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1 Introduction

Translation symmetry breaking is ubiquitous in any condensed matter system, the ionic

lattice playing a fundamental role in almost every model attempting to describe realistic

matter. From the point of view of the electronic subsystem, the lattice is usually considered

as an external, explicit source of translation symmetry breaking. On the other hand,

many strongly coupled electronic systems tend to break translations spontaneously, forming

superstructures unrelated to the underlying ionic lattice. These include charge density

waves, spin density waves, various intertwined orders.

The spontaneous symmetry breaking always comes together with the appearance of

a gapless mode in the spectrum, the Goldstone boson, associated to the generator of the

broken symmetry. In the case of the spontaneously formed atomic crystal, these are known

as acoustic phonons, while in the context of the charge density wave the Goldstone is usually

referred to as a gapless sliding mode. If translations are not broken explicitly, momentum

is still conserved and the gapless mode mediates transport, thus ensuring that the currents

overlapping with momentum do not decay so that the corresponding DC conductivity is

infinite.1 The situation changes when the breaking of translations is explicit, due to an

atomic lattice or quenched disorder being taken into account. In this case, generically, the

Goldstone boson acquires a mass proportional to the strength of the explicit symmetry

breaking parameter and turns into a pseudo-Goldstone (the π-meson, Goldstone of the

1An elegant way of obtaining this result is given by the memory matrix formalism [1, 2]. See also [3] for

a recent field theoretic discussion of relativistic Goldstone modes associated to the breaking of translations.
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chiral symmetry breaking, being a familiar example of this effect). More concretely, when

the explicit breaking scale is small in comparison to the spontaneous symmetry breaking

scale, one can write down the leading terms in a gradient expansion of the dispersion

relation of the would-be-Goldstone boson as

ω2 = −iωΓ + ω2
0 + c2sq

2 + . . . (1.1)

where ω0 is the pinning frequency, or mass gap, Γ = τ−1rel is the damping parameter present

because of momentum relaxation, q is the momentum of the phonon and cs its speed. Note

that the gradient expansion is valid when {ω0,Γ, ω, q} � T . The ellipsis denotes higher

order dissipative terms due to various viscosities. Moreover, the phonon behaves as a long-

lived excitation when ω0 � Γ. It is in this regime when we can treat it in the hydrodynamic

approximation in a well-defined way. In absence of spatially dependent sources, both

the mass gap and damping are zero and one recovers the usual massless phonon with

linear dispersion relation. The pinning frequency is therefore proportional to the scale of

explicit symmetry breaking. Given that the existence of the Goldstone itself relies on the

spontaneous symmetry breaking, it should also be expected that the pseudo-Goldstone

mass is proportional to the order parameter of spontaneous symmetry breaking as well.2

The dynamics of the pseudo-Goldstone can be further quantified in the framework

of a gradient expansion. Before going further, let us summarize the results obtained in

models where translations are broken in one direction only, which will help us to analyze

the numerical results which we will obtain later on. More specifically, we will regard

the formulae coming from the 1D models as phenomenological, e.g. we are not assuming

that the various parameters that enter in these formulae have a precise mathematical

definition in our theory. Instead, we will take them as a qualitative guidance to interpret

our numerical results. As we shall see, all the qualitative expectations that follow from the

1D models are in good agreement with our results.

The nature of the gapped and damped phonon is directly reflected in the low frequency

structure of the optical conductivity. Our focus is the longitudinal optical conductivity

where the electric field is applied in the direction parallel to the direction of broken trans-

lational symmetry. This conductivity, in the presence of the charge density ρ takes the

following form [4, 5]3

σ(ω) = σ0 +
ρ2

χππ

(
−iω

−iω(Γ− iω) + ω2
0

)
, (1.2)

and can be extracted in the framework of gradient expansion which we briefly discuss in

appendix A. The first term σ0 is an independent first order transport coefficient which

appears in the constitutive relation for the current Jµ More information on the transport

of the system can be obtained by turning on a perturbation with finite wave vector qi and

2In case of the π-meson this is taken into account by the Gell-Mann-Oaks-Renner relation: M2
π ∼ mqσ,

where σ — the chiral condensate — is the order parameter of the spontaneous chiral symmetry breaking,

while mq — the quark mass — breaks chiral symmetry explicitly.
3In the case of Galilean invariance, σ0 = 0, the electric conductivity σ and related expressions have been

already derived in [6].
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study the momentum resolved current-current correlator. In this work, we consider the case

where the propagation direction is parallel to the single direction in which translational

symmetry is broken. It turns out that the pole of such two-point function is governed by

the mode with the dispersion relation (1.1) and, in absence of explicit symmetry breaking,

the propagation velocity of this longitudinal mode encodes the information regarding the

elastic modulus in the following schematic form

c2s = c20 +
κ

χππ
, (1.3)

where c0 is a function of thermodynamic quantities χππ is the momentum susceptibility4

and κ is the elastic modulus. Close to the phase transition κ vanishes and c0 is the speed

of sound in the translational invariant medium.

This expression conveys the fact that once translations are spontaneously broken, the

speed of sound acquires additional contributions which encode the elastic effects of a given

material. Note, however, that the formula (1.3) is derived for a system with broken trans-

lational symmetry in one direction as discussed in e.g. [5] which does not take into account

the helical structure in the example we considered.5 Nevertheless, (1.3) gives a good qual-

itative understanding of the physics around the phase transition and we will use it as a

practical tool to compare with our numerical results. In particular, we will see that the

speed of sound in our model has a kink below Tc, in good qualitative agreement with the

physics of a second order phase transition.

In case of the charge density wave with explicit symmetry breaking, the appearance

of a finite gap in the spectrum of the sliding mode means that it is “pinned” and cannot

freely propagate any more. This pinning introduces a gap in momentum transport and the

system undergoes a metal-insulator phase transition.

