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ABSTRACT
The satellites of Jupiter are thought to form in a circumplanetary disc. Here we address
their formation and orbital evolution with a population synthesis approach, by varying
the dust-to-gas ratio, the disc dispersal timescale and the dust refilling timescale. The
circumplanetary disc initial conditions (density and temperature) are directly drawn
from the results of 3D radiative hydrodynamical simulations. The disc evolution is
taken into account within the population synthesis. The satellitesimals were assumed
to grow via streaming instability.

We find that the moons form fast, often within 104 years, due to the short orbital
timescales in the circumplanetary disc. They form in sequence, and many are lost into
the planet due to fast type I migration, polluting Jupiter’s envelope with typically 0.3
Earth-masses of metals, and up to 10 Earth-masses in some cases. The last generation
of moons can form very late in the evolution of the giant planet, when the disc has
already lost more than the 99% of its mass. The late circumplanetary disc is cold
enough to sustain water ice, hence not surprisingly the 85% of the moon population
has icy composition. The distribution of the satellite-masses is peaking slightly above
Galilean masses, up until a few Earth-masses, in a regime which is observable with the
current instrumentation around Jupiter-analog exoplanets orbiting 1 AU away from
their host stars. We also find that systems with Galilean-like masses occur in 20% of
the cases and they are more likely when discs have long dispersion timescales and high
dust-to-gas ratios.

Key words: planets and satellites, formation - planets and satellites, gaseous planets
- planets and satellites, general

1 INTRODUCTION

In the last few years theories about our Solar System for-
mation took a step forward thanks to a more precise com-
prehension of giant planet formation and evolution within
protoplanetary discs. Today the two main models in this
field are the Gravitational Instability scenario, or GI (Boss
1997), when a self-gravitating gaseous clump directly col-
lapses into a giant planet, and the Core Accretion model,
or CA (Pollack et al. 1996), that occurs when collisions and
coagulation of dust particles form a solid planetary embryo,
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massive enough to accrete and maintain a gaseous envelope.
Both of these theories predict the presence of circumplane-
tary discs (CPDs) made of gas and dust rotating around the
forming planet in the last stage of formation (Alibert et al.
2005; Ayliffe & Bate 2009; Ward & Canup 2010; Szulágyi et
al. 2017a). Even though these discs are similar to protoplan-
etary discs (PPDs) around young stars, there are significant
differences among them. The most important one is that the
CPDs are continuously fed by a vertical influx of gas and well
coupled dust from the protoplanetary disc upper layers, due
to gas accretion onto the central giant planet (Tanigawa et
al. 2012; Szulágyi et al. 2014).

Due to the fact that regular satellites (including the
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2 Cilibrasi et al.

moons of Jupiter) most commonly form in CPDs, the under-
standing of the properties of these discs is crucial to address
satellite formation. With no observational constraints about
them, so far we have to rely on hydrodynamic simulations to
study the initial CPD that have formed the Galilean satel-
lites (e.g. Ayliffe & Bate 2009; Gressel et al. 2013; Szulágyi
et al. 2017b). The properties of Jupiter’s four biggest moons,
however, provide some constraints about the features of this
disc. Voyager and Galileo missions revealed that Io is rocky,
while the outer three moons contain significant amount of
water ice (Showman & Malhotra 1999). The accretion of
icy satelletesimals is only possible in a CPD which has a
bulk temperature below the water freezing point, ∼180 K.
However, hydrodynamic simulations of CPDs found the tem-
perature to be significantly higher than that, often peaking
at several thousands of Kelvins (e.g. Ayliffe & Bate 2009;
Szulágyi et al. 2016). The study of Szulágyi (2017) showed
that even accounting for the cooling of the planet (due to
radiating away its formation heat), the Jupiter surface tem-
perature had to be significantly lower than 1000 K, when
the Galilean satellites have formed, otherwise the CPD can-
not form icy satellites. This indicated that the moons had to
form very late in the planet- & disc-evolution, when Jupiter
has significantly cooled off and its CPD was dissipating
(moving towards the optically thin, and hence cold regime).

Regarding the mass of the CPD, we know that the
total mass of the Galilean satellites is ∼ 2 × 10−4Mplanet
(Mp hereafter), same as in the case of Saturn (Canup &
Ward 2006). Because this value considers only solids, with
a standard dust-to-gas ratio of 0.01 one gets a CPD mass of
∼ 2 × 10−2Mp. However, as the Canup & Ward works have
pointed out (Canup & Ward 2002, 2006, 2009), this is the
integrated CPD mass, i.e. at a snapshot of time the CPD can
be much lighter than this while still producing Galilean mass
satellites over the years (gas-starved disc model). Due to the
continuous feeding from the protoplanetary disc, throughout
the lifetime of the CPD, even orders of magnitude more ma-
terial could have been processed through the CPD. The mass
of the disc has been certainly enough to make several gen-
erations of Galilean-mass moons, and several of them could
have been lost into the planet through migration, opening
the idea of sequential satellite-formation (Canup & Ward
2002).

There have been several different approaches to study
satellite formation, starting from works that studied condi-
tions of the CPD during satellite formation and constraints
on this disc based on the properties of the Galilean moons
(Canup & Ward 2009, 2002; Estrada et al. 2009). Recently,
Fujii et al. (2017) numerically solved a 1D-model of cir-
cumplanetary disc long term evolution and the migration
of satellites in it. They found that the moonlets are often
captured in resonances, which could explain the formation
of the first three resonant satellites. A population synthe-
sis work made by Sasaki et al. (2010) modeled the initial
circumplanetary disc density profile solving a 1D equation
for its viscous evolution (Pringle 1981) with an inner cavity
between the planet and disc. They included satellite accre-
tion with gravitational focusing and the type I migration
timescale using the formula from Tanaka et al. 2002. Build-
ing a semi-analytical model and performing a population
synthesis varying the location of the initial seeds, the α vis-
cosity and the dispersion time of the disc, they found that

in 70% of their runs they had 4 or 5 satellites, often locked
in a resonant configuration thanks to the inner cavity of the
disc. They varied the initial circumplanetary disc profiles
and used quite different models than what recent hydrody-
namic models on the CPD predict (e.g. Ayliffe & Bate 2009,
Tanigawa et al. 2012, Szulágyi et al. 2014, Szulágyi 2017).
Same is true for the Miguel & Ida (2016), which used the
Minimum Mass Subnebula (Mosqueira & Estrada 2003) as
an initial CPD profile. They studied the evolution of about
20 satellite-seeds, with initial positions randomly chosen in
the disc, together with the gas density of the disc (but with-
out the temperature evolution in their case), considering also
the dust depletion caused by the accretion of dust itself onto
protosatellites. Different runs have been made with different
disc parameters, such as the dust-to-gas ratio of the disc, its
dispersion timescale and the initial mass of satellitesimals,
using then a population synthesis approach to analyze the
outcomes.

