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ABSTRACT: Developing a clean handling and transfer process,
capable of preserving the integrity of two-dimensional materials, is still
a challenge. Here, we present a flexible, dynamic, and lipid-based
scaffold that clamps graphene at the edges providing a practical,
simple, and clean graphene manipulation and transfer method. Lipid
films with different surface pressures are deposited at the air/copper-
etchant interface immediately after placing the graphene samples. We
show that at surface pressures above 30 mN/m, the lateral support
prevents graphene movement and cracking during all etching and
transfer. The method provides new insights into the handling of
graphene and can yield efficient, sensitive, and clean graphene-based
devices.

KEYWORDS: lipid scaffold, graphene, Langmuir−Blodgett trough, Langmuir films, graphene polymer-free transfer

■ INTRODUCTION

Over the last years, a growing interest in graphene led to the
development of novel sensing devices.1−5 However, for the
realization of such devices, graphene has to pass through several
fabrication steps.6−9 Large-scale graphene sheets are typically
synthesized on metallic catalysts10 and then transferred to
target substrates such as Si/SiO2 wafers.11,12 The transfer
process can highly degrade the properties of graphene and its
performance in the final applications.13 The immobilization of
two-dimensional (2D) materials (e.g., graphene) by Langmuir
films is a strategy to controllably manipulate graphene directly
in an aqueous environment, without using polymeric
scaffolds.14 Langmuir films of amphiphilic lipid molecules are
insoluble at the air/liquid interface generating a lateral pressure
profile due to the intermolecular forces in the lipid monolayer.
The film is stable and 2D, guaranteeing a strictly lateral
compression (no perpendicular component which may cause
out-of-plane deformation) of graphene. The molecules act to
decrease the surface tension of the subphase, therefore creating
a dynamic clamp which adjusts itself according to the geometry
of graphene. For the first time, lipids are introduced as
molecular springs clamping graphene from the sides at the air/
liquid interface. The flexible lipid-based scaffold prevents
graphene movement and cracking during copper etching and
later on, during transfer onto the target substrate. We
investigate the performance of the lipid clamp and compare it
with existing polymer-free transfer methods.16−18

In a Langmuir−Blodgett (LB) trough14 the lipids are
deposited at the air/liquid interface and compressed passing
through different characteristic phases, namely, the gaseous (G)
state, the liquid expanded (LE) state, the liquid condensed

(LC) state, and the solid (S) state (Figure 1a).19−21 In the
presence of graphene, as the intermolecular distance between
the lipid molecules decreases during compression, the force
exerted by both the hydrophobic acyl chains and the
hydrophilic polar groups induces a pressure on graphene
edges; the increase in the surface pressure (π) is directly linked
to how closely the lipids are packed. Therefore, the dynamic
pressure of the lipid monolayer can keep the domains of
graphene together and intact, preventing the growth of already
existing cracks (e.g., through grain boundaries).22

The most common graphene transfer method includes a
temporarily coating of graphene with a polymeric film while
etching the metal substrate with an etchant solution. The
coating acts as a mechanical support and prevents graphene
cracking. The coating is thereafter removed by suitable
chemicals once graphene is transferred onto the target
substrate. Leftovers of polymer residuals are the important
limitation of the technique, which may degrade the ultimate
quality of graphene.23−26 Therefore, in the recent years, novel
polymer-free transfer methods have been developed, most of
which use physical supports such as graphite holders16 or
transmission electron microscopy grids,17 limiting the flexibility
of the process. Alternatively, graphene is also covered with
organic solvents such as cyclohexane9 or hexane,18 avoiding
polymer contaminations.
In our method, as the surface of graphene is not in contact

with any physical support, the basal plane remains uncon-
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taminated, allowing the realization of clean devices directly on
water. With this non-covalent bonding, graphene can be
manipulated from the edges, leading additionally to an optimal
transfer to arbitrary substrates. Increasing the lateral pressure of
the lipids decreases the number of cracks and further preserves
the quality of the transfer. The development of a lateral support
damps vibrations on the surface of the etchant (happening
during etching or transfer), which may induce cracks. This
immobilization by Langmuir films establishes a novel strategy
for fundamental studies of graphene and also for transfer
purposes. For different applications,15,27,28 particularly to realize
electronic devices, our introduced method could solve
contamination issues; furthermore, our novel platform serves
to manipulate and study graphene on a liquid support.