In this paper we study the pinning of Goldstone modes in a strongly coupled sys-

tem which has a holographic dual, taking advantage of the fact that generic properties of

strongly coupled phases in which translational symmetry is broken can be conveniently ac-

cessed in this class of models [7]. This endeavour amounts to the construction of black holes

which lack translational symmetry along the boundary directions, either spontaneously by

condensation, explicitly by the choice of the boundary conditions, or in a mixture of both

mechanisms. As we shall describe in detail below, we are able to reproduce the above ex-

pectations regarding the nature of the pseudo-Goldstone bosons summarized in (1.1)–(1.3).

Among the studies of purely spontaneous structures in holography we can mention

the formation of helices [8–10], charge density waves [11], helical superconductors [12]

and various types of striped orders [13–26]. The generic feature is that, as first noted in

the pioneering work of [8], below a certain critical temperature the Reissner-Nordström

4In the framework of [5], the momentum susceptibility is defined as T ti = χππv
i, where Tµν is the

stress-energy tensor and vi is the fluid velocity. In the relativistic fluid χππ = ε+ p, where ε and p are the

energy density and pressure of the system, respectively.
5It would be desirable to incorporate the symmetry of the helix in the constitutive relation and derive

e.g. the speed of sound and the Kubo formulae for the elastic moduli. We plan to revisit this issue in the

near future.
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(RN) solution exhibits near horizon instabilities with finite momentum which indicate the

emergence of a new branch of spatially modulated ground states.

Holographic models of explicit symmetry breaking have also been widely considered.

These include the study of metallic, insulating and superconducting phases alongside with

transitions amongst them [25, 27–43]. As a result of the explicit breaking of translations,

the DC conductivity is finite in all these models.

More recently, the interplay of the explicit and spontaneous breaking has been in-

vestigated in the holographic context [44–47]. The key aspect of these references is that

there are distinct mechanisms (and in particular, bulk fields) which trigger the spontaneous

breaking and allow for the introduction of explicit breaking, so, we can separately dial off

the explicit breaking while retaining the physics of the spontaneous structure.

All of the above models come in two broad classes, which can be identified depending

on whether the breaking of translations occurs in a generic way or along some particular

compensating symmetry direction. The former configurations are usually termed as “inho-

mogeneous”, and at the technical level they are characterized by the fact that the relevant

equations of motion are PDEs. On the other hand, the latter are known as “homoge-

neous”, and the resulting equations are ODEs.6 Remarkably, the simplified homogeneous

models capture most of the relevant physics, e.g. finite DC conductivities in the presence of

explicit symmetry breaking, although the appearance of commensurability effects requires

the system to be inhomogeneous [44, 45].

Here we will work with a model which belongs to the homogeneous class — the Bianchi

VII helix model [8–10, 27, 30, 50]. The distinctive feature of this setting is a particular

“helical” pattern of the symmetry breaking.7 Bianchy VII helix is realized in the model

with 3+1 dimensional boundary theory. In case of 3 spacial dimensions (x,y and z) one

can separate two commuting symmetry transformations: translation along the x-axis (with

generator Px) and rotation in the transverse (y, z)-plane (with generator Jyz). When the

helix (with pitch k) is formed, the direct product of these two symmetries is broken down to

the diagonal subgroup. While the normal state is invariant under the action of either Px or

Jyz, in the broken state only the combination Hk
+ = Px+kJyz remains a symmetry. In case

of the spontaneous symmetry breaking, one expects one Goldstone mode to arise due to the

broken orthogonal generator Hk
− = Px−kJyz. This Goldstone mode has nonzero projection

on Px, therefore we expect to find its manifestation in the spectrum of conductivity, which

overlaps with momentum.

The substantial technical simplifications, which we enjoy in the helical model are due

to the remaining diagonal symmetry subgroup, generated by Hk
+. It allows us to rewrite

the equations of motion as ODEs, making the analysis much easier. The price we pay is the

fact that translational symmetry breaking in this model is in practice unidirectional along

Px. Moreover, the technical advantages of the model would be immediately lost if one

considered propagation across the helix director, which would break the helical symmetry

6At the operational level, these share many similarities with the Massive Gravity model introduced

in [48], as explained in [49].
7It would be interesting to analyse this system from the coset construction point of view similar to [51] to

have a better understanding of the symmetry breaking pattern and the corresponding gapless excitations.
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generated by Hk
+. Hence, we will restrict our considerations to the longitudinal phonons

propagating along the helix: a direction in which the translational symmetry is broken.

We will construct numerically the fully back-reacted black holes which break transla-

tions spontaneously and obtain their spectra of quasi-normal modes (QNM), which via the

standard holographic dictionary [52] maps to the set of poles of the retarded correlators

of the dual field theory. When the symmetry breaking is purely spontaneous, we will find

a Goldstone mode which we identify with the phonon. Upon the introduction of a small

explicit breaking, we will confirm that the mode becomes pinned, i.e. its dispersion relation

being modified according to (1.1).8 In addition, we will consider the optical conductivity

of the corresponding black holes, and verify that at low frequencies it can be well approx-

imated by (1.2). Moreover, we will observe that the pinning induces a metal-insulator

transition due to the shift of the Drude peak to higher frequencies.9 Furthermore, as we

lower the temperature below the phase transition, we observe that the speed of sound cs
increases continuously from its translational invariant value, revealing a non-zero elasticity

modulus10 as can be seen from (1.3).

This paper is organized as follows: in section 2 we introduce our holographic model,

and study the background solution and the set of relevant perturbations. In section 3 we

analyze in detail the spectrum of QNMs and confirm the theoretical expectations within our

concrete model. Finally, in section 4 we conclude discussing our results and presenting some

possible future directions. In appendix A, we summarise the results from a hydrodynamic-

like effective theory and further elaborate on how they can be applied to our holographic

setup. In appendix B, we provide the technical details involving how to construct the

linearised perturbation equations. In C, we provide more explanations about the numerical

techniques involved in the computations.