0Because previous works have used CPD profiles that
were derived from the current composition and location of
the Galilean satellites without taking into account their mi-
gration and the possibility for several lost satellites system,
here we present a population synthesis on CPD profiles that
are consistent with recent radiative hydrodynamical simu-
lations on the circum-Jovian disc. We also take into ac-
count the thermal evolution of the disc, and the continu-
ous feeding of gas and dust from the vertical influx from
the protoplanetary disc (e.g. Tanigawa et al. 2012; Szulá-
gyi et al. 2014; Fung & Chiang 2016). Moreover, we use a
dust-coagulation and evolution code to calculate the initial
dust density profile corresponding to the gas hydrodynamics
of Szulágyi (2017). We assumed that the initial seeds were
formed via streaming instability (e.g. Youdin & Goodman
2005), and we placed these moonlets at the location where
the conditions for streaming instability are satisfied (e.g. the
local dust-to-gas ratio is higher than unity).

2 METHODS

2.1 Hydrodynamic simulation

For the circumplanetary disc density and temperature pro-
files we used a simulation from Szulágyi (2017). Among the
various models in that paper considering different planetary
temperatures, we used here one of the coldest (most evolved)
state with planetary temperature of 2000 K. This is because
the satellites of Jupiter are icy, they had to form in a cold cir-
cumplanetary disc, when the planet has cooled off efficiently
(Szulágyi 2017). This is only true in the very late stage of
circumplanetary disc evolution, close to the time when the
circumstellar disc has dissipated away.

Our hydrodynamic simulation was performed with the
JUPITER hydrodynamic code (de Val-Borro et al. 2006;
Szulágyi et al. 2016) developed by F. Masset & J. Szulágyi.
This code is three dimensional, grid-based, uses the finite-
volume method and solves the Euler equations, the total
energy equation and the radiative transfer with flux limited
diffusion approximation, according to the two-temperature
approach (e.g. Kley 1989; Commerçon et al. 2011). The sim-
ulation contained a circumstellar disc between 2.08 AU till
12.40 AU (sampled in 215 cells radially), with an initial
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opening angle of 7.4 degrees (from the midplane to the disc
surface, using 20 cells). The coordinate system in the sim-
ulation was spherical, centered on the Sun-like star and co-
rotating with the planet. The initial surface density was a
power-law function with 2222kgm−2 at the planet’s location
at 5.2 AU and an exponent of -0.5. The planet was a Jupiter
analog, which reached its final mass through 30 orbits. The
circumstellar disc azimuthally ranged over 2π sampled into
680 cells. To have sufficient resolution on the circumplane-
tary disc developed around the gas-giant, we placed 6 nested
meshes around the planet, each doubling the resolution in
each spatial direction. Therefore, on the highest resolution
mesh the sampling was ∼ 80% of Jupiter-diameter (∼ 112000
km) for a cell-diagonal. For the boundaries and resolution of
each refined level, we used the same as Table 1 in Szulágyi
et al. (2016). Because the resolution is sub-planet resolution,
at the planet location we fixed the temperature to 2000 K
(thereafter referred as planet temperature) within 3 RJupiter,
corresponding an evolved, late stage of the circumstellar disc
and planet system, roughly around 1-2 Myrs.

The equation of state in the simulation was ideal gas –
P = (γ−1)Eint – which connects the internal energy (Eint) with
the pressure (P) through the adiabatic exponent: γ = 1.43.
For the viscosity, we solve the viscous stress tensor to set a
constant, kinematic (physical) viscosity, that equals to 0.004
α-viscosity at the planet location. Due to the radiative mod-
ule and the energy equation, the gas can heat up through
viscous heating, adiabatic compression and cool through ra-
diation and adiabatic expansion. The opacity table used in
the code was of Bell & Lin (1994) that contains both the gas
and dust Rosseland-mean opacities. Therefore, even though
there is no dust component explicitly included into the sim-
ulations, the dust contribution to the temperature is taken
into account through the dust-to-gas ratio, that was cho-
sen to be 0.01, i.e. equal to the interstellar medium value
(Boulanger et al. 2000). The mean-molecular weight was set
to 2.3, which corresponds to solar composition. The rest of
the parameters and process of the simulation can be found
in Szulágyi (2017) and Szulágyi et al. (2016).

2.2 Population synthesis

Our semi-analytical model essentially consist of a circum-
planetary disc in which protosatellites can migrate, accrete
mass and be lost into the central planet. In the meantime,
while the disc density and temperature evolve in time, it cre-
ates newer and newer protosatellites. The units in our pop-
ulation synthesis are the following: Rp as planet radius, Mp

(planetary mass), time in years and temperature in Kelvin.

2.2.1 Disc structure

In the model, the CPD is simply defined by its surface den-
sity (both solid and gas) profiles, temperature profile and
other quantities, such as α for viscosity, γ for heat capacity
ratio and CV for heat capacity at constant volume. All other
quantities in the disc, such as the angular velocity of the gas,
the height of the disc, the speed of sound, etc., are computed
starting from temperature and density values and using the
common 1D model for discs (Pringle 1981). The disc ranges
between 1Rp and 500Rp, according to the hydrodynamical

simulation, and it is divided in 500 cells. In our model we do
not consider a cavity between the planet’s surface and the
disc, because the magnetic field of the planet and the ioniza-
tion of the disc are probably not strong enough to produce
such a cavity (see also in Section 4). The disc initial tem-
perature and gas density profiles are power-law fits to the
results of a radiative hydrodynamical simulation of Szulágyi
(2017) with planet temperature of 2000 K (i.e. a late time in
the evolution of the forming planet & its disc, corresponding
to roughly 1-2 Myrs of PPD age), described in section 2.1.
The power-laws are the followings (Figure 1, Figure 2):

Σgas(r) ' 4.8 · 10−6
(

r
Rp

)−1.4
[

Mp

R2
p

]
(1)

T(r) =


1.4 · 104

(
r
Rp

)−0.6
[K] Tmin < T < Tmax

Tmin T ≤ Tmin

Tmax T ≥ Tmax

(2)

with Tmin = 130 K, that is the background temperature in
the PPD at Jupiter’s location like e.g. in Miguel & Ida
(2016), and Tmax = 2000 K, that is the planet temperature in
the simulations. The total disc mass is M0 ' 2× 10−3Mp, al-
ways accordingly to the 3D hydrodynamic simulation. Other
parameters are chosen to be consistent with the hydrody-
namic simulation, therefore the viscosity is α = 0.004, the
adiabatic index is γ = 7/5 (i.e. molecular hydrogen) and the
heat capacity (CV ) equals to 10.16K J/(KgK), again because
of consistency with the hydro simulation.

Because the hydrodynamical simulation only gives the
gas density profile, we used the dust density profile of
Drazkowska & Szulagyi (in prep), where dust coagulation
and evolution is computed on the same gas density profiles
(Figure 1). As the figure shows, there is a peak in the dust
density at around 85RJ . This dust trap is the consequence
of the position where the radial velocity of gas changes sign
in the hydro simulation, i.e. the gas is bringing small dust
particles from the inner and outer disc to this location. The
temperature of the dust was assumed to be the same as the
gas temperature, assuming perfect thermal equilibrium.