■ EXPERIMENTAL SECTION
LB Technique. 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

(DPPC) lipids (Avanti Polar Lipids Inc.) with a concentration of 1
mg/mL were dissolved in CHCl3/CH3OH 3:1 vol %. The lipid
solution was deposited dropwise on an ammonium persulfate solution
(APS, 0.5 M) at 25 °C using a microliter syringe, and the solvent was
allowed to evaporate for 15 min. The measurements were performed
in a Minitrough 2, KSV Instruments, using KSV Research Lab v2.01
software. The teflon trough of the setup was equipped with
hydrophilic barriers made of Delrin.
Graphene Transfer. Six Petri dishes filled with APS were prepared

prior to the experiments. Copper foils with chemically grown graphene
(all with an approximate size of ∼10 × 10 mm2) were placed on the
surface of the etchant (Figure S1, Supporting Information).
Immediately afterwards, the DPPC lipids were added to the air/
etchant interface with different π (0−50 mN/m) in separate Petri
dishes. After the copper etching, the graphene floating at the interface
was transferred to different Si/SiO2 substrates by gently putting the
substrate in contact with graphene. Eventually, APS residues remaining
on the surface of graphene were rinsed with a continuous flow of
ultrapure water. The π < 10 mN/m is insufficient to prevent the lateral
movements of the graphene or preserve its integrity during etching
(see the graphene position on Figure S1a,b). Instead, for π ≥ 30 mN/
m, the foil (graphene) remained immobilized. Higher π fixes the foil in

position throughout the etching. However, at the π of 40 mN/m, the
graphene sheet was slightly contracted because of the force induced by
the lipids on the graphene edges. Importantly, we did not observe any
remarkable contraction of graphene at 50 mN/m, which suggests that
the lipids collapsed29 (i.e., overlapped or sank), reducing the overall π.

An alternative transfer approach was to place the Si/SiO2 substrate
at the bottom of the Petri dish. After the copper etching, the APS was
replaced by ultrapure water with a continuous flow of water in and
APS out. Eventually, the surface of the water was lowered to gently
place graphene onto the substrate. This approach also achieves the
transfer of a continuous graphene, as observed by the optical
micrograph (Figure S2, Supporting Information), confirming the
versatility of the molecular edge clamp concept.

Characterization. Imaging. Optical images were obtained by a
Leica DM 2700 M microscope with a 5× objective. Fluorescence
quenching microscopy for quantifying the amount of the cracks in
graphene was performed with a 20× objective on a Axiovert 200
ZEISS inverted fluorescence microscope equipped with a mono-
chrome AxioCam MRm ZEISS camera. To do this measurement, the
surface of graphene was spin-coated with a poly(methyl methacrylate)
(PMMA) layer premixed with 2−6 μL solution of rhodamine B, 4 mM
(dissolved in acetone). The captured images were postprocessed
according to the protocol we published earlier30 to estimate the
rupture index (RI).

Infrared External Reflection Spectroscopy. Spectra were collected
with a Bio-Rad Excalibur Series infrared spectrometer in external
reflectance mode. The chamber was continuously purged with dry air,
and a sample of bare Si/SiO2 substrate was taken as the reference. The
angle of incidence was measured at 45° with a spectra range of 8.000−
0 cm−1. Each spectrum was collected for an average of 128 scans with a
resolution of 4 cm−1.

Raman Spectroscopy. Raman spectra were measured on a WiTec
alpha 3000 confocal spectrometer with a 532 nm laser excitation
source and a 100× objective. Each sample was measured at least on
three different locations, to obtain an average spectrum.

Atomic Force Microscopy. Atomic force microscopy (AFM) images
were obtained with a JPK NanoWizard Ultra Speed instrument, and
the images were processed on JPK SPM Data Processing software. The
experiments were performed using a silicon probe (AC240TS, Asylum
Research) with 300 kHz nominal resonance frequency. The images
were scanned in an intermittent contact mode at room temperature
with 512 × 512 pixels.