Note added. While this work was being finished, refs. [60, 61], which studied interplay

between explicit and spontaneous symmetry breaking in different holographic models, were

also being completed and appeared on the arXiv on the same day as our article.

2 The holographic model

We consider the 5D setup of [8], which consists of an Einstein-Maxwell-Chern-Simons

model. As shown in [10], the system admits fully non-linear solutions which break transla-

tions purely spontaneously respecting Bianchi VII helical symmetry of given momentum k.

8Also in the holographic context, some authors have considered solutions that explicitly break trans-

lational invariance and interpreted the fluctuations of the corresponding structure as pseudo-Goldstone

modes [53–57].
9It should be emphasized that the state arising due to this transition cannot strictly speaking be classified

as an insulator since it lacks an insulating gap [58]. Instead, it belongs to the generic holographic class

of “algebraic insulators” where the conductivity vanishes at zero temperature as a power law, without

exponential suppression due to the finite gap. This particular feature will not play a significant role in the

present study.
10Previous discussions about the elastic properties in holography can be found in [55, 59] in the context

of massive gravity theories.
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We break translations explicitly as in [27] via the introduction of a helical source of am-

plitude λ for an additional vector field. For simplicity, we take the momentum of the

explicit helix to be equal to the spontaneous momentum k, since this allows us to reduce

all equations of motion to ODEs. It should be noted that the resulting configurations

will generically not be preferred in the grand canonical ensemble. To see this, we recall

from the results of [44] that helical lattices do not display commensurability effects in the

structure of the instabilities towards the formation of spontaneous symmetry breaking, so

that it is unlikely that the pitches of the explicit and spontaneous structures will lock at

the non-linear level. However, we expect these effects to be negligible for small enough

lattice amplitude, so our present analysis should indeed be adequate to shed light on the

mechanism of pinning of the Goldstone modes associated to translational invariance.

Denoting the gauge field by A and the additional vector field by B, with the strengths

F = dA and W = dB, we write our action as

S =

∫
d5x
√
−g
(
R− 2Λ− 1

4
F 2 − 1

4
W 2

)
− γ

6

∫
d5xA ∧ F ∧ F (2.1)

We fix the AdS radius to unity be setting Λ = −6. In the following, we shall consider γ = 1.7

to ease comparison with previous results in the literature. A similar model was considered

in [38], which focused on the condensation of a charged scalar instead of the spontaneous

breaking of translations. The UV asymptotics and relevant holographic renormalization

results can be read off from [38] and the earlier reference [10].

2.1 Background solutions

The configurations we study are of the form

ds2 =
1

u2

[
−Qttfdt2 +

Quudu
2

f
+Q11(ω

(k)
1 )2 +Q22(ω

(k)
2 +Qt2dt)

2 +Q33(ω
(k)
3 )2

]
(2.2)

A = Atdt+A2ω
(k)
2 , B = Btdt+B2ω

(k)
2 (2.3)

All the unknowns Qtt, Quu, Q11, Q22, Q33, Qt2, At, A2, Bt, B2 are functions of the single

variable u, which corresponds to the holographic coordinate. We take the basis of the

helical structure to be

ω
(k)
1 = dx (2.4)

ω
(k)
2 = cos(kx)dy − sin(kx)dz (2.5)

ω
(k)
3 = sin(kx)dy + cos(kx)dz (2.6)

It is worth mentioning that the gauge is not fully fixed in our ansatz, which can be

seen by noting that the equations of motion do not determine all the unknown functions.

We will fix this redundancy shortly.

We can write the RN solutions as Qtt = Quu = Q11 = Q22 = Q33 = 1, Qt2 = A2 =

Bt = B2 = 0 and

At = µ(1− u2), f = (1− u2)
(

1 + u2 − 1

3
µ2u4

)
(2.7)

– 6 –



J
H
E
P
0
2
(
2
0
1
8
)
0
8
5

We have chosen coordinates such that the conformal boundary and horizon are located at

u = 0 and u = 1, respectively. We will construct more general finite temperature solutions

by imposing regularity of all the unknown functions at the horizon. In the UV, we demand

the metric to be AdS in addition to the following conditions for the gauge fields

At = µ+O(u2), A2 = O(u2), Bt = O(u2), B2 = λ+O(u2) (2.8)

As usual, we interpret µ as the chemical potential. In the case B = 0, our solutions will

reduce to the non-linear spontaneous helices of [10], in which the spontaneous current can

be read off from the subleading term in A2. In order to break translational invariance

explicitly without directly sourcing the current sitting in A2, we will turn on the source

λ in the gauge field B. When doing so, consistency of the equations of motion requires

a non-vanishing Bt component when Qt2 6= 0. We set the leading term in Bt to zero to

avoid introducing extra sources. We emphasize that the gauge field B is only a technical

device to introduce explicit breaking of translations. The conserved current associated to

the chemical potential, and the one we shall be concerned with when computing transport

properties, is the one sitting in A.11

We will construct our solutions by starting with a spontaneous helical structure of

momentum k, and place it on an explicit lattice of the same momentum by turning on

λ. As mentioned in the Introduction, this keeps the equations of motion as ODEs thus

largely simplifying our calculations. We solve the non-linear equations of motion by using

the DeTurk trick [62–64], in combination with a Newton-Raphson relaxation method with

pseudospectral collocation. The DeTurk method then fixes the aforementioned gauge sym-

metry of the metric in a dynamical way.12 In this gauge, the equations of motion imply

that Qtt = Quu at the horizon u = 1, which in turn fixes the ratio

T

µ
=

2

3

6− µ2

4πµ
(2.9)

Our backgrounds are characterized by four parameters, which we take to be the temperature

T , the momentum k, the lattice amplitude λ and the chemical potential µ. Due to the

underlying conformal symmetry, we can scale away one of these parameters. We choose

instead to express all physical quantities in units of the chemical potential.

