byc + n
A
B ybgac(∇bBc −∇cBb)

+
n(2B ya −A Ba)

2(1 + n)B3 − ng(B,B)A B

(

nAybBc(∇cBb −∇bBc) + 2Bybyc∇bBc

)

(36)

where Γa
bc are the Christoffel symbols of the Lorentzian metric g, ∇ denotes the Levi-Civita covariant derivative and,

by abuse of notation, the norm of the 1-form B with respect to the metric is denoted by g(B,B) = gabBaBb. From
above expression it is clear that the parameter n and the Levi-Civita covariant derivatives of B define the deviation of
VGR spacetime geometry from metric spacetime geometry, recovered for n = 0. All further geometric objects, such
as the non-linear connection and the curvature, can be derived from the geodesic spray.

B. VGR Berwald spacetimes

We identify next a class of VGR spacetimes which can be interpreted as a minimal deviation from metric geometry,
namely VGR Berwald spacetimes. These should yield a geodesic spray quadratic in the tangent directions y, recall
section III. It can be seen from Eq. (36) that the Levi-Civita covariant derivative of the 1-form B and the parameter
n determine whether the VGR spacetime is of Berwald type or not. In order to derive precise conditions we split the
covariant derivative into a symmetric and an antisymmetric part in the following form

∇aBb = PBaBb +QDab + g(B,B)Eab (37)

where Dab and Eab are the components of symmetric and antisymmetric (0, 2)-tensors and P,Q are functions on
spacetime we seek to determine. Plugging this ansatz into geodesic spray (36) yields:

2Ga = 2Γa
bc(x)y

byc + 2nRg(B,B)A
(

Eb
ayb

B − nEbcy
bBc(2Bya −ABa)

2(1 + n)B3 − ng(B,B)AB

)

(38a)

+
2n(PB2 +QybycDbc)

2(1 + n)B2 − ng(B,B)A (2Bya −ABa) . (38b)

In order for these to be quadratic in the velocities y the following conditions have to be satisfied. On the one hand,
the fraction in (38b) must be independent of y since the multiplying factor is already quadratic in y. The only way
to achieve this is to set P = 2(1 + n)C(x), Q = −C(x)ng(B,B) and Dbc = C(x)gbc. This is derived from the fact
that equations of the type

Tab(x)y
ayb

Zcd(x)ycyd
= W (x) (39)

can only hold if T(ab) = W (x)Z(ab). In our case the tensors T and Z are already symmetric, so Tab = W (x)Zab. This
yields the conditions on P,Q and Dbc listed above.
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On the other hand, contracting the bracket in (38a) with Ba yields the necessary condition that the resulting scalar
multiplied by A must be quadratic in y

ABEbcy
bBc

2(1 + n)B2 − ng(B,B)A = V a
bc(x)y

bycBa (40)

which can be solved for:

Ebcy
bBc =

1

ABV a
bc(x)y

bycBa

(

2(1 + n)B2 − ng(B,B)A
)

. (41)

However, this equation has no solutions for all y except Ebc = V a
bc = 0 since there exists no V a

bc such that the polyno-
mials on the right-hand side combine to a first order monomial in y. We summarize the result in the following theorem.

Theorem 1. Let (M,L) be a VGR spacetime, i.e. L = g(y, y)B(y)n. A VGR spacetime is of Berwald type if and
only if there exists a function C(x) such that the 1-form B satisfies:

∇aBb = C(x) (2(1 + n)BaBb − ng(B,B)gab) . (42)

The geodesic spray of such a spacetime is quadratic in the directions y and reads as follows:

Ga = Γa
bcy

byc + nC(x)(2Bya −ABa) . (43)

For the specific class of null-VGR spacetimes, i.e. VGR spacetimes for which g(B,B) = 0, the Berwald condition (42)
simplifies to:

∇aBb = C(x)2(1 + n)BaBb . (44)