Given that the dust-to-gas ratio of the CPD is not
known, we kept it as a free parameter in the population
synthesis. Therefore the dust density profiles where multi-
plied by a scalar in each individual run of the population
synthesis. This is not exactly accurate since simulations do
not show a simple linear scaling, but we checked that this
assumption does not change results significantly. In Figure
1 the dust-to-gas ratio at the equilibrium is 0.08. In this
work we always refer to this final ratio, however Drazkowska
& Szulagyi (in prep) found that this final and equilibrium
value is about 5.8 times the initial dust-to-gas ratio of the
simulated disc.

In our model, we do not consider the jump of the solid
density beyond the ice line, that could happen due to the
condensation of water (see for example Mosqueira & Estrada
2003; Miguel & Ida 2016; Drazkowska & Alibert 2017). In
fact, the code of Drazkowska & Szulagyi (in prep) found that
the dust dynamics is dominated by the gas flow and thus,
even after the ice line enters the disc because of cooling, the
modification to the dust surface density (in Figure 1) due
to the existence of solid ice is negligible, it only affects the

MNRAS 000, 1–14 (2017)
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Figure 1. Gas (blue) and dust (black) density profiles of the

circumplanetary disc at the beginning of the population synthe-
sis. The dust-to-gas ratio here was chosen to be 0.08, but this

parameter is varied in the population synthesis.
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Figure 2. Temperature profile of the disc at the beginning of the
population synthesis. Tmax = 2000K corresponds to the planet

temperature, while Tmin = 130K is the background temperature

at Jupiter’s location (5.2 AU from the Sun).

composition of the dust profile in terms of volatiles. Since
we are not interested in the exact composition of the dust
(see Section 3.5 for more details) we simply neglected the
possibility to have a dust density-jump at the ice line.

2.2.2 Disc evolution

We adopted a self-similar solution for disc evolution. It
is known that the disc is fed by the vertical influx from
the protoplanetary disc (Tanigawa et al. 2012; Szulágyi et
al. 2014) that should decrease exponentially with time as
the PPD dissipates (Ida & Lin 2008): ÛMin = ÛMin,0e−t/tdisp ,
where tdisp is the characteristic dispersion time of PPD and
ÛMin,0 ' 2×10−6Mp/yr in our case, in agreement with numeri-

cal simulations in Section 2.1. The mass loss is assumed to be
proportional to the mass of the disc itself: ÛMout = ÛMout,0

M
M0

.

We also assume that the CPD is initially at the equilibrium,
i.e. ÛMin,0 = ÛMout,0 = ÛM0. Solving the equation

dM
dt
= ÛMin − ÛMout (3)

one can find that if tdisp � M0/ ÛM0, and it is always the case in
our model (see the values for tdisp in the next paragraph), the
CPD density decreases exponentially with tdisp keeping the
equilibrium configuration, following in practice the decrease
of ÛMin(t). Therefore, in our population synthesis, the disc
density evolution is given by:{
Σg = Σg,0e−t/tdisp

Σs = Σs,0e−t/tdisp − A
(4)

where tdisp is the dispersion time of the CPD (that is equal to
the dispersion time of the PPD), while A is the dust accreted
by the protosatellites and then regenerated by the refilling
mechanism, as it will be explained in section 2.2.3.

The disc dispersion timescale and the total disc life-
time are not the same thing but they are not independent
from each other as well, hence we also linked them in our
calculation. Recent observations showed that disc lifetimes
distribute exponentially between 1Myr and 10Myr with a
characteristic age of 2.3Myr (Fedele et al. 2010; Mamajek
2009). These surveys have an accreation rate sensitivity limit
till > 10−11M�yr−1, however, on average, young T Tauri
star with a protoplanetary disc shows an accretion rate of
∼ 10−7M�yr−1 (e.g. Ercolano et al. 2014). Considering these
limits, and considering the exponential evolution of disc den-
sity (and mass), the disc lifetime will be:

tlifetime = −tdisp ln
(

10−11M�yr−1

10−7M�yr−1

)
' 10tdisp (5)

where the dispersion timescales are distributed exponen-
tially between 0.1Myr and 1.0Myr, with a mean of 0.23Myr.

The temperature evolution was calculated also with an
exponential decrease to be consistent with the density evo-
lution:

T = Tmin + (T0 − Tmin)e−t/tcool (6)

where tcool is computed with the radiative cooling formula
of Wilkins & Clarke (2012):

ÛT ∝ ÛU = −σ
T4 − T4

min

Σg(τ + τ−1)
(7)

The optical depth (τ) can be estimated as τ =
∫
ρκdh ' κΣg,

where κ(Σ,T) is the opacity computed with tables in Zhu et
al. (2009).

As the optical depth (τ) depends only on T and Σ, there-
fore the cooling depends only on how Σ varies with time, and
it is possible to find a relation between tcool and tdisp (Fig.
3). Defining tcool as the time at which the total internal en-
ergy of the disc divided by the total mass of the disc itself
(T ∝ U/M) is 1/e of its initial value, as it can be seen in
Figure 4, where it is also clear the exponential nature of the
cooling process. This relation is found by fitting the results
with tdisp between 105yr and 106yr:

log10(tcool) = −0.11log10(tdisp)2 + 1.9log10(tdisp) − 1.5 (8)

where timescales are in years. We also show this fit in Figure
3.

MNRAS 000, 1–14 (2017)
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Figure 3. Relation between tcool and tdisp. The blue dots are the

result for 15 different values of tdisp while the orange line is the fit
given by equation 8.
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Figure 4. Energy per unit mass u in case of tdisp = 105yr . The
orange line present the initial value for energy divided by e and

the blue line is the energy evolution (cooling). The cooling-curve

(blue) is nearly exponential.

2.2.3 Protosatellite formation and evolution

Satellite Formation and Loss Once a simulation has
started, the code starts to create a new embryo in the posi-
tion of the dust trap, assuming that the mechanism for dust
coagulation is streaming instability (Youdin & Goodman
2005), i.e. a mechanism in which the drag felt by solid parti-
cles orbiting in a gas disc leads to their spontaneous concen-
tration into clumps which can gravitationally collapse. The
moonlet formation process starts when these two conditions
occur:

(i) The ratio between the solid density and the gas den-
sity in the midplane of the dust trap is more than 1. This
condition can occur only if the global dust-to-gas ratio is
high enough (≥ 0.03 is the threshold in the model, i.e. the
initial dust-to-gas ratio should be ≥ 0.005). This value is
given by the profile definition in section 2.2.1.

(ii) The previous proto-moon is far enough, i.e. the dust
trap is out of its feeding zone, because of migration.

Once these two conditions has occurred the embryo has to
grow to the fixed initial mass (m0 = 10−7Mp, that is more
than two orders of magnitude smaller than individual masses
of the Galilean satellites). We use also a formation rate ( Ûm0)
taken from Drazkowska & Szulagyi (in prep), which we as-
sume to decrease at the same rate as the circumplanetary
disc density decreases, i.e. Ûm = Ûm0e−t/τ . Starting from the
moment in which the two above-mentioned conditions occur
we integrate this formation rate in time until m = m0. At this
point the code creates the new protosatellite in the disc. The
value for m0 is arbitrary and we tested various m0 to make
sure that this initial parameter does not affect results.

