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1. Introduction

Multivariate binary data with multiple binary response variables and
one or more predictor variables, are often collected in empirical sciences
such as psychology, criminology, epidemiology, life sciences and medicine.
In the Netherlands Study of Depression and Anxiety (NESDA), for example,
data were collected to investigate the interplay between personality traits and
co-morbidity of depressive and anxiety disorders (Pennix et al., 2008; Spin-
hoven et al., 2009). Another study in which multivariate binary data arises is
the Indonesian Children’s Study (ICS: Sommer, Katz, and Tarwotjo, 1984;
Liang, Zeger, and Qaqish, 1992) where over three-thousand children were
medically examined to investigate whether they had respiratory infection,
diarrhoeal infection, and xerophthalmia. The aim of the ICS study was to
investigate whether vitamin A deficiency places children at increased risk of
respiratory and diarrhoeal infections.

The availability of the multivariate normal distribution for multivari-
ate interval responses, makes application of maximum likelihood-based sta-
tistical models on such data relatively easy. However, for binary responses,
no multivariate distribution is available and therefore estimation becomes
more difficult. Liang and Zeger (1986) proposed Generalized Estimating
Equations (GEE) for marginal modelling of correlated categorical data. GEE
is a quasi-likelihood (QL) estimation method that does not require specifica-
tion of a particular multivariate distribution. It is widely used as a standard
approach for fitting marginal models on multivariate data (Ziegler, Kastner,
and Blettner, 1998; Fitzmaurice et al., 2008; Ziegler, 2011). The GEE ap-
proach, however, does not allow for a dimensional approach to analysis.
Often researchers have theories how different response variables belong to
one underlying dimension, factor, or latent variable.

For the dimensional approach often latent variable models are used,
such as structural equation models or item response models. These mod-
els explicitly define underlying dimensions. However, these models make
distributional assumptions of the latent dimensions or assume an underlying
distribution for the dichotomous responses or both. Such assumptions are
often unverifiable, i.e. we cannot check the assumptions using the data.

In this paper, we will develop a dimensional model for multivariate bi-
nary data within the marginal framework. The model does not make unver-
ifiable assumptions. The model will be developed within a distance frame-
work, but we show it can also be seen as a specific marginal model. To
enhance interpretation, a biplot is developed to accompany the model that
visualizes the result.

De Rooij (2009) proposed the Ideal Point Classification (IPC) model
for analyzing a multinomial response variable in the presence of predic-
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tors. The IPC is a probabilistic distance model based on a two-mode dis-
tance function. De Rooij (2009) also showed that a simple logistic regres-
sion for binary response variable can be written as a unidimensional IPC
model. Worku and De Rooij (2016) extended the IPC model to the analysis
of two binary response variables, i.e., the bivariate, binary data setting, and
showed that a new parameterization of the IPC model recovered both the
marginal probabilities and the association structure of bivariate binary data
well. However, this parameterization cannot be easily extended to handling
multivariate binary data because all the possible pairwise and higher order
association terms must be specified in the likelihood function, which makes
the model complex and therefore hard to estimate.

Therefore, in this paper we propose a Multivariate Logistic Distance
(MLD) model for analyzing multivariate binary data that extends marginal
models for multivariate data. The MLD model unifies two domains of sta-
tistical methods, i.e., Multidimensional Scaling (MDS: Kruskal and Wish,
1978; Borg and Groenen, 2005) and Generalized Linear Model (GLM:
McCullagh and Nelder, 1989; Agresti, 2002). As a form of regularization,
the MLD model allows for dimension reduction and therefore less parame-
ters are estimated compared to the existing marginal models for multivari-
ate data. Moreover, the model enhances interpretation by using a biplot
(Gabriel, 1971; Gower and Hand, 1996; Gower, Lubbe, and Le Roux, 2011)
based on a distance interpretation.

Unlike existingmarginal models for multivariate data, theMLDmodel
can be used for assessing the factorial/dimensional structure of multivari-
ate data. In the area of mental disorders (with the NESDA data as exam-
ple), clinical psychologists and epidemiologists are often interested in co-
morbidity and how co-morbidity is related to risk factors such as personality
traits (Krueger, 1999; Beesdo-Baum et al., 2009; Spinhoven et al., 2013).
Three candidate theories about the co-morbidity of mental disorders have
been proposed, i.e., (1) a 2-dimensional structure with one dimension rep-
resenting distress and the other one fear (d/f); (2) a different 2-dimensional
structure with one dimension representing depression and the other one anx-
iety (d/a); and (3) an unidimensional structure where all the disorders are
represented by a single dimension. The MLD model can be used to repre-
sent such theories within a unified framework, i.e., the candidate theories
can be compared using appropriate statistics, and at the same time the MLD
model allows for a direct relationship between co-morbidity of mental dis-
orders and the predictor variables.

The paper is organized as follows. Section 2 develops the multivari-
ate logistic distance model, investigates the link with marginal model for
multivariate binary data estimated using a GEE method, and discusses the
construction of biplots for the multivariate logistic model. In Section 3, the
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proposed model is fitted to empirical data and the results are interpreted us-
ing the estimated parameters and a graphical representation. We conclude
in Section 4 with a discussion.