Simpler VGR Berwald spacetimes may be obtained from a covariantly constant (c.c. from now on) 1-form B, i.e.
∇aBb = 0 and so C(x) = 0. In this case Ga = Γa

bcy
byc and the geometry of the VGR Berwald spacetime is

fully determined by the Christoffel symbols of the Lorentzian metric g, or in other words, the Chern connection is
identical to the Levi-Civita connection2. In fact this holds for all (A,B)-Finsler spacetimes, see Eqs. (B8) and (B9).
In addition, the geometry does not depend on the exponent parameter n. Thus, for a given c.c. 1-form B, all VGR
Berwald spacetimes Ln = g(y, y)B(y)n yield the same geometry regardless of n. The difference between such families
of VGR Berwald spacetimes (M,L) and the metric spacetimes (M, g) of general relativity becomes only apparent
when employing the L-metric, and in the identification of normalized timelike vectors. The case of a c.c. 1-form B
may be seen as the mildest deviation of a VGR model from general relativity.

C. Dynamics of VGR Berwald spacetimes

We consider now the vacuum dynamics of VGR Berwald spacetimes. These can be derived from the Berwald gravity
vacuum Eq. (28), for which we need to compute the (inverse) L-metric for VGR spacetimes of the type (33). Note
that the homogeneity degree r of L is related to the exponent parameter n as r = n+2. With the help of the formulas
in Appendix B we calculate

gLab = Bngab + nBn−1(Bayb +Bbya) +
n

2
(n− 1)ABn−2BaBb (45)

and

LgLab = Agab − 2nBA
2(1 + n)B2 − ng(B,B)A (Bayb + Bbya)

+
2n2g(B,B)A

(1 + n) (2(1 + n)B2 − ng(B,B)A)
yayb

+
nA2

2(1 + n)B2 − ng(B,B)ABaBb . (46)

2 Note that this is manifestly not the case for a general, not c.c. 1-form B.
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The Berwald vacuum gravity equation for VGR spacetimes thus becomes
(

Agab − 2nBA
2(1 + n)B2 − ng(B,B)A (Bayb +Bbya)

+

(

2n2g(B,B)A
(1 + n)(2(1 + n)B2 − ng(B,B)A)

− 2n+ 3

n+ 1

)

yayb

+
nA2

2(1 + n)B2 − ng(B,B)ABaBb

)

Rab = 0 . (47)

Recall that Berwald spacetimes have the property Rab = Rab(x). We multiply next the expression by the denominator
(1 + n)(2(1 + n)B2 − ng(B,B)A) and obtain a fourth-order polynomial in y:

G(x, y) =

(

(2(1 + n)B2 − ng(B,B)A)
(

Agab − 2n+3
n+1 y

ayb
)

− 2nBA(Bayb +Bbya) + 2n2g(B,B)Ayayb + nA2BaBb

)

Rab = 0 . (48)

Taking a fourth-order derivative with respect to y yields a purely tensorial equation on spacetime which determines
the dynamics of the 1-form B and the Lorentzian metric g:

∂̄a∂̄b∂̄c∂̄dG(x, y) = Gabcd(x) = 0 . (49)

We now analyse the above equation for null-VGR Berwald spacetimes, i.e. those for which g(B,B) = 0. In this case
Eq. (48) reduces to

G(x, y) =

(

2(1 + n)B2
(

Agab − 2n+3
n+1 yayb

)

− 4nBABayb + nA2BaBb

)

Rab = 0 . (50)

Studying the corresponding tensor Eq. (49) yields the integrability condition RabB
aBb = 0 (from gabgcdGabcd = 0).

