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We investigate the large length and long time scales collective flows and structural rearrangements
within in vitro human bronchial epithelial cell (HBEC) cultures. Activity-driven collective flows result in
ensembles of vortices randomly positioned in space. By analyzing a large population of vortices, we show
that their area follows an exponential law with a constant mean value and their rotational frequency is size
independent, both being characteristic features of the chaotic dynamics of active nematic suspensions.
Indeed, we find that HBECs self-organize in nematic domains of several cell lengths. Nematic defects are
found at the interface between domains with a total number that remains constant due to the dynamical
balance of nucleation and annihilation events. The mean velocity fields in the vicinity of defects are well
described by a hydrodynamic theory of extensile active nematics.
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The collective dynamics of cellular systems has gathered
increasing attention over the last decades [1], inspiring
experimental, theoretical, and numerical studies in an
attempt to unravel the underlying physical principles.
Single cells are able to convert chemical energy into
mechanical forces [2], allowing them to move and modify
their local microenvironment [3]. At the multicellular level,
these forces are transmitted over tens of cell lengths [4],
driving nonlocal cellular flows [5], which self-organizes into
a vast range of patterns [6–13]. The large-scale behavior of
highly active epithelial monolayers often features signatures
of erratic motion [11,12]; however, whether these can be
attributed to the intrinsic cellular stochasticity or to some
form of collective modes in a turbulent regime remains an
open question. Other biological systems like bacterial
colonies or suspensions of cytoskeletons’ filaments exhibit
chaotic dynamics [14–17]. Despite differing in length, time,
or energy scales, these systems are often qualitatively
described by continuum models [5]. Turbulence in active
matter has been reported in Toner-Tu models [15,18],
generalized Swift-Hohenberg models [19], and active nem-
atic [20–23] and polar [24,25] gels. In particular, recent
theoretical findings have established the characteristic fea-
tures associated with active nematic turbulence [21], namely,
the spatial organization of the turbulent flows is determined
by an intrinsic length scale, the area of vortices defined by
the collective flows follows an exponential law, and the
rotational frequency of vortices is independent of their size.
However, these theoretical developments have not yet been
accompanied by experimental studies in cellular systems.
In the present Letter, we report the existence of a

turbulent regime in human bronchial epithelial cells
(HBECs) over three decades in kinetic energy, and we

show that our findings are in agreement with an hydrody-
namical model of an active nematic fluid.
We study experimentally the nematodynamics of immor-

talized HBEC monolayers and its time evolution. Contrary
to other epithelial cell lines, HBECs are weakly cohesive at
the initial stages, meaning that when cells fully cover the
substrate, they are still highly motile and exhibit long-range
collective movements [26,27]. The system gradually slows
down approaching asymptotically a jammed state after
∼60 h, in which cells hardly move beyond their own
sizes [26].
At the intermediate time regimes (∼20 h), HBECs form a

cohesive monolayer, showing large-scale collective move-
ments [Fig. 1(a)]. Mapping the velocity field (vx, vy) [28],
we observe large and transient vortices, which show no
apparent sign of spatial organization [Fig. 1(b)]. To quantify
the global properties of cell flows, we define the in-plane
enstrophyΩ ¼ hω2=2i as the square of the 2D vorticity field
ω ¼ ∂xvy − ∂yvx and the in-plane kinetic energy per unit
mass E ¼ hðv2x þ v2yÞ=2i, where the symbol h·i denotes
spatial averages. The squared root of E=Ω has units of
length, which is roughly half of the mean vortex radius la
[15]. The vortex area is quantified using the Okubo-Weiss
criterion [29,30], which identifies the elliptic regions around
vortices for which the field Q ¼ − det∇v < 0 as shown in
Fig. 1(d). For incompressible flows, this implies that the
velocity gradient tensor has a pair of purely imaginary
conjugate eigenvalues [29,30].
Single HBECs are round shaped, but when crowded, they

deform and acquire elongated shapes (see Supplemental
Material Figs. S1–S3 in [31]). The anisotropy of the shapes
allows us to determine a local nematic orientation described
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by the unit vector ðn̂x; n̂yÞ (Fig. S1 in [31]). Cells self-
organize into transient mesoscopic nematic domains, sepa-
rated by pairs of �1=2 defects [Fig. 1(c)]. The position and
orientation of þ1=2 (respectively, −1=2) defects are labeled
by a green (respectively, red) symbol in Fig. 1(c) [32]. The
cell shape anisotropy may be related to the cellular force-
generation machinery [35].
Over the course of the experiment, cells proliferate,

increasing their surface density. As a result, the energy and
enstrophy exponentially decrease with time over more than
three decades [Fig. 2(a)]. The inverse of the squared root of
the enstrophy Ω−1=2 defines a characteristic timescale for
the instantaneous dynamics of the system, allowing us to
average over different experiments. From Fig. 2(a), we
conclude that Ω−1=2 increases from 0.3 to 8 h, while the
collective cell dynamics itself slows down with a typical
timescale of ∂tΩ=Ω ∼ 10 h [Fig. 2(a)]. Up to the first 40 h,
the separation of these two timescales suggests that
the material properties of HBECs are changing adiabati-
cally. Unless otherwise stated, we focus our analysis on this
time interval.
Based on the organization of HBEC monolayers, we

hypothesize that HBECs behave as active nematic liquid

crystals. Theoretical work has showed that the dynamics of
active nematics is controlled by a characteristic length scale
la ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