2. Multivariate Logistic Regression in a Distance Framework

2.1 Logistic Regression as a Distance Model

Logistic regression is a standard method for modelling dichotomous
response data. Let yi denote the observed value for a binary dependent vari-
able Y for subject i, where i = 1, 2, . . . , N . Logistic regression models the
probability of a category conditional on the value of a predictor variable xi,
Pr(yi = 1|xi) = π(xi), i.e.,

π(xi) =
exp(β∗

0 + β∗
1xi)

1 + exp(β∗
0 + β∗

1xi)
, (1)

where β∗
0 and β

∗
1 are the intercept and the regression coefficient, respectively.

Logistic regression can easily be generalized to accommodate multiple pre-
dictors, xi = (xi1, xi2, . . . , xip)

T, and thus π(xi) = exp(β∗
0 + xTi β

∗)/(1 +
exp(β∗

0 + xTi β
∗)), where β∗ is now a vector with regression coefficients.

De Rooij (2009) showed that logistic regression can be expressed as
a distance model in a joint space with points representing the two categories
of the response variable and points representing the subjects. In this sec-
tion, we revisit this relationship and in Section 2.2 discuss an extension for
multivariate binary responses.

Let us define a joint unidimensional space for subjects and the classes
of the response variables. Denote by ηi the coordinate of the position for
subject i and by γ0 the coordinate of the position of one category and by γ1
the coordinate of the position of the other category of the binary response
variable. Define δi0 and δi1 to be the squared Euclidean distances between
the position of subject i and the two categories respectively. That is,

δi1 = (ηi − γ1)
2;

δi0 = (ηi − γ0)
2.

(2)

With these two distances we can define the following probability model

π(xi) =
exp(−0.5δi1)

exp(−0.5δi0) + exp(−0.5δi1)
. (3)

The smaller the relative distance between a person point and a class point,
the larger the probability that the subject belongs to that class. Therefore,
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the class probability is inversely related to the squared Euclidean distance
between the points.

The coordinate for subject i, ηi, is assumed to be a linear combination
of the predictor variable xi, i.e., ηi = β0 + β1xi or in case of multiple
predictors ηi = β0 + xTi β. The parameters of the distance model are the
regression weights and the category points.

An important tool in the interpretation of probability models is the
log-odds. The log-odds representation of the distance model becomes,

log

[
π(xi)

1− π(xi)

]
= 0.5δi0 − 0.5δi1

= ηi(γ1 − γ0) + 0.5(γ20 − γ21)

= (β0 + β1xi)(γ1 − γ0) + 0.5(γ20 − γ21)

= β0(γ1 − γ0) + 0.5(γ20 − γ21) + β1(γ1 − γ0)xi.

(4)

In the case of multiple predictors, the logistic distance model takes the same
form, having an intercept and extra slopes for the additional predictors. For
example, with two predictors xi = (xi1, xi2)

T, the distance model becomes,

log

[
π(xi)

1− π(xi)

]
= β0(γ1 − γ0) + 0.5(γ20 − γ21)

+ β1(γ1 − γ0)xi1 + β2(γ1 − γ0)xi2.

(5)

For a unit increase in xi1, the log-odds in the distance model changes by
β1(γ1 − γ0), similarly for xi2. By setting β∗

0 = β0(γ1 − γ0) + 0.5(γ20 − γ21)
and β∗

1 = β1(γ1 − γ0), a standard logistic regression is obtained.
The logistic distance model (4) is not identified and therefore an iden-

tifiability constraint must be imposed. For example, with β1 = 2 and
(γ1 − γ0) = 1, β∗

1 = 2. The same value β∗
1 = 2 can also be obtained

when β1 = 0.5 and (γ1 − γ0) = 2. By imposing an identifiability con-
straint on the class points, the logistic distance model can be identified, for
example by setting γ1 = 1 and γ1 = 0. The logistic distance model is now
identified and its relationship with the univariate logistic model presented in
(1) becomes

β∗
0 = β0 − 0.5;

β∗
1 = β1.

(6)

2.2 Multivariate Extension of the Distance Model

In this section, the logistic distance model for a single response vari-
able will be extended to handling multivariate binary data. Suppose yi =
(yi1, yi2, . . . , yij , . . . , yiJ)

T denotes the multivariate responses observed on
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Table 1. The structure of multivariate data in long format.

Predictor variables
SID Index Response x1 x2 xp

1 R1 y11 x11 x12 . . . x1p

1 R2 y12 x11 x12 . . . x1p

1 R3 y13 x11 x12 . . . x1p

1 R4 y14 x11 x12 . . . x1p

1 R5 y15 x11 x12 . . . x1p

...
...

...
...

...
...

...
i R1 yi1 xi1 xi2 . . . xip

i R2 yi2 xi1 xi2 . . . xip

i R3 yi3 xi1 xi2 . . . xip

i R4 yi4 xi1 xi2 . . . xip

i R5 yi5 xi1 xi2 . . . xip

...
...

...
...

...
...

