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ABSTRACT
We extend existing methods for using cross-correlations to derive redshift distributions for
photometric galaxies, without using photometric redshifts. The model presented in this paper
simultaneously yields highly accurate and unbiased redshift distributions and, for the first time,
redshift-dependent luminosity functions, using only clustering information and the apparent
magnitudes of the galaxies as input. In contrast to many existing techniques for recovering
unbiased redshift distributions, the output of our method is not degenerate with the galaxy bias
b(z), which is achieved by modelling the shape of the luminosity bias. We successfully apply
our method to a mock galaxy survey and discuss improvements to be made before applying
our model to real data.

Key words: galaxies: distances and redshifts – galaxies: luminosity function, mass function –
large-scale structure of Universe – cosmology: theory.

1 IN T RO D U C T I O N

Current and planned large galaxy surveys are bringing in enormous
amounts of photometric data. Spectroscopic follow-up for even a
tenth of these sources is infeasible, and so many techniques have
been developed to derive valuable redshift information indirectly for
the vast majority of observed galaxies. Classically, estimating red-
shifts or redshift distributions has been performed using photometry
in combination with a library of SEDs and/or spectroscopic sources
to train the algorithms used, yielding a redshift (or redshift prob-
ability distribution) for each galaxy. However, these methods are
not generally designed to yield unbiased redshift distributions, as
they rely on the galaxies used in the training set to be representative
of and similarly distributed to the overall population. Because of
this, the accuracy of photometric redshifts (or photo-zs) can depend
strongly on e.g. the magnitude, redshift and type of a galaxy, and
the filters used (e.g. Cunha et al. 2009; Bezanson et al. 2016).

While evolved methods exist that counter these problems (e.g.
Lima et al. 2008), one can also choose to avoid photometric red-
shifts altogether. One such way is to obtain redshift distributions for
photometric galaxies statistically by examining how strongly they
cluster with sources that have a known redshift. Even if these spec-
troscopic sources are a biased subset with a very different redshift
distribution, they should still trace the same large-scale structure as
the overall galaxy population. This means that it is statistically likely
for galaxies to be at the same redshift as other sources they cluster
strongly with, i.e. if two galaxies are close on the sky then they are
more likely to be close along the line of sight. Techniques exploiting
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clustering to obtain independent redshift information have been ap-
plied for a number of years now to improve and/or characterize
the errors of a photo-z catalogue (e.g. Padmanabhan et al. 2007;
Newman 2008; Erben et al. 2009; Benjamin et al. 2010; Kovač
et al. 2010; Quadri & Williams 2010; Choi et al. 2016), to recon-
struct the density field (e.g. Jasche & Wandelt 2012; Cucciati et al.
2016; Malavasi et al. 2016), and to derive redshift distributions
from clustering directly (e.g. Matthews & Newman 2010; Schulz
2010; McQuinn & White 2013; Ménard et al. 2013; Morrison et al.
2017). However, since this method is necessarily statistical we lose
information on the properties of the galaxies in each redshift bin (al-
though recently efforts have been made to introduce a dependence
on colour, see Rahman et al. 2016). Additionally, the resulting dis-
tribution is often degenerate with the unknown redshift-dependent
bias of the photometric sample, b(z), which has to be removed in
some way before the outcomes can be used (e.g. Schmidt et al.
2013).

Inspired by Sheth & Rossi (2010), we extend existing methods
to find the number density of galaxies in not only bins of redshift, z,
but also apparent magnitude, m. By simultaneously fitting for both
distributions, luminosity functions in terms of absolute magnitude,
M, can be extracted at different redshifts. This has great potential,
as the luminosity function is a key observable of the galaxy popula-
tion that offers powerful constraints on models of galaxy evolution.
Extensive cosmological volumes are needed to measure it accu-
rately, particularly at the bright end where galaxies are rare. Large
imaging surveys offer this, but their redshift uncertainties lead to un-
certainties in the absolute magnitude of the galaxies. Spectroscopic
surveys, on the other hand, have small redshift uncertainties but
can probe far fewer galaxies. By cross-correlating these two types
of survey while taking the observed brightness of the galaxies into
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account, we can derive luminosity functions for large volumes with
smaller redshift uncertainties than would be possible otherwise.
This method also allows us to break degeneracies in a new way:
by assuming a simple model for just the luminosity dependence of
the galaxy bias, the resulting redshift distributions and luminosity
functions are independent of b(z), and no bias removal is necessary.

We present our method for simultaneously deriving redshift
distributions and luminosity functions from clustering data in
Section 2. As a test, we apply our model to a mock galaxy sample
in Section 3. Finally, we summarize our results and discuss the pos-
sible limitations of our model when applied to real-world data in
Section 4.

2 M E T H O D O L O G Y

The way in which we link the redshift distribution dN/dz to the
clustering signal can be viewed as a combination of the methods
employed by Schulz (2010) and Ménard et al. (2013), although
we extend previous efforts by also estimating evolving luminosity
functions for the photometric galaxies. Our approach is essentially
to apply tomography to the luminosity function: the observed dis-
tribution of a sample of galaxies over apparent magnitude, n(m),
and the distributions of galaxies over redshift in bins of apparent
magnitude, nm(z), can be viewed as projections of the underlying
luminosity function as a function of redshift, φ(M, z), and therefore
used to reconstruct it. An added advantage of fitting for the redshift
distributions and luminosity functions simultaneously is that it al-
lows one to make optimal use of the information available in the
survey – for example, galaxies that appear bright are unlikely to be
at high redshift.

In what follows, subscripts ‘p’ denote the photometric sample
for which we aim to derive a distribution in magnitude and redshift,
while subscripts ‘s’ denote the spectroscopic sample (which has a
known redshift distribution).

2.1 The cross-correlation signal

The number of sample galaxies in apparent magnitude bin mλ and
redshift bin zi is given by

Np(mλ, zi) =
∫ zi,max

zi,min

∫ mλ,max

mλ,min

dNp

dm dz
(m, z) dm dz, (1)

where ‘i, min’ and ‘i, max’ denote the edges of bin i. The parameter
we wish to extract from the data is the fraction of sample galaxies
in apparent magnitude bin mλ that reside in redshift bin zi, given by

f N(mλ, zi) = Np(mλ, zi)

Np(mλ)
, (2)

where Np(mλ) is the total number of galaxies in bin mλ, given by

Np(mλ) =
∑

i

Np(mλ, zi). (3)

The Np(mλ) of the data are known a priori; however, we do not
enforce the Np(mλ) in our model – which we will refer to as Ñp(mλ)
– to be identical to these. Rather, we interpret those in the data
as being drawn from a Poisson distribution with means given by
Ñp(mλ) (see Section 2.2).