Evaluating σ(x, y) on this condition yields:

G(x, y)|RabBaBb=0 ≡ GR(x, y) =

(

2(1 + n)B
(

Agab − 2n+3
n+1 yayb

)

− 4nABayb
)

Rab = 0 . (51)

The third derivative of this equation with respect to y and its contractions yield additional integrability conditions:

yagbc∂̄a∂̄b∂̄cGR(x, y) = 0 ⇔ Raby
aBb = Ra

aB
3 + 4n

3(3 + 8n)
(52)

yaybBc∂̄a∂̄b∂̄cGR(x, y) = 0 ⇔ Raby
aBb = Ra

aB
1 + n

3 + 4n
. (53)

Thus either n = − 3
2 or Ra

a = 0 and Raby
bBa = 0. The latter condition reduces the field Eq. (51) to Raby

ayb = 0,

which for Berwald spacetimes implies Rab = 0. Alternatively, fixing n yields the expression 6Raby
bBa = Ra

aB and
reduces the field Eq. (51) to:

ARa
a − 3Raby

ayb = 0 . (54)

Another second derivative with respect to the directions y and contraction of the resulting equation with the spacetime
metric components gab enforces Ra

a = 0 and hence, also in this case, Raby
ayb = 0 implying again Rab = 0. We

summarize the discussion in the following theorem.

Theorem 2. Let (M,L) be a null-VGR Berwald spacetime, i.e. L = g(y, y)Bn with a 1-form B satisfying g(B,B) = 0
and ∇aBb = C(x)2(1 + n)BaBb. The Berwald gravity vacuum equation

(

LgLab − (2r − 1)

(r − 1)
yayb

)

Rab = 0 (55)

is equivalent to the vanishing of the Berwald Ricci tensor:

Rab = 0 . (56)

In the case of a non-null VGR Berwald spacetime the dynamics are governed by Eq. (55), with Rab = 0 being a
sufficient but not necessary condition. The field equation in this case will be analyzed in more detail in future work.
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D. Examples of VGR Berwald spacetimes

We present next two novel explicit examples, which demonstrate the existence of non-trivial (null and non null)
VGR Berwald spacetimes. They represent a VGR generalization of gyratonic pp-wave spacetimes and the most general
homogeneous and isotropic VGR Berwald spacetime. We also discuss their corresponding vacuum dynamics.

1. Null-VGR Berwald spacetimes

We present a generalization of the Finsler pp-waves in [9], which we refer to as Finsler gyratonic pp-waves. Consider
the following VGR Lagrangian (recall L = g(y, y)B(y)n)

L =
(

−Φ(u, x1, x2) (yu)2 +W1(u, x
1, x2) yuy1 +W2(u, x

1, x2) yuy2 − 2yuyv + (y1)2 + (y2)2
)

(yu)
n

(57)

expressed in coordinates (u, v, x1, x2; yu, yv, y1, y2), where u = (1/
√
2)(t − x3) and v = (1/

√
2)(t+ x3) are light-cone

coordinates, while Φ, W1 and W2 are real functions.

The Lorentzian metric g is given by the gyratonic pp-wave metric [35, 36]:

ds2 = −2dudv − Φ(u, x1, x2) du2 +W1(u, x
1, x2) dudx1 +W2(u, x

1, x2) dudx2 + (dx1)2 + (dx2)2 . (58)

This is an exact vacuum solution of the Einstein’s equations for certain functional dependencies of Φ and Wi; for
instance, Φ being an harmonic function in xi and Wi depending linearly on xi. This metric describes gravitational
pp-waves representing the exterior vacuum field of spinning particles moving with the speed of light. The gyratonic
pp-waves belong to the class of vanishing scalar invariant (VSI) spacetimes [37].

Note that (57) reduces to the (Lorentzian) Lagrangian L = g(y, y) induced by the gyratonic pp-wave metric (58) in
the case n = 0, and to the (Finsler) Lagrangian induced by the Finsler pp-waves in [9] for vanishing metric functions
W1 = W2 = 0. The 1-form defining the VGR spacetime in consideration is B = du, which is null and c.c. with respect
to the considered Lorentzian metric g: g(B,B) = 0 = ∇aBb. Thus B satisfies the VGR Berwald condition stated in
Eq. (44) of Theorem 1, with C(x) = 0.