In the absence of sources, our solutions reduce to the ones constructed in [10]. These are

characterized by the temperature and momentum of the spontaneous helix, and populate

the interior of the “bell-curve” determined by the marginal modes. For a given temperature,

11In principle one could add a mass m2
B for the vector field B, which removes the extra conserved current

without changing the qualitative picture in the metric-U(1) sector. We set m2
B = 0 only to simplify the UV

asymptotics. A similar strategy was adopted in [38].
12In principle, the system of ODEs one obtains from Einstein and Maxwell’s equations can be solved

using shooting (after fixing the gauge properly, setting e.g. Q33 = 1), but in order to achieve the desired

accuracy to study the fluctuations, we find it technically convenient to employ a relaxation method since

the output of the method includes the values of the unknowns at the ends of the computational domain

and no regulators are introduced on the boundaries, as it is necessary for the shooting method to work [65].

Relaxation has previously been used to construct similar helical backgrounds in [44, 66].
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Figure 1. Marginal modes (blue) and thermodynamically preferred solutions for γ = 1.7. Our

results are in agreement with [10].

there is one solution inside the bell-curve which minimizes the free energy, which is given

by [10]

w =
1

2
(Ttt − Txx), (2.10)

where Ttt and Txx are components of the (renormalized) boundary stress tensor. The set of

these solutions forms a curve in the plane (k, T ) which characterizes the thermodynamically

preferred configurations in the grand canonical ensemble, see figure 1. In the following we

shall restrict ourselves to these solutions prior to the introduction of explicit symmetry

breaking.

We are interested in the behaviour of these solutions as we turn on the spatially depen-

dent source parametrized by λ. Above the critical temperature, the resulting configurations

are the ones found in [27]. These correspond to solutions which break translations explicitly

and, as such, posses finite DC conductivity. Their metal/insulator phase diagram was con-

sidered in [27] and later expanded in [44]. In the present study we will consider the regime

in (λ, k) plane in which the high temperature solutions are metallic. Below the critical tem-

perature, the configurations of interest correspond to the spontaneous structure placed on

an external lattice of the same momentum. Note that the critical temperature at which the

formation of the spontaneous structure occurs depends on λ [44]. It is worth mentioning

that after turning on the spatially dependent source, some logarithmic terms appear in the

boundary expansion [10, 27, 38], with the associated conformal anomaly [67, 68]. For our

purposes, this presents only a mild technical issue and does not influence our main results.

Moreover, we have checked that our numerical results are not very sensitive to these log

terms, in that it suffices to use pseudospectral method to reach adequate convergence.

We also note that the solutions which we are considering, are fine tuned in a sense

that the periodicity of the spantaneous and explicit structures coincide. Moreover, in [44]

it has been already shown that, due to the lack of commensurability effects in this type

of models, our solutions are not thermodynamically preferred for sizable λ. This feature

may lead to the appearence of the unstable mode in the spectrum, corresponding to the

– 8 –
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change of the period of the spontaneous helix. Nonetheless, it will not substantially affect

the features of the Goldstone mode, which is in the focus of the present study.

2.2 Linearized perturbations and Goldstone modes

Our main goal is to study the physical properties of the pseudo-Goldstone mode associated

to the translational symmetry along the x direction. At zero lattice amplitude λ = 0, this

mode becomes a true Goldstone and can be identified by acting with a translation on the

background configuration.13 By taking the Lie derivative along ∂x of the ansatz (2.2), (2.3)

with B = 0, we obtain the perturbation

δ(ds2) = −2k

u2
ω
(k)
3

[
dtQt2Q22 + ω

(k)
2 (Q22 −Q33)

]
(2.11)

δA = kA2ω
(k)
3 (2.12)

We can readily check that this mode is a solution of the linearized equations of motion,

and gives the profile for the Goldstone mode at zero frequency ω and perturbation mo-

mentum q.14 In order to obtain the dispersion relation for this mode, however, we need

to include the dependence ∼ e−iωt+iqx, which couples it to all the remaining fluctuations

of the metric δgµν and gauge fields δAµ and δBµ. We describe our gauge fixing procedure

and other details of our linear mode calculation in appendix B.

We compute the conductivity by turning on the source for the linearized electric field,

while keeping all the other sources to zero. This can be expressed in terms of the UV

asymptotics of the perturbation δAx,

δAx = e−iωt+iqx(δA(0)
x + u2δA(2)

x + u2 log uδÃ(2)
x + . . .) (2.13)

where δA
(0)
x , δA

(2)
x , δÃ

(2)
x are constants. The electric field in momentum space is then given

by Ex = iωδA
(0)
x . By choosing the appropriate renormalization scheme, we can define the

boundary current to be simply proportional to δA
(2)
x , with no extra contributions from the

log term δ̃A
(2)
x , see [38], so the optical conductivity can be expressed as

σ(ω) =
δA

(2)
x

iωδA
(0)
x

(2.14)

We note that the ambiguity in the renormalization scheme does not affect the IR behaviour

of this observable, since different schemes are related to each other by local terms which

are of order O(ω2).

The QNMs which give the poles of the corresponding two point functions are obtained

by setting all the sources for the linearized perturbations to zero and solving the Sturm-

Liuville problem. We will present our numerical results for the optical conductivity and

QNMs in the next section.

13The existence of this mode follows simply by diffeomorphism invariance and the translational invariance

of the background configuration.
14Strictly speaking, one should regard q as a Bloch momentum, due to the breaking (either spontaneous

or explicit) of translational invariance. However, because of the ODE nature of the equations of motion,

there is no Brilloiun zone and this distinction does not play any significant role.
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Figure 2. Quasinormal modes in the purely spontaneously broken phase (T = 0.52Tc), showing

among others the dispersion relation of the Goldstone mode (red dots on the right panel) as a

function of momentum q. Left panel: trajectories of QNMs in the complex plane, Right panel:

dependence of the real and imaginary parts on momentum.