As our signal we choose the integrated angular cross-correlation
function of all photometric galaxies in apparent magnitude bin mλ

with the spectroscopic galaxies in redshift bin zi, w̄ps(mλ, zi), given
by

w̄ps(mλ, zi) =
∫ θmax

θmin

wps(mλ, zi, θ )W (θ ) dθ, (4)

where W(θ ) is a weight function. We follow Ménard et al. (2013)
in choosing W(θ ) = θ−1, and for the purposes of illustration choose
θmin = 0.02 and θmax = 10 deg.

We will refer to our model for w̄ps(mλ, zi) as ˜̄wps(mλ, zi). This
quantity is related to the integrated angular correlation function be-
tween spectroscopic galaxies in redshift bin zi and those in redshift
bin zj, w̄ss(zi, zj ), through

˜̄wps(mλ, zi) =
∑

j

f N(mλ, zj )
b̄p(mλ, zj )

b̄s(zj )
w̄ss(zi, zj ), (5)

where b̄ is the (linear) galaxy bias averaged over all scales θ between
θmin and θmax. Here, we have used that the two samples trace the
same underlying density field.

Both w̄ps and w̄ss can be directly calculated from the data (e.g.
through pair counting), but the galaxy biases are a priori unknown.
However, it is not unreasonable to assume that b̄p and b̄s evolve
similarly with redshift at fixed luminosity, i.e. b̄p(m, z) = b̄p,0 bL

(m, z)f (z) and b̄s(z) = b̄s,0 f (z).1 Here, bL is some function of
luminosity – assumed to be known, either independently or deter-
mined from the spectroscopic sample – with no residual dependence
on m or z.

Next, we recognize that the redshift evolution f(z) of the biases
cancels out when taking the ratio, and absorb all constants in a
new term. Then, in the limit of infinitely accurate measurements
of w̄ps(mλ, zi) and w̄ss(zi, zj ), we can derive f N simply by solving
(for all zi):˜̄wps(mλ, zi) =

∑
j

f ′
N(mλ, zj )w̄ss(zi, zj ), (6)

where f ′
N(mλ, zj ) = KbL(mλ, zj )Np(mλ, zj )/Np(mλ) with K an

unknown constant and a parameter of the model. This set of equa-
tions can be written as ˜̄wps(mλ) = X f ′

N(mλ), with ˜̄wps(mλ) and
f ′

N(mλ) vectors of length nz and X a matrix of size nz × nz, where
nz is the number of redshift bins. Hence, Xij = w̄ss(zi, zj ). Note that
we do not assume the often-used Limber (1953) approximation, but
allow for non-zero cross-correlations between redshift bins. Even
though such cross-correlations are often serendipitous, they contain
additional information on the large-scale density field and therefore
can offer additional constraints. In Section 3.2.4, we show how our
results are affected if these cross-correlations are assumed to be
zero.

For the purposes of illustration, we choose the following simple
form for the luminosity bias (motivated by, e.g. Benoist et al. 1996;
Norberg et al. 2001; Peacock et al. 2001):

bL(m, z) = 1 + L(m, z)

L′ , (7)

where L(m, z) is the luminosity of a galaxy of apparent magnitude
m at redshift z. We set L′ to be the luminosity of a galaxy with
absolute magnitude M′ = −23.3. Note that the normalization of
the luminosity bias is indirectly controlled by the model parameter
K. Since our model is agnostic about the redshift and therefore

1 Alternatively, b̄s(z) could be estimated from the data (propagating the
observational uncertainties) and b̄p(m, z) (or the ratio) could be modelled
(e.g. as a polynomial in redshift).
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Cross-correlation-based luminosity functions 4651

Figure 1. The survey volume and the luminosity function combine to form the redshift distribution dN/dz. Shown here is an example for galaxies in an
apparent magnitude bin m = [22, 22.5]. Left: A Schechter (1976) luminosity function, with arbitrary normalization, as a function of absolute magnitude M.
Here, (α, M∗) = ( − 1.3, −21.1). Coloured regions show the absolute magnitudes corresponding to m = [22, 22.5] at redshifts z = 0.1, 0.35, 0.6, 0.85, and 1.1
as indicated in the figure. In this example, we assume the luminosity function is independent of redshift. Right: Shown together here are the comoving volume
added by each redshift slice, �V(z), the Schechter function shown on the left integrated over the relevant range in M, ��(M), and the redshift distribution
resulting from their product, dN/dz = ���V. The integral over one of the highlighted regions in the left-hand panel corresponds to the highlighted height of
��(M) in the right-hand panel.

luminosity of each individual galaxy, we calculate the luminosity
bias only once for each bin (mλ, zi), assuming a naive relation
between apparent and absolute magnitude (see Section 2.2).

At this point, we could solve the equations given by ˜̄wps(mλ) =
X f ′

N(mλ) for every mλ independently to find the corresponding
galaxy redshift distributions. However, this disregards the informa-
tion inherent in the apparent magnitudes of the galaxies. Since the
clustering measurements have uncertainty (and since there may be
degenerate solutions), this will likely lead to, for example, at least
some galaxies with a very bright apparent magnitude being placed
at high redshift – corresponding to an unphysically high luminos-
ity. Luminosity functions fitted to these results will therefore be
extremely biased and unrealistic.

By fitting to the redshift distribution and the luminosity func-
tions of the sample galaxies simultaneously, we avoid such biased
outcomes. This requires us to explicitly model Np(mλ, zi).

For conciseness, we will use a subscript notation for binned
quantities, i.e. Np, λi ≡ Np(mλ, zi), where Greek subscripts always
refer to the apparent magnitude bin and Latin subscripts to the
redshift bin. Since we fit our model to all bins simultaneously, it is
useful to think in terms of superindices (λi) = nzλ + i. We will omit
the parentheses where it does not lead to confusion.