The evolution of a protosatellite is stopped in two oc-
casions:

(i) When a protosatellite reaches the inner boundaries of
the disc, then the satellite is considered to be lost into the
planet.

(ii) When two protosatellites intersect their paths the
code stops the smallest of the two. (We are neglecting the
possibility that 2 satellites pass each other in 3D.)

The simulation ends when the total lifetime of the disc
is reached, i.e. when t

tdisp
∼ 10 (see in Section 2.2.2).

Migration In the code we distinguish between type I mi-
gration and type II migration. Gap opening separates the
two regimes, therefore we use the gap opening parameter

P = 3
4

h
RH
+ 50

q Re =
3
4

cs
ΩK a

(
Ms

3Mp

)−1/3
+ 50αMp

Ms

(
cs
ΩK a

)2
from

Crida & Morbidelli (2007). We consider that type I takes
place if P > 1, otherwise (if P < 1) type II operates.

To compute type I migration velocity we use

vr = bI
MsΣga3

M2
p

( a
h

)2
ΩK (9)

where Ms is the mass of the satellite and bI is a parameter
that is widely used in the migration community and has
been computed in different disc conditions (Paardekooper
et al. 2011; D’Angelo & Lubow 2010; Dittkrist et al. 2014).
In our code we use the bI obtained in 3D non-isothermal
simulations in Paardekooper et al. (2011), as a function of
the disc density, temperature and satellite mass. One has
also to consider the fact that when a satellite is growing,
it is also starting to open a partial gap, therefore the gas
density is decreasing in the closer Lindblad locations and as
a consequence, migration velocity decreases. This is done by
multiplying bI by the value of the gap depth (0 ≤ depth ≤ 1)
according to the analytic formula of Duffell (2015).

In type II migration, the satellite migrates with the gap,
with velocity computed as in Pringle (1981):

vr = −3(βΣ + βT + 2)αcsh
a

(10)

where βΣ = −
dlnΣg
dlnr and βT = − dlnT

dlnr , or vr = − 3
2
αcsh
a in

steady state discs, from which it is possible to define a second

b parameter, i.e. bI I = − 3
2

c4
sα

Ω4
K a6ΣgMs

. We also want to under-

line that bI I becomes smaller by a factor of ∼ Ms/(4πa2Σg)
when the satellite grows in mass (Syer & Clarke 1995) and

MNRAS 000, 1–14 (2017)
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changes migration regime (from disc-dominated to satellite-
dominated). So we modify bI I as:

bI I → bI I
1 + Ms

B

, B = 4πa2
Σg (11)

Furthermore, we also considered a smooth transition
between type I and type II migration by using a junction
function z from Dittkrist et al. (2014):

b = z (1/P) bI + [1 − z (1/P)] bI I (12)

where z(x) = 1
1+x30 and P is the gap opening parameter.

Since the Galilean satellites are found in resonances, we
also tried to resonant trapping in our population synthesis.
Actually, the resonance capturing turned out to be a very
rare phenomenon in our model because the inner satellite
has to slow down significantly for capture to occur, because
it is necessary to have converging orbits. The only strong
slowing mechanism in our model would be the gap opening,
but as we show in Section 3.3, this happens very rarely.

The migration rates are also used to compute the
time-steps in the code. In more detail, the time-steps are
never longer than tdisp/100 in order not to lose precision on
the disc evolution. Moreover, we also impose that a satel-
lite should never move for more than one tenth of a disc
cell (i.e. 1Rp/10) during its migration. As a consequence
each timestep is the minimum value between tdisp/100 and
0.1Rp/|vmig |, computed separately for each migrating satel-
lite.

Accretion While a protosatellite is migrating in the CPD,
it also accretes mass from the dust disc. For a very thin dust
disc this accretion prescription is (Greenberg et al. 1991):

ÛMs = 2Rs Σ̄s

√
GMs

Rsv
2
K

vK = 2
(

Rs

a

)1/2
Σ̄sa2

(
Ms

Mp

)1/2
ΩK (13)

where Rs is the radius of the satellite and ΩK is the Keplerian
angular velocity at satellite’s position. In the formula, we
use Σ̄s (that is different from Σs), because it is the average
solid density over the entire feeding zone. The radius of the
feeding zone is the same order of magnitude as the Hill-
radius, i.e. Rf = 2.3RH (Greenberg et al. 1991). This value
is then multiplied by the gap depth because if the dust is
well coupled with the gas (i.e. it is composed by small, ≤
mm, grains), then as the satellite grows and opening a gap,
there will be less dust around it to accrete.

Once a satellite has accreted the computed mass during
a time-step, it is necessary to subtract this mass from the
dust disc density. This dust is taken from the feeding zone
proportionally to the available mass in each cell: in each
point i of the grid within Rf solid density decreases by a

value of ∆M(i) = Mmax (i)∑Rf
i Mmax (i)

dM where Mmax(i) is the mass

available in the i-th cell. It often happens that a moonlet
accretes all the mass available in the feeding zone, reaching
its isolation mass.

After a protosatellite has accreted the mass in the feed-
ing zone and created a gap in the dust, the disc tends to use
the dust falling from the PPD’s vertical influx to reach the
equilibrium again, according to Drazkowska & Szulagyi (in

prep). But it is also taken account that some of the dust is
lost into the central planet, assuming the accretion rate is
equal to the dust infall rate. In the population synthesis, we
model this refilling mechanism assuming a typical timescale
trefilling for this process. Therefore, the CPD gains mass in
the following way:

∆Σs =

{
Σ̂s−Σs
trefilling

dt dt ≤ trefilling

Σ̂s − Σs dt > trefilling
(14)

where dt stands for the time-step, Σs is the current solid
density and Σ̂s is the value that the solid density would have
if there was not accretion and consequent depletion.

The timescale of this process is not well constrained,
because it strongly depends, for instance, on the amount
of dust that fall into the CPD from the PPD, that can be
either very fast, with trefilling ∼ 102yr, or very slow, with

trefilling ∼ 106yr.

2.2.4 Population synthesis

The last module of the code allows to run the semi-analytical
algorithm with a population synthesis approach. The idea
of population synthesis is to explore a range of the uncon-
strained parameters, trying all the different combinations
between them and in the end to compare the results, individ-
ually or grouped. The parameters we vary in the population
synthesis are:

• the dust-to-gas ratio in (0.03, 0.50), changing only the
dust component
• the CPD dispersion timescale: tdisp in (105, 106)yr
• the dust refilling timescale: trefilling in (102, 106)yr

In random cases we distribute tdisp exponentially, as de-
scribed by Fedele et al. (2010), while we distribute dust-to-
gas ratio and trefilling logarithmically. Furthermore, we vary
when the simulation begins, in order to have different initial
conditions in temperature and density profiles of the disc.
The simulation can start anytime between 0 and tdisp/2.