K=jαjp

, with K as the Frank elastic constant of the
nematic phase and α as the active stress, resulting from the
balance between active and passive forces [21]. When la is
much smaller than the system size, the flow organizes in an
ensemble of vortices of average vorticity ωv ∼ α=η, with η
as the shear viscosity, and whose area A is exponentially
distributed, i.e., PðAÞ ∼ expð−A=hAiÞ, with hAi ∼ l2

a. In
turn, the nematic director is decomposed in domains of
average size la surrounded by �1=2 disclinations. As a
consequence of this underling structure, Ω ∼ ω2

v and
E ∼ ω2

vl2
a, thus E=Ω ∼ l2

a [21].
Figure 2(b) shows the measured values of energy and

enstrophy over the course of the experiment. The ratio E=Ω
changes only slightly, consistent with a slight increase of
the average vortex size la from 44� 2 to 55� 2 μm. This
may suggest that the time variation of the Frank constant K
and the active stress α are very limited. On the other hand,
the decay in enstrophy, Fig. 2(a), implies, under the
assumption that α remains constant, that the shear viscosity
η increases by more than a decade. Such an increase in
viscosity could be caused by the incipient jamming of the
cellular fluid [36–38], as well as by the maturation of cell-
cell contacts [26,27].
To determine the probability distribution of the vortex

area A and their rotational frequency ωv, we proceeded by

FIG. 1. Nematodynamics of HBEC monolayers. (a) Phase
contrast image. (b) Normalized vorticity map with the particle
image velocimetry flow field illustrating the collective behavior.
(c) Cell orientation map with green (respectively, red) dots
marking the position of þ1=2 (respectively, −1=2) defects.
(d) Map of the Okubo-Weiss field thresholded to negative values
(i.e., Q < 0 in the text) where blue (respectively, red) domains
indicate clockwise (respectively, counterclockwise) rotation.
Scale bar is 300 μm.

FIG. 2. Statistical analysis of the dynamics of mesoscopic cell
flows. (a) Log-linear representation of the time evolution of
enstrophy Ω and kinetic energy per unit mass E. (b) Linear
scaling between Ω and E over the entire experiment. (c) Log-
linear representation of the total vortex area probability density
distribution (PDF). The dotted line is an exponential fit. (d) The
mean vorticity per vortex normalized by Ω1=2 as a function of the
vortex area. CW stands for clockwise and CCW for counter-
clockwise rotation.
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first verifying that their functional form did not change over
the course of the experiment (Fig. S4 in [31]). Hence, we
analyzed about 10000 independent vortices and found that
the vortex area distribution is exponential with a mean
value of 1120 μm2 [Fig. 2(c)], which is on the order of the
energy-enstrophy ratio. In addition, we observe a slight
decrease of the distribution of the mean vorticity per vortex
ωv=Ω1=2 with the vortex area [Fig. 2(d)]. At the accuracy of
the experiment, the rotation of vortices is evenly distributed
between clockwise and counterclockwise (Fig. S4 in [31]).
Altogether, we show that the area of vortices is exponen-
tially distributed and that the mean vorticity per vortex is
approximately size independent. The presence of both
features together are a clear signature of turbulence in
active nematics [17,21].
To further validate the active nematic nature of our

cellular cultures, we analyze the statistical properties of
cell orientation. HBECs tend to form transient finite-size
domains with high orientational order [Fig. 1(c)] [31]. The
typical domain size is given by the nematic correlation
length lc or the decaying length of the director correlation
function Cn ¼ hn̂ðx0 þ x; y0 þ yÞ · n̂ðx0; y0Þiðx0;y0Þ, where the
spatial average is over the entire field of view and n̂ denotes
the cell director. �1=2 defects, which are a hallmark of
nematic liquid crystals [39], are found at the interface
between these domains. Nematic arrangements were found
previously in cultures of fibroblasts, myoblasts, retinal
epithelial cells, neural progenitor cells, and kidney epi-
thelial cells [40–43]. In our system, we found that lc ∼
100 μm is comparable to the mean vortex size, with a slight
tendency to increase with time [Fig. 3(a)]. Remarkably, in
our system, the total number of defects decreases only
slightly from 77� 3 to 55� 2 upon a 100-fold variation of
the kinetic energy up to the first 40 h [Fig. 3(a)]. However,
unlike in previously described contractile cell monolayers
that are dominated by cell-substrate friction and eventually
behave as passive liquid crystals [41], in HBEC mono-
layers, the number of defects is set by the dynamical
balance of creation and annihilation events of defect pairs.
The rate of these processes, which is on the order ∼1=h,
decreases by a factor of 2 as tissue begins to jam [Fig. 3(c)].
These confirm altogether that the time variation of K and α
are very limited [20,21].
Analyzing the trajectories of individual defects at long

timescales (more than 1 h), we observe that the 2D mean
squared displacement (MSD) follows a power law with
an exponent close to 1, yielding an effective diffusion
coefficient of ∼ð34� 2Þ × 102 μm2=h with no apparent
quantitative differences between both types of defects
[Fig. 3(d)]. Note that, in these experiments characterized
by a high density of defects, the motion of individual
defects is largely controlled by the interactions with the
other defects [39]. As a result, the ballistic regime in the
mean squared displacement of þ1=2 defects is transient
and appears through a short-time superdiffusive behavior