2.2 A model for Np(m, z)

Np, λi is shaped by the luminosity function, which determines the
number density of galaxies at apparent magnitude mλ and redshift
zi, and the survey volume at redshift zi. Fig. 1 illustrates how these
two quantities combine to form the redshift distribution of galaxies
at fixed apparent magnitude. In this example, we assume that both
the luminosity function and the total number density of galaxies are
constant with redshift. We consider galaxies in a fixed apparent mag-
nitude bin, although the principle applies to any magnitude-limited
survey. As the survey volume grows with redshift, the number of

galaxies observed per unit redshift increases. However, galaxies
with a fixed apparent magnitude correspond to increasingly more-
luminous and more-rare galaxies, and so the number density de-
creases with redshift, first as a power law and then exponentially.
The combined result of these two competing effects is a galaxy
redshift distribution dN/dz ∝ ���V that increases as a power law
before decreasing exponentially.2

Assuming a cosmology fixes the evolution of the survey volume.
The shape of the luminosity function at each z then fixes the red-
shift distribution. Conversely, knowing both the cosmology and the
redshift distribution at several fixed apparent magnitudes gives us
information on the shape of the luminosity function through cosmic
time.

The comoving distance (for a flat 	CDM universe) is given by

dc(z) =
∫ z

0

c

H0

√

m,0(1 + z′)3 + 
	,0

dz′, (8)

and hence the volume in redshift bin i given by

Vi =
∫

A

∫ di,max

di,min

dc(z)2 ddc(z) dA

= f (A) 4π

∫ zi,max

zi,min

dc(z)2 c

H0

√

m,0(1 + z)3 + 
	,0

dz, (9)

where A is the area on the sky the survey covers and f(A) is the
fraction of the sky (in units of steradians) covered, and where the
limits of integration zi, min and zi, max are the minimum and maximum
redshift values, respectively, of redshift bin i.

2 In the case of an evolving luminosity function, the integral over the sky
and the luminosity function do not separate out as neatly as in this example,
but the end result is similar. We do not make the assumption of a redshift-
independent luminosity function beyond this example.
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4652 M. P. van Daalen and M. White

For the purposes of illustration, we will assume the luminosity
function is described well by a single Schechter function. We fur-
ther assume that its parameters α (the low-luminosity power-law
slope) and M∗ (the turn-over absolute magnitude) evolve linearly
with redshift, that is α = α0 + αe z and M∗ = M∗0 + M∗e z. The
normalization of the luminosity function is allowed to evolve with
redshift as well; specifically, we model it as the exponential of a
fifth-order polynomial as follows:

φ∗(z) = exp

⎛⎝ j=5∑
j=0

ζj

[
2z

zmax
− 1

]j

⎞⎠, (10)

with zmax the maximum redshift considered and six free parameters
ζ j.3 Our luminosity function thus has 10 free parameters in total.
We note that the luminosity function can be straightforwardly gen-
eralized to include, e.g. additional Schechter terms or a more (or
less) sophisticated redshift evolution.

To avoid divergence (and because there exists a minimum lumi-
nosity to what is considered a galaxy), we define a limiting galaxy
absolute magnitude Mlim. In this study, we set Mlim = −16, but we
note that any sufficiently dim value of Mlim does not influence the
outcome of the model. The (integrated) number density of galaxies
in apparent magnitude bin mλ and redshift bin zi is then

�λi = 2

5
ln (10)

∫ zi,max

zi,min

φ∗(z)

×
∫ M2

M1

10
2
5 (M∗(z)−M(m,z))(α(z)+1)e−10

2
5 (M∗ (z)−M(m,z))

�
(
α(z) + 1, 10

2
5 (M∗(z)−Mlim)

) dM dz,

(11)

where M(m, z) is the absolute magnitude corresponding to a galaxy
with apparent magnitude m at redshift z. Here, we have defined
the number density such that

∫ Mlim
−∞

d�λi

dMλi
dM ≡ ∫ Mlim

−∞ φi(M) dM =∫
φ∗(z) dzi . The limits of integration for M in equation (11) are

determined by the edges of the bins mλ and zi, but the former are
bounded above by Mlim. That is, M1 = min {M(mλ, min; z), Mlim}
and M2 = min {M(mλ, max; z), Mlim}.

To convert between absolute and apparent magnitudes, we make
the simplified assumption of a flat galaxy spectrum, in which case
the K-correction is zero and M(m, z) = m + 5[1 − log10(dL(z))],
with dL(z) the luminosity distance. As we show in Appendix C, the
K-correction for the galaxies in our sample is typically very small.
However, for faint high-redshift galaxies the difference between the
real and naively derived magnitude can be up to ∼1.5 dex, and so
K-corrections should be included in the model before applying it to
real data.

To account for evolution of the different functions within each
redshift bin, we simultaneously integrate the volume and the lumi-
nosity function. The expected (Poisson mean) number of galaxies
in apparent magnitude bin mλ and redshift bin zi is then given by4

3 The number of parameters used to fit φ∗(z) should be high enough to
allow enough versatility, but much smaller than the number of redshift bins
to ensure that it varies smoothly and that no (additional) degeneracies are
introduced. We found that using a fifth-order polynomial strikes a nice
balance. This particular form for φ∗(z) was chosen for numerical reasons
(e.g. an easily calculable derivative).
4 We note here that we ignore the modulation of observed galaxy number
densities due to lensing magnification, which causes a magnification bias.

Ñp,λi =
∫ zi,max

zi,min

∫ m2

m1

dφi(M)

dzi

dV

dz
dm dz

= 2

5
ln (10) B

∫ zi,max

zi,min

dc(z)2 φ∗(z)√

m,0(1 + z)3 + 
	,0

×
∫ m2

m1

10
2
5 (M∗(z)−M(m,z))(α(z)+1)e−10

2
5 (M∗ (z)−M(m,z))

�
(
α(z) + 1, 10

2
5 (M∗(z)−Mlim)

) dm dz, (12)

where some of the constants have been absorbed into the constant B;
specifically, B = 4πf (A) c/H0. We have switched the integral over
M to an integral over m, but similar to before, m1 = min {mλ, min;
m(Mlim, z)} and m2 = min {mλ, max; m(Mlim, z)}. The integral over
apparent magnitude has an analytical solution, and so we can we
can reduce the above expression for the Poisson mean to an integral
over only the redshift bin zi:

Ñp,λi = B

∫ zi,max

zi,min

dc(z)2 φ∗(z)√

m,0(1 + z)3 + 
	,0

×
[
�

(
α(z) + 1, 10

2
5 (M∗(z)−Mlim)