3 Dispersion relation of the (pseudo-)Goldstone and AC conductivity

We start our analysis by addressing the purely spontaneous symmetry breaking case λ = 0.

At finite temperature T = 0.0325 well below the phase transition (Tc = 0.0625) we study

the momentum dependent QNMs in the spectrum of the nonlinear spontaneous ground

state (see appendices B, C for details of our numerical procedure.) The results are shown

in figure 2. One can readily discern the propagating gapless mode with linear dispersion

relation — the longitudinal phonon. The imaginary part of the QNM, related to the

attenuation rate of the phonon, rises as q2. Apart from the propagating mode we see 3

diffusive modes: the thermoelectric diffusive mode, associated with the field B, and the

thermoelectric diffusive and the crystal diffusive mode, associated with the field A. The

existence of the last two low-energy excitation is in perfect agreement with the prediction

from effective hydrodynamic-like theory, as we discuss in appendix A, while we do not

observe the shear diffusive mode due to the restrictions of our ansatz.

It also is interesting to study the dependence of the speed of sound with temperature.

For this purpose we evaluate the dispersion of phonon for a set of backgrounds with different

temperatures and extract its slope near q = 0, figure 3. Clearly, the square of the sound

velocity rapidly rises below the critical temperature, as the bulk elastic modulus of the

spontaneous structure increases, in perfect qualitative agreement with (1.3).

If we now introduce explicit symmetry breaking, by slowly rising the source for the

explicit helix λ, we will observe the phonon to acquire a finite pinning frequency, see

figure 4. We observe that for small amplitude of the explicit helix λ, the pinning frequency

ω0 is proportional to λ, while the width Γ rises quadratically,

ω0 ∼ λ, Γ ∼ λ2. (3.1)
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Figure 4. QNMs at zero momentum in the spontaneously broken phase (T = 0.52Tc)with increas-

ing amplitude of explicit symmetry breaking λ. The rising pinning frequency of the phonon is seen

(right panel) as a function of λ. Left panel: trajectories of QNMs in the complex plane, Right

panel: dependence of the real and imaginary parts on λ.

This is in accordance with the general expectations for a pseudo-Goldstone, outlined in

the Introduction. The specific powers of λ which appear may seem surprising, however,

since the pinning frequency is proportional to the mass of the pseudo-Goldstone. In the

simplest scalar field model, the mass enters the equation of motion squared and therefore

one would expect m2 to be proportional to the explicit symmetry breaking scale λ. But in

the case under consideration, the field B, responsible for the explicit symmetry breaking,

always enters the equations of motion quadratically. Therefore the effective scale of the

symmetry breaking is λ2 and (3.1) reflects this fact.

Using the obtained values of ω0 and Γ, and the sound velocity, evaluated for purely

spontaneous case, we can directly check the validity of the expression (1.1) for the dispersion

relation. On figure 5 we plot the real part of the momentum dependent QNM of the pseudo-

Goldstone mode overlaid with the prediction of (1.1). Excellent agreement is apparent.
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Figure 6. AC conductivity (Left panel) and its limit at zero frequency (Right panel) in the

state with fully developed spontaneous structure (T = 0.52Tc) as at different amplitudes of the

explicit helix λ. The dashed lines show the prediction of (1.2) with parameters extracted from

QNM spectrum. The solid lines are the numerical results. Color dots on the right panel mark the

parameters for which the AC curves has been produced.

Interestingly, the behaviour of pseudo-Goldstone QNMs at large λ is qualitatively

different. Starting from λ ≈ 1 the gap no longer increases and the QNMs approach the

imaginary axis. In this regime, the scale of explicit symmetry breaking becomes comparable

with the scale of spontaneous symmetry breaking and hence the treatment of pseudo-

Goldstone mode as a slight modification of the pure Goldstone does not apply.

We can further investigate the dependence of the AC and DC conductivity on λ in

the regime well below the critical temperature, where the spontaneous structure is fully

developed. On the left panel of figure 6 we plot AC conductivity profiles for several values

of λ together with the prediction which follows form the gradient expansion formula (1.2)

with parameters obtained from the QNMs study. The only value which is fitted is the

overall factor in front of the pole term, and this turns out to be constant for all λ in the

scope. We observe excellent agreement even in the extreme regime were explicit symmetry

breaking scale is very small. For any finite value of λ, the Drude peak is pinned and moves
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Figure 7. QNMs in the states with fixed explicit scale λ = 0.5 and increasing temperature.

As the temperature approaches the critical point Tc the phonon QNMs become purely diffusive.

Yellow curves show the fit using the order parameter scale (3.3), yellow dashed line displays the

appropriately normalized order parameter 〈J2〉 itself. Left panel: trajectories of QNMs in the

complex plane, Right panel: dependence of the real and imaginary parts on T .

to higher frequency, leaving zero contribution to the DC conductivity at ω = 0. This leads

to a spectacular effect shown on the right panel of figure 6, where we plot the limiting value

(see appendix C)

σ(0) ≡ lim
ω→0

σ(ω). (3.2)

Even though the conductivity at λ = 0 must be infinite due to the translation symmetry,

the pinning of phonon with arbitrary small strength drives it down to σ0 from (1.2), gapping

away all the spectral weight contained in the Drude peak. Since all the available weight

has been abruptly gapped, at λ . 1 the DC conductivity remains constant with λ. We do

observe that this dependence grows slightly in the region of larger λ, where as we discussed

above, the pseudo-Goldstone logic fails and the validity of (1.2) is lost.

Having studied the dependence of the phonon pinning frequency on the explicit sym-

metry breaking scale, let us turn to the study of its relation to the spontaneous symmetry

breaking scale, which is set in our context by the order parameter corresponding to the

vacuum expectation value of the helical current 〈J2〉. We can accomplish this by changing

temperature, since the order parameter is clearly temperature dependent. In figure 7 we

show the evolution of the QNMs when we rise the temperature all the way to the critical

point, while keeping the explicit scale λ = 0.5 fixed.