In principle one can set lower dust-to-gas ratios but
since streaming instability is only occurring when the dust-
to-gas ratio is > 0.03 we did not consider those low dust-to-
gas ratio cases in our results. There will be, of courses, cases
with dust-to-gas ratios < 0.03 but estimating their number
would be possible only when the global dust-to-gas ratio
distribution will be clear. For instance, calling the dust-to-
gas ratio variable x, if we assume a logarithmic distribution
within 0.01 < x < 0.50, i.e. dP/dx ∝ 1/x, and we extend the
distribution in order to go to 0 for low dust-to-gas ratios (for
example dP/dx ∝ 100x in 0 < x < 0.01 seems reasonable),
we find that about 35% of the cases have dust-to-gas ratio
< 0.03.

One could also vary other parameters, such as the ini-
tial embryos mass or the type I migration formula used. We
tested these, but this did not change the results much, there-
fore we kept them fixed as described in the previous sections.
We show in Figure 5 how the results of a single run look,
with satellites growing, being lost and migrating within a
CPD. We also note that there are parameters we kept fixed
to be consistent with the hydrodynamic simulation, but they
could have been varied too.
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Figure 5. Evolution of satellites in a system with dust-to-gas
ratio = 0.1, tdisp = 105 yr and trefilling = 2 × 104 yr. Solid lines are

the surviving satellites, dashed lines are lost ones.

3 RESULTS

In our work we used two kinds of statistical approaches: the
first one consists in running twenty-thousands of different
simulations with randomizing the three initial parameters
described in the previous section. The second approach is
fixing a value for a single parameter, and let the other two
vary randomly. The first approach allows to have a general
understanding of the outcomes, respecting parameter distri-
bution (especially the exponential distribution of tdisp, that
is an observational constraint), while the second approach
allows to understand how a single parameter affects the re-
sults.

3.1 Survival timescale of the last generation of
satellites

Due to the fact that the moonlets migrate inwards in the
disc, and there is no gap between the planet and the CPD,
many (even a dozen of) satellites are lost into the planet dur-
ing disc evolution and therefore only the latest set of moons
will survive when the CPD (and PPD) dissipates. This is
called sequential satellite formation, that was already sug-
gested in e.g. Canup & Ward (2002). These lost satellites
pollute the envelope of the forming giant planet, increasing
the metallicity of the gas-giant. Given that Jupiter’s atmo-
sphere is enriched ∼ 2 times compared to the protosolar
values (e.g. Bolton et al. 2017), these lost satellites (and the
continuous dust drift/migration) might contribute to this
overabundance of heavy elements. Therefore, we computed
the mass, what the lost satellites bring into Jupiter: we found
a distribution with a median value of ' 10−3MJ ' 0.3M⊕,
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Figure 6. The total lost satellite mass that is polluting the planet

versus the total mass of the surviving satellites (see section 3.3).
While the median value of lost satellites is only 0.3 M⊕, the scatter

is large, with values up to 30 M⊕ pollution.

but the tail of this distribution covers many cases with a lost
mass of ' 10−2MJ and there are even few cases with a lost
mass of ' 0.1MJ ' 30M⊕. Nevertheless, in cases in which we
have a total mass of satellites similar to the Galilean inte-
grated mass (see Section 3.3) we expect to lose the median
value of about 10−3Mp into the central planet, as shown in
Figure 6.

Proceeding with the first type of population synthesis
approach (randomly varying parameters) it is possible to
study the general behavior of forming satellite-systems. Run-
ning 20000 simulations, we found 4467 (22.34%) systems in
which there are not survived satellites, 325 (1.62%) systems
in which all satellites survive and 15208 (76.04%) systems
in which at least one moon is lost but at the same time at
least one satellite survives. This fact is confirmed in Figure
7, where we show the distribution of the time after which
the last generation forms (hereafter tLG) for 20000 satellites.
The figure indicates that most of the satellites form between
2 × 105 and 5 × 106 years (93% of the cases).

Calculating the distribution of tLG/tdisp allows to study
how late satellites form compared to the dispersion timescale
of the disc and then, as a consequence, to the total life-
time (tli f e ' 10tdisp). It is clear that they form very late
in the system evolution, even after 5 dispersion timescales,
i.e. after 50% of the total lifetime of the disc (see Fig.
8), when usually discs are already very poor of gas and
dust, having about 0.5% of the initial mass. Here we al-
ways refer to the dispersion timescale because it is the fun-
damental quantity that defines the evolution of a disc (e.g.
Σ(t) ∝ exp(−t/tdisp)). Using years, as in Figure 7, could be
misleading, since there is an order of magnitude of differ-
ence between the fastest evolving discs (tdisp = 105yr) and

the slowest one (tdisp = 106yr).
It is also possible to analyze the model with the sec-

ond type of population synthesis, i.e. choosing values for a
single parameter, letting others vary randomly, in order to
understand how different parameters affect results. Consid-
ering tLG/tdisp as the most significant parameter to inves-
tigate, we performed the study presented in Figure 9. The
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Figure 7. Histogram of all the last generation survival timescales

for systems in which at least one satellite survives.
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Figure 8. Histogram of all the last generation survival timescales

for systems in which at least one satellite survives, divided by tdisp
(ratio).

first thing that these plots show is that tLG/tdisp, and as a
consequence the sequential formation mechanism, is highly
dependent on all the parameters we chose in our popula-
tion synthesis model. For example in the upper panel it is
shown that satellites that survives form later, when less dust
is available. This is because when the disc is poor of dust it
would be difficult to reach streaming instability conditions in
the dust trap, then whether the first generation of satellites
survives (then we have very short tLGs) or the first genera-
tion is lost into the central planet, following generations can
not survive.

The second dependence (i.e. trefilling, second panel on
Figure 9), shows that the faster the refilling mechanism is,
the later the moons form. This is again related to streaming
instability conditions in the dust trap because if refilling is
efficient the disc would be able to provide enough dust to the
dust trap to form a lot of satellites even at later stages. In
the lower panel of Figure 9 the dependence on tdisp is plotted.
According to this, satellites form later if tdisp is longer. This

is not simply linkable to streaming instability conditions as
before, but if we assume that, given the same dust-to-gas
ratio and the same trefilling, the embryos production rate in
the dust trap is about the same and, if we imagine that
tLG is basically given by the lifetime of the disc (∼ 10tdisp)

minus the production timescale ∆t1, then as a consequence
we would have

tLG
tdisp

' 10 − ∆t
tdisp

(15)

i.e. tLG is longer when tdisp is longer. This is obviously an
approximation, ∆t should be (even if slightly) dependent on
tdisp as well, but it helps to understand what happens in the
model.