)]−1

×
[
�

(
α(z) + 1, 10

2
5 (M∗(z)−M(m2,z))

)
− �

(
α(z) + 1, 10

2
5 (M∗(z)−M(m1,z))

)]
dz. (13)

The total number of model galaxies in apparent magnitude bin mλ

at any redshift is then

Ñp,λ =
∑

i

Ñp,λi

= B

∫ zmax

zmin

dc(z)2 φ∗(z)√

m,0(1 + z)3 + 
	,0

×
[
�

(
α(z) + 1, 10

2
5 (M∗(z)−Mlim)

)]−1

×
[
�

(
α(z) + 1, 10

2
5 (M∗(z)−M(m2,z))

)
− �

(
α(z) + 1, 10

2
5 (M∗(z)−M(m1,z))

)]
dz. (14)

Here, zmin and zmax are the limits of the redshift range probed by
the spectroscopic sample. These model estimates of the mean can
be directly compared to the Np, λ of the data as a measure of our
model’s accuracy for a given set of parameters.

2.3 Fitting the model

Using 11 free parameters in total (1 parameter for the bias ratio,
6 for the normalization of the luminosity function, and 4 for its
shape parameters), our model predicts a distribution of galaxies in
both absolute magnitude and redshift, and – using the observed
integrated autocorrelation of the spectroscopic sample w̄ss,ij – the
corresponding cross-correlation signal ˜̄wps,λi . The best-fitting set
of parameters is determined by comparing the model outcomes˜̄wps,λi and Ñp,λ to their observed counterparts. We fit for these two
quantities simultaneously by minimizing

χ2 = (w̄ps− ˜̄wps)
TC−1(w̄ps− ˜̄wps)+R

∑
λ

(Np,λ−Ñp,λ)2

σ̃ 2
λ

, (15)

where C is a joint covariance matrix combining different sources of
uncertainty in both the data and the model (see Appendix A), R is a
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Cross-correlation-based luminosity functions 4653

constant determining the relative weight of the two observables, and
σ̃ 2

λ is the variance of Ñp,λ. Since Ñp,λ is a Poisson mean, σ̃ 2
λ = Ñp,λ.

The ideal value of R is unknown, but it should be set such that Ñp,λ is
not fit at the expense of ˜̄wps,λi , but rather used to break degeneracies
in the clustering. In what follows, we set R = nz, so as to give
the cross-correlation signal and galaxy number counts equal weight
(after all, the former provides nz × nm data points while the latter
only provides nm). When the Limber approximation is taken, we set
R = 1, since in this case the effective number of data points obtained
from the clustering signal goes down by a factor of nz. Very similar
results are obtained if we vary R within a factor of 10.

3 T E S T I N G T H E MO D E L

3.1 Mock catalogues

To test our model, we extract a mock galaxy survey from one
of the publicly available Planck Millennium all-sky lightcones re-
leased with Henriques et al. (2015).5 The semi-analytical model
that forms the base for this lightcone is detailed in Henriques et al.
(2015), while information on how the lightcone was constructed
and magnitudes were assigned can be found in Henriques et al.
(2012). In order to measure our model’s performance, we have to
know the luminosity function of the data. A potential mismatch in
our final results may be due to either inaccuracies in the model
or to the fact that a single Schechter function is not a perfect fit
to the intrinsic luminosity function of the mock galaxies. In order
to separate these effects, we reassign the absolute magnitude of
each galaxy (in the i band) so that it is consistent with an input
luminosity function. This is done in redshift bins 0.01 wide, and
in such a way that the rank ordering of galaxies in brightness in
each redshift bin is preserved (i.e. the N brightest galaxies at each
redshift before reassignment are still the N brightest galaxies after
reassignment, for every N). We choose the shape parameters of our
Schechter function to be {α0, αe, M∗0, M∗e} = {−1.01, −0.15,
−21.5, −0.8} (see Section 2.2). These parameters were chosen in
fair approximation of the intrinsic luminosity function of the galax-
ies in the lightcone. We do not change the redshifts, locations or
number densities as a function of redshift of the galaxies; hence,
the normalization of the luminosity function and the clustering bias
of the galaxies is still determined by the processes that formed
them. The apparent magnitude of each galaxy is recalculated to
match its new absolute magnitude, assuming again a naive relation
between these and redshift (i.e. without K-corrections). We then
make cuts in apparent magnitude and redshift, only keeping galax-
ies for which m ≤ 21 and z ≤ 0.8. Next, we arbitrarily select the
region with right ascension within [100, 200] deg and declination
within [10, 50] deg, equivalent to 3394 deg2 or about 8 per cent of
the sky.

The galaxies that are left comprise our photometric galaxy sam-
ple. From it, we select a spectroscopic sample by selecting the
N brightest galaxies in each redshift bin with stellar masses M∗
≥ 1010 h−1 M� and star formation rates Ṁ∗ ≥ 1 h−1 M� yr − 1,
where N is chosen such that the number density of spectroscopic
galaxies is at most 10−4 (Mpc/h)−3 at every redshift.6 Note that for

5 Specifically, we use the catalogues ‘cones.AllSky_M05_001’ and ‘MRsc-
Planck1’from the ‘Henriques2015a’ part of the Millennium public data base.
6 To clarify, after our pre-selection by stellar mass and star formation rate,
we choose the N galaxies at each redshift that are brightest in absolute mag-
nitude. One might argue that a more natural choice is apparent magnitude;

the purpose of demonstrating the effectiveness of our model, all
that matters is that the spectroscopic sample is a small and highly
biased subset of the total population, not that it is realistically se-
lected. For the photometric sample, we retain only the position on
the sky and apparent magnitude. Finally, we take nz = 16 redshift
bins, �z = 0.05 wide, in the range z = [0, 0.8], and nm = 16 ap-
parent magnitude bins, �m = 0.5 wide, in the range m = [13, 21],
and calculate the relevant (cross-)correlation functions and covari-
ance matrices. In total, our photometric sample contains 14 280 584
galaxies that fall in these ranges, and our spectroscopic sample
contains 250 372 sources.