[21] that we cannot observe here because of the limited
accuracy of our experiment. Interestingly, the direction
of the instantaneous flow field at the defect core indeed
reflects the symmetries of the local extensile nematic
arrangement near defects [inset of Fig. 3(d)].
Figure 3(b) shows the trajectories of the minimal dis-

tance Δ between two opposite-charge defects toward an
annihilation (blue) or away from a nucleation (red) event,
where time is set at the annihilation or creation instant.
Their trajectories have opposite but symmetrical profiles
[Fig. 3(b)], saturating over distances of 100 μm, which is
comparable to the nematic correlation length lc. The
resolution of our analysis does not allow us to resolve
the dynamics closer to the core of the defects. Despite the
collective nature of turbulence in active nematics, simple
theoretical arguments [44–46] suggest that the distance Δ
varies in time according to ∂tΔ ¼ �v0 − κ=Δ (up to
higher-order correction in Δ), where the positive (respec-
tively, negative) sign applies to the nucleation (respectively,
annihilation) case. The coefficient v0 stands for the self-
propelled velocity ofþ1=2 defects, whereas κ ¼ K=γ, with
γ as the rotational viscosity of the nematic [44–46]. By
fitting this equation on our trajectories from Fig. 3(b), we
obtain v0 ¼ 1.3� 0.2 μm=min and κ < 6 μm2=min, sug-
gesting that the nematoelastic interaction between defects is

FIG. 3. Statistical analysis of the cell nematic order parameter.
(a) Number of defects and nematic correlation length as a function
of Ω−1=2. We employ the enstrophy to label the time coordinate.
(b) Short-time dynamics of the minimal distance between two
opposed nematic defects near the nucleation (annihilation) instant
in red (blue). (c) Time evolution of the creation and annihilation
rates as a function of Ω−1=2. (d) Long-time dynamics of MSD of
nematic defects. The MSD curves are fitted by ∼Dtn. (Inset)
Distribution of the relative angle between the average velocity at
the defect core and the defect orientation.
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subdominant against the activity of þ1=2 defects for
HBEC monolayers.
To confirm the nematodynamic coupling of the system,

we analyze the local properties of cell flows around defects.
Here, we compute the average local director and velocity
fields for a population of ∼10000 nematic defects [31]
(Figs. 4 and S5 [31]). The vorticity map of þ1=2 defects
presents a symmetrical organization of a pair of counter-
rotating vortices [Fig. 4(a)], generating a net flow directed
towards the defect head, which is reminiscent of the
observations in Madin-Darby canine kidney and neural
progenitor cells [42,43]. This observation confirms that
HBECs behave as extensile nematics. Remarkably, the
vorticity map of −1=2 defects presents a threefold organi-
zation of pairs of counterrotating vortices [Fig. 4(b)]. These
observations are in excellent agreement with the flow field
of isolated defects in extensile active nematics [46]. In
addition, weak negative divergence is found near the cores
of both type of defects [Figs. 4(c) and 4(d)], which is not
captured by incompressible flows (i.e., ∇ · v ¼ 0). Unlike
in neural progenitor cells [43], this observation suggests an
accumulation of cells near both types of nematic defects.
In conclusion, we have shown that HBEC monolayers

develop 2D turbulent collective flows characterized by the
spontaneous emergence of mesoscopic vortices and nem-
atic defects over a wide range of kinetic energy. The
properties of cell flows and cell orientation are analyzed for
length scales of millimeters and timescales of a few days,
granting access to high statistics with which the predicted
behavior of active nematics is tested. Our findings show

that, regardless of the instantaneous cell density, the statistics
of vortices are compatible with the chaotic dynamics of
active nematics [21]. In particular, we show that the vortex
area distributes exponentially with a time-independent mean
value and the vortex rotational frequency is roughly size
independent. Furthermore, we analyze the spatiotemporal
dynamics of cell orientation and the interplay with the local
cell flows. We observe that HBEC monolayers exhibit
spontaneous formation and annihilation of pairs of nematic
defects of opposite charges, yielding an approximately
constant total number of defects. The vorticity of cell flows
near �1=2 defects is in excellent agreement with the flows
generated by isolated defects in active liquid crystals [21,44].
Therefore, prior to entering into the jamming phase, HBEC
monolayers behave as active nematics operating in a regime,
where the contractile active stresses α and the Frank constant
K are weakly density dependent, and the effective shear
viscosity η varies more than a decade. We believe that the
physical principles governing tissue mechanics can be
further explored by analyzing the statistical properties of
the spatiotemporal dynamics of cell cultures.
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