3.2 Formation timescales

Since we still do not really know on what timescales the
Galilean satellites were formed, i.e. how much time a satel-
lite takes to form starting from the formation of its initial
embryo, the population synthesis can give a hint about this.
Formation timescales have an impact on the structure and
composition of the moons, or in reverse, the internal struc-
tures of Galilean satellites provide some constraints on the
formation timescale. The three inner satellites show a dif-
ferentiated structure, while Callisto, on the other hand, is
not completely differentiated. Differentiation occurs when
a satellites (or a body, in general) melts because of the en-
ergy received from stellar irradiation, gas interactions, satel-
litesimals collisions, etc. When this happens heavy elements
are allowed to sink toward the center of the satellite, cre-
ating different layers. The structure of Callisto gives a first
caveat about its evolution, i.e. some believe that its forma-
tion timescale could not be shorter than ∼ 105yr because
otherwise collisions and accretion would have transferred en-
ergy at a rate high enough to have complete melting (Canup
& Ward 2002; Stevenson et al. 1986). However we have
very little knowledge on how the heating/cooling processes
worked in the circumplanetary disc that created this moon,
nor, where inside the disc Callisto has formed and how its
migrated.

In all the simulations it is possible to look at the time
needed by any survived satellite to grow to a typical Galilean
mass (we chose Europa’s mass as a benchmark) and see
how these timescales, that we call formation timescale, dis-
tribute, leaving out the (few) satellites that do not grow up
to Europa’s mass. The formation timescale distribution is
shown in Figure 10 in which the distribution has a maximum
between 104 and 105 yr with cases down to 103 yr (about
20% of the population forms less than 104yr). This means
that satellites can also form very quickly, compared to ter-
restrial planet formation timescales. This is especially true if
the dust-to-gas ratio is high enough in the CPD, the refilling
mechanism is efficient and disc dispersion is fast. Previous
models, as in Canup & Ward (2002), predicted quite long
timescales, because they did not consider a strong influx
from the PPD and, as a consequence, a dust refilling mecha-
nism, instead they just have a low influx rate from the PPD

1 Inverse of production rate.
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Figure 9. Distributions of tLG/tdisp varying dust-to-gas ratio (top

panel), varying the refilling timescale (middle panel), and chang-
ing the disc dispersion timescale (lower panel). 2500 simulations
were run for each value (7500 simulations in total).

(< 10−6MJ/yr) in order to have low temperature and long
accretion rates for satellites, to prevent melting and differ-
entiation.

Our results on the formation timescale do not disagree
with the ∼ 105yr timescale cited before, because a part of
the population is forming on such a long timescale. We have
also checked the dependence of the formation timescale on
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Figure 10. Histogram of all the formation timescales, that dis-

tribute with a peak around 2×104 yr, with cases in which satellites
form even faster than 2 − 3 × 103 yr.
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Figure 11. Distribution of the formation timescale while varying
the value of tdisp, running 2500 simulations for each value (7500

simulations in total).

trefilling, on tdisp, and on the dust-to-gas ratio. Satellites of
course form faster and bigger when there is more available
dust and/or when refilling is efficient. However, a non-trivial
dependence is that on tdisp because it is not possible to link
it simply to a general availability of dust or to the efficiency
of accretion. The dependence is more related to tLG/tdisp,
exactly as we described in Section 3.1 with Equation 15.
According to this, if tdisp is longer, then tLG/tdisp is longer
and the formation process is slower because there is less dust
available. This is because the dust density depends exponen-
tially on t/tdisp, see Section 2.2.2, and the same mechanism
apply the other way round. In Figure 11, the dependence of
the formation timescale on the disc dispersion timescale is
summarized.
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Figure 12. Satellite-mass distribution. The peak can be found

between 10−4 and 10−3 Mp , i.e. larger than the Galilean masses,
in fact almost at Earth-mass. Red lines indicates the masses of

the four Galilean satellites individually.

3.3 The mass distribution of the satellites

The satellite-mass distribution is shown in Figure 12, with
red vertical lines representing the masses of the four Galilean
moons. According to this histogram, the population spreads
between 10−7Mp (i.e. the initial mass of embryos), and

10−2Mp. The peak of the distribution is between 10−4 and

10−3 Mp, which is higher than Galilean masses, often reach-
ing Earth-mass. Only ∼ 10% of the population has a mass
similar to Galilean ones.

It was pointed out in Canup & Ward (2002) that the
integrated masses of the moons of Jupiter and Saturn are
the same: Mint = 2 × 10−4Mp. The authors there discuss
the possibility, whether this is coming from physics some-
how, whether the CPD-mass is only based on the planetary
mass. Recent hydrodynamic simulations have shown, how-
ever, that not only the planetary mass sets the CPD-mass,
but also the PPD-mass, since the latter continuously feeds
the former, hence the more massive PPD will produce a
more massive CPD around the same massive planet (Szulá-
gyi 2017). To check those results with population synthe-
sis, in Figure 13 we plotted the histogram of the integrated
mass of moons in each individual system of the population.
The vertical red line again highlights the Galilean integrated
satellite mass: (2 × 10−4MJupiter). From the Figure it can be
concluded that the integrated mass of satellites has a wide
distribution, there is no hint for any physical law produc-
ing a peak at Mint = 2 × 10−4Mp, or at any other particular
mass. We therefore conclude, that it is just a coincidence,
why the integrated mass of satellites of Jupiter and Saturn
are 2 × 10−4Mp.

We also checked in how many cases, out of the total
20 thousands, we get systems with 3 or 4 satellites with a
total mass between 10−4Mp and 4 × 10−4Mp, i.e. systems
that have masses similar to the Galilean ones. We found
that about 4200 systems have such characteristic, i.e. about
21% of the cases. It is easier to have such systems when the
dispersion time of the disc is as long as possible (→ 106yr)
and the refilling timescale is between 104 and 105 year, while
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Figure 13. Satellites integrated mass distribution. It has a peak

between 10−4 and 10−3 Mp , while the upper limit is about 10−1Mp .
The distribution is symmetric. Red line is the Galilean satellites’

integrated mass (' 2 × 10−4Mp).
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Figure 14. Threshold mass for gap opening (P < 1) as a function
of T and r . In the best configuration, i.e. low temperature close

to the planet, a quite a big satellite is still needed to open a gap.

in those cases the value of dust-to-gas ratio can vary in a very
wide range (from 5% to 20%).

We also investigated whether moons can open a gap at
all in our model. First of all, one can notice that parameter P
depends only on the mass of the satellite, the temperature
of the CPD, and the position of the satellite in the disc.
Hence, it is possible to compute the satellite mass Ms that
can open a gap, as an analytic function of r and T . This way
we found that in our model it is very difficult to open a gap
at all (Figure 14). In the best case (low temperature close to
the central planet) a satellite with Ms ' 10−4Mp is needed,
which is a quite high value considering the masses of the
Galilean satellites distribute between 10−5 and 10−4Mp.
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Figure 15. Occurrences of systems with certain numbers of satel-

lites. The peak of the distribution is at 3, while the upper limit
is at 5. The most peculiar thing is the minimum visible between

1 and 2.

3.4 The number of survived satellites

In Figure 15 we show the satellites that prevail in each one
of the 20000 systems after the gaseous CPD (and the PPD)
dissipates. In other words these are the moons that exist in
the system when the gaseous CPD (and the PPD) dissipates.
Without gas, the migration stops, therefore the dynamical
evolution of the satellite system has been terminated. The
histogram in Figure 15 shows that the most common out-
come is a system with 3 satellites. The maximum number
of satellites that can be formed in a system is 5. While 4 is
the second most common result, no-survivor case is also fre-
quent. The expectation is that the occurrence rate decrease
with increasing amount of moons, however our results show
an intriguing minimum at N = 1 − 2.