Calculating the geodesic spray, using Eq. (43), yields

Gu = 0 (59)

Gv =
(yu)2

4

(

W1(∂uW1 + ∂x1Φ) +W2(∂uW2 + ∂x2Φ) + 2∂uΦ
)

− yu y1

4

(

W2(∂x2W1 − ∂x1W2)− 4∂x1Φ
)

+
yu y2

4

(

W1(∂x2W1 − ∂x1W2) + 4∂x2Φ
)

− 1

2
y1 y2(∂x2W1 + ∂x1W2)−

1

2
(y1)2∂x1W1 −

1

2
(y2)2∂x2W2 (60)

G1 =
1

2
(yu)2(∂uW1 + ∂x1Φ) +

1

2
yu y2(∂x2W1 − ∂x1W2) (61)

G2 =
1

2
(yu)2(∂uW2 + ∂x2Φ) +

1

2
yu y1(∂x1W2 − ∂x2W1) (62)

where we suppressed the arguments of the metric functions for the sake of readability. Since the 1-form B is c.c.
the geodesic spray is of the form Ga = Γa

bcy
byc (recall section IVB), with Γa

bc being the Christoffel symbols of
the metric g. The Berwald Ricci tensor can now be computed using Eq. (27), and the field dynamics Rab(x) = 0
(Theorem 2) become:

0 = Ruu =
1

4
(∂x2W1 − ∂x1W2)

2 + ∂2
x1Φ + ∂2

x2Φ+ ∂u∂x1W1 + ∂u∂x2 (63)

0 = Ru1 =
1

2
(∂x1∂x2W2 − ∂2

x2W1) (64)

0 = Ru2 =
1

2
(∂x1∂x2W1 − ∂2

x1W2) . (65)
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These are identical to the Einstein’s vacuum equations for the gyratonic pp-wave metric. The last two equations
determine the metric functions W1 and W2, while the function Φ is determined by the two-dimensional Poisson
equation arising from Eq. (63):

∂2
x1Φ + ∂2

x2Φ = −1

4
(∂x2W1 − ∂x1W2)

2 − ∂u∂x1W1 − ∂u∂x2W2 . (66)

2. Non null-VGR Berwald spacetimes

Homogeneous and isotropic spacetimes are typically encountered in cosmology. In Lorentzian geometry these
symmetry demands on spacetime lead to a metric of Friedman-Lemaître-Robertson-Walker (FLRW) type. Finsler
geometry has also been considered in the context of cosmological models [38–43]. In [11] the most general homogeneous
and isotropic Finsler spacetimes were derived. Applying this procedure to VGR spacetimes we find the Lagrangian

L =
(

− (yt)2 +A2(t)w2
)(

B(t)yt
)n

, with w2 =
(yr)2

1− kr2
+ r2(yθ)2 + r2 sin θ2(yφ)2 (67)

expressed in coordinates (t, r, θ, φ; yt, yr, yθ, yφ). The Lorentzian metric g is given by the FLRW metric, with A(t)
the scale factor and k the spatial curvature constant. Evaluating condition (42) for the Lorentzian metric and 1-form
defining this VGR spacetime we find that it is of Berwald type if and only if:

B(t) = c A(t)−
2+n

n , (68)

where c is a constant. By direct calculation one can check that B satisfies the VGR Berwald condition

∇aBb = − A′(t)

ncA(t)−
2
n

(2(1 + n)BaBb − ng(B,B)gab) , (69)

with C(x) = −(A′(t)/ncA(t)−2/n) and prime denoting derivative with respect to t. Note that in this case g(B,B) 6= 0,
and thus (67) is a non null-VGR Berwald spacetime. We compute next the geodesic spray employing Eq. (43):

Gt = −(yt)2
A′(t)

A(t)
, Gθ =

2

r
yryθ − (yφ)2 cos θ sin θ, Gφ =

2

r
yryφ + 2 cot θ yθyφ, (70)

Gr =
kr

1− kr2
(yr)2 − r(1 − kr2)((yθ)2 + sin θ2(yφ)2) . (71)

Note that the spray coefficients are independent of the parameter n parametrizing the deviation from metric space-
time geometry, which is somewhat striking given the explicit dependence on n of Eq. (43). Thus the geometry of the
homogeneous and isotropic VGR Berwald spacetime, i.e. the geodesic spray and all quantities derived from it, does
not have a metric spacetime limit for n → 0.