...
n R1 yn1 xn1 xn2 . . . xnp

n R2 yn2 xn1 xn2 . . . xnp

n R3 yn3 xn1 xn2 . . . xnp

n R4 yn4 xn1 xn2 . . . xnp

n R5 yn5 xn1 xn2 . . . xnp

the i−th subject, which is a (J × 1)-dimensional vector of all responses,
where yij is the binary measurement of the j-th response variable observed
on the i-th subject. It is not difficult to generalize the methodology to the
case where the number of response variables differs over subjects, but that
complicates the notation. As before, let xi represent the multiple predictors
observed on i−th subject. In Table 1, we display the structure of multivariate
data in long format. The first column, SID, is a variable which contains the
subjects’ identification number. The second column, Index, is a categor-
ical indicator variable that indicates for which particular response variable
the binary measurement yij is obtained. In Table 1 five response variables
are assumed, i.e., R1,R2, . . . ,R5. The other columns represent measure-
ments of the response variable and predictor variables, respectively.

A unidimensional space was used to represent the logistic regression
model (3), which positions both the subjects and the two categories of the
response variable. In the case of multiple responses yi, the distance model
can be extended to accommodate the additional responses. Suppose there
is a second response variable. One possibility for generalization is to add
the two points representing the categories of the second response variable to
the unidimensional space. In that case, the predictor variables have a similar
influence on the two response variables.
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Another generalization is that the second response variable pertains to
another dimension, giving rise to a two-dimensional model. The definition
of the distance becomes

δ(ηi,γkj) =

M∑
m=1

(ηim − γkj,m)
2,

where ηim is the coordinate for the point representing subject i on the m-th
dimension and is defined as a linear combination of the predictors, ηim =
β0m + xTi βm; and γkj,m is the coordinate for category k (k = {0, 1}) of
response variable j on dimension m. Each response variable belongs to
one and only one dimension. This assumption is driven by theories often
developed by applied scientists. In the Introduction section, we discussed
three different theories about comorbidity of mental disorders. Spinhoven et
al. (2013), for example, found two dimensions of which the first dimension
(distress) was represented by major depressive disorder, generalized anxiety
disorder, and dysthimia; and the second dimension (fear) was represented
by panic disorder and social phobia.

The probability for category 1 on response variable j given the pre-
dictors, i.e. Pr(yij = 1|xi) = πj(xi), is now defined by

πj(xi) =
exp

[−0.5δ(ηi,γ1j)
]

exp
[−0.5δ(ηi,γ0j)

]
+ exp

[−0.5δ(ηi,γ1j)
] . (7)

The log-odds representation of the multivariate distance model becomes,

log

[
πj(xi)

1− πj(xi)

]
=

M∑
m=1

{
β0m(γ1j,m − γ0j,m) + 0.5(γ20j,m − γ21j,m)

+ xTi βm(γ1j,m − γ0j,m)
}
.

(8)

Because each response variable belongs to a single dimension, the log odds
representation can be further simplified. Suppose response variable j be-
longs to dimension 1 so that γ0j,m and γ1j,m equal zero for all m > 1, i.e.
all dimensions except the first one. In that case, (8) simplifies to a single
equation instead of a sum over dimensions.

This distance model for multivariate binary data (7 - 8) is called the
Multivariate Logistic Distance (MLD) model. Because the MLD model
is a type of bilinear model, for each dimension we have to fix the origin
and scale. Like in the simple logistic regression representation we fix the
class coordinates for one of the response variables on every dimension, e.g.,
γ1j,m = 1 and γ0j,m = 0.
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The effect of a predictor variable on a specific response variable j
is determined by the dimension the j-th response variable is positioned
on. More specifically, the effect βm(γ1j,m − γ0j,m). Therefore, for dif-
ferent response variables on the same dimension the size of the effect is
different, depending on (γ1j,m − γ0j,m), but the direction is the same as
long as γ1j,m ≥ γ0j,m,∀j,m, and defined by βm. Furthermore, the larger
(γ1j,m − γ0j,m) the bigger the effect is and vice versa. In other words, the
larger the distance between the two points representing the categories of a
single response variable, the better the predictor variables can discriminate
between the categories.

2.3 Parameter Estimation

The parameters in the MLD model are estimated by maximizing the
likelihood function for independent data, in the multivariate situation known
as quasi-likelihood; i.e.,

L(θ) =
N∏
i=1

J∏
j=1

πj(xi)yij [1− πj(xi)](1−yij), (9)

where θ is the concatenation of all the class points and all the regression
weights.

Liang and Zeger (1986) showed that maximizing this quasi-likelihood
provides consistent parameter estimates for the multivariate model. How-
ever, the standard errors based on the corresponding Hessian matrix are bi-
ased. The same authors proposed a sandwich estimator for the covariance
matrix to correct for the bias (Liang and Zeger, 1986). Another method for
obtaining correct standard errors is to apply a clustered bootstrap method
(Sherman and Le Cessie, 1997; De Rooij and Worku, 2012; Cheng et al.,
2013). In this case, the re-sampling procedure is applied on the subject
(cluster) level so that the correlation between the multivariate responses is
retained in each bootstrap sample.