The striking feature of these spectra is that the phonon does not acquire a finite gap in

the spectrum immediately after the phase transition. Instead it becomes an over-damped

diffusive mode until the temperature is lowered further (down to T ∼ 0.98Tc in the present

case). The reason behind this is that exactly below the critical temperature the spontaneous

symmetry breaking scale is infinitesimally small, while the explicit scale is fixed to a finite

value. In this case the pinning frequency ω0 may happen to be smaller then the damping
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Figure 8. AC conductivity (Left panel) and its limit at zero frequency (Right panel) in the states

with fixed explicit symmetry breaking (λ = 0.5) and changing temperature. The dashed lines show

the prediction of (1.2) with parameters extracted from QNM spectrum. The solid lines are the

numerical results. Color dots on the right panel mark the parameters for which the AC curves has

been produced.

factor Γ (see figure 9, right panel) and the poles in (1.2), which are

ω1,2 =
1

2

(
−iΓ±

√
4ω2

0 − Γ2

)
, (3.3)

do indeed become purely imaginary. On the right panel of figure 7 the yellow line shows

the fit which we obtain from (3.3) by assuming that the pinning frequency is proportional

to the order parameter, while the damping is constant

ω0 ∼ 〈J2〉1, Γ ∼ 〈J2〉0. (3.4)

The fit displays very good agreement in both real and imaginary parts, given that only

one proportionality constant is fitted and we evaluate 〈J2〉 independently by analysing

the background solutions. It would be interesting to analyze our results regarding the

relaxation rate Γ using the memory matrix techniques as in [1, 2, 5, 69].

Finally, we investigate the AC and DC conductivity as a function of temperature. Fig-

ure 8 shows the AC conductivity fitted by the expression (1.2) in both propagating and

over-damped regimes. Again the fits are almost perfect for the whole range of temperatures.

As it is seen from (1.2) and (3.3), the position of the peak in AC conductivity is always set by

ω0, which is positive even in the over-damped regime. This good agreement is actually sur-

prising given that in the regime Γ > ω0 the scale of explicit symmetry breaking gets larger

then the scale of spontaneous symmetry breaking, which is formally beyond the region of va-

lidity of the formula (1.2). A slight mismatch can be discerned though in the small ω region.

The DC conductivity plot looks somewhat puzzling in the region near Tc. On one

hand, given that the formula (1.2) provides a reliable fit to the AC conductivity, one would

expect, similarly to figure 6, that DC conductivity is not affected by the contribution from

the peak and stays constant all the way to the critical temperature. On the other hand, the

DC plot clearly shows the hyperbolic-like upturn right below Tc. As pointed out above, the

explanation is that right next to the critical temperature the explicit symmetry breaking
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Figure 9. Left panel: DC conductivity scaling at low and high temperatures across the phase

transition. Right panel: relation between pinning frequency (ω0) and relaxation rate Γ. Clearly,

the pseudo-Goldstone approximation (Γ� ω0) is violated near Tc.

scale so strongly dominates over the spontaneous one (see right panel of figure 9), that

one has to take into account the corrections to the formula (1.2), which is obtained in the

gradient expansion approximation and as a deviation from the pure Goldstone mode. We

discuss the possible corrections in the appendix A.

Before closing this section let us comment on the “metal-insulator” transition happen-

ing due to the presence of the combined effect of the spontaneous and explicit breaking. It

is best seen on the Log-Log plot of the DC conductivity, left panel of figure 9. Here we see

that the high temperature metallic phase has conductivity which scales as

σmet ∼ T−1.6, (3.5)

while the low temperature state has the opposite scaling

σins ∼ T 2.4. (3.6)

As anticipated, at low temperature the system turns into the algebraic insulator with a

power law fall of the conductivity, confirming that the metal-insulator transition is indeed

induced by the pinning of a Goldstone mode.

The metallic/insulating nature of the system at low temperature, and the correspond-

ing scalings of the conductivity, could be understood in terms of the ground states of the

Bianchi VII spacetime considered. Previous studies of the IR fixed points in this direction

have been performed in [27, 30, 70, 71]. It would be very interesting and useful to eluci-

date this point better in the future to have better control on the IR geometries and their

transport properties.

4 Discussion and summary

We have explicitly obtained the dispersion relation of a Goldstone mode associated to the

spontaneous breaking of translations within the holographic framework. This Goldstone

can be identified as the longitudinal phonon of the corresponding “electronic crystal”. We
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also observed that the speed of sound mediated by this phonon is affected by the elasticity

of the crystal. After identifying this mode in the spectrum of QNMs, we have introduced

a source which explicitly breaks translational invariance and followed the trajectory of the

Goldstone in the complex plane. We observe that the initially massless mode, i.e. the

proper Goldstone boson, acquires a mass gap and a finite damping Γ according to (1.1).

We demonstrate that the pinning frequency ω0 is proportional to both the explicit breaking

amplitude (3.1) and the spontaneous breaking order parameter (3.4) in accordance with

the general expectations for the pseudo-Goldstone mode

ω0 ∼ λ〈J2〉. (4.1)

The pinning frequency is a direct manifestation of the pinning mechanism due to the

interplay between two lattice structures while the damping parameter Γ, which is only

related to the explicit scale λ is just a reflection of the a finite momentum relaxation rate

τrel. Both parameters become zero in the limit of purely spontaneous breaking λ = 0 and

one recovers the usual massless phonon. In other words, our model provides a concrete

realization of the interplay of spontaneous and explicit breaking of translations in perfect

agreement with the effective field theory expectations [5].

Furthermore, we have computed the optical conductivity, which offers a complemen-

tary view of the pinning physics. More concretely, tracing the behaviour of a purely metallic

solution as we decrease the temperature below Tc, we observe the shift to higher frequen-

cies of the zero frequency Drude peak present in the purely explicit breaking scenario. Due

to this frequency shift, there is a drastic drop in the DC conductivity across the critical

temperature, which occurs in such a way that our initially metallic solutions become alge-

braic insulators, i.e. σDC decreases with temperature as a power law at low temperatures.