We note that the spectroscopic sample is (realistically) a biased
subset of the galaxy population. As we show in Fig. 2, the spectro-
scopic galaxies have a radically different redshift distribution and
only probe the most luminous end of the total luminosity function.
However, since both samples still trace the same large-scale distri-
bution, and since the bias ratio of the two samples is a free parameter
in the model, this is not an issue in our approach. Indeed, Scottez
et al. (2016) recently showed that for the similar methodology of
Ménard et al. (2013), accurate redshift distributions can be obtained
for galaxies fainter than those of the spectroscopic sample. Our own
results in the following section confirm this.

3.2 Results

3.2.1 Fiducial model

Using only the clustering amplitude of the spectroscopic sources
and the total distribution of photometric galaxies over apparent
magnitude, our model is able to reproduce the input luminosity
function of the mock catalogue to very high accuracy. The results
for our fiducial model are shown in Fig. 3. Since error bars on the
data shown or the model are not straightforwardly calculated, due to
the many interrelated sources of uncertainty, we instead show just
the 1σ variation due to cosmic variance on the data as lightly shaded
bands. This was calculated from 1000 randomly placed surveys of
the lightcone catalogue, each with the same sky area as our fiducial
survey area.

In the top-left panel, we show the luminosity functions as a func-
tion of absolute magnitude in for each redshift bin. Solid lines show
the luminosity function as measured directly from the mock cata-
logue with full redshift information, thereby including realization
noise (which plays a significant role in the first two redshift bins).
At low redshift – specifically in the first two redshift bins – the
model tends to overestimate the number of dim galaxies, although
we note that the difference is in large part due to cosmic vari-
ance, as we will show. For the highest redshift bin, too, the model
slightly overestimates the number of galaxies observed. Even with
these caveats, in most regimes the luminosity function of the mock
galaxies are very accurately reproduced by the best-fitting galaxy
distribution, including the bright and dim end drop-offs. The lat-
ter is due to the cut-off apparent magnitude shifting to brighter
galaxies within each redshift bin, and therefore only captured when
the model luminosity function and volume are integrated together
(see equation 12).

We show the distribution over apparent magnitude for each red-
shift bin in the top right-hand panel. The total distribution is shown
in black and is used as a constraint in the model to break the

however, since we make our selection in separate redshift bins, the difference
is minimal.
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4654 M. P. van Daalen and M. White

Figure 2. A comparison of the distributions of our photometric (in black) and spectroscopic (in red) mock galaxy samples over cosmic (comoving) volume
(top left), redshift (top right), absolute magnitude (bottom left), and apparent magnitude (bottom right). By construction, the spectroscopic sample has a spatial
density of 10−4 (Mpc/h)−3 over the entire redshift range and contains only the most luminous (star-forming) galaxies. Even though the spectroscopic sample
is, realistically, a biased subset of the total galaxy population, it can still be used to derive accurate redshift distributions and luminosity functions for the
photometric galaxies, as they trace the same large-scale structure and the clustering bias of the samples does not need to be known in our model.

clustering degeneracies (see equation 15). The model again tends
to overestimate the number of dim galaxies in the lowest redshift
bin, where the cosmic variance is largest and the clustering signal
has a relatively large uncertainty. Overall, though, the model does
very well in reproducing the true distribution of galaxies in apparent
magnitude, at any redshift.

The bottom left-hand panel of Fig. 3 shows the redshift distri-
butions in each apparent magnitude bin, as well as the total. Note
that we are showing the absolute number of galaxies assigned to
each redshift bin. The clustering model does an excellent job at
reproducing these, even for the bright galaxies with relatively low
number densities. As before, the fit is particularly accurate at inter-
mediate redshifts (for all apparent magnitudes), where most of the
galaxies in our sample reside and therefore where the uncertainty
on the constraints is smallest.

Finally, in the bottom right-hand panel, we show the normal-
ization of the luminosity function as a function of redshift. Black
crosses show the effective normalization of the mock galaxies in
the survey area in each redshift bin. The dashed red line shows
the fit (see equation 10) that best reproduced the clustering data,
with red crosses showing its volume-averaged values in each red-
shift bin to allow for a more direct comparison to the input data.
The fit captures the shape of the input data, even if it tends to

overestimate the normalization. However, due to the degeneracies
between different Schechter parameters,7 a mismatch in the value
of the normalization parameter does not necessarily mean that the
luminosity function itself is not accurately reproduced, as the other
panels show.

If we compare the normalization measured for our catalogue to
the shaded band showing the 1σ range of cosmic variance, we see
that our survey area contains significantly less galaxies than average
in the first redshift bin, and significantly more than average in the
second redshift bin. This uncommon feature is the main reason why
our model has trouble matching the measured number densities in
these redshift bins. Also note the sharp downturn to lower number
densities observed for the very highest redshift bin, which is not
fully captured by our fit, causing the model to overestimate the
number of galaxies in that bin.

7 One easily seen example of such a degeneracy is between the high-redshift
normalization and the slope parameters of the Schechter function. At high
redshifts, galaxies above the knee (M > M∗) are not or barely probed, as
they are too dim to observe, and so in this regime, the slope parameters only
serve to normalize the profile.
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Cross-correlation-based luminosity functions 4655

Figure 3. The results for our fiducial model, minimized using equation (15). The model is constrained by two sets of data, one being the cross-correlation
signal between photometric and spectroscopic galaxies (in bins of the apparent magnitude of the former and the redshift of the latter), the other being the
total number of photometric galaxies in each bin of apparent magnitude. Lighter shaded bands show the effect of cosmic variance (see the main text). Top
left: the number of galaxies in different bins of redshift as a function of absolute magnitude. Solid lines show the data, and dashed lines show the outcome
of the model. Note that the power-law part of the Schechter function is only probed by low-redshift galaxies. Overall, the luminosity function of the data is
reproduced very well. For the first redshift bin, where the deviation between the derived and true galaxy densities is largest, the vertical offset is in large part
due to cosmic variance for the sky area we are using here (see the main text). Top right: the number of galaxies in different bins of redshift as a function of
apparent magnitude. The total overall redshifts, shown by the black line, is one of the constraints of the model. Bottom left: the number of galaxies in different
bins of apparent magnitude as a function of redshift. Black lines show the total overall apparent magnitudes. Bottom right: the normalization of the Schechter
luminosity function as a function of redshift. The normalizations as inferred from the mock catalogue are shown as black crosses, while what the best-fitting
model prefers is shown as a red dashed line. Red crosses show the result of volume averaging the best fit over each redshift bin. Note that degeneracies exist
between φ∗(z) and the other parameters of the Schechter function, which is why the number densities of the galaxies can be reproduced quite well for different
sets of parameters.