The number of independent parameters estimated in the MLD model,
q, equals

q = [M × (p+ 1)] + [(J −M)× 2]. (10)

The first term in (10), i.e., [M × (p + 1)], corresponds to the number of re-
gression coefficients; the other term to the number of estimable class points.
The identifiability constraints are accounted for in the second term, i.e., in
each dimension the class coordinates for a single response variable are set
to fixed values.
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The MLD model can be fitted using the NLMIXED procedure in SAS
software (SAS Institute Inc., 2011). Scripts for the analyses in this paper are
available upon request from the first author.

2.4 The Relationship of the MLD Model to Generalized Estimating
Equations

By setting the distance between the two categories of every response
variable to be equal to one, i.e., (γ1j,m − γ0j,m) = 1, the MLD model
becomes equivalent to a marginal model for multivariate binary data esti-
mated using GEE method (Liang and Zeger, 1986). The restriction of the
class points implies that predictor variables discriminate equally well for all
response variables belonging to a specific dimension. Existing statistical
packages with a GEE procedure (e.g., the genmod procedure from SAS or
the geepack package from R) can be used for fitting this “restricted” MLD
model on multivariate binary data.

Fitting the restricted MLD model using a GEE procedure involves
a three-step approach: (1) construction of a design matrix for both the re-
sponse and the predictor variables; and (2) applying the GEE method with
the constructed design matrix; and (3) transforming the GEE parameters to
MLD parameters. We now show construction of the design matrix using the
example presented in Table 1.

Suppose we want to fit a 2-dimensional model on the five binary re-
sponse variables. Further, suppose we like the first three response variables
to be represented on the first dimension, and the fourth and the fifth on the
second dimension. Therefore define a response indicator matrix, denoted by
Z, with dimension (J × M). The response indicator matrix specifies for
each response variable to which dimension it pertains, with position (j,m)
equal to one if the j-th response variable belongs to them-th dimension and
zero otherwise. For the structure layed-out above,

Z =

⎡
⎢⎢⎢⎣
1 0
1 0
1 0
0 1
0 1

⎤
⎥⎥⎥⎦. (11)

The design matrix for subject i is then obtained by computing the
Kronecker product between the response indicator matrix and the predictors
vector (without intercept), Ui = Z⊗ xTi , such that

Ui =

⎡
⎢⎢⎢⎣
xi1 xi2 . . . xip 0 0 . . . 0
xi1 xi2 . . . xip 0 0 . . . 0
xi1 xi2 . . . xip 0 0 . . . 0
0 0 . . . 0 xi1 xi2 . . . xip

0 0 . . . 0 xi1 xi2 . . . xip

⎤
⎥⎥⎥⎦ . (12)
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We concatenate Ui and the identity matrix to get the final design matrix,
Si = [Ii,Ui],

Si =

⎡
⎢⎢⎢⎣

1 0 0 0 0 xi1 xi2 . . . xip 0 0 . . . 0
0 1 0 0 0 xi1 xi2 . . . xip 0 0 . . . 0
0 0 1 0 0 xi1 xi2 . . . xip 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0 xi1 xi2 . . . xip

0 0 0 0 1 0 0 . . . 0 xi1 xi2 . . . xip

⎤
⎥⎥⎥⎦ .

Then, a vertical concatenation of all Si matrices will give us the final design
matrix S on which the GEE method is finally applied to obtain parameter
estimates of the marginal model. This results in five response specific in-
tercepts (β∗

01, . . . , β
∗
05) corresponding to the first five columns of S and two

sets of p regression weights (β∗
11, . . . , β

∗
p1 and β∗

12, . . . , β
∗
p2). The MLD pa-

rameters can be derived from these as follows γ0j,m = −(β∗
0j + 0.5) for the

dimension, m, to which disorder j belongs, zero otherwise. The regression
weights βjm are equal to the regressionweights obtained fromGEEmethod,
βjm = β∗

jm. The number of parameters in the “restricted” MLD model then
becomes q = [M × (p + 1)] + (J − M) since additional constraints are
imposed on the class points.

2.5 Model Selection

In statistical analysis, we often select a parsimonious and best fitting
model from a set of candidate models given the data. In the MLD model, we
select not only predictor variables for the final model, but also the dimen-
sionality of the model must be determined.

Pan (2001) proposed the quasi-likelihood under the independence
model criterion (QIC) as an extension of Akaike Information Criterion (AIC)
to GEE:

QIC = −2L(θ) + 2 trace(Ω̂
−1
I V̂R), (13)

where V̂R stands for robust variance estimator obtained under the assump-
tion of a general “working” covariance structure R; and Ω̂ is for the naive
variance estimator obtained under the assumption of an independence corre-
lation structure. Pan (2001) also proposed a simplified version of QIC when

trace(Ω̂
−1
I V̂R) ≈ trace(I) = q, i.e.,

QICu = −2L(θ) + 2q.

Yu and De Rooij (2013) studied the performance of QICu for de-
termining the dimensionality of the Trend Vector Model (TVM). Both the
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Trend Vector model and the MLD model are marginal models in a distance
framework, where the first is used for longitudinal multinomial response
variables and the latter for multivariate binary responses. Yu and De Rooij
(2013) recommended QICu for determining the dimensionality of the dis-
tance model.