To investigate the reason behind the minimum at 1-2
satellite masses, we used again the second type of population
synthesis approach, varying separately the three initial pa-
rameters: dust-to-gas ratio, tdisp and trefilling. We found that
changing tdisp does not affect the distribution. This is be-
cause the migration timescale, which basically controls the
number of coexisting (and then survived) satellites, does not
depend on tdisp. This confirms our considerations about tLG
in section 3.1. While varying the dust-to-gas ratio, we ar-
rived to the expected result: the more dust produces more
satellites, hence more moons survive till the end of the evo-
lution of the disc.

The most extreme difference is found when the refilling
mechanism timescale varies (Figure 16). In this case, when
refilling is slow, only 0-1 moons survive, while when refilling
is fast, the distribution peaks at around 3, and this transition
occurs between trefilling = 105 and trefilling = 106 years. The
shape of the distribution does not change with varying this
parameter, the minimum will be always at 2. With even
narrower spacing in the transition region, we revealed that
the transition is quite quick and it happens when trefilling '
1 − 2 × 105yr.

The reason behind this minimum at 2 is the following.
In our model, as it was mentioned in Section 2.2.3, embryo
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Figure 16. The number of survived satellites when varying only

trefilling.

formation is triggered by two conditions: the dust trap has to
be out of the previous satellite’s feeding zone and the dust-
to-gas ratio in the dust trap has to be ≥ 1. The timescales of
these two processes strongly depend on trefilling. The first one
because migration depends on the satellites mass, therefore
it also depends on the accretion rate. While, in turn, the ac-
cretion rate depends on the available dust and refilling, and
the dust-to-gas ratio ≥ 1 depends directly on trefilling. Given
these two conditions, when refilling is fast enough to allow
embryos to accrete and to move away from the feeding zone,
it is already fast enough to allow dust-to-gas ratio in the
dust trap to reach the value 1 at least 3 times in a migration
timescale. This means that there would always be at least
3 satellites at the same time, leading to usually 3 survived
moons at the end. It is possible to have a few systems with
1 or 2 satellites only when e.g. the disc evolution timescale
is fast enough, as shown in Figure 16.

3.5 Formation temperature

The composition of the Galilean satellites are very diversi-
fied: while Io is completely rocky, the outer three contains
some or significant amount of water (Sohl et al. 2002). The
water ice can be accreted to the body if it was formed in
a disc below the water freezing point, therefore the wa-
ter content of the Galilean satellites is a strong constraint
that the temperature of the forming disc had to be below
the water freezing point, ∼ 180K (Lodders 2003). There-
fore, we checked the temperature of the disc location where
the last survived generation of satellites formed. Because in
our model the satelletesimals form in the dust trap, and,
most of the dusty material is also generated at this location,
we defined a formed moon as icy if the dust trap tempera-
ture was below 180 K in our disc evolution, and as rocky if
the temperature was higher than that. We found that 85 %
of survived satellites are icy, possibly coexisting with rocky
ones.

Like in the previous cases, we also checked how the for-
mation temperature depends on the three parameters indi-
vidually, which we varied in the population synthesis. The
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Figure 17. The formation temperatures distribution changes

when tdisp is varying. For shorter dispersion timescales the dis-
tribution is flatter, with a peak at about 200 K, while for longer

dispersion timescales all the distribution concentrate around 130

K.

influence of both the dust-to-gas ratio and the trefilling is triv-
ial, because in this case they do not have any practical ef-
fect on temperatures and almost nothing changes when these
two parameters vary. On the other hand, the disc dispersal
timescale will affect the temperature evolution of the disc,
through the opacities/optical depth. This is clearly visible
in Figure 17 where the formation temperature distribution
changes shape and moving its peak from about 200 K to 130
K, as the dispersion timescale is longer.

4 DISCUSSION

As it is usual in population synthesis, the choices of the pa-
rameters, as well as some assumption on the processes might
change the results. In this Section we will discuss this, and
describe tests and their results on the model, underlining
also the biases that affect this work.

First of all, the disc structure has been modeled starting
from the density and temperature profiles in the mid-plane
of the disc coming from 3D radiative hydro simulations. All
the other features of the disc, such as scale-height, pressure,
surface density, sound speed, etc., have been computed from
the 1D disc model (Pringle 1981). This is a first approxima-
tion that affects some of the CPD features, such as radial
velocity profile, opacity and azimuthal velocity, since these
quantities strongly depend on, for example, the pressure gra-
dient in the mid-plane, that is computed from the 1D model.
Furthermore, for this particular work we used a core accre-
tion formed CPD hydro model. If the CPD forms via disc
instability, its properties would be significantly different, see
e.g. Shabram & Boley (2013), Szulágyi et al. (2017a).

Another bias is the disc evolution. For both dispersion
and cooling we chose to use self-similar solutions, but, al-
though modeling dispersion of the disc in this way is some-
thing common and already used in previous satellite popu-
lation synthesis works (Ida & Lin 2008; Miguel & Ida 2016),
a self-similar solution for cooling was a choice taken in order

to be consistent with the rest of the semi-analytical descrip-
tion, since it is the first time that CPD-cooling is performed
in such a model.

Whether or not there is a magnetospheric cavity be-
tween the planet and the disc can affect how many moons
are lost in the planet, or whether they could capture into res-
onances (easily). With no cavity between the planet and the
disc, the migration rate of the moons will not be slowed down
sufficiently and they will be easily lost in the planet. If there
was a disc inner edge, that could hold the inner moons, and,
behind, a resonance chain of satellites could pile up (Fujii et
al. 2017), like in the case of Super-Earths in PPDs (Ogihara
& Ida 2009). Even in this case, eventually the torque of the
newly formed, outer satellites can eventually push the inner
moon into the planet. Nevertheless, in this case probably
less moons would be lost and more satellites in resonances
would be the outcome. In the case of stars, due to the very
strong magnetic fields, there is a gap between the surface
of the star and the inner PPD. However, giant planets have
significantly weaker magnetic fields, Jupiter, for example,
has about 7 Gauss today (Bolton et al. 2017). Even though
it can be expected, like in the case of stars, giant planets
might have stronger magnetic field during their early years
than today, there are no studies conducted on the question.
There might be a scaling law between the luminosity and
the magnetic field as it was pointed out by Christensen et
al. (2009), suggesting that forming, luminous planets could
have high magnetic field. On the other hand, Owen & Menou
(2016) calculates that Jupiter had to have at least an order
of magnitude higher magnetic field than it has today, to in-
duce magnetospheric accretion (and have a cavity between
the planet and the disc), and the authors state that it is
unlikely that Jupiter ever had such a strong magnetic field.
They conclude, that the boundary layer accretion (i.e. when
the disc touches the planet surface, like in our hydrodynamic
simulations) is a more viable solution. But even if the giant
planet has strong magnetic field, in itself this is not a suf-
ficient condition for magnetospheric accretion to start. The
gas inside the CPD has to be ionized, otherwise, the neutral
gas will not care about the magnetic field and will enter into
the cavity region. The ionization fraction of the CPD, on the
contrary to the inner PPD, is very low as it was found in
several works (Szulágyi & Mordasini 2017; Fujii et al. 2011,
2014).