3.2.2 Direct maximum-likelihood fit

To show that the mismatch at low redshift is indeed not due to the
clustering signal or shortcomings of our clustering model, we show
in Fig. 4 the results of performing a maximum-likelihood fit directly
to the absolute magnitudes and redshifts of the galaxies in the sur-
vey catalogue, both of which our fiducial model is agnostic about.
We do not bin the data here, instead using the individual M and z
of each galaxy as input to the maximum-likelihood function (see
Appendix B). Even in this case, the number of galaxies at low red-
shift is overpredicted due to realization noise (which includes cos-
mic variance). Comparing Figs 3 and 4, we see that the result of our
fiducial model is extremely close to the maximum-likelihood lumi-
nosity function, showing the power of using the cross-correlation
signal even without any prior redshift information. Additionally,

this shows that the cumulative impact of binning, uncertainties in
the clustering data, and perhaps most significantly our assumptions
regarding the clustering bias is small.

Adding more parameters to the luminosity function, for example
including a second Schechter function or higher-order terms in the
normalization, would allow us to compensate for the realization
noise and possibly yield a better match to the data. However, doing
so would also introduce additional degeneracies.

3.2.3 Fixed slope at low redshift

Our fiducial model has no prior information on the parameters of
the luminosity function. However, it is not unreasonable to assume
that the power-law slope of the luminosity function at redshift zero,
α0, is well constrained. To see how much the model outcome is
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4656 M. P. van Daalen and M. White

Figure 4. As Fig. 3, but now the model has been replaced by a maximum-likelihood fit to the absolute magnitudes and redshifts of the mock galaxies, which
are (realistically) inaccessible to the fiducial model. The luminosity functions derived here are extremely close to those of the fiducial model, showing that
most of the already slight mismatch in Fig. 3 is not due to the clustering signal or our clustering model, but to realization noise and the limitations of the
parametrization of the luminosity function.

influenced by the uncertainty at low redshift, we therefore also ran
our model with α0 fixed to the input value. The results of this
test are shown in Fig. 5. As expected, the panels show a marginal
improvement at low redshift in comparison to the results for our
fiducial model, but our results at high redshift are slightly worse
than before. This is again because of the unusually large realization
noise at low redshift: as one parameter is held fixed, the model loses
some freedom to compensate for this, which in this case leads to a
mismatch at high redshift.

3.2.4 Limber approximation

Finally, we have also tested the consequences of assuming the often-
used Limber approximation, by setting the clustering signal (and
its covariance) to zero for the cross-correlations of spectroscopic
sources in different redshift, the results of which are shown in
Fig. 6. In this case, the model performs less well in regimes where
the cross-correlations between different redshift bins contribute sig-
nificantly – that is, at both the low and high redshift ends, and for
the brightest galaxies, which have relatively low number densi-
ties. At the lowest redshift, depending on the choice of θmax (see
Section 2.1) the typical distance between galaxies may be larger than
the distances probed by the clustering signal, and so no or barely

any clustering is observed. Without the information contained in the
cross-correlation signal between these and higher-redshift bins, the
model therefore prefers to place as few galaxies as possible at low
redshift. At high redshift, depending on the choice of θmin the scales
probed may be larger than the scales on which those galaxies cluster
strongly, and so a weak signal with a relatively large uncertainty
is observed. Increasing θmax/decreasing θmin gives better results at
low/high redshifts but increases the uncertainty at higher/lower red-
shifts. It is, therefore, best to not take the Limber approximation but
make use of all available information. If the Limber approximation
has to be taken, it is better to calculate the clustering at a fixed
physical scale instead of a fixed angular scale (e.g. Schulz 2010).

For completeness, we present the best-fitting Schechter param-
eters corresponding to all figures in this section in Table 1. Note
that the reproduced luminosity functions can be quite accurate even
when the parameters are not, because of the degeneracies of some
of these parameters with the normalization.

4 D I SCUSSI ON

The methods presented in this paper extend previous work by
not only deriving the redshift distribution of photometric sources
through clustering but also deriving their luminosity function
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Figure 5. As Fig. 3, but now α0, the power-law slope of the luminosity function at z = 0, was assumed known and held fixed to the input value in the fitting.
As expected, this marginally improves the fit at low redshift, but at the cost of some model freedom that is felt mainly at high redshift, where the fit worsens
with respect to the fiducial model.

through cosmic time. By testing this method on a mock galaxy
survey, we have demonstrated that an input galaxy distribution over
redshift and luminosity can be very accurately recovered in this way
for large surveys, even when these are relatively shallow. The red-
shift distributions derived in this way are not biased by having the
spectroscopic sources be selected differently from the photometric
sources. As we have shown, the method returns accurate distribu-
tions and luminosity functions even if the only galaxies with spectra
are the brightest members of the sample and their number densities
have a vastly different redshift evolution, so long as they are in the
same area of sky. Additionally, our results are not degenerate with
the unknown redshift-dependent galaxy bias, b(z).

Our goal has been to introduce a technique for measuring the lu-
minosity function from the co-spatial combination of a deep imag-
ing survey and a sparse spectroscopic survey and to illustrate its
potential. The performance of our simple algorithm on mock data
is sufficiently encouraging that further development appears war-
ranted. In particular, application to real data would need to con-
sider the possible effects of lensing magnification and incorporate
K-corrections in the conversion between apparent and absolute mag-
nitudes (see Appendix C for more on this). Additionally, in this
paper we have taken the following assumptions, which should be
kept in mind and modified where necessary:

(i) First of all, we have assumed that the form of the luminosity
function is known (in our case, a single Schechter function), which
in real surveys may not be the case. However, one generally finds
that a sum of Schechter functions is a good fit to real data (e.g. Peng
et al. 2010). Additionally, the form of the luminosity function that
one assumes in this formalism can be very versatile, and is allowed
to contain many parameters to be constrained at once. We therefore
do not anticipate this to be an issue in the application of the model.