In the MLD model, we use QICu fit statistics both for determining the
dimensionality of the model and for variable selection. The model with the
lowest QICu statistics is considered the most parsimonious and best fitting
model. As recommended in Yu and De Rooij (2013), we first determine the
dimensionality of the model and then proceed to the variable selection.

2.6 Biplot for the Multivariate Logistic Distance Model

To enhance interpretation of the model, the results of a MLD model
can be graphically represented in a biplot (Gabriel, 1971; Gower and Hand,
1996; Gower et al., 2011). The biplot represents the subjects, the response
variables, and the predictor variables so that the relationship between pre-
dictors and responses can be read from the graph. We first demonstrate how
the response variables are included in the biplot, and then the predictors.

For a 2-dimensional MLD model the coordinates for a response vari-
able are given by

γj =

[
γ0j,1 γ0j,2
γ1j,1 γ1j,2

]
.

Because each response is positioned on one and only one dimension, one of
the columns in γj equals zero. So, γj represents two points either on the
first or second dimension. Halfway between the two points, a decision line
is drawn indicating equal probabilities for the two categories of a response
variable. Due to these lines (horizontal for response variables on the second
dimension and vertical for response variables on the first dimension), the
two dimensional space is partitioned into rectangles, each representing a
most probable response profile.

The predictors are included in the biplot by variable axes (Gower and
Hand, 1996). To derive the variable axis, first, a pseudo-design matrix X̃
is constructed containing ones in the first column and zeros in the other
columns except for the column representing the variable to be plotted. In
this column, marker values are included within the range of the observed
variable. Second, the matrix B with regression weights is defined, i.e.

B =

[
β01 β02
β1 β2

]
.

Finally we can compute the matrix H as

H = X̃B,
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defining a straight line in our biplot. We will include variable axes for every
statistically significant predictor. Positions of the subjects are computed as
the linear combination of predictor variables and are included in the biplot
as points.

3. Application: The NESDA Data

To illustrate the MLD model, the NESDA data (Penninx et al., 2008)
introduced earlier were analysed. The sample comprised ofN = 2, 938 sub-
jects aged 18 to 65 years (Mean = 42; S.D. = 13.1). About 66.5% were
female and the average number of years of education attained was 12.2 with
S.D. = 3.3. In this study, 37.1% of the subjects have major depressive disor-
der (MDD), 10.2% have dysthmia (DYST), 15.3% have generalized anxiety
disorder (GAD), 22.4% have social anxiety disorder (SP), and 28.6% have
panic disorder (PD). These five disorders are the response variables.

The predictors are Neuroticism (N), Extraversion (E), Openness to ex-
perience (O), Agreeableness (A), and Conscientiousness (C). We also took
into account three background variables, i.e., age (AGE), years of education
attained (EDU), and gender (GEN: 1 = female; 0 = male). The linear
predictor part of the MLD model is

ηim = β0m + β1m(AGE)i + β2m(EDU)i + β3m(GEN)i
+ β4mNi + β5mEi + β6mOi + β7mAi + β8mCi,

where ηim is a coordinate for the i-th subject position on the m-th dimen-
sion; and the β’s are regression weights. The candidate MLD models fitted
on the NESDA data are

(1) “distress-fear” (d/f) dimensions, in which MDD, GAD, are DYST are
presumed to be indicators of distress, and PD and SP for fear;

(2) “depression-anxiety” (d/a) dimensions, in which MDD and DYST are
indicators of depression, and GAD, PD, and SP for anxiety;

(3) “unidimensional” where all the five mental disorders are indicators of
a single dimension.

These three theories are then translated into the following indicator
matrices:

Z(1) =

⎡
⎢⎢⎢⎢⎣

1 0
1 0
1 0
0 1
0 1

⎤
⎥⎥⎥⎥⎦, Z(2) =

⎡
⎢⎢⎢⎢⎣

1 0
1 0
0 1
0 1
0 1

⎤
⎥⎥⎥⎥⎦, Z(3) =

⎡
⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎦, (14)

respectively. The superscript corresponds to a theory.
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Table 2. Results of fitting different MLD models to NESDA data. In the first block, dimen-
sionality of the MLD model is assessed, and followed by variable selection in the second
block.

Model Dimension Predictors q QICu

Model Selection for Dimensionality
1 2 (d/f)† All 21 12, 396.42

2 2 (d/a)‡ All 21 12, 398.08
3 1 All 13 12, 418.87

Model Selection for Predictors
1a 2 (d/f) All 21 12396.42
1b 2 (d/f) AGE,EDU,GEN,N,E 15 12396.68
1c 2 (d/f) AGE,EDU,GEN 11 14789.41

† d/f: distress/fear model.
‡ d/a: depression/anxiety model.

For illustration, we fitted both the MLD model with and without im-
posing equal distance restrictions on the class points. The results of the
MLD model with the restrictions will be presented first, thereafter the solu-
tion without the restrictions will be discussed.

Table 2 shows the fit statistics of the candidate MLD models. As
shown in the first block of Table 2 which compares different dimensional-
ity, the 2-dimensional distress-fear (d/f) model fitted the data best (QICu =
12, 396.42). In the second block of Table 2, fit statistics for the compari-
son of different sets of predictor variables are given. The model with all
predictor variables fitted the data best (QICu = 12, 396.42).