The curvature scalar (22) can now be calculated from the geodesic spray, taking the surprisingly simple form:

R = 2k

(

(yr)2

1− kr2
+ r2(yθ)2 + r2 sin θ2(yφ)2

)

. (72)

For non-null VGR Berwald spacetimes the field equation do not reduce to Rab(x) = 0. and it is necessary to
consider the full Eq. (28), which in this case reads:

−6(yt)2

A2(t)
+ w2

(

7n+ 5

2n2 + n− 1
+

8n(yt)2

(2 + n)(yt)2 + nw2A2(t)

)

= 0. (73)

Here the scale factor A(t) appears only through the Finsler Lagrangian and the L-metric. Performing the procedure
outlined in section IVC, we can multiply the equation by the y-dependent denominator and obtain the tensorial
equation (49) on spacetime for this case, by applying four y-derivatives. The analysis of the resulting equation reveals
that there exists no A(t) such that (73) is solved. The only exception is the spatially flat case k = 0; for such
geometries any choice of A(t) solves the field equation since k = 0 implies Rab(x) = 0.
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It is not surprising that for non-vanishing k there is no vacuum solution to the homogeneous and isotropic Berwald
gravity vacuum equations, since the same is true for Einstein’s equations in general relativity. However, in the latter
case k = 0 implies that the scale factor must be constant and therefore the Minkowski spacetime is the only solution.
In the case at hand there exists a whole family of solutions parametrized by the choice of the function A(t). Note
that this is also true for non action-based Finsler gravity equations such as R = 0 [23] and Rab = 0 [25]. We would
like to stress that these statements only hold for Berwald gravity vacuum dynamics; in the presence of matter there
may exist interesting homogeneous and isotropic VGR Berwald spacetimes solving the field equations. The coupling
between VGR spacetimes and matter will be investigated in future work.

V. DISCUSSION

Finsler spacetimes are natural generalizations of Lorentzian spacetimes. They are viable candidates for an im-
proved description and understanding of the geometry of spacetime, i.e. gravity [44, 45]. Finsler geometry immediately
emerges in the context of modified dispersion relations. These may for example arise from an effective description of
Planck scale quantum gravity effects [14, 46, 47], or in non-metric field theories [32, 33, 48, 49]. Part of the motivation
for this work lies in a particular instance of the latter, the very special relativity (VSR) framework by Cohen and
Glashow [5]. However, the variety of possible modified dispersion relations and corresponding Finsler geometries is
vast, which complicates the investigation of the physical viability of general Finsler geometry as possible spacetime
geometry. In order to derive physical observables and compare them with experiments it is therefore necessary to
consider a specific class of Finsler spacetimes. This has been done for certain Finsler spacetimes at the solar system
scale [50] and in a cosmological setting [43].

Berwald spacetimes are a particularly interesting class of Finsler spacetimes. They can be regarded as the minimal

Finsler generalization of Lorentzian spacetimes, i.e., the mildest deviation from metric geometry, and are physically
relevant [14, 16]. We consider the Berwald generalization of Einstein’s equations, derived from an action principle on
the unit tangent bundle. We show that in this framework the vanishing of the Berwald Ricci tensor is a sufficient
(although in general, not necessary) condition for the vacuum dynamics to be satisfied, which is analogous to the
vanishing of the Ricci tensor in Einstein’s vacuum equations.