Moreover, the value of σDC is nearly independent of the symmetry breaking parameter in

this insulating state, in agreement with the hydrodynamic expectations which identifies

σDC in the presence of pinning to the so called incoherent conductivity σQ [5, 72].

Our work opens up a new direction towards the study of phonons and elasticity within

the holographic picture. Along these lines, it would be interesting to consider other physical

observables which are naturally strongly influenced by the phononic contribution, such as

the heat capacity and the thermal conductivity. In order to give these studies a firmer

basis, it would be useful to build up a precise framework to compute the elastic moduli

and the viscosities via Kubo formulae in presence of explicit and spontaneous breaking of

translations, using for example a gradient expansion. The study of the elastic properties of

the model we considered is certainly an exciting direction to pursue. The related questions

are many: from a precise definition of the elastic modulus κ and a formal derivation of the

formula for the phonons speed (1.3) to a direct comparison with the numerical results to

assess the agreement with the theoretical expectations.

Moreover, it would be interesting to further investigate the transition region, when

the DC conductivity starts rising when approaching Tc from below, since this behaviour

is naively forbidden by the formula (1.2). The possible breakdown of this approximation

may already happen in the regime where the spontaneous order parameter is infinitesimally

small, which allows for a perturbative access to this region in parameter space.
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We have obtained our results relying on the technical simplifications that arise from

considering a homogeneous model with Bianchi VII helical symmetry. The excellent match-

ing with the results obtained using a rather generic gradient expansion (1.1), (1.2) is indeed

a posteriori justification of the validity of this model. However, the implementation of the

ideas exposed here in a truly inhomogeneous setup would allow us to uncover interesting

physics, such as the propagation of a transverse phonon and the consequences of the lock

in between the spontaneous and explicit structure.

We hope to return to these and other related issues in the near future.
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A Low energy spectrum of a theory without translational symmetry

In this appendix, we summarize the spectrum of the effective theory where translational

symmetry breaking occurs in one direction. We first deal with the scenario where the

symmetry is only spontaneously broken, and then include momentum relaxation. Our

analysis closely follows the framework of [5], where the effective hydrodynamic theory

for charge density wave (CDW) states has been constructed. We refer interested readers

to [5, 73, 74] for more details regarding the setup and also [51, 75, 76] for a modern

discussion from the effective action point of view.

We restrict ourselves to the scenario where the wave number qi is parallel to the

direction of symmetry breaking, described by a unit vector ni. We also assume that

the system is isotropic in the plane perpendicular to ni. Using the Laplace transform

– 17 –



J
H
E
P
0
2
(
2
0
1
8
)
0
8
5

Modes Dispersion Relation (small κ)

Sound (S) ωS = csq − i
2Dsq

2

Transverse Diffusive (T) ωT = −i
(
η⊥
ε+p

)
q2

Thermoelectric diffusion (D1) ω1 = −i (Dρ + κ δD1) q
2

Crystal diffusion (D2) ω2 = −iκ δD2 q
2

Table 1. A table summarizing the low energy modes in the spontaneous symmetry broken phase.

The explicit expression for c0,Dρ can be found in the in [79]. The expression for δD2 can be obtain

straightforwardly from the setup in the appendix A of [5] taking the limit θ = 0 first, then Taylor ex-

pand q around q = 0. These modes are observed in our holographic model as illustrated in figure 2.

method [77] (see also [78, 79] for a modern review), one is able to find the spectrum of this

system. It turns out that the spectrum contains two sound poles and three diffusive poles

which can be written schematically as

ωS = csq −
i

2
Dsq2, ωT = −i

(
η⊥
ε+ p

)
q2, ω1,2 = −iD1,2 q

2 (A.1)

where the speed of the propagating mode ωS is given by (1.3). The mode ωT is the

diffusive mode of the transverse momentum, with η⊥ being one of the shear viscosities

in an anisotropic system. The diffusion constants D1,2 are complicated functions of the

thermodynamic quantities, transport coefficients and elastic modulus. However, in the

limit of small elastic modulus, we find that

D1 = Dρ + κ δD1 +O(κ2), D2 = κ δD2 +O(κ2) (A.2)

where δD1,2 are functions of transport coefficients and thermodynamics quantities. Here

Dρ is the thermoelectric diffusion in a charged relativistic fluid (see e.g. [72, 79]) and

κ the elastic modulus introduced in (1.3). We can therefore deduce that the mode of

frequency ω1 is the thermoelectric diffusion with the diffusion constant modified by the

elastic modulus. On the other hand, the diffusive mode ω2 is unique to the spontaneous

translational symmetry broken phase as its diffusion constant vanishes when the elastic

modulus goes to zero. Following [5], we refer to ω2 as a crystal diffusive mode.15 These

results are summarized in table 1

The explicit translational symmetry breaking can be introduced by adding momentum

relaxation term to the r.h.s. of the conservation of momentum equation. Moreover, as

15In [5], the results for the system with spontaneous symmetry breaking in one dimension are presented

for an arbitrary propagation angle cos θ ∼ niq
i. In such scenario, one finds the longitudinal sound, the

thermoelectric diffusion together with an additional propagating mode: the transverse sound. However, a

careful analysis of the Green’s function indicates that the limits q → 0 and θ → 0 do not commute. The

result presented here is obtained by first setting θ → 0 and then perform the small gradient expansion in

q. Following this procedure, one notices that the two transverse sound poles collide with each other on the

imaginary axis and turn into the transverse diffusive mode ωT and the crystal diffusive mode ω1 as one

decreases θ from θ = π/2 toward θ = 0. Similar behaviour is also found in the study of magnetosonic waves

in dissipative relativistic plasmas [80, 81].
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argued in e.g. [5], the explicit translational symmetry breaking will also generate a gap ω0

for the Goldstone boson φ. As a result, the conservation of momentum is modified as