The regression weights of this selected model are given in Table 3.
The standard errors based on both the sandwich and the clustered bootstrap
method are included in Table 3. Both methods resulted in similar estimates.

There is a strong positive association between neuroticism and the
two dimensions: β̂41 = 0.1167 with distress; and β̂42 = 0.1039 with fear.
With every unit increase in neuroticism the log odds for MDD, DYST, and
GAD go up by 0.1167 while the log odds for SP and PD go up by 0.1039.
There is a moderate negative association between extraversion and the two
dimensions: β̂51 = −0.0419 with distress; and β̂52 = −0.0320 with fear.
With every unit increase in extraversion the log odds for MDD, DYST, and
GAD go down by 0.0419 while the log odds for SP and PD go down by
0.0320. From the background variables, only education has a statistically
significant effect on both dimensions: β̂11 = −0.0386 with distress; and
β̂12 = −0.0575 with fear. Less educated people have a higher risk of getting
a mental disorder. The variable conscientiousness had a significant effect
only on the second dimension (distress), β̂82 = 0.0189, i.e. it only influences
PD and SP.
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Table 3. Summarized results of the final “distress-fear” MLD model fitted on NESDA data.
Restriction was applied on the class points, and thus it is a restricted MLD model. The
reported standard errors are based on both sandwich and clustered bootstrap methods. The
number of bootstraps, B = 1000.

Bootstrap
Effect Parameter Estimate SE (sandwich) SE Wald

Distress dimension
Education† β11 −0.0386 0.012 0.012 10.06
Gender β21 −0.1346 0.081 0.081 2.79
Age β31 0.0012 0.003 0.003 0.15

Neuroticism† β41 0.1167 0.006 0.006 413.84
Extraversion† β51 −0.0419 0.007 0.007 39.43
Openness to Experience β61 −0.0031 0.007 0.008 0.17
Agreeableness β71 −0.0074 0.008 0.007 1.03
Conscientiousness β81 −0.0071 0.007 0.007 1.06

Fear dimension
Education† β12 −0.0575 0.012 0.011 26.18
Gender β22 0.0229 0.082 0.083 0.08
Age β32 −0.0008 0.003 0.003 0.08

Neuroticism† β42 0.1039 0.006 0.006 335.26

Extraversion† β52 −0.0320 0.007 0.006 25.56
Openness to Experience β62 0.0008 0.008 0.008 0.01
Agreeableness β72 −0.0003 0.008 0.008 0.00

Conscientiousness† β82 0.0189 0.007 0.007 6.72

† statistically significant effect, p < 0.05.

Although the total number of parameters of the final d/f model is q =
21, only sixteen of the parameters were displayed in Table 3. The others
are the intercepts obtained from GEE method which are response-specific,
i.e., βMDD

01 = −2.23, βGAD
02 = −3.73, βDYST

03 = −4.28, βPD
04 = −3.74, and

βSP
05 = −4.14. Using γ0j,m = −(β∗

0j + 0.5) as shown in Section 2.4 and
γ1j,m = 1 + γ0j,m, the class point coordinates for each response variable
can be obtained. Thus, γ01,1 = 1.73 for MDD, γ02,1 = 3.23 for GAD,
γ03,1 = 3.78 for DYST, γ04,2 = 3.24 for PD, and γ05,2 = 3.64 for SP.
We can use the estimated class points to compare the effect of predictors
on the risk of developing disorders belonging to the same dimension. For
example, MDD, DYST and GAD belong to the first dimension. Because
γ03,1 = 3.78 for DYST is larger than both γ01,1 = 1.73 for MDD and
γ02,1 = 3.23 for GAD, it means that starting from a very low subject position
on the first dimension and then increasing this position will first lead to
higher probabilities of MDD, followed by GAD, and than for DYST. The
model accounts for comorbidity because a high probability of DYST implies
a high probability of GAD and MDD.
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Figure 1. Biplot of the final “distress-fear” model fitted on the NESDA data. The plot is
based on restrictions applied on the class points.

The results of the selectedMLDmodel are displayed in a biplot shown
in Figure 1. In order to interpret the biplot, let us first discuss how the bi-
plot was constructed. The biplot is composed of two parts, i.e., the response
space and the variable axes, as shown in Figures 2 and 3, respectively. The
positions of the two categories of all response variables are displayed in
Figure 2. For example, on the vertical dimension there are four points cor-
responding to no PD, no SP, having PD, and having SP from the bottom
to the top, respectively. Included in the same representation are decision
lines (vertical and horizontal lines) crossing the mid-points between the two
categories. The decision lines partition the two-dimensional space into rect-
angles (regions), each representing a most probable response profile.

Each region shows the disorder profile by 1’s and 0’s for the order
MDD, GAD, DYST, PD, SP. An index ‘10011’, for example, corresponds to
the presence ofMDD, PD, and SP, but the absence of GAD and DYST. In the
top-right, an index of ‘11111’ is used to represent a co-morbidity of all five
mental disorders, while the region ‘00000’ in the bottom left representing
the absence of disorders.

In Figure 3, both the variable axes (lines) and the subjects points (grey
dots) are displayed. The space includes only statistically significant predic-
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Figure 2. Representation of the binary response variables in the Euclidean space.