Next we undertake a rigorous analysis of very general relativity (VGR) spacetimes, which are curved generalizations
of flat VSR spacetimes. We derive the geodesic spray, the fundamental building block of the corresponding geometry,
and identify a necessary and sufficient condition for the spacetime to be of Berwald type. Moreover, we show that
the Berwald VGR field equations are equivalent to the vanishing of the Berwald Ricci tensor if and only if the 1-form
appearing in the VGR line element is null with respect to the Lorentzian metric. Hence in general the vanishing of
the Finsler Ricci tensor, previously proposed in the literature as vacuum field equation, is not equivalent to the unit
tangent bundle action-based Finsler gravity field equation.

Finally, we prove that the Berwald VGR class of spacetimes is non-empty by presenting two novel examples, namely
Finsler gyratonic pp-waves, a Finslerian generalization of gyratonic gravitational waves in Einstein’s gravity, and the
most general homogeneous and isotropic VGR spacetime. We also derive the corresponding vacuum field equations,
which for the first example show that the considered Finsler gravity theory permits, as Einstein’s gravity, travelling
generalized gravitational waves. In the second example it turns out that all homogeneous and isotropic VGR Berwald
spacetimes which are spatially flat solve the vacuum equations, while, as in Einstein gravity, there exists no solution
for spatially non-flat geometries.

A next step in the analysis of VGR Berwald spacetimes would be to perform an exhaustive classification of all
possible such spacetimes, by studying the most general form of the Lorentzian metric and 1-form in the line element
which are compatible with the Berwald requirement. A complete mathematical classification of general (A,B)-Finsler
spacetimes may also be done in the future, based on their geodesic spray presented in the appendix. A physically
interesting research direction is the addition of matter to the investigated Berwald vacuum dynamics. This coupling
could be realized in different ways, for example by formulating the VSR framework of Cohen and Glashow in the same
language as the Finslerian gravitational action [11], or by stating field theories directly on the tangent bundle where
they couple naturally to a Finslerian geometry [10]. A perfect fluid coupling to VGR spacetimes, particularly relevant
as source for the homogeneous and isotropic case and its application to cosmology, may be achieved by employing the
kinetic gases description on the tangent bundle as introduced by Ehlers [51] and later connected to Finsler geometry
in [52].
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Appendix A: The Landsberg tensor and the Berwald covariant derivative

In the formulation of the Finsler spacetime vacuum dynamics (25) we encountered the Berwald covariant derivative
and the Landsberg tensor, which we will properly introduce here.

The Berwald linear covariant derivative ∇B is a linear covariant derivative on the tangent bundle of a Finsler
spacetime (M,L) defined by the following action on the horizontal-vertical basis of the tangent spaces of the tangent
bundle

∇B
δaδb = ∂̄aN

q
bδq, ∇B

δa ∂̄b = ∂̄aN
q
b∂̄q, (A1)

∇B
∂̄a
δb = 0, ∇B

∂̄a
∂̄b = 0 , (A2)

where Na
b are the connection coefficients of the Cartan non-linear connection (16) and δa are the horizontal basis

(20).
The Landsberg tensor S is the difference between the δ-Christoffel symbols

Γδa
bc =

1

2
gLaq

(

δbg
L
cq + δcg

L
bq − δqg

L
bc

)

(A3)

and the connection coefficients of the Berwald connection [10]

Sa
bc = Γδa

bc − ∂̄bN
a
c . (A4)

Appendix B: The geodesic spray of (A,B)-Finsler spacetimes

To derive the geodesic spray of a VGR spacetime in section IVA it is most convenient to regard it as a (A,B)-Finsler
spacetime

L = ABn , (B1)

with variables A = g(y, y) = gab(x)y
ayb and B = B(y) = Ba(x)y

a.
This can be done for general (A,B)-Finsler spacetimes based on Lagrangians of the form L = L(A,B) as follows.

We need to calculate ∂cL, yd∂d∂̄cL and the inverse Finsler metric gLab, as displayed in Eq. (18).
Let us write down the results and use the following abbreviations: ∂A = ∂

∂A , ∂B = ∂
∂B , Γa

bc are the Christoffel

symbols of the metric g and as short-hand notation we write g(B,B) = gabBaBb, where we identified the metric dual
g−1(B, ·) with B itself for the sake of readability. The calculations below were performed with help of the computer
algebra program XAct for Mathematica.