Nevertheless, we checked how the results change when
a cavity is assumed between the planet and the disc. In this
case the first satellite would stop at the edge of the disc. The
following satellite would then approach the first one and it
would possibly be caught in a 2 : 1 resonant configuration.
Whether or not this capture happens can be inferred from
analytical conditions, e.g. in Ogihara et al. (2010). In their
work they found that, in case of a sharp disc edge and using
the type I migration formula by D’Angelo & Lubow (2010)
for its simplicity (we show below that changing the type I
migration formula does not change our results significantly),
up to 3 satellites would be locked in a resonant configuration
when te/ta < 1.7×10−3, where te is the eccentricity damping
timescale and ta is the type I migration timescale. In our
case this criterion implies a condition on the aspect ratio
of the disc at the inner edge, i.e. h/r < 0.024. Using the
definition of h in a 1D disc model (Pringle 1981) one finds
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the condition

T
[K]

rcavity
Rp

≤ 210 (16)

where T is the temperature at the inner edge of the disc.
This means that if we want to pile satellites up starting from
the position of Io (' 6Rp) we need to have a temperature
of about 35K, that is unphysical, due to the background
temperature at Jupiter’s location is about 130 K.

Even if building a resonant structure is not possible in
our model, we checked how the final results change when a
cavity (as big as 2.5Rp or 5Rp) is introduced. In this case
we considered that satellites stop their migration due to gas
interaction when reaching the inner edge of the disc, but
they do interact dynamically still with other satellites. This
means they still can be lost into the planet. The interac-
tion between satellites has been modeled following the ap-
proach of Ida & Lin (2010), i.e. considering that satellites
tend to enlarge their orbital distance ∆a at each encounter.
As expected, we found that we have more surviving satel-
lites (their mean number grows from 2.5 in the case without
a cavity to 3.8 and 4.5 respectively, when the two different
cavities are introduced) and as a consequence the integrated
final moon mass grows from a median value of 6 × 10−4Mp

to 8×10−4Mp and 12×10−4Mp, respectively, while the mean
mass of single satellites does not change significantly.

In this work we also assumed that streaming insta-
bility forms the seeds of the moons. The more traditional
approaches would work with lower dust-to-gas ratios, but
would provide much longer formation timescales and would
be difficult to jump over known the size-barriers famous
for these models. Given that our hydrodynamical simula-
tions have showed that dust traps appear in CPDs, it was a
natural assumption that streaming instability can operate.
Another mechanism, that could have provided the seeds is
the capturing of planetesimals from the PPD (D’Angelo &
Podolak 2015; Tanigawa et al. 2014). Given that we found
that the CPD is an efficient satelletesimal factory, we believe
that there is no need for planetesimal capturing to form the
moons there.

Regarding testing the initial parameters, we first
checked the effect of initial embryo mass and a different
Type I migration formula. In the latter, instead of the
Paardekooper-formula (Paardekooper et al. 2011) we tested
the bI coefficient from D’Angelo & Lubow (2010) and Dit-
tkrist et al. (2014). Our finding is that the distribution of the
population does not change much, the difference is within
the change that is caused by random variations.

In comparison to the previous satellite population syn-
thesis work by Miguel & Ida (2016), our results are some-
what different. While the other authors started with a Min-
imum Mass Sub-solar Nebula that is created by the current
position and composition of Galilean moons, we used real
hydrodynamic simulations on the circumplanetary disc as
an initial gas and dust disc. Unlike them, we also take into
account the disc evolution both in dust density and in tem-
perature, and we do not consider a cavity between the planet
and the disc. They find that in the case of long disc life-
times, the survived satellites are less numerous and has lower
masses than in our case, since the biggest ones have enough
time to migrate and be lost into the central planet. The dif-
ference comes from the different dust-to-gas ratios, different

disc initial parameters, and the assumption which process
generates the seeds of satellites, but also from the fact that
they do not have any dust supply in the disc while accre-
tion on protosatellites creates gaps in the dust profile. As a
consequence their protosatellites have less available dust to
grow to larger sizes.

5 CONCLUSION

In this work we investigated the formation and the evolution
of the Galilean satellites in a circumplanetary disc around
a Jupiter-like planet. We used a population synthesis ap-
proach involving 20000 systems, using the initial conditions
(disc density and temperature profiles) from a 3D radia-
tive simulation of Szulágyi (2017), including the continuous
feeding of gas and <mm sized dust from the feeding of the
protoplanetary disc (Szulágyi et al. 2014). In the population
synthesis, we accounted for the disc evolution and used a
dust density profile from a realistic dust coagulation model
of Drazkowska & Szulagyi (in prep). Furthermore, in our
model the seeds of the moons form via streaming instabil-
ity in a dust trap, whose location is around 80 RJup based
on the vertical velocity profiles of the hydrodynamic simula-
tion. The satellitesimals then migrate, accrete, are captured
in resonances and are often lost in the planet.

Nevertheless, we found that due to the dust trap, and
the continuous influx of dust from the circumstellar disc,
massive satellites are forming (the distribution peaks above
the Galilean mass at ' 3 × 10−4MJ ' MEarth). Due to their
high masses, they quickly migrate into the planet via Type I
migration, because in most of the cases the gap opening cri-
terion is not satisfied, the migration cannot enter the Type II
regime. This means that the satellites form in sequence, and
many are lost into the central planet polluting its envelope
with metals. Our results show that the moons are forming
fast, often within 104 years (20 % of the population), which
is mainly due to the short orbital timescales of the circum-
planetary disc. Indeed the CPD completes several orders
of magnitude more revolutions around the planet than the
protoplanetary disc material can do around the star at the
location of Jupiter. Due to the short formation time, the
satellites can form very late, about 30% after 4 dispersion
timescales, i.e. when the disc has ∼ 2% of the initial mass.
Due to our model included disc evolution, the CPD cooled
off during this time, allowing to form icy moons, when the
dust trap temperature dropped below 180 K, i.e. the water
freezing point. We found out that about 85% of the survived
moons could contain water (ice). The production of moon-
lets and the migration rate provided such a situation, when
the number of survived moons peaked around 3, but often
no moons survived at all.

The lost satellites bring on average 0.3 Earth-masses
into the giant planet’s envelope, polluting it with metals,
that can contribute to the abudance of heavy elements in
Jupiter’s envelope. The high mass satellites we found in our
population synthesis can be an encouraging result for the fu-
ture surveys of exomoons, because even with the current in-
strumentation, an Earth-mass planet around a Jupiter ana-
log can be detected if the planet is orbiting relatively close
to its star (Kipping 2009).
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Szulágyi, J., Morbidelli, A., Crida, A., & Masset, J., 2014, ApJ,
782, 65
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