Figure 3. Variable axes representation of the predictor variables in the Euclidean space.
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tors. On the variable axes markers are placed that represent μx± tσx, where
μx is the mean of x, σx is the standard deviation, and t = 0, 1, 2, 3. Variable
labels are included at the positive side of the variable axis.

Let us now interpret the biplot displayed in Figure 1. Most of the sub-
jects are in the bottom left region representing absence of all the disorders.
However, significant number of subjects are in other regions representing
co-morbidity of mental disorders. The regions are ‘10000’ corresponding to
the presence of having only MDD; and ‘10010’ corresponding to the pres-
ence of having both MDD and PD; ‘10011’ corresponding to the presence
of having MDD, PD, and SP; and, ‘11011’ corresponding to the presence of
all disorders, except DYST. Also a few subjects are in the upper right region
having all the mental disorders.

Now let us interpret the variable axes. The variable axis for Neuroti-
cism (N) runs from the lower left (low values of neuroticism) to the upper
right (high values of Neuroticism), indicating that persons with low values
of Neuroticism are located in the ‘00000’ region, whereas persons with very
high values of neuroticism are located in the ‘11111’ region. In short, the
higher neuroticism the more disorders. Contrarily, the variable axes of ex-
traversion points to the other direction.

The length of the variable axis indicates effect size; the longer the
variable axis the larger the effect of the corresponding variable on the disor-
ders.

The angle between the variable axis and the dimension measures the
strength of their association. The smaller the angle between them, the
stronger the association. For example, the angle of the extraversion vari-
able axis with the first (horizontal) dimension is relatively small compared
to the angle of extraversion with the second dimension. This indicates that
extraversion has a larger effect on the disorders represented on the first di-
mension (MDD, DYST, and GAD) than on the disorders presented on the
second dimension (PD and SP). The angle of neuroticism with both dimen-
sions is about equal, although a bit smaller with the first dimension, indicat-
ing that the relationship of neuroticism with the disorders on the first dimen-
sion (MDD, GAD, and DYST) is slightly stronger than with the other two
disorders. The variable conscientiousness is highly correlated to the second
dimension and not to the first as its variable axis is orthogonal to the first
dimension.

Finally, there is a strong correlation between the estimates of the sub-
ject points in the two dimensions, corr(η̂i1, η̂i2) = 0.99, indicating that the
distress and fear dimensions are strongly correlated.

We now present the results of MLD model that does not impose re-
striction on the class points, i.e., the “unrestricted” MLD model, to address
specifically the extra information from this model. The regression esti-
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Table 4. Regression weights of the final unrestricted “distress-fear” MLD model fitted on
NESDA data. The number of bootstraps used to obtain standard errors equals 1000.

Bootstrap
Effect Parameter Estimate SE Wald

Distress dimension
Education† β11 −0.0203 0.006 11.45
Gender β21 −0.0685 0.042 2.66
Age β31 0.0004 0.001 0.16

Neuroticism† β41 0.0605 0.004 228.77

Extraversion† β51 −0.0226 0.004 31.92
Openness to Experience β61 −0.0020 0.004 0.25
Agreeableness β71 −0.0037 0.004 0.86
Conscientiousness β81 −0.0041 0.004 1.05

Fear dimension
Education† β12 −0.0202 0.005 16.32
Gender β22 0.0005 0.033 0.00
Age β32 −0.0007 0.001 0.49
Neuroticism† β42 0.0424 0.003 199.75

Extraversion† β52 −0.0141 0.003 22.09
Openness to Experience β62 0.0000 0.003 0.00
Agreeableness β72 0.0003 0.003 0.01
Conscientiousness† β82 0.0067 0.003 4.99

† statistically significant effect, p < 0.05.

mates are shown in Table 4. The estimates obtained from the “unrestricted”
MLD model are slightly different compared to results obtained from the “re-
stricted” MLD model fitted on NESDA data (shown in Table 3). However,
both results lead to the same conclusion about significance of predictors,
which is also indicated by the “Wald” statistics displayed in the last column
of both tables. The class points for MDD are fixed for identification on the
first dimension, i.e. the coordinates are 0 for no MDD and 1 for MDD.
Similarly, the coordinates of PD on the second dimension are fixed to 0 for
absence and 1 for presence of the disorder. The other parameters are the
class points, i.e., γ02,1 = 0.96 and γ12,1 = 1.73 for GAD; γ03,1 = 1.10 and
γ13,1 = 1.99 for DYST; and, γ05,2 = −0.25 and γ15,2 = 1.28 for SP. The
distance between the two category points is 0.77 for GAD, 0.89 for DYST,
and 1.53 for SP.

This unrestricted MLD model provides additional information about
how well the predictors can discriminate between the response categories.
According to equation (8), the effect of the predictor variables on each re-
sponse is partially determined by the distance between class points of the
response variable. The larger the distance between the class points of a re-
sponse variable, the better the predictor variables are able to discriminates
between the categories. In the fitted model, both DYST and GAD are posi-
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tioned on the first dimension; because the distance for DYST (0.89) is larger
than the distance for GAD (0.77), the effect of the predictor variables on
DYST is stronger.