• The first derivatives of L

∂cL = ∂AL ∂cgaby
ayb + ∂BL ∂cBay

a (B2)

∂̄cL = 2∂AL gacy
a + ∂BL Bc . (B3)

• The mixed derivative of L

yd∂d∂̄cL = 2∂AL ymyd(gmiΓ
i
dc + gcaΓ

a
dm) + ∂BL yd(∇dBc + Γm

dcBm) (B4)

+ ∂A∂AL 4ycy
dΓm

dbymyb + ∂B∂BL Bcy
byd(∇dBb + Γm

dbBm)

+ ∂B∂AL (2ycy
d(∇dBb + Γm

dbBm)yb +Bc2ymydΓm
dby

b) .
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• The L-metric

gLab = gab∂AL+ 2yayb∂A∂AL+ (yaBb + ybBa)∂A∂BL+
1

2
BaBb∂A∂AL . (B5)

• The inverse L-metric

gLab =
1

∂AL
gab (B6)

+
1

Q

(

Bayb +Bbya
)(

B ∂A∂AL ∂B∂BL− ∂A∂BL(B ∂A∂BL+ ∂AL)
)

+
1

Q
yayb

(

g(B,B) (∂A∂BL)
2 − ∂A∂AL(g(B,B) ∂B∂BL+ 2∂AL)

)

+
1

Q
BaBb

(

A (∂A∂BL)
2 − 1

2∂B∂BL(2A ∂A∂AL+ ∂AL)
)

,

where Q is given by

Q = ∂AL

(

(∂AL)
2 + ∂AL

(

1
2g(B,B) ∂B∂BL+ 2B ∂A∂BL+ 2A ∂A∂AL

)

(B7)

+ (B2 − g(B,B) A)
(

(∂A∂BL)
2 − ∂A∂AL ∂B∂BL

)

)

.

These ingredients can be combined into Eq. (18) and we obtain

Ga(x, y) = Γa
bc(x)y

byc

+
1

2

∂BL

∂AL
ybgac(∇bBc −∇cBb)

+
1

4

1

Q

(

ybBc(∇cBb −∇bBc) ∂BL+ ybyc(∇cBb +∇bBc) ∂AL

)

×
[

2ya
(

∂A∂BL (∂AL+ B ∂A∂BL)− B ∂A∂AL ∂B∂BL
)

+Ba
(

∂B∂BL (∂AL + 2A ∂A∂AL)− 2A (∂A∂BL)
2
)

]

. (B8)

Note that the corresponding expression of the geodesics spray for (α, β)-Finsler spaces (the positive definite prede-
cessor of (A,B)-Finsler spacetimes) has been obtained for example in [53] and in [54]. Since the homogeneity of L
depends on the Finsler spacetime one considers, and since we seek to discuss general (A,B)-Finsler spacetimes we

did not introduce a zero-homogeneous variable s = B2

A
as done in the discussions on (α, β)-Finsler spaces, but kept A

and B separately as variables.

Proposition B1:

Let (M,L) be an (A,B)-Finsler spacetime. A sufficient condition for (M,L) to be a Berwald spacetime is that B is
covariantly constant with respect to the Lorentzian metric g which defines A = g(y, y).

Proof:

For ∇aBb = 0 it is clear that (B8) becomes quadratic in the velocities. It is given by the Christoffel symbols of the
metric defining the (A,B)-Finsler spacetime

Ga = Γa
bc(x)y

byc . � (B9)

Due to the complicated structure of the geodesic spray, like the fact that Randers spaces are Berwald spaces if and
only if the 1-form B is covariantly constant with respect to g [28], stronger statements cannot be formulated in
general. Only for specific examples such statements are possible. In this article we establish such statements for VGR
spacetimes of the form L = ABn in section IVB.
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