∂tπ
i + ∂jτ

ij = 0, ⇒ ∂tπ
i + ∂jτ

ij = −Γijπj − χππ ω2
0 n

iφ (A.3)

where πi is the momentum and τ ij is the stress tensor. If one assumes that the constitutive

relation is independent of Γij and ω0, one finds that the pole of spatially resolved AC

conductivity σ(ω, k) is governed by the pseudo-Goldstone dispersion relation (1.1) and the

AC conductivity can be expressed as in (1.2) where Γ is the longitudinal part of Γij . Note

however that, as we neglect the contribution from these momentum relaxation terms in

the constitutive relation, we are unable to reliably describe the dissipative effect in this

scenario.16 Nevertheless, the effective theory of (A.3), is still able to capture essential

properties of various quantities when the momentum relaxation rate is small. On the other

hand, when the momentum relaxation rate is large, it is clear that the spectrum will deviate

from the formula in (1.1). Furthermore, one can deduce that the propagating mode will

disappear and the transport phenomena will be fully governed by diffusion [5, 88, 89]. This

phenomenon where the sound mode turns into diffusive modes was first discussed in the

model of [29] in [89].

Lastly, we emphasize that the model considered in this appendix (as well as in [5]) is

isotropic in the plane perpendicular to ni while the Bianchi VII setup is not. As a result,

the detailed structures (such as elastic moduli and independent transport coefficients) of

the effective theory in this section and our holographic model are expected to be somewhat

different.

Nevertheless, this hydrodynamic model shares many qualitative features with the low

energy mode in the Bianchi VII setup, due to the fact that we only consider the propagation

longitudinal to ni. Because of this, the structure of the lattice/crystal perpendicular to ni

should not change the obtained qualitative behaviour of the low energy modes.

B Linearized modes, asymptotics and De Donder gauge

The system of equations which governs our linear modes corresponds to 25 coupled ODEs

for all the components of the metric and vectors fields. We remove the gauge redundancy

by imposing the DeDonder and Lorentz conditions

τ gµ := ∇µ
(
δgµν −

1

2
gµνδg

)
= 0 (B.1)

τA := ∇µδAµ = 0 (B.2)

τB := ∇µδBµ = 0 (B.3)

Following [37], we implement this by adding the terms ∇(µτ
g
ν), ∇µτ

A, ∇µτB to the Einstein

and Maxwell equations, respectively, with the appropriate coefficients. These coefficients

are fixed by demanding that the resulting equations of motion are of Hyperbolic form.

16For a hydrodynamic-like framework where the momentum relaxation is taken into account consistently

see e.g. [82–84] where the symmetry is broken explicitly by spatial dependent scalar fields, by chemical

potential [85] and by curved background metric [86, 87].
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We demand the fluctuations to satisfy ingoing boundary conditions at the horizon,

which is best seen by expressing the metric and gauge field in terms of Eddington-

Finkelstein coordinates. In practice, this amounts to extracting a factor (1 − u)βn , in

all the modes, where

βn = −i ω

4πT
− n (B.4)

Here, n = 0, 1, 2, is determined by the number of indices in the u-direction in the profile,

e.g. n = 2 for δguu. The near horizon equations then require a set of relations among the

leading and subleading terms in the regular expansions for the fields. Some of these are

to be imposed as boundary conditions, while the others can be checked a posteriori by

consistency of the equations of motion, see [37] for a more detailed discussion.

The near boundary expansions of the linear perturbations have the same form as the

non-linear counterparts, and can be found in [38].

C Numerical linear analysis: QNMs, AC conductivity and σ(0)

Once the linearized equations of motion, including boundary conditions, for the excitations

are discretized using the pseudospectral method, they can be expressed as a linear system

of equations on the values of all coupled modes at every grid point. Denoting the matrix

operator of the corresponding homogeneous system as M we can write down the equations

for AC conductivity as

M · ~v = (. . . , A(0)
x , . . . , . . . )T ≡ ~A, (C.1)

where the position of the single entry in the right hand side corresponds to the boundary

condition equation for Ax field. Hence the profile of the solution with the source is simply

~v = M−1 · ~A, (C.2)

The responce is read off from the grid values encoded in v vector using (2.14).

There is a neat way to evaluate directly the zero frequency limit of AC conductivity.

Given that the linearized equations of motion are second order in ω we can represent the

matrix M exaclty as

M = M0 + iωM1 + ω2M2 (C.3)

At small ω the solution to (C.1) can be expanded as ~v = ~v0 + iω~v1 + . . . . Expanding (C.1)

in first two orders we get

M0 · ~v0 = ~A, (C.4)

M1 · ~v0 +M0 · ~v1 = 0. (C.5)

For momentum q = 0, which is the case for AC conductivity calculation, both equations

are manifestly real and we get the solution

~v = ~v0 + iω~v1 (C.6)

~v0 = M−10 · ~A (C.7)

~v1 = −M−10 ·M1 · ~v0 (C.8)
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According to (2.14), the real part of the conductivity is related to the subleading coefficient

in the imaginary part of the solution devided by frequency, hence one can read off the zero

frequency limit of AC conductivity as

σ(0) ≡ lim
ω→0

σ(ω) ∼ D2
z · ~v1, (C.9)

where D2
z is a discretized version of the second derivative.

In order to study quasinormal modes one has to analyse the eigenvalues of the ma-

trix M . Given the form (C.3), this task boils down to the well known quadratic eigenvalue

problem, which we solve using Wolfram Mathematica Eigenvalue routine [90].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[5] L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll and A. Karlsson, Theory of hydrodynamic

transport in fluctuating electronic charge density wave states, Phys. Rev. B 96 (2017) 195128

[arXiv:1702.05104] [INSPIRE].
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