(ii) Secondly, we have assumed a simple luminosity bias relation
(equation 7) with a known parameter L′. We have also assumed
that the redshift evolution of the remaining bias terms cancel out.
However, we have imposed neither bias relation on the mock data,
and our results imply these assumptions were sufficiently valid.
There is no reason to assume, therefore, that the same would not
apply to real data – except perhaps if the clustering bias in the real
data had some residual dependence on redshift and/or magnitude
that the mock data do not. Any potential scale dependence of the
clustering bias (insofar not already implicitly included in the mock
data) is not expected to be important, as the bias in our model is an
effective one, averaged over a large range in scales. Finally, while
the value of L′ was fit to a subset of the data prior to running the
model, it could in principle be a free parameter constrained by the
model.
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4658 M. P. van Daalen and M. White

Figure 6. As Fig. 3, but now with the Limber approximation taken. While the fit is still good at intermediate redshifts, both the luminosity function and
dN/dz are considerably less well reproduced at both low and high redshifts. This is due to the small autocorrelation clustering amplitude and relatively high
uncertainty at these redshifts, meaning contributions from cross-correlations between different redshift bins – which are ignored in the Limber approximation
– are relatively more important.

Table 1. The best-fitting luminosity function parameters de-
rived from the clustering data for each of our model runs.
Parentheses indicate that the parameter was held fixed to this
value. In the run labelled ‘Direct’ no clustering information
was used, and instead a maximum-likelihood fit to the galax-
ies absolute magnitudes and redshifts was performed. Note
that the luminosity function may be highly accurately repro-
duced even for parameters other than the input parameters,
due to degeneracy with the normalization and realization
noise (including cosmic variance).

Run α0 M∗0 αe M∗e

Input −1.01 −21.5 −0.15 −0.8
Fiducial −1.050 −21.429 −0.155 −0.927
Direct −1.019 −21.520 −0.178 −0.783
Fixed α0 (−1.01) −21.415 −0.337 −1.061
Limber −0.747 −21.349 −0.854 −1.344

(iii) Thirdly, as we mentioned in Section 2.3, it is difficult to
define an objective value for the relative weight R of the two terms
in our model’s χ2 in equation (15). Fortunately, the outcome of the
model turns out not to be very sensitive to its value.

We plan to test our method on a large catalogue of observed
galaxies in a follow-up publication.
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A P P E N D I X A : J O I N T C OVA R I A N C E M AT R I X

There are three sources of uncertainty when fitting our model to
the data: uncertainties in the integrated cross-correlation function
of photometric and spectroscopic galaxies, w̄ps,λi ≡ w̄ps(mλ, zi), in
the integrated cross-correlation function of spectroscopic galaxies in
different redshift bins, w̄ss,ij ≡ w̄ss(zi, zj ), and finally in the number
of galaxies in the volume at some apparent magnitude and redshift,
Ñp,λi ≡ Ñp(mλ, zi). For the first two, we use 20 000 bootstrap re-
samplings to calculate full covariance matrices, while the latter is
modelled as a Poisson variable with a mean given by the volume-
weighted integral over the luminosity function over bins mλ and zi.
Here, we derive the total covariance matrix, which incorporates the
uncertainties from all three sources.

To find the best-fitting model, we aim to minimize χ2 as given
by equation (15), where C is the joint covariance matrix. As such,
C is a (nmnz) × (nmnz) matrix with element ((λi), (μj)) given by

C(λi)(μj ) = σ
(
w̄ps,λi − ˜̄wps,λi ; w̄ps,μj − ˜̄wps,μj

)
= σ

(
w̄ps,λi −

∑
k

Xik f ′
N,λk ; w̄ps,μj −

∑
l

Xjl f ′
N,μl

)
,

(A1)

where σ (A ; B) denotes the covariance between A and B.
Note that C is symmetric. As before, Xij = w̄ss,ij and f ′

N,λi =
KbL,λi Ñp,λi/Ñp,λ, where K is a constant, bL, λi is the part of the bias
that scales with the luminosity of a galaxy of apparent magnitude

mλ at redshift zi (see equation 7) and Ñp,λ = ∑
i Ñp,λi is the total

number of galaxies observed in apparent magnitude bin mλ. While
Ñp,λ and bL, λi are known a priori, K is a parameter of the model.
Expanding equation (A1), we find

C(λi)(μj )=σ (w̄ps,λi ; w̄ps,μj )

−
∑

l

bL,μl σ

(
w̄ps,λi ;

Ñp,μl

Ñp,μ

w̄ss,j l

)

− K
∑

k

bL,λk σ

(
w̄ps,μj ;

Ñp,λk

Ñp,λ

w̄ss,ik

)

+ K2
∑
k,l

bL,λkbL,μl σ

(
Ñp,λk

Ñp,λ

w̄ss,ik ;
Ñp,μl

Ñp,μ

w̄ss,j l

)
.

(A2)

It is clear that w̄ss,ij and Ñp,λk should be uncorrelated, and we
assume the same for Ñp,λk and w̄ps,μi . With this in mind, we can
write

σ

(
w̄ps,λi ;

Ñp,μl

Ñp,μ

w̄ss,j l

)
= Ñp,μl

Ñp,μ

σ (w̄ps,λi ; w̄ss,j l), (A3)

and

σ

(
Ñp,λk

Ñp,λ

w̄ss,ik ;
Ñp,μl

Ñp,λ

w̄ss,j l

)

= Ñp,λkÑp,μl

Ñp,λÑp,μ

σ (w̄ss,ik ; w̄ss,j l)

+ [
w̄ss,ikw̄ss,j l + σ (w̄ss,ik ; w̄ss,j l)

]
σ

(
Ñp,λk

Ñp,λ

;
Ñp,μl

Ñp,μ

)
. (A4)

All remaining covariances involving the clustering terms are cal-
culated directly through bootstrapping. This leaves only the last
covariance in equation (A4). The Ñp,λi are mutually independent
Poisson variables, but are not independent of Ñp,μ when μ = λ. So

C(λi)(μj ) = σ (w̄ps,λi ; w̄ps,μj )

−
∑

k

f ′
N,λk σ (w̄ps,μj ; w̄ss,ik)

−
∑

l

f ′
N,μl σ (w̄ps,λi ; w̄ss,j l)

+
∑
k,l

f ′
N,λk f ′

N,μl σ (w̄ss,ik ; w̄ss,j l)

+ δλμ

∑
k,l

K2bL,λkbL,λl

[
w̄ss,ikw̄ss,jk

+ σ (w̄ss,ik ; w̄ss,jk)
]
σ

(
Ñp,λk

Ñp,λ

;
Ñp,λl

Ñp,λ

)
. (A5)

Since Ñp,λ is a sum of independent Poisson variables, and therefore
a Poisson distributed variable itself, we need to know the covariance
between ratios of dependent Poisson variables in the domain [0,1].
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Analytical expressions for this (co)variance and its derivatives can
be derived, and the former are given below for completeness. Here,
γ is Euler’s constant and Ei is the exponential integral function.