4. Conclusion and Discussion

We proposed a multivariate logistic distance (MLD) model for ana-
lyzing multivariate binary data that extends existing marginal models in a
distance framework. The distance model for a single response variable was
extended to analyzing multivariate binary data in the presence of predic-
tors. The advantage of the MLD model over existing marginal model for
multivariate data, is the possibility for dimension reduction as a form of reg-
ularization which simplifies the complexity of standard multivariate GLM
model because less parameters are estimated. Moreover, using this dimen-
sion reduction substantial theories can be represented and investigated.

We have shown applications of both the “restricted” and the “unre-
stricted” MLD models using an empirical data set. The former MLD model
imposes a restriction on the class points and the latter model does not. The
“restricted” MLD model is equivalent to a marginal model for multivari-
ate binary data estimated using GEE method, which is an advantage for our
model because existing software package developed for GEE can be adopted
to fit the MLD model. For the unrestricted case, the MLD model is a general
model and can be fitted by its own right. The general MLD model provides
us with additional information about how well the predictors can discrimi-
nate between the categories of the response variable.

The MLD model has a clear interpretation where both the odds ratio
expressions as well as the biplot representation can be used. The space in
the biplot is partitioned into different regions that indicate the most probable
response profile. It is important to note that the assumption of which re-
sponse variables belong to which dimension has a crucial impact on which
regions might occur. In a unidimensional model there are maximal 6 re-
gions, whereas in the two dimensional solution in Figure 2 there are 12
regions. Having 5 response variables, a total of 32 different profiles can
be defined. In a five dimensional model all these 32 profiles are present.
Dimension reduction thus reduces the number of most probable response
profiles. Moreover, the regions also account for comorbidity. In the solution
of Figure 2 there is never a response profile where MDD is absent and DYST
and GAD are present. Similarly, if PD is present then also SP is present in
the response profile. Notice, however, that the model is a probability model
not a deterministic model. So, a response profile is most probable but the
model does not say that in that region only a profile must occur.

The effect size of predictor variables can be read from the biplot by
the length of the variable axis. The longer the variable axis the stronger the
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effect. The differential effect on the two dimensions can be read from the an-
gle of a variable axis with the dimension. The smaller the angle the stronger
the effect. If a variable has a 90o angle with a dimension, the variable has
no effect on the disorders belonging to that dimension.

The MLD model is related to Canonical Correspondence Analysis
(CCA), as proposed by Ter Braak (1986), which is a multivariate method
used for ordination axes that maximizes the separation among the multivari-
ate binary responses (Ter Braak, 1986; Ter Braak and Verdonschot, 1995).
There are two main differences between CCA and our model. The first is
that these models work in different framework, i.e., the MLD model in a
logistic framework where as CCA in a Gaussian framework. Due to this dif-
ference, the MLD can provide a clear interpretation in terms of (log)-odds
and probabilities. The second is that unlike in CCA, the MLD model can
position responses (e.g., mental disorders) on certain dimensions driven by
the theories that we would like to test.

In areas like psychology, epidemiology, criminology, economics, po-
litical sciences, etc, researchers often use Structural EquationModels (SEM)
for the analysis of data similar to the NESDA data (Plewis, 1996; Von
Oertzen et al., 2010; Spinhoven et al., 2013). Despite its popularity, SEM
has limitations as it makes unverifiable assumptions about the underlying
distributions of latent as well as observed variables. Moreover, SEM of-
ten suffers from improper solutions, non-convergent solutions, and the pre-
dicted factors are not determinate, i.e., for the same number of response
variables multiple solutions can be obtained for the underlying latent vari-
ables. Therefore, they cannot be uniquely identified (Acito and Anderson,
1986; Boomsma and Hoogland, 2001; Hubbard et al., 2010). In the appli-
cation section, we showed that the MLD model can be used for comparing
theories of interest, without making unverifiable assumptions about under-
lying distributions.

Asar and Ilk (2013) proposed marginal model with shared-parameter
within the GEE method (Asar and Ilk, 2013). To compare with our MLD
model, they use the five dimensional model where each response variable
pertains to a unique dimension. Then, they incorporate equality restrictions
for certain predictors over different dimensions, giving a so-called shared
parameter. In the restricted MLD model the regression weights are shared
for all response variables belonging to a specific dimension.

Although our focus was on binary data, the model can be extended to
polytomous data. Where for binary data there are two class points on each
dimension for polytomous data there are multiple class points. Interpreta-
tion follows largely the binary model, although in the ordinal case we can
derive odds ratios for every contrast of two categories of a response variable.
These are formed by the difference of class points coordinates, just like in
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the binary case. The polytomous situation, however, is often more compli-
cated than the binary one. The binary model for every response variable
is by definition unidimensional, which is not the case for polytomous data.
Therefore, the polytomous case needs further study.

We developed a package (an alpha version) in R, the mldm package,
for fitting the MLD model on multivariate binary data in the presence of
predictors. The package handles both the clustered bootstrap method and
the sandwich estimators for correcting standard errors of model parameters.
The package provides a biplot function for the fitted model. We also have
SAS scripts for fitting the models. The first author can provide the package
or the script upon request.
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