■ RESULTS AND DISCUSSION

Molecular Edge Clamp Preparation. The LB trough is an
efficient apparatus to form well-packed lipid monolayers at the
air/liquid interface. The DPPC monolayer was compressed up
to π = 50 mN/m (Figure 1a). The recorded isotherms were
used to reproduce the same lipid π/area conditions in six
different Petri dishes (see Experimental Section and Supporting
Information). All experiments were carried out at room
temperature (∼25 °C) where DPPC is in the gel phase. Note
that DPPC has a main phase transition temperature (Tm) of 41
°C. Below the Tm, the DPPC monolayer presents different
phases during compression, as observed in Figure 1a. Figure 1b
illustrates the concept of the molecular edge clamp. A
sufficiently high π prevents any noticeable movement of
graphene during all etching procedures and forms a well-
ordered and compact layer that holds the graphene in place
through all processes. Figure 1c,d shows overlapped snapshots
at different copper etching stages of two samples with and
without the lipid clamp at the edges. Clearly, the graphene
without any lateral support moves randomly, which may
eventually promote its cracking. Instead, lipids on the
surroundings of graphene hold the graphene in place during
all etching and transfer, preserving its integrity (see video,
Supporting Information).

Figure 1. (a) Surface pressure-area compression isotherm of 1,2-
dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid monolayer on
ammonium persulfate aqueous solution (APS) at 25 °C showing
different phase separations. G: gaseous state; LE: liquid expanded
state; LC: liquid condensed state; and S: solid state. (b) Illustration of
the molecular edge clamp concept. (c,d) Time-lapse photographs of a
piece of graphene grown on copper floating on a solution of 0.5 M
APS in water without (c) and with (d) the lipid clamp.
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Integrity of Transferred Graphene. Figure 2 compares
the optical images of graphene samples transferred onto Si/

SiO2 substrates with different lateral pressures. In fact, the
sample without any lipid lateral support is unsteady and
dramatically loses its integrity. The low-amplitude vibrations of
the surface of the etchant and the transfer could be responsible
for such damages. The graphene sheets transferred in the
presence of a strong lipid edge clamp, however, are continuous
to a large extent: increasing the π prevents the formation of
cracks, showing the advantage of the lateral clamp support.
Particularly, at the LC state (π > 30 mN/m), the interaction
between the lipid molecules at the interface is large enough to
induce a high pressure on the edges of graphene and promotes
a stable clamp while transferring to the Si/SiO2 substrates.
RI provides a quantitative measure of the integrity of

graphene samples.30 The emission of the fluorophore molecules
in close vicinity to graphene is quenched via a peculiar energy-
transfer mechanism, leading to an outstanding contrast between
cracked and continuous graphene areas in fluorescence
microscopy (see the images in the top row in Figure 3). RI
is determined by counting the number of pixels localized at the
border of the cracks (white pixels visible in the bottom row of
Figure 3) and divided by the total number of pixels
corresponding to graphene multiplied by one thousand. In
application, the median of different RI values measured at
several spots on the sample is reported to exclude the effect of
any local inhomogeneities (see Figure 4). Remarkably,
increasing the π using the lipid edge clamp has a direct effect
on the integrity of graphene. Particularly, π ≥ 40 mN/m
provides a negligible RI, comparable to graphene transferred
with a PMMA coating. The RI results are in line with the
optical microscopy studies. At high π, the lipid monolayer
becomes more compact with smaller intermolecular areas
reflecting on a more confined lipid clamp, therefore preserving
the original state of graphene upon transfer to the Si/SiO2
substrate.
The π affects the duration of the copper foil etching (tetch).

Figure 5a plots the estimated tetch as the function of π: we use
the time span between the moment some parts of the foil
started to be transparent up to the moment the foil turns to be
fully invisible to define the etching time. Generally, increasing
the π increases tetch. Indeed, the very high intermolecular
interactions between lipid molecules most probably drive lipids
toward the foil/etchant interface resulting in delays of the
etching as migrated lipids may form a layer between the copper

and the etchant. The delay depends on the concentration of the
intercalated lipid molecules, the latter being proportional to the
π. At the highest π (50 mN/m), presumably a considerable
amount of the lipids collapsed (reducing the effective π), in line
with what is observed by Figure S1, Supporting Information.