If k = l:

σ 2

(
Ñp,λk

Ñp,λ

)
= Ñp,λk

Ñp
2
,λ

e−Ñp ,λ

{
Ñp,λk

(
1 − e−Ñp ,λ

)
+

(
Ñp,λ−Ñp,λk

) (
Ei

[
Ñp,λ

]
−γ −ln

[
Ñp,λ

])}
.

(A6)

In all other cases,

σ

(
Ñp,λk

Ñp,λ

;
Ñp,λl

Ñp,λ

)
= Ñp,λkÑp,λl

Ñp
2
,λ

e−Ñp ,λ

×
(

1−e−Ñp ,λ −Ei
[
Ñp,λ

]
+γ +ln

[
Ñp,λ

])
.

(A7)

A P P E N D I X B: D I R E C T LI K E L I H O O D
F U N C T I O N

In order to test our clustering-based approach to finding the galaxy
redshift distribution and luminosity function, as well as test the
cumulative impact of binning, the uncertainties of the clustering
data and our model choices regarding the clustering data (e.g. the
bias model), in Section 3.2.2 we considered the luminosity func-
tion one would obtain when doing a direct maximum-likelihood
fit to the individual absolute magnitudes and redshifts of the
galaxies. The likelihood function we maximized is constructed as
follows.

We assume that the set of observed galaxies is a Poisson realiza-
tion, with Poisson means determined by an underlying luminosity
function and cosmology (see equation 13). Let us now consider
these Poisson means in bins in z and m that are sufficiently small
such that each contains at most one galaxy, and index these bins with
j (previously λi). If μj is the Poisson mean for the apparent magni-
tude and redshift corresponding to j, Nj is the number of galaxies in
this bin, and p is a vector of all parameters, then the likelihood is
given by

L( p) =
∏

j

μj ( p)Nj e−μj ( p)

Nj !
. (B1)

Using that the number of galaxies in bin j is by construction equal
to either 0 or 1, we can write the log-likelihood as

lnL( p) =
∑

j

{
Nj ln[μj ( p)] − μj ( p) − ln[Nj !]

}
=

∑
j

ln[μj ( p)] −
∫ ∫

μ( p) dm dz. (B2)

The second term is a sum over all bins, regardless of whether there
is a galaxy in that bin, and so can be replaced by an integral over
all the probed redshifts and apparent magnitudes. The first term, on
the other hand, is only non-zero for bins that contain a galaxy, and
so can be viewed as a sum over all galaxies in the sample, rather
than a sum over bins.

Similar to equation (13), we can write∫ ∫
μ( p) dm dz=B

∫ zmax

0

dc(z)2 φ∗( p, z)√

m,0(1 + z)3 + 
	,0

×
[
�

(
α( p, z) + 1, 10

2
5 (M∗( p,z)−Mlim)

)]−1

×
[
�

(
α( p, z) + 1, 10

2
5 (M∗( p,z)−Mmax(z))

)
− �

(
α( p, z) + 1, 10

2
5 (M∗( p,z)−Mmin(z))

)]
dz, (B3)

where Mmax(z) = min[M(mmax, z), Mlim] and Mmin(z) = M(mmin,
z). In our application, Mlim = −16, zmax = 0.8, mmin = 13, and
mmax = 21.

In applying this maximum-likelihood method (Section 3.2.2),
we assume full information on each galaxy, meaning we can use
its absolute magnitude and redshift directly. For galaxy j, we can
therefore write (see equation 12):

ln[μj ( p)] = ln

[
2

5
ln(10)B

]
+ 2 ln

[
dc(zj )

] + ln
[
φ∗( p, zj )

]
− 1

2
ln

[

m,0(1 + zj )3 + 
	,0

] + 2

5
ln(10)

(
α( p, zj ) + 1

)
× (

M∗( p, zj ) − Mj

) − 10
2
5 (M∗( p,zj )−Mj )

− ln
[
�

(
α( p, zj ) + 1, 10

2
5 (M∗( p,zj )−Mlim)

)]
. (B4)

A P P E N D I X C : IG N O R E D E F F E C T S

The most important effects that we ignore in our model are (i) the
fact that galaxy spectra are not flat and that therefore the relation
between apparent and absolute magnitude is not straightforward,
and (ii) biasing due to lensing (de)magnification. Incorporating ei-
ther effect into our model or even quantify how ignoring them
impacts our results is far from trivial and outside the scope of this
paper. However, in order to gauge the importance of the former
effect – that is, ignoring K-corrections – we show in Fig. C1 a
comparison between the true i-band apparent magnitude of each
mock galaxy as calculated by Henriques et al. (2015) and the
one naively derived from that galaxy’s i-band absolute magnitude
through mi = Mi − 5[1 − log10(dL(z))], with dL(z) the luminosity
distance. All galaxies in the lightcone that satisfy the redshift and
(true) magnitude cuts of our catalogue are included.

In the left-hand panel of Fig. C1, brightness indicates the loga-
rithmic density of galaxies at each point in the space. This shows
that the effect of ignoring K-corrections is largest for the faintest
galaxies and that the naive relation tends to overestimate the appar-
ent brightness of these galaxies. In the right-hand panel, we show
now colour-code by redshift. As the redshift increases, the mean
true apparent magnitude and the mean difference between it and
the naive apparent magnitude increase as well. This shows that, as
one might expect, the effect of ignoring K-corrections is strongest
at high redshifts.

In our case (with �m = 0.1), taken overall redshifts the difference
between the true and naive apparent magnitude is at most one bin for
the majority of galaxies, but even this small effect may be enough
to significantly impact the results when applying our current model
to real data. Other photometric bands may be affected differently.
More work is needed to explore and account for this.
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Figure C1. A comparison of the apparent i-band magnitude naively derived from a galaxy’s absolute magnitude, and its true value. The left-hand panel shows
the log-density of galaxies in the plane, while the right-hand panel shows the distribution with redshift. Fainter galaxies and in particular high-redshift galaxies
need larger K-corrections and are therefore more sensitive to these being ignored.
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