Characterization of Transferred Graphene. Infrared
external reflection spectroscopy (IR-ERS) measurements can
probe the lipid/graphene interactions after the transfer onto Si/
SiO2 substrates. As seen from Figure 5b, no significant
absorption bands characteristic for the stretching vibrations of
the lipid acyl chains were detected. The lack of lipid traces
suggests that during the transfer, the affinity between the lipid
molecules intercalated underneath graphene and the etchant is
stronger than the lipid−graphene interaction, allowing the
molecules to remain at the interface. Alternatively, the step of
rinsing with ultrapure water after the transfer of grapheneto
remove the remaining etchant residuescould have rinsed the
lipids away. For the purpose of comparison, we measured the
infrared spectra of a well-organized lipid monolayer transferred
onto a Si/SiO2 substrate using LB trough at π = 30 mN/m with
a graphene sheet above (Figure 5b, orange lineLB DPPC).31

The results show an intense absorbance on the symmetric
(∼2844 cm−1) and asymmetric (∼2912 cm−1) methylene
vibrations of the lipid acyl chains even for a single layer of
lipids, further confirming the assumption that the lipids from
the clamp were not transferred. Additionally, the black line
corresponding to the graphene without any lipids at the
interface is comparable to any other spectra of graphene
transferred with different π, further emphasizing that the lipids
were indeed not transferred with the graphene to the Si/SiO2
substrates. Such observations further confirm that the molecular
edge clamp provides a clean transfer to realize sensitive
graphene-based devices.

Figure 2. Optical micrographs of graphene on Si/SiO2 substrates
transferred at different clamp pressures (0, 5, 10, 30, 40 and 50 mN/
m). Scale bars are 500 μm.

Figure 3. Fluorescence quenching microscopy images of graphene on
Si/SiO2 substrates with different surface pressures of the lipids (top
row) and the corresponding images after processing (bottom row). All
scale bars correspond to 50 μm.
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Separately, the quality of the graphene transferred at different
π was analyzed by Raman spectroscopy after the transfer on Si/
SiO2 substrates (Figure 5c). Remarkably, Raman spectra are
insensitive to π and feature a 2D peak (∼2680 cm−1)
characteristic of a single-layer graphene, a weak D peak at
∼1350 cm−1, and a sharp G peak (∼1590 cm−1), confirming
the outstanding quality of graphene after transfer. Similarly,
Figure 5d shows an AFM image of continuous graphene on the
Si/SiO2 substrate transferred at π = 30 mN/m. In line with
what was mentioned above, graphene is fully immobilized by
the lipid molecules when in the LC state or above, because of
the increasing intermolecular interactions in the monolayer that
reduces the surface tension and creates a flexible scaffold on the
edges of graphene. This prevents graphene from cracking

during all etching time and consequently after the transfer to
Si/SiO2 substrates.

■ CONCLUSION

We present a molecular lipid-based scaffold that laterally clamps
graphene from the edges leading to an optimal manipulation
and transfer of graphene to arbitrary substrates, preventing
polymeric contamination and cracking of graphene. The
method is based on laterally supporting graphene with a lipid
monolayer on the surface of the etchant.
We investigated the uniformity of the graphene by means of

optical images and RI. The integrity of graphene increases by
increasing the lipid lateral pressure. The surface of graphene is
clean without process residuals. Compared to other existing
polymer-free transfer methods, this process benefits from the
fact that the surface of graphene is not in contact with any
physical support, the process is flexible and straightforward.
One immediate possible application would be to study the
electrical and mechanical properties of graphene with lateral
compression of the lipid scaffold.
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Figure 4. (a) Quantitative characterization of crack formation at different lateral clamping strengths for surface pressures ranging from 0 to 50 mN/
m.G−LE: gaseous to liquid expanded state; LE−LC: liquid expanded to liquid condensed state; and LC−S: liquid condensed to solid state.
Dimensionless RI was estimated for a maximum of 18 different arbitrarily selected windows (test areas, x axis) on the sample. (b) Median RI values
in (a) as a function of the surface pressure; the solid line is the fit using a polynomial function.

Figure 5. (a) Etching time of the copper foil as a function of the
surface pressure. (b) IR-ERS spectra of graphene transferred at
different surface pressures of lipids. An additional spectrum
corresponding to the transfer of a DPPC lipid monolayer by LB
with a graphene sheet above is also presented. (c) Raman spectra of
different graphene samples on Si/SiO2 substrates transferred with
different surface pressures (0, 5, 10, 30, 40, and 50 mN/m). (d) AFM
intermittent contact mode image in air at room temperature of
graphene transferred to an Si/SiO2 substrate with a surface pressure of
30 mN/m.
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